WO2012010063A1 - 基于h桥的无变压器风力发电并网拓扑结构 - Google Patents

基于h桥的无变压器风力发电并网拓扑结构 Download PDF

Info

Publication number
WO2012010063A1
WO2012010063A1 PCT/CN2011/077129 CN2011077129W WO2012010063A1 WO 2012010063 A1 WO2012010063 A1 WO 2012010063A1 CN 2011077129 W CN2011077129 W CN 2011077129W WO 2012010063 A1 WO2012010063 A1 WO 2012010063A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bridge
grid
power
wind power
Prior art date
Application number
PCT/CN2011/077129
Other languages
English (en)
French (fr)
Inventor
张跃平
胡涛
李太峰
魏西平
杨洋
赵淑玉
张坤
王振
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012010063A1 publication Critical patent/WO2012010063A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a wind turbine grid-connecting technology, in particular to a transformerless wind power grid-connected network based on an H-bridge. Background technique
  • step-up transformer is used to connect to the grid. This not only requires a step-up transformer for each wind turbine, but also costs a lot, and each wind turbine has only 3 levels, the harmonic content is large, and the multi-grid pollution is serious.
  • Wind power output is two-level or three-level, and the harmonic content is large. After boosting, it cannot be directly integrated into the power grid, and an output filtering device is needed. Summary of the invention
  • the object of the present invention is to provide a grid-free topology of a transformerless wind power generation based on an H-bridge, which outputs a high voltage through a series connection method; saves a step-up transformer when a general wind power is connected to the grid, and saves a lot of cost.
  • the multi-level voltage waveform can be output through the modulation algorithm, the output harmonic content is reduced, and the pollution of the power grid to the power grid is reduced.
  • the H-bridge-based transformerless wind power grid-connected topology includes wind turbines, rectifier modules, and inverter modules.
  • the wind turbine generates low-voltage alternating current. After three-phase full-bridge rectification, DC voltage is obtained. This DC voltage is used as the inverter module.
  • the DC-side voltage power supply of each unit; the inverter module converts the DC voltage into an AC voltage, and directly connects the plurality of power units in series, and the AC high-voltage output is integrated into the grid through the buffer inductor.
  • the inverter module is composed of three-phase power units, each phase is formed by connecting n power units in series, one end of the three-phase power unit is connected together, and the other end is connected to the grid through an inductor.
  • the power unit inverter side is an H-bridge structure, and is composed of four IGBT switching devices. Each IGBT switching device is anti-parallel to a diode, and each two IGBT switching devices are connected in series, and then connected in parallel with the DC capacitor C; It is an uncontrollable full bridge structure.
  • the modulation method adopts the carrier phase shifting method to generate a multi-step sine wave and obtain a better output voltage waveform with a smaller switching frequency
  • the entire wind farm can be connected in series to an AC high voltage, which is directly output from the AC side;
  • Figure 1 is a schematic diagram of a grid-connected topology of a transformerless wind power generation based on an H-bridge;
  • Figure 2 is a power unit structure diagram of a grid-free topology of a transformerless wind power generation based on an H-bridge.
  • FIG. 3 is a current flow diagram in the H-bridge power unit. detailed description
  • the H-bridge-based transformerless wind power grid-connected topology including wind turbine, rectifier module, inverter module, wind turbine generator M generates low-voltage alternating current, after three-phase full-bridge rectification to obtain DC voltage, this DC
