WO2012010055A1 - 基于模块化多电平变换器的无变压器电感储能拓扑结构 - Google Patents

基于模块化多电平变换器的无变压器电感储能拓扑结构 Download PDF

Info

Publication number
WO2012010055A1
WO2012010055A1 PCT/CN2011/076857 CN2011076857W WO2012010055A1 WO 2012010055 A1 WO2012010055 A1 WO 2012010055A1 CN 2011076857 W CN2011076857 W CN 2011076857W WO 2012010055 A1 WO2012010055 A1 WO 2012010055A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
power
inductor
topology
phase
Prior art date
Application number
PCT/CN2011/076857
Other languages
English (en)
French (fr)
Inventor
魏西平
张跃平
胡涛
张坤
李太峰
杨洋
赵淑玉
王振
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012010055A1 publication Critical patent/WO2012010055A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a transformerless inductive energy storage topology based on MMC (Modular Multilevel Converter) modular multilevel inverter which can be used in the field of high voltage power system to make the grid supply reliable and high quality voltage.
  • MMC Modular Multilevel Converter
  • the power storage equipment is connected in parallel with the power grid through the transformer.
  • the transformer is used to make the equipment investment, occupy a large area, high cost and long production cycle. Summary of the invention
  • the object of the present invention is to provide a transformerless inductor energy storage topology structure based on MMC, which is connected in parallel on the power grid, has no transformer at the input end, is small in size, light in weight, and low in cost; can suppress those power pollution of the power grid and can compensate
  • the instability of photovoltaic or wind power generation provides uninterrupted, clean, stable, frequency-free, high-quality sinusoidal voltage to the load on the grid; and high conversion efficiency and fast response.
  • a MMC-based transformerless inductive energy storage topology structure includes three phases, each phase is connected in series by a plurality of half-bridge power modules and sub-units composed of an inductive energy storage module, and is connected to the grid via a buffer inductor.
  • the half-bridge power module is formed by connecting even numbers of n power units in series, and is divided into two groups, the number of power units in each group is n/2, and the number of output phase voltage levels is n/2+l.
  • the line voltage level is n+1; the output of each phase is at the midpoint of the two sets of cells, and the output is connected with each group of cells with a coupled or uncoupled inductor.
  • the power unit is a half-bridge structure, the switching device IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel, and the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D1 and D2; the common ends of IGBT1 and IGBT2, capacitor C and IGBT2 The common end is the output of each unit and is connected to other units.
  • the inductor energy storage module is composed of a superconducting coil, a switching device IGBT3, a switching device IGBT4, a diode D5, D6 and a diode D3, D4 which are anti-parallel with IGBT3 and IGBT4, and a superconducting coil and a diode D3 and a switching device IGBT3.
  • the energy storage circuit, the superconducting coil also forms a storage energy circuit with the diode D4 and the switching device IGBT4, and the inductive energy storage module is connected in parallel with the capacitor.
  • the beneficial effects of the present invention are: 1) There is no transformer at the input end, so that the inductor energy storage topology device is compared with the transformer with the same voltage and power level, the production cycle is reduced by half, the volume is reduced by half, the cost is reduced by half, and the footprint is reduced. Half, easy to transport, simple structure;
  • the modulation method adopts the carrier phase shifting method, which can generate multi-step sine wave and obtain a good output voltage waveform with a small switching frequency;
  • Figure 1 is a schematic diagram of a transformerless inductor energy storage topology based on MMC
  • Figure 2 is a basic unit structure diagram of a transformerless inductor energy storage topology based on MMC. detailed description
  • an MMC-based transformerless inductive energy storage topology comprising three phases, each phase consisting of a plurality of half-bridge power modules and sub-units of an inductive energy storage module connected in series, through a buffered inductor L is connected to the grid; the inductor L is also connected to the snubber resistor R, and the snubber resistor R is connected in parallel with the switch K2 and connected to the circuit breaker K1.
  • the half-bridge power module consists of an even number of n power units connected in series, divided into two groups.
  • the number of power units in each group is n/2, and the output phase voltage level is n/2+l.
  • the number of levels is n+1; the output of each phase is at the midpoint of the two sets of cells, and the output is connected to each set of cells with coupled or uncoupled inductors L A , L B , L c .
  • the power unit is a half-bridge structure, the switching devices IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel, and the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D1 and D2; the common terminals of IGBT1 and IGBT2, capacitor C and IGBT2
  • the common end is the output of each unit and is connected to other units.
  • the inductive energy storage module is composed of a superconducting coil Lc, a switching device IGBT3, a switching device IGBT4, diodes D3, D4, D5, D6, as shown in Fig. 2, the superconducting coil and the diode D3, the switching device IGBT3 constitute a storage energy loop, and the superconducting coil
  • a storage energy circuit is also formed with the diode D4 and the switching device IGBT4, and the inductive energy storage module is connected in parallel with the capacitor.
  • An inductive energy storage topology based on MMC multi-level cell series connection can generate multi-level variable sine wave voltage required by the power grid.
  • the inductive energy storage topology is mainly composed of three phases, and each phase is formed by connecting n (n is an even number) power units in series.
  • the number of series cells is called the number of cell stages.
  • the output end of each phase, B and C terminals are at the midpoint of the upper and lower two groups, and the output terminal is connected with each group of cells by a coupled inductor or an uncoupled inductor. Make the output waveform more stable and smooth.
  • the MMC-based inductive energy storage topology directly outputs high quality AC voltage from the A, B, and C sides to the grid.
  • IGBT1, IGBT2 are turned off, and IGBT3 or IGBT4 is turned on.
  • the current in the superconducting coil forms a loop through D3 and IGBT3, or a loop is formed through D4 and IGBT4, and energy is stored in the superconducting coil.
  • the MMC-based transformerless inductor energy storage topology can be used as a reserve power source for a grid of 1 to 500 kV, and the input end has no transformer, and the inductor energy storage uses superconducting energy storage, compared with the storage energy of the battery, the energy storage mode of the flywheel energy storage, and the like.
  • superconducting energy storage it has the advantages of high conversion efficiency and fast response speed, and can adjust the active power and the reactive power. It can also perform independent control of reactive power at the same time. Flexibility. This allows the superconducting energy storage device to function to improve the stability of the power system. When it is necessary to increase the voltage level, it is only necessary to increase the number of cells in series.

