TW201041267A - Intelligent hybrid power conversion control system - Google Patents

Intelligent hybrid power conversion control system Download PDF

Info

Publication number
TW201041267A
TW201041267A TW98114791A TW98114791A TW201041267A TW 201041267 A TW201041267 A TW 201041267A TW 98114791 A TW98114791 A TW 98114791A TW 98114791 A TW98114791 A TW 98114791A TW 201041267 A TW201041267 A TW 201041267A
Authority
TW
Taiwan
Prior art keywords
power
storage device
voltage
converter
command
Prior art date
Application number
TW98114791A
Other languages
Chinese (zh)
Other versions
TWI387176B (en
Inventor
Rong-Jong Wai
Chung-You Lin
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW98114791A priority Critical patent/TWI387176B/en
Publication of TW201041267A publication Critical patent/TW201041267A/en
Application granted granted Critical
Publication of TWI387176B publication Critical patent/TWI387176B/en

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The aim of this invention is to develop an intelligent hybrid power conversion control system. The input of the proposed system includes two dc power sources and an energy-storage device. The energy-storage device, such as a super-capacitor bank or battery modules, is used for the transition stage of the system start up or peak power demand. Therefore, the ability of bidirectional power flow is necessary for charging or discharging the energy-storage device. The input dc power sources with different low voltages are regulated to a high dc-bus voltage. Then, in the dc/ac inverter output, the voltage is converted to a sinusoid ac voltage with the same power quality, such as amplitude and frequency, of the utility. Thus, the output of the inverter could be grid-connected to the utility via current control techniques or used to supply electric appliances in the stand-alone type via voltage control techniques. In the proposed system, the power management and control unit contains a digital signal processor (DSP) and peripheral circuits. The procedure of the power management and control algorithm is implemented via the DSP. The algorithm deals with the power flows between different input sources and the output terminal to achieve the minimum fuel consumption or the maximum power extraction and to reduce the reactive power caused by the inappropriate power management for the objective of high-efficiency operational situations. Due to the feedback signals from each power source and the excellent calculation of the DSP, the instantaneous power can be obtained. After the well-designed power management and control algorithm, the input/output power commands are generated and used for regulating the power converts and inverter. In the end, the input sources and the output power will follow the desired power commands.

