WO2013000185A1 - 并网逆变装置 - Google Patents

并网逆变装置 Download PDF

Info

Publication number
WO2013000185A1
WO2013000185A1 PCT/CN2011/077341 CN2011077341W WO2013000185A1 WO 2013000185 A1 WO2013000185 A1 WO 2013000185A1 CN 2011077341 W CN2011077341 W CN 2011077341W WO 2013000185 A1 WO2013000185 A1 WO 2013000185A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
grid
power
power supply
converter
Prior art date
Application number
PCT/CN2011/077341
Other languages
English (en)
French (fr)
Inventor
黄俊嘉
王庆文
Original Assignee
Huang Juin Jia
Wang Ching Wen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Juin Jia, Wang Ching Wen filed Critical Huang Juin Jia
Publication of WO2013000185A1 publication Critical patent/WO2013000185A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of power electronic converters, and in particular, to a grid-connected inverter device. Background technique
  • the grid-connected inverter is an electronic generator that uses a DC power source as an energy source. It boosts a DC power source (such as a battery, a photovoltaic cell, a wind turbine, etc.) into a sinusoidal current in phase with the mains voltage. , and the grid output of the grid.
  • a DC power source such as a battery, a photovoltaic cell, a wind turbine, etc.
  • the grid-connected inverter has two common architectures.
  • One is to use a high-frequency transformer to isolate the DC power supply and then convert it into an AC power through a non-isolated reverse power circuit.
  • the push-pull circuit structure composed of the switch 75, the switch 76 and the high-frequency transformer 77 is isolated and boosted, and then a full wave composed of four diodes 78 is used.
  • the rectifier circuit After the rectifier circuit is rectified, it is filtered into a high-voltage direct current by a high-voltage electrolytic capacitor 79, and then converted into a high-harmonic sinusoidal pulse width voltage by a full-bridge inverter circuit composed of four switch tubes 80, and finally composed of an inductor 81 and a capacitor 82.
  • the low-pass filter circuit filters out the high-frequency harmonic components, and uses the current-controlled output power because the effective power of 1 is integrated into the grid by the grid-connecting device 83.
  • the other is to first isolate the DC power supply from the isolated boost regulator, and then invert the inverter to AC power through the inverter circuit and the power frequency transformer.
  • the booster circuit is boosted by the inductor 63, the switch 64, and the diode 65, and the pulse width of the switch 64 is controlled to control the output of the stable DC high voltage.
  • Only switch 68 constitutes a full-bridge inverter circuit structure, the control signal adopts sinusoidal pulse width modulation technology, and the output is isolated and boosted into a high-harmonic sinusoidal pulse width voltage by a power frequency transformer 69, and then composed of an inductor 70 and a capacitor 71.
  • the low-pass filter circuit filters out the high-frequency harmonic components, outputs the sine wave voltage, and uses the current to control the output power because of the effective power of 1, and is connected to the grid to generate electricity through the grid-connecting device 72.
  • the existing grid-connected inverter device has to undergo two high-frequency switch conversions, resulting in large energy loss and reduced efficiency of the grid-connected inverter device.
  • the existing grid-connected inverter device can only provide effective power output, and can not provide reactive power compensation at the same time.
  • the reactive power rises on the grid-connected side, the grid voltage rises easily and the inverter device stops running.
  • the grid can cause scheduling problems and waste power.
  • the existing grid-connected inverters do not have the power of emergency power supply (EPS) or uninterruptible power supply (UPS).
  • EPS emergency power supply
  • UPS uninterruptible power supply
  • the existing grid-connected inverter device has the problems of high power consumption, high cost, and low use efficiency.
  • the present invention provides an improved grid-connected inverter device, which utilizes the circuit structure of the single unit to improve the conversion efficiency of the grid-connected inverter device, and can be combined with a multi-machine group control design to provide stable output power and increase power generation.
  • the invention provides a grid-connected inverter device, comprising:
  • More than one DC/DC converter converts a DC voltage into a sinusoidal modulated high voltage by a high frequency switching, the DC/DC converter having an input end and an output end, the input end of which is connected to the DC power supply device;
  • More than one inverter after a power frequency switching, the voltage of the sine wave harmonic shape is reversed to a power frequency sine wave AC voltage; the inverter has an input end and an output end, and the input end and the aforementioned DC/ The output of the DC converter is connected;
  • More than one switching device has an input end and an output end, the input end of which is connected to the output end of the inverter, and the output end of the switch device is connected to the mains power grid;
  • More than one main controller respectively connects and controls the DC/DC converter and the inverter, and controls switching of the switching device.
  • a grid-connected inverter device includes two or more DC power supply devices, two or more DC/DC converters, a inverter, a main controller and a switching device.
  • the input of a DC/DC converter corresponds to a DC power supply unit After connection, the outputs of all DC/DC converters are connected in parallel to the inverter.
  • a grid-connected inverter device includes two or more DC power supply devices, two or more DC/DC converters, a inverter, a main controller and a switching device. After the input of a DC/DC converter is connected to a DC power supply unit, the output terminals of all DC/DC converters are connected in series to the inverter.
  • the grid-connected inverter device includes a DC power supply device, two or more DC/DC converters, two or more inverters, two or more main controllers, and two More than one switching device, the input end of all DC/DC converters is connected to the DC power supply device, and the input end of the inverter is correspondingly connected with the output end of the DC/DC converter, and the output end of the inverter Correspondingly connected with the switching device, the main controller is connected with the DC/DC converter and the inverter.
  • the grid-connected inverter device further includes at least one auxiliary controller, which is respectively connected to the main controller and the switch device, and is configured to be controlled according to the detection of the utility power grid.
  • auxiliary controller which is respectively connected to the main controller and the switch device, and is configured to be controlled according to the detection of the utility power grid. Grid connection and off-network of network inverter devices.
  • the inverter includes a full-bridge inverter circuit and a filter circuit, and the full-bridge inverter circuit is connected to the DC/DC converter, and the filter circuit and the full-bridge inverter respectively The circuit and the switching device are connected.
  • the DC/DC converter includes a first switching transistor, a second switching transistor, a third switching transistor, a fourth switching transistor, and a transformer.
  • the transformer further includes a first primary winding, a second primary winding, a first secondary winding and a second secondary winding, wherein the different end of the first primary winding and the same end of the second primary winding are connected to a DC power supply One end of the device, the same name end of the first primary winding is connected to one end of the first switching tube, the different end of the second primary winding is connected to one end of the second switching tube, and the first switching tube and the second switching tube are One end is commonly connected to the other end of the DC power supply unit.
  • the different end of the second secondary winding and the same end of the first secondary winding are connected in common to the inverter, the different end of the first secondary winding is connected to one end of the third switching transistor, and the second secondary winding has the same name
  • the end is connected to one end of the fourth switch tube, and the other end of the third switch tube and the fourth switch tube are commonly connected to the inverter, and the first switch tube, the second switch tube, the third switch tube and the fourth switch tube are respectively Connected to the main controller.
  • the DC/DC converter further includes a first capacitor connected across one end of the first primary winding and the second primary winding, and the first Between the switch tube and the end of the second switch tube.
  • the main controller is a microprocessor or Digital signal processor.
  • the grid-connected inverter device of the invention utilizes the circuit structure of the single tube, isolates the alternating current and the direct current, and only undergoes one high-frequency switching and one power-frequency switching, thereby effectively improving the single-machine operating efficiency and the conversion efficiency.
  • the grid-connected inverter device of the invention can be used for reactive power compensation control, providing advanced phase inactive power, thereby offsetting some of the backward reactive power, and stabilizing the grid voltage, so that the inverter device can stably generate power output, so that The power factor of the grid connection point is close to 1.
  • the grid-connected inverter device of the present invention outputs a voltage in the form of a sine wave, which does not cause damage to the inductive load.
  • the grid-connected inverter device of the invention does not need to adopt the low-life component of electrolytic capacitor, and has a long service life of the whole machine.
  • the grid-connected inverter device of the invention can adopt a hybrid DC source, and can adopt multiple DC power sources at the same time, the small power energy is connected in series, the high-power energy is connected in parallel, and the time-sharing management is adopted.
  • Each DC power supply outputs power, and tracks the maximum power point of each power supply, adjusts the output proportion of each power.
  • the new energy is the priority energy, and the battery is the last power, which effectively reduces and reduces the material cost, and reduces energy.