  • the voltage is used as the DC-side voltage supply power of each unit in the inverter module; after the inverter module converts the DC voltage into an AC voltage, it is directly connected in series through a plurality of power units, and the AC high-voltage output is integrated into the grid through the buffer inductor.
  • the inverter module consists of three-phase power units, each phase consisting of n power units connected in series, a total of 3 ⁇ power units. Each power unit is powered by a wind turbine ⁇ through a three-phase full-bridge rectification to the power unit capacitor. One end of the three-phase power unit is connected together, and the other end is connected to the grid through the inductors LA, LB, and LC.
  • the power unit inverter side is an H-bridge structure
  • the rectification side is an uncontrollable full-bridge structure composed of diodes D1, D2, D3, D4, D5, and D6.
  • the inverter side consists of four switching devices IGBT1, IGBT2, IGBT3, and IGBT4 DC side capacitor C.
  • the switching device IGBT1 and IGBT2 are connected in series, and the switching device IGBT3 and IGBT4 are connected in series, and then connected in parallel with the DC capacitor C.
  • four switching devices IGBT1, IGBT2, IGBT3, and IGBT4 are connected in parallel with one of the reversed diodes D11, D22, D33, and D44.
  • the common terminal of IGBT1 and IGBT2, and the common terminal of IGBT3 and IGBT4 are the input and output terminals of the power unit connected to other power units.
  • the topology utilizes wind power as an energy relay pool to power the DC bus of the power unit, and combines certain modulation methods to generate the required multi-level variable sine wave.
  • the inverter module is mainly composed of three phases, and each phase is formed by connecting n power units in series. The number of series power units is called the number of unit stages. One end of the three-phase power unit is connected together, and the other end is connected to the grid through the inductor. Due to the multi-level output, the AC high voltage output from the series power unit contains less harmonics, less pollution to the grid, and no LC filter.
  • Controlling the gate voltage of the IGBT to turn it on or off allows the cell to have different circuit states.
  • the current flows through IGBT2, DC side capacitor C, IGBT3, from B to A, or current through freewheeling diode D3, DC side capacitor C, freewheeling diode D2, from A to B, at this time using H bridge
  • the power unit output level of the inverter circuit is "1".
  • the current flows through the freewheeling diode Dl, IGBT3, from B to A, or current through the freewheeling diode D3, IGBT1, from A to B, at this time using the H-bridge inverter circuit power unit output level "0".
  • the current flows through the freewheeling diode Dl, the DC side capacitor C, and the freewheeling diode D4, from B to A, or current through the IGBT4, DC side capacitor C, IGBT1, from A to B, at this time using the H bridge
  • the power unit output level of the inverter circuit is "-1".
  • the power unit superimposed output voltage can reach the grid level, and the voltage waveform synchronized with the grid will be generated according to the grid voltage, and the output harmonics meet the requirements, then the grid can be directly connected to generate electricity.
  • the n is determined by the required output voltage level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种基于H桥的无变压器风力发电并网拓扑结构,包括风力发电机组、整流模块和逆变模块。风力发电机组产生低压交流电,经三相全桥整流后得到直流电压,此直流电压作为逆变模块中各个功率单元的直流侧电压供电电源。逆变模块中各个功率单元将直流电压转换为交流电压,交流电压经各个功率单元直接串联后输出交流高压,然后经缓冲电感(LA,LB,LC)并入电网。该拓扑结构省掉了风力发电并网时通用的升压变压器,节约了成本。此外,该拓扑结构可以输出多电平电压波形,减少了输出谐波含量。