Description

201041267 六、發明說明: 【發明所屬之技術領域】 本發明所涉及之技術領域包含有電力電子、能源科技、電源 . 儲存、自動控制及市電併聯之範疇,但本發明主要發展以潔淨能 源及電源儲存裝置作為輸入之混合式電源轉換控制系統,經由電 ' 源管理控制方法使整體系統操作於最有效率之狀態。 【先前技術】 Ο 由於石油危機,引發能源不足問題,使得新能源開發為重要 . 課題之一。為不加速破壞地球的自然環境,於新能源開發中,潔 淨能源發展最具重要性。潔淨能源如燃料電池[1],[2]、太陽光電池 、 [3],[4]、風力發電機[5],[6]、等低污染性能源,配合電力電子及自 - 動控制等相關技術,可廣泛應用在分散式發電裝置,如新世代電 . 力化交通工具、不斷電系統、獨立發電系統、等,然而此些蓬勃 發展之燃料電池、太陽能光電以及小型風力發電機等新興能源, 均具直流低電壓之發電特性,然而一般家用之電器幾乎皆為高電 壓:110¥_或220¥„^之交流電源,因此電力電子研究領域發展之電 q 源轉換器為潔淨能源應用不可或缺的一部份;另一方面,在潔淨 能源使用上,當應用潔淨能源於分散式發電系統時,為提供持續 且穩定之電源供應,一般需要電源儲存裝置作為輔助電源系統 [7],[8],可有效降低潔淨能源之備載容量,進而減少系統設置及供 電成本,因此,包含二個以上潔淨能源及蓄電池共同供電之混合 式發電系統,為目前積極發展之研究趨勢,可互補電能供應以解 決因燃料用盡、日照量不足或是風能缺乏所引發之問題,但亦衍 生出各電源間功率分配之控制問題、電源儲存裝置之充放電技 術,以及如何有效管理電源並完成最佳化控制,以達成高效率的 電能轉換並節省能源,成為在潔淨能源電源轉換器中極待面對之 挑戰。再者,於電源轉換器中,一般電力電子之控制多採用類比 4 201041267 式控制架構,在功率分配及電源管理控制中需要增加許多週邊電 路方可完成所需之程序控制,有鑑於此,使用數位訊號處理器以 提供彈性修改及多功能化之選擇,並且能實現智慧型控制所需之 數學運算,完成電源管理及功率分配最佳化之程序控制,因此使 用數位訊號處理器作為電源管理控制器為目前研發主流。 針對直流/直流轉換器而言,習用系統架構採用多組轉換器併 聯於直流高壓匯流排,作為變流器前端電源或直接應用電路裝 置,而此系統結構具有體積大、電路複雜及昂貴成本之缺失,為 簡化電路結構、提高性能及降低成本,具單級式及雙輸入之直流/ Ο 直流轉換器為不可或缺裝置,亦為目前國内外研究努力所欲達成 之目標,因此本發明所揭示之智慧型混合式電源轉換控制系統以 - 雙輸入直流/直流轉換器,將低壓潔淨能源轉換至高壓直流匯流 . 排,可減小系統體積及設置成本;由於潔淨能源發電裝置通常不 具能源儲存能力,因此其應用上經常配備電源儲存裝置,本發明 ' 所揭示之智慧型混合式電源轉換控制系統以雙向直流/直流轉換 器,使系統具備雙向能量傳遞之功能,直流匯流排之電能可透過 此轉換器對電源儲存裝置充電。 針對直流/交流變流器之應用而言,全橋式直流/交流變流器架 構簡單,且可藉由控制達成雙向電力潮流之功能,因此該變流器 〇 廣泛運用於工業之馬達驅動控制,不論是獨立供應交流負載使用 [9]或是市電併網操作[10],都有成功應用全橋式變流器之案例; 本發明所揭示之智慧型混合式電源轉換控制系統中,直流/交流變 流器於獨立供電模式下,輸出之交流電壓可供給交流負載使用, 當直流/交流變流器操作於併網供電模式下,藉由控制直流/交流變 流器輸出電流大小及流向,以完成所需之電源管理目的:當電源 儲存裝置電壓過低時,電能可以依序通過直流/交流變流器及雙向 直流/直流轉換器,對電源儲存裝置充電;當第二電源(例如太陽光 電池、風力發電機、等)電能豐沛時,可將多餘電力反饋入電力網 絡當中。 隨著分散式電源及潔淨能源之興起,目前電源管理控制為新 5 201041267 發展出之研究領域,主要解決多輸入之混合式電源供應系統中, 各電源間發電功率之分配最佳化的問題,避免不必要之電能浪 費,以提升整體電源供應系統之效率。本發明所揭示之智慧型混 合式電源轉換控制系統中,電源管理控制方法將透過數位化控制 . 達成電源管理及功率分配;市電併網模式中,可將潔淨能源電力 轉換供給一般負載使用,用電尖峰時刻,可減少對市電電源之需 ' 求,系統輸入若有多餘電能,甚至可以逆潮流之方式反饋電能回 市電,用電離峰時刻,可對電能儲存裝置充電,間接降低了石化 燃料之使用量,此電源管理控制方法並能自動偵測於市電連接中 0 斷時’或是市電電力品質不穩定時,提供自系統以獨立供電模式 供應負載。 參考文獻 * [1] R. J. Wai and C. Y. Lin, High-efficiency, high-st6p-up DC-DC converter for fuel-cell generation system,5, IEE Proc. Electr. Power Appl, vol. 152, no. 5, pp. 1371-1378, 2005.201041267 VI. Description of the Invention: [Technical Fields of the Invention] The technical field involved in the present invention includes power electronics, energy technology, power supply, storage, automatic control, and parallel power supply, but the present invention mainly develops clean energy and power supplies. The hybrid device is used as an input hybrid power conversion control system to operate the overall system in the most efficient state via an electrical 'source management control method. [Prior Art] Ο Due to the oil crisis, the problem of insufficient energy has caused new energy development to be an important issue. In order to not accelerate the destruction of the earth's natural environment, the development of clean energy is of the utmost importance in the development of new energy. Clean energy such as fuel cells [1], [2], solar cells, [3], [4], wind turbines [5], [6], and other low-pollution energy sources, coupled with power electronics and auto-control Related technologies can be widely used in decentralized power generation devices, such as new generations, force vehicles, uninterruptible power systems, independent power generation systems, etc., but such booming fuel cells, solar photovoltaics, and small wind turbines, etc. Emerging energy sources have the characteristics of DC low-voltage power generation. However, almost all household appliances are high-voltage: 110¥_ or 220¥„^ AC power, so the power q-source converter developed in the field of power electronics research is clean energy. An indispensable part of the application; on the other hand, in the use of clean energy, when applying clean energy to a decentralized power generation system, in order to provide a continuous and stable power supply, a power storage device is generally required as an auxiliary power supply system [7] ], [8], which can effectively reduce the backup capacity of clean energy, thereby reducing system settings and power supply costs. Therefore, it contains a mixture of two or more clean energy sources and batteries. The power generation system is a research trend that is currently actively developing. It can complement the power supply to solve the problems caused by fuel exhaustion, insufficient sunshine, or lack of wind energy. However, it also derives control problems of power distribution between power sources and power storage. The charging and discharging technology of the device, as well as how to effectively manage the