  • the conversion loss of the second is the conversion loss of the second.
  • the multi-output grid-connected inverter device of the invention can adopt group control technology to make multi-channel output operate in harmony, and according to the power provided by the DC power source, start a suitable output quantity, so that the output of each channel is maintained high. Efficient operation, so that DC power (such as photovoltaic cells in low illumination, wind turbine operation at low wind speed) can work at low output energy, still enable the entire power generation system to maintain high efficiency operation, and make full use of energy to increase power generation.
  • DC power such as photovoltaic cells in low illumination, wind turbine operation at low wind speed
  • the grid-connected inverter device of the invention can adopt the self-starting control without the master-slave wheel sequence in the case of multi-channel output, and prolong the service life of the single-machine grid-connected inverter device.
  • the grid-connected inverter device of the present invention can use the energy provided by the DC power supply device as the main energy source for short-time power compensation and output current harmonic compensation.
  • the DC power supply unit does not discharge deeply when there is a power grid, which can extend the service life.
  • emergency power is provided for emergency power supply to realize the function of the uninterruptible power supply. It can be used as an emergency power supply in the frequently-restricted area.
  • the invention relates to a grid-connected inverter device for generating electricity, which is a grid-connected inverter device capable of simultaneously connecting a mixed DC source, and is a grid-connected inverter device capable of reactive power compensation, and is also an emergency power source. Grid-connected inverter device.
  • FIG. 1 is a schematic structural view of a conventional grid-connected inverter device
  • FIG. 2 is a schematic structural view of another conventional grid-connected inverter device
  • FIG. 3 is a schematic structural view of an embodiment of a grid-connected inverter device according to the present invention.
  • FIG. 4 is a schematic circuit diagram of a preferred DC/DC converter of the present invention.
  • Figure 5 is a circuit diagram of a preferred inverter of the present invention.
  • FIG. 6 is a schematic diagram of voltage waveforms of a grid-connected inverter device of the present invention.
  • FIG. 7 is a schematic structural view of a second embodiment of a grid-connected inverter device according to the present invention.
  • FIG. 8 is a schematic structural view of a third embodiment of a grid-connected inverter device according to the present invention.
  • FIG. 9 is a schematic structural view of a fourth embodiment of a grid-connected inverter device according to the present invention.
  • FIG. 10 is a schematic structural view of a fifth embodiment of a grid-connected inverter device according to the present invention.
  • Figure 11 is a comparison of the efficiency and output power of the two grid-connected inverter devices of Figures 7 and 10. detailed description
  • FIG. 3 is a schematic structural diagram of an embodiment of a grid-connected inverter device according to the present invention, which includes a DC power supply unit 11, a inverter 13, a DC/DC converter 12, and a main controller 15.
  • the inverter 13 is connected to the mains grid via a switching device 14, and the DC/DC converter 12 is connected between the DC power supply unit 11 and the inverter 13, the main controller 15 and the DC/DC converter 12 and the inverter, respectively. 13 connected.
  • the DC power source unit 11 may be a battery or a photovoltaic cell or a wind power generator that generates a direct current.
  • the DC/DC converter 12 isolates the DC voltage output from the DC power supply unit 11 into a sinusoidal modulation high voltage of twice the common frequency, and then filters the filter through the inverter 13.
  • the sinusoidal alternating voltage of the working frequency is input and connected to the grid via the output of the switching device 14.
  • the grid-connected inverter device of the present invention is bidirectionally reversible.
  • the DC power source device 11 is a battery and needs to be charged
  • the AC mains can be converted into a DC voltage by the inverter 13 and the DC/DC converter 12, and The battery is charged.
  • the DC power supply device 11 is a photovoltaic cell or a wind power generator
  • the commercial power can also be converted to a certain degree of energy storage after being converted by the inverter 13 and the DC/DC converter 12, so that when the output of the DC power supply device 11 is unstable. (If the sun just rises or the wind is unstable) Use it for supplemental use.
  • the main controller 15 functions mainly to supply control signals to the DC/DC converter 12 and the inverter 13, and to regulate the output effective power and reactive power compensation, and the main controller 15 may be micro-processed.
  • CPU central processing unit
  • DSP digital signal processor
  • FIG. 4 is a circuit diagram of a preferred DC/DC converter 12 according to the present invention.
  • the circuit includes a first capacitor 121 , a first switch 122 , a second switch 123 , a third switch 124 , and a fourth Switch tube 125 and transformer 126.
  • Transformer 126 further includes a first primary winding 1261, a second primary winding 1262, a first secondary winding 1263, and a second secondary winding 1264. The different end of the first primary winding 1261 and the same end of the second primary winding 1262 are commonly connected to one end of the first capacitor 121.
  • the same end of the first primary winding 1261 is connected to one end of the first switching transistor 121, and the different end of the second primary winding 1262 is connected to one end of the second switching transistor 123.
  • the first switching transistor 122 and the second switching transistor 123 are connected.
  • the other end is connected in common to the other end of the first capacitor 121.
  • the different end of the second secondary winding 1264 is connected to the same end of the first secondary winding 1263 as an output/input connected to the inverter 13.
  • the different end of the first secondary winding 1263 is connected to one end of the third switching transistor 124, the end of the second secondary winding 1264 is connected to one end of the fourth switching transistor 125, and the third switching transistor 124 and the fourth switching transistor 125 are connected.
  • the other end is connected to the inverter 13 as an output/input.
  • the first switch tube 122, the second switch tube 123, the third switch tube 124, and the fourth switch tube 125 are respectively connected to the main controller 15, and the main controller 15 controls the switching frequency thereof.
  • the first switching transistor 122 and the second switching transistor 123 control the pulse width to load the DC power supply device 11 to the DC power at the primary windings 1261 and 1262, and pass through the secondary windings 1263 and 1264 of the transformer 126.
  • Boost and the SPWM signal is output by the main controller 15, and each SPWM signal is divided into two groups of the same width, respectively supplied to the first switch tube 122 and the second switch tube 123, and the third switch tube 124 and the third switch tube are controlled.
  • a switching transistor 122 is turned on and off synchronously, and the second switching transistor 123 is turned on and off in synchronization with the fourth switching transistor 125, thereby being converted into a harmonic-shaped DC voltage and outputted to the inverter 13.
  • FIG. 6 is a diagram showing control signals of the respective switching tubes and waveforms of output voltage signals of the DC/DC converter 12, wherein "122/124" is a control signal loaded on the first switching transistor 122 and the third switching transistor 124.
  • the DC/DC converter 12 of the present embodiment completes the four-in-one function of isolation, boosting, synchronous rectification, and SPWM voltage by the structure of the cartridge, and has a conversion efficiency of 4 ⁇ .
  • the third switching transistor 124 and the fourth switching transistor 125 are used to control the pulse width to pass the DC power of the secondary windings 1263 and 1264 to the primary side of the transformer 126.
  • the windings 1261, 1262 are stepped down, and the third switch tube 124 is turned on and off synchronously with the first switch tube 122, and the switch tube 123 and the fourth switch tube 125 are synchronously turned on and off, and converted into a harmonic DC voltage. It is thus possible to charge the battery with excess energy.
  • the first capacitor 121 can also be used as an energy storage component to store excess utility energy, thereby providing unstable energy when the DC power supply unit 11 is a photovoltaic cell or a wind energy device (eg, the sun is just rising or the wind is not Supplementary energy output when stable).
  • the DC/DC converter 12 of the present embodiment is a bidirectional controllable DC/DC converter.
  • FIG. 5 is a circuit diagram of a preferred inverter 13 of the present invention, which includes a full-bridge inverter circuit composed of four switch tubes 131-134 and a filter circuit composed of an inductor 135 and a capacitor 136. .
  • the inverter 13 of the present embodiment is also a bidirectional inverter device. When it outputs energy to the commercial power, the DC harmonic voltage transmitted from the DC/DC converter 12 is commutated into AC harmonics through the full bridge inverter circuit. The voltage is filtered by a low pass filter consisting of inductor 135 and capacitor 136 to provide a stable AC voltage output.
  • the mains is filtered by the inductor 135 and the capacitor 136, and the four bridges 131-134 form a full-bridge inverter circuit to generate a DC voltage, which is sent back to the DC/DC converter 12 Carry out energy storage.
  • the main controller 15 supplies a power frequency square wave signal to each switch tube.
  • "131/134" is a control signal on the switch tube 131 and the switch tube 134
  • "132/133 is When the control signal "" on the switch 132 and the switch 133 is turned on, and the switch 132 is turned on synchronously with the switch 133, the switch 134 and the switch 131 are synchronously closed to generate a positive half cycle SPWM voltage output; when the switch 132 is synchronized with the switch 133, the switch 134 is The switch 131 is synchronously opened to generate a negative half cycle SPWM voltage output; the high frequency harmonic voltage is filtered out by the inductor 135 and the capacitor 136, and the output becomes a sine wave voltage of a power frequency (50 Hz or 60 Hz).