Abstract

一种基于模块化多电平变换器(MMC)的无变压器电感储能拓扑结构。该拓扑结构包括三相,每相经缓冲电感(L)连接到电网,并且由半桥型功率模块与电感储能模块构成的子单元串联形成。半桥型功率模块个数为n,其中n是偶数。每相中功率模块分为上组和下组,每组中功率模块的个数为n/2个并且串联连接。每相的输出端分别通过耦合或非耦合电感与上组和下组连接。从而实现了生产周期的缩短,体积和占地面积的减小,成本的降低,结构的简化以及转换效率和响应速度的提高。

Description

基于模块化多电平变换器的无变压器电感储能拓扑结构 技术领域
本发明涉及一种基于 MMC (Modular Multilevel Converter)模块化多电平逆变器 的无变压器电感储能拓扑可用于高压电力系统领域,使电网供给负载可靠, 高质量的 电压。 背景技术
目前, 电网至少存在以下九种问题: 断电、 雷击尖峰、 浪涌、 频率震荡、 电压突 变、 电压波动、 频率漂移、 电压跌落、 脉冲干扰等。 可再生能源例如光伏或风能所产 生的电能也极其的不稳定, 新能源并网应用的规模越大, 电网就越不安全, 根据国内 外风光电站并网的实践,借助储能技术可以实现新能源发电功率的平衡输出,使大规 模风电及太阳能电力方便可靠地并入常规电网。
目前电力储能设备都是通过变压器与电网相并联的, 采用变压器, 使设备投资 大、 占地多, 成本高, 生产周期长。 发明内容
本发明的目的是提供一种基于 MMC的无变压器电感储能拓扑结构,该拓扑并联 在电网上, 输入端无变压器, 体积小、重量轻、成本低; 可抑制电网的那些电力污染, 可补偿光伏或风能发电的不稳定性, 给电网上的负载提供不间断、 干净、 稳定、 无频 率突变、 高质量的正弦波电压; 且转换效率高、 响应速度快。
为实现上述目的, 本发明通过以下技术方案实现:
一种基于 MMC的无变压器电感储能拓扑结构, 该拓扑结构包括三相, 每相由多 个半桥型功率模块与电感储能模块构成的子单元串联在一起, 经缓冲电感接入电网。
所述的半桥型功率模块由偶数 n个功率单元串联而成, 分为上下两组,每组的功 率单元个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相 的输出端为两组单元的中点处, 且输出端与每组单元之间以耦合或非耦合电感连接。
所述的功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流电 容 C, 并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2 的公共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
所述的电感储能模块由超导线圈、开关器件 IGBT3、开关器件 IGBT4、与 IGBT3 和 IGBT4反并联的二极管 D5、 D6、 以及二极管 D3、 D4组成, 超导线圈与二极管 D3、开关器件 IGBT3构成存储能量回路, 超导线圈还与二极管 D4、开关器件 IGBT4 构成存储能量回路, 该电感储能模块与电容相并联。
与现有技术相比, 本发明的有益效果是: 1 ) 输入端无变压器, 进而使该种电感储能拓扑装置与同电压、 功率等级下的有 变压器的相比较, 生产周期减小一半, 体积减小一半, 成本降低一半, 占地面积减小 一半, 运输方便, 结构简单;
2) 采用超导储能具有转换效率高、 响应速度快的优点;
3 ) 调制方法采用载波移相的方法, 可以产生多阶梯正弦波, 以较小的开关频率 获得很好的输出电压波形;