Description

基于 H桥的无变压器风力发电并网拓扑结构 技术领域
本发明涉及风力发电机并网技术, 特别是一种基于 H桥的无变压器的风力发电并网。 背景技术
作为节能环保的新能源,风电产业赢得历史性发展机遇,在金融危机肆虐的不利环境中 逆市上扬, 发展势头迅猛, 截止到 2009年底, 全国累计风电装机容量达到 25800兆瓦。
但在我国风力发电场中,风力发电机基本上都是通过通用变频器,使本身相位与电网相 同。最后再用升压变压器与电网并网。这样不但导致每个风力发电机都需要一个升压变压器, 成本巨大, 而且使每个风力发电机只有 3电平, 谐波含量很大, 多电网污染严重。
在大型风力发电场,有很多的电机,对于每个风力发电机都需要单独控制,控制难度大, 控制繁琐, 不易形成集中风力发电控制。
风力发电输出的都是两电平或三电平, 谐波含量大, 升压后不能直接并入电网, 需要加 输出滤波装置。 发明内容
本发明的目的是提供一种基于 H桥的无变压器风力发电并网拓扑结构,通过单元串联的 方法, 输出高压; 省掉了通用风力发电并网时的升压变压器, 节约了大量成本。 另外, 由于 采用多单元串联功率单元输出高压, 可以通过调制算法输出多电平电压波形, 减少输出谐波 含量, 减少风力发电对电网的污染。
为实现上述目的, 本发明通过以下技术方案实现:
基于 H桥的无变压器风力发电并网拓扑结构,包括风力发电机组、整流模块、逆变模块, 风力发电机组产生低压交流电, 经三相全桥整流后得到直流电压, 此直流电压作为逆变模块 中各个单元的直流侧电压供电电源; 逆变模块将直流电压转换为交流电压后, 经多个功率单 元直接串联, 交流高压输出, 经缓冲电感后并入电网。
所述的逆变模块由三相功率单元组成, 每相由 n个功率单元串联而成, 三相功率单元的 一端接在一起, 另一端通过电感接入电网。
所述的功率单元逆变侧为 H桥结构, 由四个 IGBT开关器件组成, 每个 IGBT开关器件 反并联一个二极管, 每两个 IGBT开关器件相串联后, 再与直流电容 C并联; 整流侧为不可 控全桥结构。
与现有技术相比, 本发明的有益效果是-
1 ) 输入端无变压器, 进而使风电并网拓扑体积减小, 占地减少, 重量减轻, 成本降低; 同时可以降低变压器能耗, 使制造工艺简单化, 生产周期减少。 2) 风力发电机直接连接到功率单元整流侧, 对风力发电机无特殊要求, 减少电机成本;
3 ) 调制方法采用载波移相的方法, 可以产生多阶梯正弦波, 以较小的开关频率获得较 好的输出电压波形;
4) 可以把整个风力发电场串联成交流高压, 直接从交流侧输出;
5 ) 在大功率, 多电机中应用前景广泛;
6) 有利于集中控制多台风力发电机。 附图说明
图 1是基于 H桥的无变压器风力发电并网拓扑结构图;
图 2是基于 H桥的无变压器风力发电并网拓扑的功率单元结构图。
图 3是 H桥功率单元内电流流向图。 具体实施方式
见图 1, 基于 H桥的无变压器风力发电并网拓扑结构, 包括风力发电机组、 整流模块、 逆变模块, 风力发电机组 M产生低压交流电, 经三相全桥整流后得到直流电压, 此直流电 压作为逆变模块中各个单元的直流侧电压供电电源; 逆变模块将直流电压转换为交流电压 后, 经多个功率单元直接串联, 交流高压输出, 经缓冲电感后并入电网。
逆变模块由三相功率单元组成, 每相由 n个功率单元串联而成, 共 3η个功率单元。每个 功率单元由一个风力发电机 Μ通过三相全桥整流给功率单元电容供电。 三相功率单元的一 端接在一起, 另一端通过电感 LA、 LB、 LC接入电网。
见图 2, 功率单元逆变侧为 H桥结构、 整流侧为由二极管 Dl、 D2、 D3、 D4、 D5、 D6 组成的不可控全桥结构。 逆变侧由四个开关器件 IGBT1、 IGBT2、 IGBT3、 IGBT4直流侧电 容 C组成, 开关器件 IGBT1和 IGBT2相串联, 开关器件 IGBT3和 IGBT4相串联, 再和直 流电容 C并联。 并且四个开关器件 IGBT1、 IGBT2、 IGBT3、 IGBT4分别并联一个反接二极 管 Dll、 D22、 D33、 D44。 IGBT1与 IGBT2的公共端、 IGBT3与 IGBT4的公共端为该功率 单元与其它功率单元相连接的输入、 输出端。
本拓扑结构利用风电作为能源中继池,给功率单元直流母线供电,结合一定的调制方法, 产生需要的多电平可变正弦波。 逆变模块主要由三相组成, 每相由 n个功率单元串联而成。 串联功率单元的个数称为单元级数, 三相功率单元的一端接到一起, 另一端通过电感接入电 网。由于采用多电平输出, 串联功率单元输出的交流高压含有更少的谐波,对电网污染更小, 也不需要装 LC滤波装置。
控制 IGBT的栅极电压使其导通或者关断, 可以使单元具有不同的电路状态。
见图 3-1, 电流经 IGBT2、 直流侧电容 C、 IGBT3, 从 B流向 A, 或电流经续流二极管 D3、 直流侧电容 C、 续流二极管 D2, 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输 出电平 " 1 "。 见图 3-2,电流经续流二极管 Dl、 IGBT3,从 B流向 A,或电流经续流二极管 D3、 IGBT1 , 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输出电平 "0"。
见图 3-3, 电流经 IGBT2、 续流二极管 D4, 从 B流向 A, 或电流经 IGBT4、 续流二极管 D2, 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输出电平 "0"。
见图 3-4, 电流经续流二极管 Dl、 直流侧电容 C、 续流二极管 D4, 从 B流向 A, 或电 流经 IGBT4、直流侧电容 C、 IGBT1 , 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输 出电平 "-1 "。
若功率单元级数选择适当, 功率单元叠加输出电压可达到电网级别, 将根据电网电压发 出与电网同步的电压波形, 并且输出谐波满足要求, 则可以直接并网发电。
所述的 n是由要求输出电压等级决定的。输出 3kV的电网电压对应的 n=4; 输出 6kV的 电网电压对应的 n=6或 8; 输出 10kV的电网电压对应的 n=10或 12; 输出 20kV的电网电压 对应的 n=20或 22; 输出 35kV的电网电压对应的 n=36或 38。