  • the grid-connected inverter device of the present invention utilizes the circuit structure of the single unit, isolates the alternating current from the direct current, only undergoes one high frequency switching and one power frequency switching, and has low energy consumption.
  • the operation efficiency is high, and the output power can be controlled by the main controller 15, which can make the power factor of the grid connection point close to 1, effectively improving the conversion efficiency of the grid-connected inverter device.
  • FIG. 7 is a schematic structural diagram of a second embodiment of a grid-connected inverter device according to the present invention.
  • the grid-connected inverter device of this embodiment further includes an auxiliary controller 16, which is connected between the switching device 14 and the main controller 15.
  • the auxiliary controller 16 can be a microprocessor (CPU) or a digital signal processor (DSP), which mainly controls the grid connection and off-grid of the grid-connected inverter device, and various grid relay protections (insulation withstand voltage, undervoltage, over Voltage, underfrequency, over frequency, over voltage reactive compensation and limited output effective power), leakage detection, anti-island operation detection, output emergency power supply control.
  • CPU microprocessor
  • DSP digital signal processor
  • the auxiliary controller 16 detects whether the grid voltage frequency is abnormal in real time, and detects whether the grid is powered off, and prevents the grid-connected inverter device from operating. If the grid voltage is too high, the phase-advance current is first provided to suppress the grid voltage rise. If the reactive power compensation capability provided by the grid-connected inverter device is exceeded, the output effective power will be reduced to prevent the inverter device from being disconnected from the network, and the grid voltage can be stabilized to protect the grid. Other parts of this embodiment are the same as those of FIG. 3, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a third embodiment of a grid-connected inverter device according to the present invention, which includes three DC power supply devices 11, three DC/DC converters 12, a current collector 13, and a main controller 15. And the auxiliary controller 16.
  • the inverter 13 is connected to the mains grid via a switching device 14, and after the respective DC/DC converters 12 are connected to the DC power supply unit 11, the outputs are connected in parallel to the inverter 13.
  • the main controller 15 is connected to the inverter 13 and is connected to each of the DC/DC converters 12, respectively.
  • the auxiliary controller 16 is connected between the switching device 14 and the main controller 15.
  • This embodiment is applicable to the use of a large-capacity inverter device.
  • the three sets of DC power supply devices 11 and three sets of DC/DC converters 12 in the figure can be used as a DC power supply by using a hybrid of a battery, a photovoltaic cell, and a wind power generator, respectively.
  • the main controller 15 provides the SPWM signal, calculates the maximum output power of each DC power source, and adjusts the specific gravity of each output power by using time-sharing interleaving control to make the power generation energy more stable output, complementing the output of the three DC power supply devices 11 and improving The utilization rate of the grid-connected inverter device.
  • the control of the maximum power output of the photovoltaic cell and the wind power generator may be determined by detection.
  • Power p V(voltage) xl (current) X time T
  • the operating state of photovoltaic cells and wind turbines can be switched by high-frequency switching using M0SFET or IGBT semiconductor switches, by controlling the PWM (pulse width modulation) width of the switch.
  • PV The input time of the wind turbine, that is to say, compares the output power of the photovoltaic cell and the wind turbine in the same period of two periods. If the output power increases, the PWM width of the switch is widened. If the output power decreases, the switch is reduced.
  • PWM width if the output power is constant, the width is maintained, and this is the maximum output power.
  • DC power supply units 11 and DC/DC converters 12 can be adjusted as needed.
  • the structural functions of the components in this embodiment are the same as those of the embodiment of FIG. 3 and FIG. 7, and are not described herein again.
  • FIG. 9 is a schematic structural diagram of a fourth embodiment of a grid-connected inverter device according to the present invention, which includes three DC power supply devices 11, three DC/DC converters 12, a inverter 13, and a main controller 15. And the auxiliary controller 16.
  • the inverter 13 is connected to the mains grid via a switching device 14, and after the respective DC/DC converters 12 are connected to the DC power supply unit 11, their outputs are connected in series to the inverter 13.
  • the main controller 15 is connected to the inverter 13 and is connected to each of the DC/DC converters 12, respectively.
  • the auxiliary controller 16 is connected between the switching device 14 and the main controller 15.
  • the three sets of DC power supply devices 11 in the figure can be used as the DC power supply by the hybrid power of the battery, the photovoltaic cell and the wind power generator respectively, and the main controller 15 provides the SPWM signal, calculates the maximum output power of each DC power supply, and adjusts the output voltage.
  • the time division interleaving control is used to adjust the specific gravity of each output power to make the power generation energy more stable output, complement the output of the three DC power supply devices 11, and improve the utilization rate of the grid-connected inverter device.
  • This embodiment is applicable to the small-capacity inverter.
  • the device is used as long as the DC power supply unit 11 has a little energy to fully utilize and complement the working time of each energy source.
  • DC power supply units 11 and DC/DC converters 12 can be adjusted as needed.
  • the structural functions of the components in this embodiment are the same as those of the embodiment of FIG. 3 and FIG. 7, and are not described herein again.
  • FIG. 10 is a schematic structural diagram of a fifth embodiment of a grid-connected inverter device according to the present invention, which includes a DC power supply device 11, three inverters 13, three DC/DC converters 12, and three mains. Controller 15 and three auxiliary controllers 16.
  • Each of the inverters 13 is connected to the mains power grid through a switching device 14, and the DC/DC converter 12 and the inverter 13 are connected and connected to the DC power supply device 11, and each of the main controllers 15 respectively Connected to a inverter 13 and a DC/DC converter 12, each auxiliary controller 16 is connected between a switching device 14 and a main controller 15.
  • the grid-connected inverter device of the embodiment has three outputs and shares a DC power supply device 11, so that the number of output terminals that are put into operation can be controlled by each main controller 15 by group control. the amount.
  • a switching device 14 is regarded as one output, under the premise that the rated output power of the DC power supply device 1 is low, the appropriate output is started (for example, one output operation, two outputs are disabled), so that each output is output.
  • the DC power supply unit 1 1 (such as photovoltaic cells in low illumination, the fan running at low wind speed) can work at low output energy, and still make the entire power generation system (multiple sets of inverter devices operating in harmony) ) Conversion operates at high efficiency and makes full use of energy to increase power generation.
  • the grid-connected inverter device of the embodiment can adopt no master-slave control, and the non-master-slave control, that is, the three-way output, operates in turn, so that the running time of each circuit component can be balanced, and the use time and working life can be extended.
  • the number of the inverter 13, the DC/DC converter 1, the main controller 15, the auxiliary controller 16, and the switching device 14 can be adjusted according to actual needs.
  • the structural functions of the components in this embodiment are the same as those of the embodiment of FIG. 3 and FIG. 7, and are not described herein again.
  • curve 1 represents a single-output out-of-grid inverter device (ie, the embodiment of FIG. 7)
  • curve 3 represents a grid-connected inverter device having three-way output (ie, the embodiment of FIG. 10)
  • the vertical axis represents The percentage of efficiency of the grid inverter, the output of the grid-connected inverter device (KW) below the horizontal axis, and the output of several outputs above the horizontal axis.
  • the maximum efficiency of the single-output grid-connected inverter is about 50% of the rated power output, that is, 45 kw, and it cannot work until 10% of the rated power.
  • the triple-output grid-tied inverter maintains high efficiency at lower rated power output.
  • the grid-connected inverter device shown by curve 3 has three 30KW outputs. If the DC power supply unit 1 1 has only low output power (assumed to be 9KW), the multi-output grid-connected inverter device can only enable one output. The other two channels are deactivated. For the output of 30kw, the output of 9kw is about 30% of rated capacity, and it can still operate at high efficiency, which can make full use of energy.
  • the grid-connected inverter device of the embodiment can improve the working efficiency by adopting the group control method, thereby fully utilizing the energy.
  • the grid-connected inverter device of the invention adopts the structure of the single tube, isolates the alternating current and the direct current, only undergoes one high-frequency switching and one power-frequency switching, and has low loss and high single-machine operating efficiency.
  • the invention can send the generated lead current back to the DC power supply end, is a grid-connected inverter device for generating electricity, is a grid-connected inverter device capable of simultaneously connecting the mixed DC source, and is a kind of reactive power Compensated grid-connected inverters.