power supply and complete the optimal control, to achieve high-efficiency power conversion and save energy, has become a challenge in the clean energy power converter. In general, the control of general power electronics adopts the analogy 4 201041267 control architecture. In the power distribution and power management control, many peripheral circuits need to be added to complete the required program control. In view of this, a digital signal processor is used to provide The choice of flexible modification and multi-function, and the realization of the mathematical operations required for intelligent control, complete the power control and power distribution optimization program control, so the use of digital signal processor as the power management controller is currently the mainstream of research and development. For DC/DC converters, the legacy system architecture is more The converter is connected in parallel to the DC high-voltage busbar as the front-end power supply of the converter or directly applied to the circuit device. The system structure has the advantages of large size, complicated circuit and high cost. In order to simplify the circuit structure, improve performance and reduce cost, the converter has a single The DC/DC converters of the two-stage and two-input are indispensable devices, and are also the goals that are being pursued at home and abroad. Therefore, the intelligent hybrid power conversion control system disclosed by the present invention uses - dual input DC /DC converter to convert low-voltage clean energy to high-voltage DC sink. Rows can reduce system size and installation cost; since clean energy power generation devices usually do not have energy storage capacity, their applications are often equipped with power storage devices, the present invention' The intelligent hybrid power conversion control system disclosed has a bidirectional DC/DC converter, which enables the system to have a bidirectional energy transfer function, and the DC bus power can charge the power storage device through the converter. For DC/AC converter applications, the full-bridge DC/AC converter is simple in architecture and can be used to control the bidirectional power flow. This converter is widely used in industrial motor drive control. Whether it is the independent supply AC load [9] or the mains grid-connected operation [10], there are cases in which the full-bridge converter is successfully applied; in the intelligent hybrid power conversion control system disclosed by the present invention, DC / AC converter in independent power supply mode, the output AC voltage can be used for AC load, when the DC / AC converter is operated in the grid-connected mode, by controlling the DC / AC converter output current size and flow direction To complete the required power management purposes: When the power storage device voltage is too low, the power can be charged to the power storage device through the DC/AC converter and the bidirectional DC/DC converter; when the second power source (for example When solar cells, wind turbines, etc. are abundant, they can feed excess power into the power network. With the rise of decentralized power supplies and clean energy, the current power management control is a research field developed by the new 5 201041267, which mainly solves the problem of optimizing the distribution of power generation among power sources in a multi-input hybrid power supply system. Avoid unnecessary waste of electricity to improve the efficiency of the overall power supply system. In the intelligent hybrid power conversion control system disclosed by the invention, the power management control method will be digitally controlled to achieve power management and power distribution; in the grid-connected mode, the clean energy power can be converted to a general load for use. At the peak of electricity, it can reduce the demand for the mains power supply. If there is excess power in the system input, it can even return the power to the mains in the way of reverse current. When the ionization peak is used, the electric energy storage device can be charged, which indirectly reduces the petrochemical fuel. The amount of usage, this power management control method can automatically detect when the mains connection is 0 or OFF or when the mains power quality is unstable, the system provides the independent supply mode to supply the load. References* [1] RJ Wai and CY Lin, High-efficiency, high-st6p-up DC-DC converter for fuel-cell generation system, 5, IEE Proc. Electr. Power Appl, vol. 152, no. Pp. 1371-1378, 2005.