4) 减小或提高容量等级比较简单, 只需减少或增多串联的单元数目即可。 附图说明
图 1是基于 MMC的无变压器电感储能拓扑结构图;
图 2是基于 MMC的无变压器电感储能拓扑基本单元结构图。 具体实施方式
见图 1, 一种基于 MMC的无变压器电感储能拓扑结构, 该拓扑结构包括三相, 每相由多个半桥型功率模块与电感储能模块构成的子单元串联在一起,经缓冲电感 L 接入电网; 电感 L还连接缓冲电阻 R, 缓冲电阻 R与开关 K2并联后, 与断路器 K1 连接。
半桥型功率模块由偶数 n个功率单元串联而成, 分为上下两组,每组的功率单元 个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相的输出 端为两组单元的中点处, 且输出端与每组单元之间以耦合或非耦合电感 LA、 LB、 Lc 连接。
见图 2, 功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流 电容 C,并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2 的公共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
电感储能模块由超导线圈 Lc、 开关器件 IGBT3、 开关器件 IGBT4、 二极管 D3、 D4、 D5、 D6组成, 见图 2, 超导线圈与二极管 D3、 开关器件 IGBT3构成存储能量 回路, 超导线圈还与二极管 D4、 开关器件 IGBT4构成存储能量回路, 该电感储能模 块与电容相并联。
见图 1, 一种基于 MMC多电平单元串联的电感储能拓扑结构, 结合一定的调制 方法, 可产生电网需要的多电平可变正弦波电压。该电感储能拓扑结构主要由三相组 成, 每相由 n (n为偶数) 个功率单元串联而成。 串联单元个数称为单元级数, 每相 的输出端 、 B、 C端处于上、 下两组单元的中点处, 并且输出端与每组单元之间以 耦合电感或非耦合电感连接, 使输出波形更加稳定平滑。该基于 MMC的电感储能拓 扑装置直接从 A、 B、 C侧输出给电网的高质量的交流电压。
见图 2, 当电网电压产生尖峰时, 电压通过二极管 Dl、 IGBT3、 IGBT4 向直流 侧供电, 开通每个单元的 IGBT3、 IGBT4, 此时, 该基于 MMC的电感储能拓扑直流 侧电容 C和超导线圈 Lc吸收电网尖峰, 进而抑制了电网尖峰对电网上设备的影响。 当电网电压突然跌落或中断时, 通过控制每个单元的 IGBT1、 IGBT2, 关断 IGBT3、 IGBT4, 此时, 直流侧电容 C和超导线圈 Lc中的能量回馈电网, 使电网输出正常电 压。 当电网电压正常时, 关断 IGBT1、 IGBT2, 开通 IGBT3或 IGBT4, 此时, 超导 线圈中的电流通过 D3和 IGBT3形成回路,或通过 D4和 IGBT4形成回路,能量储存 在超导线圈中。
本发明基于 MMC的无变压器电感储能拓扑可为 1〜500KV的电网做储备电源, 且输入端无变压器, 电感储能采用超导储能, 相对于蓄电池储能, 飞轮储能等储能方 式而言, 超导储能具有转换效率高、 响应速度快的优点, 且既可以进行有功功率的调 节, 又可进行无功功率的调节, 还可以同时进行无功有功的独立控制, 具有很高的灵 活性。这使得超导储能装置可以起到提高电力系统稳定性的作用。当需要提高电压等 级时, 只需要提高串联的单元数目即可。