Abstract

一种并网逆变装置,包括直流电源装置(11)、直流/直流变换器(12)、反流器(13)、开关装置(14)和主控制器(15);直流电源装置(11)由蓄电池、光伏电池、风力发电机等可产生直流电的装置所构成;直流/直流变换器(12)连接在直流电源装置(11)与反流器(13)之间,利用直流/直流变换器(12)升压直流电、并产生两倍工频正弦脉波宽度调变电压;反流器(13)将两倍工频正弦脉波宽度调变电压转换成正负半周正弦脉波宽度调变电压,滤除谐波后通过开关装置(14)连接到市电电网;主控制器(15)分别与直流/直流变换器(12)及反流器(13)相连,控制并网输出电流与电网电压同相输出有效功率,使得各种新能源产生的直流电源经由并网逆变装置转换成交流电。

Description

并网逆变装置 技术领域
本发明涉及电力电子变换器技术领域, 特别涉及一种并网逆变装置。 背景技术
随着传统能源的日益枯竭, 21世纪世界能源将发生巨大的变革, 以资 源有限、 污染严重的化石能源为主的能源结构将逐步转变为以资源无限、 清洁干净的可再生能源为主的多样性、 复合型的能源结构。
并网逆变装置是一种以直流电源为能源的电子式发电机, 其将直流电 源(如蓄电池、 光伏电池、 风力发电机等)升压后转换为与市电电压同相位 的正弦波电流, 与市电电网并网输出。
目前, 并网逆变装置有两种常用的架构, 一种是采用高频变压器将直 流电源隔离升压再经无隔离的逆电电路转换成交流电。 如图 1所示, 直流 电源 73经过电容 74滤波后, 由开关 75、 开关 76与高频变压器 77组成的 推挽式电路结构隔离后升压, 再由四只二级管 78组成的全波整流电路整 流后, 经高压电解电容 79滤成高压直流电, 然后通过 4只开关管 80组成 的全桥逆变器电路转换为高谐波正弦脉波宽度电压, 最后经电感 81与电 容 82组成的低通滤波电路滤除高频谐波成份,采用电流控制输出功因为 1 的有效功率经并网切换装置 83并入电网发电。
另一种是先将直流电源无隔离升压稳压, 再经过逆变电路与工频变压 器隔离逆变为交流电。 如图 2所示, 直流电源 61经过电容 62滤波后, 由 电感 63、 开关 64、 二级管 65组成升压电路升压, 控制开关 64的脉波宽 度来控制输出稳定的直流高电压, 4只开关 68组成全桥逆变器电路结构, 控制信号采用正弦脉波宽度调变技术, 输出经工频变压器 69隔离升压为 高谐波正弦脉波宽度电压, 再经电感 70与电容 71组成的低通滤波电路滤 除高频谐波成份, 输出正弦波电压, 采用电流控制输出功因为 1的有效功 率, 经并网切换装置 72并入电网发电。
然而, 上述两种传统的并网逆变装置普遍存在着以下缺点:
1、 现有的并网逆变装置在交直流逆变过程中, 要经过两次高频开关 的转换, 导致较大的能量损耗, 降低了并网逆变装置的效率。
2、现有的并网逆变装置要在直流母线上使用低寿命的高压电解电容, 制造成本高, 而且在使用过程中须经常更换高压电解电容, 从而也增加了 维护成本。
3、 现有的并网逆变装置只能提供有效功率输出, 无法同时提供无功 补偿, 当并网侧产生无功功率上升时电网电压升高很容易使逆变装置停机 运行, 这样对供电电网会造成调度的困扰, 并浪费电能。
4、 现有的并网逆变装置没有应急供电(EPS)或不间断电源(UPS)的功 h 。
5、 现有的并网逆变装置通常只单独使用蓄电池或风能或光伏电池中 的一种直流电源, 由于风能输出功率变化大且不连续, 光伏电池使用时间 短, 蓄电池要充电后再使用, 导致并网逆变装置使用率较低。
综上所述, 现有的并网逆变装置存在功耗大、 成本高、 使用效率低的 问题。 发明内容
本发明的目前是提供一种改进的并网逆变装置, 利用筒单的电路结 构, 提高并网逆变装置的转换效率, 可结合多机群控设计, 提供稳定输出 功率, 提高发电量。
本发明提出一种并网逆变装置, 包括:
一个以上的直流电源装置, 用以产生直流电;
一个以上的直流 /直流变换器, 通过一次高频切换将直流电压转换为 正弦波调变高电压, 该直流 /直流变换器具有一输入端和一输出端, 其输 入端和前述直流电源装置连接;
一个以上的反流器, 经过一次工频切换将正弦波谐波形状的电压反流 为工频的正弦波交流电压; 该反流器具有一输入端及一输出端, 其输入端 和前述直流 /直流变换器的输出端连接;
一个以上的开关装置, 具有一输入端及一输出端, 其输入端和前述反 流器的输出端连接, 开关装置的输出端用以连接市电电网;
一个以上的主控制器, 分别连接并控制该直流 /直流变换器和反流器, 以及控制该开关装置的切换。
依照本发明较佳实施例所述的并网逆变装置, 其包括两个以上的直流 电源装置、 两个以上的直流 /直流变换器、 一个反流器、 一个主控制器和 一个开关装置, 一个直流 /直流变换器的输入端与一个直流电源装置对应 连接后, 所有直流 /直流变换器的输出端并联接入该反流器。
依照本发明较佳实施例所述的并网逆变装置, 其包括两个以上的直流 电源装置、 两个以上的直流 /直流变换器、 一个反流器、 一个主控制器和 一个开关装置, 一个直流 /直流变换器的输入端与一个直流电源装置对应 连接后, 所有直流 /直流变换器的输出端串联接入该反流器。
依照本发明较佳实施例所述的并网逆变装置, 其包括一个直流电源装 置、 两个以上的直流 /直流变换器、 两个以上的反流器、 两个以上的主控 制器和两个以上的开关装置, 所有直流 /直流变换器的输入端连接该直流 电源装置, 该反流器的输入端与该直流 /直流变换器的输出端——对应连 接, 该反流器的输出端与该开关装置——对应连接, 该主控制器与该直流 /直流变换器及该反流器——对应连接。
依照本发明较佳实施例所述的并网逆变装置, 其还包括至少一辅助控 制器, 其分别与该主控制器及该开关装置相连, 用以根据对市电电网的检 测来控制并网逆变装置的并网与脱网。
依照本发明较佳实施例所述的并网逆变装置,反流器包括全桥逆变电 路和滤波电路, 全桥逆变电路与直流 /直流变换器相连, 滤波电路分别与 全桥逆变电路以及开关装置相连。
依照本发明较佳实施例所述的并网逆变装置, 直流 /直流变换器包括 第一开关管、 第二开关管、 第三开关管、 第四开关管和变压器。 变压器又 进一步包括第一原边绕组、第二原边绕组、第一副边绕组和第二副边绕组, 第一原边绕组的异名端和第二原边绕组的同名端共同连接直流电源装置 的一端, 第一原边绕组的同名端与第一开关管的一端相连, 第二原边绕组 的异名端与第二开关管的一端相连, 第一开关管和第二开关管的另一端共 同连接到直流电源装置的另一端。 第二副边绕组的异名端和第一副边绕组 的同名端共同连接到反流器, 第一副边绕组的异名端与第三开关管的一端 相连, 第二副边绕组的同名端与第四开关管的一端相连, 第三开关管和第 四开关管的另一端共同连接到反流器, 且第一开关管、 第二开关管、 第三 开关管和第四开关管分别与主控制器相连。
依照本发明较佳实施例所述的并网逆变装置, 直流 /直流变换器还包 括第一电容, 其跨接在第一原边绕组和第二原边绕组相接的一端, 以及第 一开关管和第二开关管相接的一端之间。
依照本发明较佳实施例所述的并网逆变装置, 主控制器为微处理器或 数字信号处理器。
相对于现有技术, 本发明的有益效果是:
1、 本发明的并网逆变装置利用筒单的电路结构, 隔离交流电与直流 电、 只经过一次高频开关转换与一次工频开关转换, 有效提高了单机运行 效率和转换效率。
2、 本发明的并网逆变装置, 可做无功补偿控制, 提供进相超前无效 功率, 从而抵消部份落后无效功率, 可稳定并网点电压, 使逆变器装置能 稳定发电输出, 使并网点功率因素接近 1。
3、 本发明的并网逆变装置输出的是正弦波形式的电压, 不会对电感 性负载造成损害。
4、 本发明的并网逆变装置不需采用电解电容这个低寿命组件, 具有 很长的整机使用寿命。
5、 本发明的并网逆变装置可以采用混合动力的直流源, 可同时采用 多种直流电源接入,小功率能源采用串联接入,大功率能源采用并联接入, 采用分时管理,控制每个直流电源输出动力,并跟踪每个电源最大功率点, 调整各路动力的输出比重, 新能源为优先使用能源, 蓄电池为最后使用动 力, 从而有效减少与降低了材料成本, 并减少能源多次的转换损耗。