[2] Z. Jiang and R. A. Dougal, t{A compact digitally controlled fuel cell/battery hybrid power source,55 IEEE Trans. Ind. Electron., vol. 53, pp. 1094-1104, 2006.[2] Z. Jiang and R. A. Dougal, t{A compact digitally controlled fuel cell/battery hybrid power source, 55 IEEE Trans. Ind. Electron., vol. 53, pp. 1094-1104, 2006.

[3] R. Gonzalez, J. Lopez, P. Sanchis, and L. Marroyo, "Transformerless 0 inverter for single-phase photovoltaic systems,5, IEEE Trans. Power[3] R. Gonzalez, J. Lopez, P. Sanchis, and L. Marroyo, "Transformerless 0 inverter for single-phase photovoltaic systems, 5, IEEE Trans. Power

Electron., vol. 22, no. 2, pp. 693-697, 2007.Electron., vol. 22, no. 2, pp. 693-697, 2007.

[4] N. Kasa, T. Iida, and L. Chen,“Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,IEEE Trans. Ind. Electron., vol. 52, pp. 1145-1152, 2005.[4] N. Kasa, T. Iida, and L. Chen, "Flyback inverter controlled by sensorless current MPPT for photovoltaic power system, IEEE Trans. Ind. Electron., vol. 52, pp. 1145-1152, 2005.

[5] R. J. Wai, C. Y. Lin, and Y. R. Chang, tsNovel maximum-power-extraction algorithm for PMSG wind generation system,,5 IET Proc. Electr. Power Appl, vol. 1, no. 2, pp. 275-283, 2007.[5] RJ Wai, CY Lin, and YR Chang, tsNovel maximum-power-extraction algorithm for PMSG wind generation system,, 5 IET Proc. Electr. Power Appl, vol. 1, no. 2, pp. 275-283, 2007.

[6] W. Sweet, ^Energy answer-blowing in the wind,55 IEEE Spectrum, vol. 41, pp. 10-12, 2004.[6] W. Sweet, ^Energy answer-blowing in the wind, 55 IEEE Spectrum, vol. 41, pp. 10-12, 2004.

[7] E. Sanchis-Kilders, A. Ferreres, E. Maset, J. B. Ejea, V. Esteve, J. Jordan, 201041267 A Garrigos, and J. Calvente, uSoft switching bidirectional converter for battery discharging-charging” in /Voc. dp/?/·尸ower (APEC), 2006, pp. 19-23.[7] E. Sanchis-Kilders, A. Ferreres, E. Maset, JB Ejea, V. Esteve, J. Jordan, 201041267 A Garrigos, and J. Calvente, uSoft switching bidirectional converter for battery discharging-charging" in /Voc Dp/?/· Corpse ower (APEC), 2006, pp. 19-23.