Claims

^ ^
1、 基于 H桥的无变压器风力发电并网拓扑结构, 其特征在于, 包括风力发电机组、 整 流模块、 逆变模块, 风力发电机组产生低压交流电, 经三相全桥整流后得到直流电压, 此直 流电压作为逆变模块中各个单元的直流侧电压供电电源;逆变模块将直流电压转换为交流电 压后, 经多个功率单元直接串联, 交流高压输出, 经缓冲电感后并入电网。
2、 根据权利要求 1所述的基于 H桥的无变压器风力发电并网拓扑结构, 其特征在于, 所述的逆变模块由三相功率单元组成, 每相由 n个功率单元串联而成, 三相功率单元的一端 接在一起, 另一端通过电感接入电网。
3、 根据权利要求 2所述的基于 H桥的无变压器风力发电并网拓扑结构, 其特征在于, 所述的功率单元逆变侧为 H桥结构, 由四个 IGBT开关器件组成, 每个 IGBT开关器件反并 联一个二极管, 每两个 IGBT开关器件相串联后, 再与直流电容 C并联; 整流侧为不可控全 桥结构。
PCT/CN2011/077129 2010-07-22 2011-07-14 基于h桥的无变压器风力发电并网拓扑结构 WO2012010063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010233705XA CN102013695A (zh) 2010-07-22 2010-07-22 基于h桥的无变压器风力发电并网拓扑结构
CN201010233705.X 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012010063A1 true WO2012010063A1 (zh) 2012-01-26

Family

ID=43843762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077129 WO2012010063A1 (zh) 2010-07-22 2011-07-14 基于h桥的无变压器风力发电并网拓扑结构

Country Status (2)