6、 本发明多路输出的并网逆变装置, 可以采用群控技术, 使多路输 出谐同运作, 并依据直流电源所提供的功率, 启动适合的输出数量, 使每 一路的输出维持高效率运行, 这样可使直流电源(如光伏电池在低照度, 风机运行在低风速)工作在低输出能量时, 仍然可以使整个发电系统维持 高效率运行, 并充分利用能源, 增加发电量。
7、 本发明的并网逆变装置, 在具有多路输出的情况下, 可以采用无 主从轮序自起动控制, 延长单机并网逆变装置的使用年限。
8、 本发明的并网逆变装置, 可以采用直流电源装置所提供的能源作 为短时间电力补偿及输出电流谐波补偿的主要能源。 直流电源装置在有电 网的情况下不作深度放电, 可延长使用寿命。 当电网断电时, 提供应急电 源供紧急供电使用, 实现不间断电源的功能, 可使用在经常限电地区作为 应急供电用的能源。 本发明是一种发电的并网逆变装置, 是一种可同时接 混合直流源的并网逆变装置, 是一种可做无功补偿的并网逆变装置, 也是 一种应急电源的并网逆变装置。 附图说明
图 1为现有的一种并网逆变装置结构示意图;
图 2为现有的另一种并网逆变装置结构示意图;
图 3为本发明并网逆变装置的一种实施例结构示意图;
图 4为本发明优选的一种直流 /直流变换器的电路示意图;
图 5为本发明优选的一种反流器的电路示意图;
图 6为本发明并网逆变装置的电压波形示意图;
图 7为本发明并网逆变装置的第二种实施例结构示意图;
图 8为本发明并网逆变装置的第三种实施例结构示意图;
图 9为本发明并网逆变装置的第四种实施例结构示意图;
图 10为本发明并网逆变装置的第五种实施例结构示意图;
图 11为图 7和图 10的两种并网逆变装置的效率和输出功率的比对示 意图。 具体实施方式
以下结合附图, 具体说明本发明。
请参见图 3, 其为本发明并网逆变装置的一种实施例结构示意图, 其 包括直流电源装置 11、 反流器 13、 直流 /直流变换器 12和主控制器 15。 反流器 13通过开关装置 14连接到市电电网, 直流 /直流变换器 12连接在 直流电源装置 11与反流器 13之间, 主控制器 15分别与直流 /直流变换器 12及反流器 13相连。
直流电源装置 11可以是蓄电池或光伏电池或风力发电机等可产生直 流电的装置。 当直流电源装置 11提供直流电压时, 直流 /直流变换器 12 会将直流电源装置 11输出的直流电压隔离升压成两倍公频频率的正弦波 调变高电压, 然后经反流器 13滤波成工频频率的正弦波交流电压, 并经 开关装置 14输出与电网并联。
此外, 本发明的并网逆变装置是双向可逆的, 当直流电源装置 11为 蓄电池而需要充电时,交流市电可以经过反流器 13和直流 /直流变换器 12 转变为直流电压, 并对蓄电池进行充电。 当直流电源装置 11为光伏电池 或风力发电机时, 市电也可以经由反流器 13和直流 /直流变换器 12转换 后进行一定程度的能量储存,以在直流电源装置 11输出不稳定的时候(如 如太阳刚升起或风力不稳定时) 进行补充使用。 在整个过程中, 主控制器 15的作用主要是向直流 /直流变换器 12和 反流器 13输送控制信号, 以及对输出有效功率与无功功率补偿的调控, 主控制器 15可以是微处理器 (CPU) 或数字信号处理器 (DSP) , 其计算 直流电源装置 11最大可提供的功率值, 比较前一次输出功率与当次输出 功率的变化, 作为开关控制信号的调整基准, 并以电网电压相位为基准, 控制逆变器装置输出电流与电网电压同相, 以及调整 SPWM信号, 控制输 出电流为正弦波电流, 且输出的功率随直流电源装置 11的最大输出功率 点来调整,使直流电源装置 11,保持最大功率输出,最大程度地利用能源。
下面对图 3中并网逆变装置的各个部件进行详细说明。
请参见图 4, 其为本发明优选的一种直流 /直流变换器 12的电路示意 图, 其包括第一电容 121、 第一开关管 122、 第二开关管 123、 第三开关管 124、 第四开关管 125和变压器 126。 变压器 126又进一步包括第一原边绕 组 1261、 第二原边绕组 1262、 第一副边绕组 1263和第二副边绕组 1264。 第一原边绕组 1261的异名端和第二原边绕组 1262的同名端共同连接到第 一电容 121的一端。 第一原边绕组 1261的同名端与第一开关管 121的一 端相连, 第二原边绕组 1262的异名端与第二开关管 123的一端相连, 第 一开关管 122和第二开关管 123的另一端共同连接到第一电容 121的另一 端。 第二副边绕组 1264的异名端和第一副边绕组 1263的同名端相连, 作 为一个输出 /输入端连接到反流器 13。第一副边绕组 1263的异名端与第三 开关管 124的一端相连, 第二副边绕组 1264的同名端与第四开关管 125 的一端相连, 第三开关管 124和第四开关管 125的另一端共同作为一个输 出 /输入端连接到反流器 13。 且第一开关管 122、 第二开关管 123、 第三开 关管 124和第四开关管 125分别与主控制器 15相连, 并由主控制器 15控 制其开关频率。
当直流电源装置 11输出能量时, 利用第一开关管 122与第二开关管 123控制脉波宽度将直流电源装置 11加载在原边绕组 1261、 1262端的直 流电, 经过变压器 126的副边绕组 1263、 1264升压, 且由主控制器 15输 出 SPWM信号, 将每个 SPWM信号分为相同宽度的两组, 分别提供给第一开 关管 122和第二开关管 123, 并控制第三开关管 124与第一开关管 122同 步开与关, 第二开关管 123与第四开关管 125同步开与关, 从而转换成一 个谐波形状的直流电压, 输出给反流器 13。 值得注意的是, 由于要产生的 SPWM (正弦脉波宽度调变)信号导通最大占空比大于 50%, 会使变压器 126 饱合无法工作, 所以由第一开关管 122、 第二开关管 123各分一半 SPWM 信号, 再经过第一副边绕组 1263, 第二副边绕组 1264相加输出合成 SPWM 电压。 图 6中绘示了各个开关管的控制信号以及直流 /直流变换器 12的输 出电压信号波形图, 其中 "122/124" 为加载在第一开关管 122和第三开 关管 124上的控制信号, "123/125" 为加载在第二开关管 123和第四开 关管 125上的控制信号, "12" 为直流 /直流变换器 12的输出电压信号。 因此,本实施例的直流 /直流变换器 12通过筒单的结构完成了隔离、升压、 同步整流以及 SPWM电压的四合一功能, 具有 4艮高的转换效率。
另一方面, 当直流电源装置 11为蓄电池而需要储能时, 利用第三开 关管 124与第四开关管 125控制脉波宽度将副边绕组 1263、 1264端的直 流电源, 经过变压器 126的原边绕组 1261、 1262降压, 且第三开关管 124 与第一开关管 122同步开与关, 第而开关管 123与第四开关管 125同步开 与关, 转换成一个谐波形状的直流电压, 从而可以利用多余的能量为蓄电 池充电。 特别的, 第一电容 121也可以作为一个储能元件来储存多余的市 电能量, 从而在直流电源装置 11为光伏电池或风能装置的时候, 提供不 稳定能量 (如太阳刚升起或风力不稳定时) 的补充能量输出。 由此可见, 本实施例的直流 /直流变换器 12是一个双向可控直流 /直流变换装置。
请参见图 5, 其为其为本发明优选的一种反流器 13的电路示意图, 其包括 4个开关管 131-134组成的全桥逆变电路以及由电感 135、电容 136 组成的滤波电路。 本实施例的反流器 13也是一个双向逆变装置, 当其向 市电输出能量时, 将直流 /直流变换器 12传输来的直流谐波电压通过全桥 逆变电路换相为交流谐波电压, 再经电感 135与电容 136组成的低通滤波 器滤波后提供稳定的交流电压输出。 若输出端有市电而需要储能时, 市电 经电感 135与电容 136滤波后经过 4只开关管 131—134组成全桥逆变电路 产生直流电压, 并送回至直流 /直流变换器 12进行储能。