Claims

1、 一种基于 MMC的无变压器电感储能拓扑结构, 其特征在于, 该拓扑结构包 括三相,每相由多个半桥型功率模块与电感储能模块构成的子单元串联在一起, 经缓 冲电感接入电网。
2、 根据权利要求 1所述的基于 MMC的无变压器电感储能拓扑结构, 其特征在 于, 所述的半桥型功率模块由偶数 n个功率单元串联而成, 分为上下两组, 每组的功 率单元个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相 的输出端为两组单元的中点处, 且输出端与每组单元之间以耦合或非耦合电感连接。
3、 根据权利要求 2所述的基于 MMC的无变压器电感储能拓扑结构, 其特征在 于, 所述的功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流电 容 C, 并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2 的公共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
4、 根据权利要求 1至 3中任一项所述的基于 MMC的无变压器电感储能拓扑结 构,其特征在于,所述的电感储能模块由超导线圈、开关器件 IGBT3、开关器件 IGBT4、 二极管 D3、 D4组成, 超导线圈与二极管 D3、 开关器件 IGBT3构成存储能量回路, 超导线圈还与二极管 D4、 开关器件 IGBT4构成存储能量回路, 该电感储能模块与电 容相并联。
PCT/CN2011/076857 2010-07-22 2011-07-05 基于模块化多电平变换器的无变压器电感储能拓扑结构 WO2012010055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010234069.2 2010-07-22
CN2010102340692A CN102013690A (zh) 2010-07-22 2010-07-22 一种基于mmc模块化多电平的无变压器电感储能拓扑结构

Publications (1)

Publication Number Publication Date
WO2012010055A1 true WO2012010055A1 (zh) 2012-01-26

Family

ID=43843757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076857 WO2012010055A1 (zh) 2010-07-22 2011-07-05 基于模块化多电平变换器的无变压器电感储能拓扑结构

Country Status (2)