Country Link
CN (1) CN102013695A (zh)
WO (1) WO2012010063A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023331A1 (en) * 2012-08-07 2014-02-13 Abb Technology Ltd Chain- link converter system with different dc- sources and method for operation
CN114296345A (zh) * 2021-12-14 2022-04-08 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013695A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于h桥的无变压器风力发电并网拓扑结构
CN103280989B (zh) * 2013-05-15 2017-02-08 南京南瑞继保电气有限公司 一种换流器及其控制方法
CN104333247B (zh) * 2014-10-13 2018-02-02 华南理工大学 使用三端开关网络的级联型多电平单相和三相逆变器
CN106452098B (zh) * 2016-09-09 2018-08-03 湖南大学 一种高压大功率风力发电系统及其控制方法
CN108011527A (zh) * 2017-12-27 2018-05-08 北京金风科创风电设备有限公司 变流器、直驱风力发电机组和输电系统
CN109995240A (zh) 2018-01-02 2019-07-09 通用电气公司 电源转换器及电源转换方法
CN113270885A (zh) * 2021-04-28 2021-08-17 广东电网有限责任公司阳江供电局 一种海上风电直流输电系统
CN114285070A (zh) * 2021-11-17 2022-04-05 中国华能集团清洁能源技术研究院有限公司 风机串联的风力发电汇集系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291068A (zh) * 2007-04-18 2008-10-22 上海御能动力科技有限公司 一种发电功率全控并网式风力发电驱动系统
CN101345423A (zh) * 2008-05-07 2009-01-14 中国科学院电工研究所 用于风力发电系统的五电平h桥级联背靠背变流器
CN101465606A (zh) * 2008-09-17 2009-06-24 刘建政 直驱风力发电系统并网变流器
CN102013695A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于h桥的无变压器风力发电并网拓扑结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291068A (zh) * 2007-04-18 2008-10-22 上海御能动力科技有限公司 一种发电功率全控并网式风力发电驱动系统
CN101345423A (zh) * 2008-05-07 2009-01-14 中国科学院电工研究所 用于风力发电系统的五电平h桥级联背靠背变流器
CN101465606A (zh) * 2008-09-17 2009-06-24 刘建政 直驱风力发电系统并网变流器
CN102013695A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于h桥的无变压器风力发电并网拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, JIANLIN ET AL.: "Direct-driven Full-power Variable-current Wind Power Generation System.", JOURNAL OF POWER ENGINEERING., vol. 28, no. 6, December 2008 (2008-12-01), pages 959 - 962 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023331A1 (en) * 2012-08-07 2014-02-13 Abb Technology Ltd Chain- link converter system with different dc- sources and method for operation
US20150326014A1 (en) * 2012-08-07 2015-11-12 Abb Technology Ltd Chain-link converter system with different dc-sources and method for operation
US10199823B2 (en) * 2012-08-07 2019-02-05 Abb Schweiz Ag Chain-link converter system with different DC-sources and method for operation
CN114296345A (zh) * 2021-12-14 2022-04-08 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法
CN114296345B (zh) * 2021-12-14 2024-04-16 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法

Also Published As

Publication number Publication date
CN102013695A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012010052A1 (zh) 基于mmc的无变压器风力发电并网拓扑结构
WO2012010063A1 (zh) 基于h桥的无变压器风力发电并网拓扑结构
de Freitas et al. Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review
CN106451532B (zh) 一种多相直驱永磁风力发电变流一体化系统及其控制方法
CN101540580B (zh) 一种电能回馈装置
CN101291071A (zh) 一种风力发电直接并网电力变换装置
CN101345423B (zh) 用于风力发电系统的五电平h桥级联背靠背变流器
Nayanasiri et al. Half-wave cycloconverter-based photovoltaic microinverter topology with phase-shift power modulation
WO2012010064A1 (zh) 基于mmc无变压器的四象限高压变频电源拓扑结构
WO2012024984A1 (zh) 基于模块化多电平变换器的无变压器电池储能拓扑结构
WO2017197629A1 (zh) 一种电流源逆变器系统及逆变装置
CN106877371B (zh) 一种具有储能功能的模块化多电平变流器的控制方法
WO2012010054A1 (zh) 基于模块化多电平变换器的无变压器太阳能逆变器拓扑结构
CN201039016Y (zh) 兆瓦级直驱式风电并网变流器
CN102263414A (zh) 电能变换装置与系统
WO2013000185A1 (zh) 并网逆变装置
Vilathgamuwa et al. Rectifier systems for variable speed wind generation-a review
WO2012010068A1 (zh) 一种无变压器水轮发电机发电并网拓扑结构
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
Marzouki et al. A review of PWM voltage source converters based industrial applications
WO2012010055A1 (zh) 基于模块化多电平变换器的无变压器电感储能拓扑结构
CN104242345A (zh) 一种大功率直驱风电变流器电路拓扑结构及其应用
CN102447396A (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
CN103094918B (zh) 一种改善电能质量的单相并网装置
Yuan et al. A transformerless modular permanent magnet wind generator system with minimum generator coils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809251

Country of ref document: EP

Kind code of ref document: A1