在此过程中, 由主控制器 15向各个开关管提供工频方波信号, 如图 6所示, "131/134"为开关管 131和开关管 134上的控制信号, "132/133 为开关管 132和开关管 133上的控制信号" , 且开关 132与开关 133同步 开时, 开关 134与开关 131同步关, 产生正半周 SPWM电压输出; 开关 132 与开关 133同步关时, 开关 134与开关 131 同步开, 产生负半周 SPWM电 压输出; 经电感 135与电容 136滤除高频率谐波电压, 输出成为一工频 (50Hz或 60Hz)的正弦波电压。 由上述几个实施例可以看到, 本发明的并网逆变装置, 利用筒单的电 路结构, 隔离交流电与直流电、 只经过一次高频开关转换与一次工频开关 转换, 能耗低, 单机运行效率高, 并且可以利用主控制器 15对输出功率 进行控制, 可以使并网点功率因素接近 1, 有效提高了并网逆变装置的转 换效率。
请参见图 7, 其为本发明并网逆变装置的第二种实施例结构示意图。 与图 3的相比, 本实施例的并网逆变装置还包括辅助控制器 16, 其连接在 开关装置 14与主控制器 15之间。 辅助控制器 16可以是微处理器(CPU)或 数字信号处理器(DSP) , 主要控制并网逆变装置的并网与脱网、 各种电网 继电保护(绝缘耐压、 欠压、 过压、 欠频、 过频、 过压无功补偿及限制输 出有效功率)、 漏电检测、 反孤岛运行检测、 输出应急供电控制。 在工作 中, 辅助控制器 16会实时检测电网电压频率是否异常, 并检测电网是否 断电, 防止并网逆变装置孤岛运行, 若电网电压过高将先提供进相超前电 流抑制电网电压上升, 若超过并网逆变装置可提供的无功补偿能力将降低 输出有效功率防止逆变器装置脱网停机, 并可稳定电网电压, 保护电网安 全。 本实施例其它部分均与图 3相同, 在此不再赘述。
请参见图 8, 其为本发明并网逆变装置的第三种实施例结构示意图, 其包括三个直流电源装置 11、 三个直流 /直流变换器 12、 反流器 13、 主控 制器 15和辅助控制器 16。 反流器 13通过开关装置 14连接到市电电网, 各个直流 /直流变换器 12与直流电源装置 11——对应连接后, 其输出并 联连接到反流器 13。 主控制器 15与反流器 13相连, 且分别连接到每个直 流 /直流变换器 12。辅助控制器 16连接在开关装置 14与主控制器 15之间。
本实施例适用于大容量逆变装置使用, 图中的三组直流电源装置 11 与三组直流 /直流变换器 12, 可以分别以蓄电池、 光伏电池、 风力发电机 的混合动力来做为直流电源, 主控制器 15提供 SPWM信号, 计算每个直流 电源的最大输出功率, 采用分时交错控制调整每个输出功率的比重, 使发 电能量更加稳定输出, 互补三种直流电源装置 11的输出, 提高并网逆变 装置的使用率。
其中, 所述的分时交错控制, 即光伏电池、 风力发电机的最大功率输 出的控制可以是通过检测来确定的。 功率 p=V( 电压) xl (电流) X时间 T, 光伏电池、 风力发电机的工作状态可以利用 M0SFET或 IGBT半导体开关进 行高频切换, 通过控制开关的 PWM (脉宽调制) 宽度, 来控制光伏电池、 风力发电机的投入时间, 也即是说, 在两段相同时间内比较光伏电池、 风 力发电机的输出功率变化, 若输出功率提高则加宽开关的 PWM宽度, 若输 出功率降低则缩小开关的 PWM宽度, 若输出功率不变则维持宽度, 此时即 为最大输出功率。
当然, 直流电源装置 11和直流 /直流变换器 12的数量可以根据实际 需要进行调整。本实施例中各部件的结构功能与图 3和图 7的实施例相同, 在此不再赘述。
请参见图 9, 其为本发明并网逆变装置的第四种实施例结构示意图, 其包括三个直流电源装置 11、 三个直流 /直流变换器 12、 反流器 13、 主控 制器 15和辅助控制器 16。 反流器 13通过开关装置 14连接到市电电网, 各个直流 /直流变换器 12与直流电源装置 11——对应连接后, 其输出串 联连接到反流器 13。 主控制器 15与反流器 13相连, 且分别连接到每个直 流 /直流变换器 12。辅助控制器 16连接在开关装置 14与主控制器 15之间。
图中的三组直流电源装置 11可以分别以蓄电池、 光伏电池、 风力发 电机的混合动力来做为直流电源, 主控制器 15提供 SPWM信号, 计算每个 直流电源的最大输出功率, 调整输出电压, 采用分时交错控制调整每个输 出功率的比重, 使发电能量更加稳定输出, 互补三种直流电源装置 11的 输出,提高并网逆变装置的使用率,本实施例适用于小容量逆变装置使用, 只要直流电源装置 11有一点能量就可以充分利用, 并互补每种能源的工 作时间。
当然, 直流电源装置 11和直流 /直流变换器 12的数量可以根据实际 需要进行调整。本实施例中各部件的结构功能与图 3和图 7的实施例相同, 在此不再赘述。
请参见图 10, 其为本发明并网逆变装置的第五种实施例结构示意图, 其包括一个直流电源装置 11、 三个反流器 13、 三个直流 /直流变换器 12、 三个主控制器 15和三个辅助控制器 16。每个反流器 13均通过一个开关装 置 14连接到市电电网, 直流 /直流变换器 12与反流器 13——对应相连后 共同并接到直流电源装置 11,每个主控制器 15分别与一个反流器 13以及 一个直流 /直流变换器 12相连, 每个辅助控制器 16连接在一个开关装置 14与一个主控制器 15之间。
本实施例的并网逆变装置有三路输出, 并共用一个直流电源装置 11, 这样可以通过各个主控制器 15采用群控的方式控制投入工作的输出端数 量。 即将一个开关装置 1 4看作一路输出的情况下, 在直流电源装置 1 1额 定输出功率较低的前提下, 启动适合的输出 (比如一路输出工作, 两路输 出停用) , 使每路输出都接近高效率, 这样可使直流电源装置 1 1 (如光伏 电池在低照度, 风机运行在低风速)工作在低输出能量时, 仍然可以使整 个发电系统(谐同运作的多组逆变装置)转换在高效率运行, 并充分利用能 源, 增加发电量。 此外, 本实施例的并网逆变装置可以采用无主从控制, 所述的无主从控制即三路输出轮流运作, 这样可以平衡各个电路部件的运 行时间, 更可延长使用时间和工作寿命。
当然, 本实施例中反流器 1 3、 直流 /直流变换器 1 2、 主控制器 1 5、 辅助控制器 1 6和开关装置 1 4的数量可以根据实际需要进行调整。 本实施 例中各部件的结构功能与图 3和图 7的实施例相同, 在此不再赘述。
请参见图 1 1 , 其为图 7和图 1 0的两种并网逆变装置的效率和输出功 率的比对示意图。 其中, 曲线 1代表单路输出的并网逆变装置(即图 7的 实施例 ) , 曲线 3代表有三路路输出的并网逆变装置(即图 1 0的实施例 ) , 纵轴表示并网逆变装置的效率百分比, 横轴下方表示并网逆变器装置的输 出功率(KW) , 横轴上方表示采用了几路输出。 从图中可以看到, 单路输出 的并网逆变装置的最大效率约在 5 0%额定功率输出时, 也就是 45 kw时, 并 且在 1 0%额定功率之前无法工作。 三路输出的并网逆变装置在较低的额定 功率输出时, 就可以保持较高的工作效率。 假设曲线 3表示的并网逆变装 置有 3路 30KW的输出, 如果当直流电源装置 1 1只有低输出功率时(假设 为 9KW) , 多路输出的并网逆变装置可以只启用一路输出, 另两路停用, 对 一路 30kw的输出来看, 9kw约 30%额定容量输出, 仍可高效率运行, 可以 充分利用能源。 而对单路输出的并网逆变装置而言, 9kw约 1 0%额定容量 输出, 从而会造成并网逆变装置效率低, 损耗大甚至由于功率低可能无法 起动运行。 由此可见, 本实施例的并网逆变装置通过采用群控的方式可以 提高工作效率, 从而充分利用能源。
本发明的并网逆变装置采用筒单的结构, 隔离交流电与直流电、 只经 过一次高频开关转换与一次工频开关转换, 损耗低、 单机运行效率高。 本 发明可以将产生的超前电流将反送回直流电源端, 是一种发电的并网逆变 装置, 是一种可同时接混合直流源的并网逆变装置, 是一种可做无功补偿 的并网逆变装置。 任何本领域的技术人员能思之的变化, 只要不超出所附权利要求书所述范 围, 都应落在本发明的保护范围内。