Country Link
CN (1) CN102013690A (zh)
WO (1) WO2012010055A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098146A1 (ja) * 2013-12-24 2015-07-02 三菱電機株式会社 電力変換装置
CN105140906A (zh) * 2015-07-30 2015-12-09 特变电工新疆新能源股份有限公司 一种应用于柔性直流输电的mmc模块拓扑结构
CN105305405A (zh) * 2015-09-29 2016-02-03 特变电工新疆新能源股份有限公司 一种应用于mmc型柔性直流输电的mmc模块拓扑
US10193469B2 (en) 2015-06-29 2019-01-29 Abb Schweiz Ag Multi-level power converter and a method for controlling a multi-level power converter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013690A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平的无变压器电感储能拓扑结构
DE102012216469A1 (de) * 2012-09-14 2014-03-20 Robert Bosch Gmbh Energieversorgungssystem und Verfahren zum Ansteuern von Koppeleinrichtungen einer Energiespeichereinrichtung
CN105071675B (zh) * 2015-07-23 2018-03-09 浙江大学 一种混合型功率开关及其在柔性直流输电换流器中的应用
CN105356770B (zh) * 2015-11-16 2019-01-29 特变电工新疆新能源股份有限公司 一种基于h桥的mmc子模块拓扑结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037290A (ja) * 2005-07-27 2007-02-08 Mitsubishi Heavy Ind Ltd 電力補償装置
US20090102436A1 (en) * 2007-10-18 2009-04-23 Gerardo Escobar Valderrama Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
CN101546964A (zh) * 2009-05-12 2009-09-30 北京交通大学 模块组合型多电平变换器
CN201774264U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 一种基于mmc模块化多电平的无变压器电感储能拓扑结构
CN102013690A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平的无变压器电感储能拓扑结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018343A1 (de) * 2007-04-16 2008-10-30 Siemens Ag Aktivfilter mit einer Multilevel-Topologie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037290A (ja) * 2005-07-27 2007-02-08 Mitsubishi Heavy Ind Ltd 電力補償装置
US20090102436A1 (en) * 2007-10-18 2009-04-23 Gerardo Escobar Valderrama Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
CN101546964A (zh) * 2009-05-12 2009-09-30 北京交通大学 模块组合型多电平变换器
CN201774264U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 一种基于mmc模块化多电平的无变压器电感储能拓扑结构
CN102013690A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平的无变压器电感储能拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZHONGQI ET AL.: "Research on Control of the Novel Modular Multilevel Converters.", POWER ELECTRONICS., vol. 43, no. 10, October 2009 (2009-10-01), pages 5 - 6 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098146A1 (ja) * 2013-12-24 2015-07-02 三菱電機株式会社 電力変換装置
JPWO2015098146A1 (ja) * 2013-12-24 2017-03-23 三菱電機株式会社 電力変換装置
US10193469B2 (en) 2015-06-29 2019-01-29 Abb Schweiz Ag Multi-level power converter and a method for controlling a multi-level power converter
CN105140906A (zh) * 2015-07-30 2015-12-09 特变电工新疆新能源股份有限公司 一种应用于柔性直流输电的mmc模块拓扑结构
CN105305405A (zh) * 2015-09-29 2016-02-03 特变电工新疆新能源股份有限公司 一种应用于mmc型柔性直流输电的mmc模块拓扑

Also Published As

Publication number Publication date
CN102013690A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012024984A1 (zh) 基于模块化多电平变换器的无变压器电池储能拓扑结构
WO2019136576A1 (zh) 串联同时供电正激直流斩波型单级多输入高频环节逆变器
WO2012010055A1 (zh) 基于模块化多电平变换器的无变压器电感储能拓扑结构
CN102097966A (zh) 级联型兆瓦级光伏并网逆变器
CN102223080A (zh) 一种混合箝位背靠背式多电平ac-dc-ac变换电路
WO2012010052A1 (zh) 基于mmc的无变压器风力发电并网拓扑结构
CN103532214A (zh) 集储能和并离网供电功能的光伏发电系统结构与控制方法
CN104158211B (zh) 基于模块化多电平变换器的多电源并网系统控制方法
CN106602565A (zh) 一种基于固态变压器的电动汽车充电站供电系统
CN102005957A (zh) 单电源级联多电平变流器
WO2012010054A1 (zh) 基于模块化多电平变换器的无变压器太阳能逆变器拓扑结构
CN102624274A (zh) 一种交错并联并网逆变器及其控制方法
CN101877548A (zh) 用于光伏并网发电的三相四桥臂逆变器及光伏并网发电系统
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
WO2012010063A1 (zh) 基于h桥的无变压器风力发电并网拓扑结构
CN105429177B (zh) 一种模块化光伏储能系统
WO2019136575A1 (zh) 内置并联分时选择开关电压型单级多输入高频环节逆变器
CN202586797U (zh) 一种具有双向功率开关的五电平变流拓扑结构及其应用
WO2012010056A1 (zh) 一种无变压器电池储能拓扑结构
WO2012010068A1 (zh) 一种无变压器水轮发电机发电并网拓扑结构
CN203491898U (zh) 一种双向潮流控制的模块化多电平互平衡固态变压器
CN110957912B (zh) 基于可控直流母线的分布式储能装置
CN113489326A (zh) 一种应用于能量路由器的两级式dc/ac双向变换装置
CN105375515B (zh) 一种结合光伏发电的模块化多电平综合补偿装置
WO2012010057A1 (zh) 一种无变压器电感储能拓扑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809243

Country of ref document: EP

Kind code of ref document: A1