Claims

权利要求书
1、 一种并网逆变装置, 其特征在于, 包括:
一个以上的直流电源装置, 用以产生直流电;
一个以上的直流 /直流变换器, 通过一次高频切换将直流电压转换为 正弦波调变高电压, 该直流 /直流变换器具有一输入端和一输出端, 其输 入端和前述直流电源装置连接;
一个以上的反流器,经过一次工频切换将正弦波谐波形状的电压反流 为工频的正弦波交流电压; 该反流器具有一输入端及一输出端, 其输入端 和前述直流 /直流变换器的输出端连接;
一个以上的开关装置, 具有一输入端及一输出端, 其输入端和前述反 流器的输出端连接, 开关装置的输出端用以连接市电电网;
一个以上的主控制器,分别连接并控制该直流 /直流变换器和反流器, 以及控制该开关装置的切换。
2、 如权利要求 1所述的并网逆变装置, 其特征在于, 其包括两个以 上的直流电源装置、 两个以上的直流 /直流变换器、 一个反流器、 一个主 控制器和一个开关装置, 一个直流 /直流变换器的输入端与一个直流电源 装置对应连接后, 所有直流 /直流变换器的输出端并联接入该反流器。
3、 如权利要求 1所述的并网逆变装置, 其特征在于, 其包括两个以 上的直流电源装置、 两个以上的直流 /直流变换器、 一个反流器、 一个主 控制器和一个开关装置, 一个直流 /直流变换器的输入端与一个直流电源 装置对应连接后, 所有直流 /直流变换器的输出端串联接入该反流器。
4、 如权利要求 1所述的并网逆变装置, 其特征在于, 其包括一个直 流电源装置、 两个以上的直流 /直流变换器、 两个以上的反流器、 两个以 上的主控制器和两个以上的开关装置, 所有直流 /直流变换器的输入端连 接该直流电源装置, 该反流器的输入端与该直流 /直流变换器的输出端一 一对应连接, 该反流器的输出端与该开关装置——对应连接, 该主控制器 与该直流 /直流变换器及该反流器——对应连接。
5、 如权利要求 1至 4中任一项所述的并网逆变装置, 其特征在于, 还包括至少一辅助控制器, 其分别与该主控制器及该开关装置相连, 用以 根据对市电电网的检测来控制并网逆变装置的并网与脱网。
6、 如权利要求 5所述的并网逆变装置, 其特征在于, 该反流器包括 一全桥逆变电路和一滤波电路, 该全桥逆变电路与该直流 /直流变换器相 连, 该滤波电路分别与该全桥逆变电路以及该开关装置相连。
7、 如权利要求 6所述的并网逆变装置, 其特征在于, 该直流 /直流变 换器包括一第一开关管、 一第二开关管、 一第三开关管、 一第四开关管、 一变压器, 该变压器又进一步包括一第一原边绕组、 一第二原边绕组、 一 第一副边绕组和一第二副边绕组, 该第一原边绕组的异名端和该第二原边 绕组的同名端共同连接该直流电源装置的一端, 该第一原边绕组的同名端 与该第一开关管的一端相连, 该第二原边绕组的异名端与该第二开关管的 一端相连, 该第一开关管和该第二开关管的另一端共同连接到该直流电源 装置的另一端, 该第二副边绕组的异名端和该第一副边绕组的同名端共同 连接到该反流器, 该第一副边绕组的异名端与该第三开关管的一端相连, 该第二副边绕组的同名端与该第四开关管的一端相连, 该第三开关管和该 第四开关管的另一端共同连接到该反流器, 且该第一开关管、 该第二开关 管、 该第三开关管和该第四开关管分别与该主控制器相连。
8、 如权利要求 7所述的并网逆变装置, 其特征在于, 该直流 /直流变 换器还包括一第一电容, 其跨接在该第一原边绕组和该第二原边绕组相接 的一端, 以及该第一开关管和该第二开关管相接的一端之间。
9、 如权利要求 1所述的并网逆变装置, 其特征在于, 该主控制器为 微处理器或数字信号处理器。
2
PCT/CN2011/077341 2011-06-29 2011-07-20 并网逆变装置 WO2013000185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101783630A CN102255332A (zh) 2011-06-29 2011-06-29 并网逆变装置
CN201110178363.0 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013000185A1 true WO2013000185A1 (zh) 2013-01-03

Family

ID=44982377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077341 WO2013000185A1 (zh) 2011-06-29 2011-07-20 并网逆变装置

Country Status (2)

Country Link
CN (1) CN102255332A (zh)
WO (1) WO2013000185A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808735A (zh) * 2018-07-10 2018-11-13 深圳市华宝新能源股份有限公司 一种光伏储能装置的逆变器和光伏储能装置
CN109634348A (zh) * 2018-12-12 2019-04-16 桂林电子科技大学 一种适用于双源能量收集系统的最大功率同步追踪电路
CN113659628A (zh) * 2021-09-15 2021-11-16 合肥学院 一种微电网模拟系统
CN114123298A (zh) * 2021-10-26 2022-03-01 中国华能集团清洁能源技术研究院有限公司 风力发电用四输入双输出直流串并联并网切换系统
CN114389540A (zh) * 2022-01-18 2022-04-22 阳光电源股份有限公司 变换装置及其电流传感器失效检测方法、新能源发电系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957335B (zh) * 2012-11-23 2015-03-18 广东易事特电源股份有限公司 用于并网发电系统的双向储能逆变器
CN107991563B (zh) * 2014-06-11 2021-01-15 国网浙江省电力有限公司绍兴供电公司 供配电、并网实验的风光互补仿真实验装置及工作方法
CN110350755B (zh) * 2015-05-29 2020-12-29 广东易百珑智能科技有限公司 自发电无线开关及其应用
CN106130434B (zh) * 2016-08-04 2018-11-27 国网江西省电力公司电力科学研究院 一种利用太阳能供电的水泵电机控制系统
CN109687463B (zh) * 2019-01-31 2023-10-03 上海泓语电气技术有限公司 与配电变压整流器集成的交直流混合微网架构
CN112467867A (zh) * 2020-11-26 2021-03-09 西安许继电力电子技术有限公司 一种变电所的应急电源、应急电源系统及其控制方法
CN113644661B (zh) * 2021-09-01 2024-01-12 青岛鼎信通讯股份有限公司 一种低压配电网末端低电压治理并联补偿装置
CN114123305A (zh) * 2021-10-26 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种单风轮双绕组电机直流串并联切换统一并网系统
CN115459216A (zh) * 2022-09-02 2022-12-09 阳光电源股份有限公司 一种电源控制保护系统及控制保护方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146724A (ja) * 1993-11-25 1995-06-06 Sharp Corp 系統連系型インバータ
JPH1014252A (ja) * 1996-06-19 1998-01-16 Daikin Ind Ltd 電力変換装置
US6362985B1 (en) * 1999-05-27 2002-03-26 Ntt Data Corporation Power transmission apparatus and method for power transmission
US20050141248A1 (en) * 2003-09-11 2005-06-30 Mazumder Sudip K. Novel efficient and reliable DC/AC converter for fuel cell power conditioning
CN1988310A (zh) * 2006-11-09 2007-06-27 上海大学 电流源型光伏并网系统及其控制装置和方法
CN101071948A (zh) * 2007-03-29 2007-11-14 上海大学 一种高效率单相和三相并网发电系统
CN101521391A (zh) * 2008-02-28 2009-09-02 德观电子(上海)有限公司 脱机式不间断电源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146724A (ja) * 1993-11-25 1995-06-06 Sharp Corp 系統連系型インバータ
JPH1014252A (ja) * 1996-06-19 1998-01-16 Daikin Ind Ltd 電力変換装置
US6362985B1 (en) * 1999-05-27 2002-03-26 Ntt Data Corporation Power transmission apparatus and method for power transmission
US20050141248A1 (en) * 2003-09-11 2005-06-30 Mazumder Sudip K. Novel efficient and reliable DC/AC converter for fuel cell power conditioning
CN1988310A (zh) * 2006-11-09 2007-06-27 上海大学 电流源型光伏并网系统及其控制装置和方法
CN101071948A (zh) * 2007-03-29 2007-11-14 上海大学 一种高效率单相和三相并网发电系统
CN101521391A (zh) * 2008-02-28 2009-09-02 德观电子(上海)有限公司 脱机式不间断电源装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808735A (zh) * 2018-07-10 2018-11-13 深圳市华宝新能源股份有限公司 一种光伏储能装置的逆变器和光伏储能装置
CN109634348A (zh) * 2018-12-12 2019-04-16 桂林电子科技大学 一种适用于双源能量收集系统的最大功率同步追踪电路
CN109634348B (zh) * 2018-12-12 2023-09-29 桂林电子科技大学 一种适用于双源能量收集系统的最大功率同步追踪电路
CN113659628A (zh) * 2021-09-15 2021-11-16 合肥学院 一种微电网模拟系统
CN114123298A (zh) * 2021-10-26 2022-03-01 中国华能集团清洁能源技术研究院有限公司 风力发电用四输入双输出直流串并联并网切换系统
CN114123298B (zh) * 2021-10-26 2023-10-20 中国华能集团清洁能源技术研究院有限公司 风力发电用四输入双输出直流串并联并网切换系统
CN114389540A (zh) * 2022-01-18 2022-04-22 阳光电源股份有限公司 变换装置及其电流传感器失效检测方法、新能源发电系统
CN114389540B (zh) * 2022-01-18 2023-08-11 阳光电源股份有限公司 变换装置及其电流传感器失效检测方法、新能源发电系统

Also Published As

Publication number Publication date
CN102255332A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2013000185A1 (zh) 并网逆变装置
US11128236B2 (en) Multi-winding single-stage multi-input boost type high-frequency link's inverter with simultaneous/time-sharing power supplies
US9859814B2 (en) Method and apparatus for independent control of multiple power converter sources
US8493753B2 (en) Photovoltaic powered system
CN202019227U (zh) 空调器及其供电系统
US10804816B2 (en) Method and apparatus for three port line frequency energy storage
KR101319959B1 (ko) 하이브리드 에너지 저장 시스템
CN103023362A (zh) 一种无桥逆变电路与太阳能无桥逆变器
TW201041267A (en) Intelligent hybrid power conversion control system
CN105048490A (zh) 低电流应力的光伏微逆变器及其数字控制装置
CN103501020A (zh) 市电网络和光伏组件组成的复合电源系统及其控制方法
Singh et al. A single-stage isolated bidirectional matrix based AC-DC converter for energy storage
CN102447396A (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
CN108199603B (zh) 多绕组分时供电隔离反激直流斩波型单级多输入逆变器
TWM408678U (en) Photovoltaic powered system
CN102255356B (zh) 高效率的不间断电源
Gorla et al. Analysis and implementation of a three-phase matrix-based isolated AC-DC converter with transformer leakage energy management
CN101521394B (zh) 在线式不间断电源装置
KR20130051772A (ko) 태양광 발전 장치 연계형 전력공급장치 및 이의 제어 방법
CN108092538A (zh) 并联分时供电隔离反激直流斩波型单级多输入逆变器
CN108199602B (zh) 多绕组分时供电正激直流斩波型单级多输入高频链逆变器
CN108023497B (zh) 串联同时供电正激周波变换型单级多输入高频环节逆变器
CN108023496B (zh) 串联同时选择开关电压型单级多输入低频环节逆变器
TW201306424A (zh) 並網逆變裝置
Sayed et al. Steady-state analysis of soft-switched three-phase grid-tie DC-AC converter isolated by high-frequency transformer for high efficiency and low THD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868664

Country of ref document: EP

Kind code of ref document: A1