[8] M. Marchesoni and C. Vacca,“New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles,v IEEE Trans. Power Electron., vol. 22, no. 1, pp. 301-308, 2007.[8] M. Marchesoni and C. Vacca, "New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles, v IEEE Trans. Power Electron., vol. 22, no. 1, pp. 301-308 , 2007.

[9] R. J. Wai, W. H. Wang, and C. Y. Lin, ''High-performance stand-alone photovoltaic generation system,55 IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 240-250, 2008.[9] R. J. Wai, W. H. Wang, and C. Y. Lin, ''High-performance stand-alone photovoltaic generation system, 55 IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 240-250, 2008.

[10] R_ J. Wai and W· H. Wang,“Grid-connected photovoltaic generation system,55 IEEE Trans. Circuits and Systems Part /, vol. 55, no. 4, pp. 953-964, 2008. 【發明内容】 本發明所揭示之智慧型混合式電源轉換控制系統1 ο 1架構如 圖1所示’該系統係由電源管理控制單元102、第一電源103、第二 電源104、電源儲存裝置1〇5、直流負載106、交流負載107、電力 網絡108、電源網絡1〇9、訊號網絡1〇1〇、雙輸入直流/直流轉換器 1011、雙向直流/直流轉換器1012、直流/交流變流器1〇13以及直流 匯流排1014所組合而成,並標示電源網絡1 〇9、控制網絡1 〇 1 〇方向 及其系統架構如圖1所示。 本發明所揭示之智慧型混合式電源轉換控制系統1〇1中,電源 管理控制單元1〇2以訊號網絡1010與各電源轉換器連接,藉由迴授 系統輸入/輪出電源以及直流匯流排1014之電壓電流訊號,以智慧 型控制方式計算出各電源之功率命令,管理控制各電源轉換器及 輸入/輸出電源’可減少系統中因電能管理不當所產生之虛功率, 7 201041267 以提升系統整體效率;雙輸入直流/直流轉換器1011之主要工作係 將第一電源.103電能及第二電源104電能同時轉換為直流匯流排 1014電能,亦可將兩電源其中之一單獨轉換為直流匯流排1014電 - 能,此直流匯流排1014電能可用以供應直流負載106以及後級直流 - /交流變流器1013 ;雙向直流/直流轉換器1012之主要工作係將電源 儲存裝置】05電能轉換為直流匯流排1014電能,或是由直流匯流排 1014電能透過此雙向直流/直流轉換器1012對電源儲存裝置10 5充 Ο 電,此雙向直流/直流轉換器1012具雙向電力潮流之功能;直流/ ' 交流變流器10:1.3之主要工作係將直流匯流排1 014電能轉換為交流 ' 電能,供應交流負載107或與電力網絡108併聯供電,亦可將電力 網絡108電能以整流方式反饋回直流匯流排1014,此直流/交流變流 器1013具雙向電力潮流之功能。 本發明所揭示之智慧型混合式電源轉換控制系統101,其中電 源管理控制單元102之控制流程為電源管理控制方法201,該方法 Θ 之控制流程如圖2所示,係以數位訊號處理器實現數位化控制,並 以智慧型電源管理流程達成各電源功率最佳化支配,而產生各輸 入電源之功率控制命令,可有效管理智慧型混合式電源轉換控制 系統101之輸入/輸出電源,使系統可操作於獨立供電模式或併網供 電模式,電源管理控制方法201主程式步驟包括:步驟202,當電 源管理控制方法201啟動時,先設定併網指標(/瓜^)為0,代表該系 統預設為獨立供電模式,並設定停機指標(办七)為0,代表該系統 為正常操作狀態,接著進行步驟203 ;步驟203估測電源儲存裝置 8 201041267 105電荷狀態初始值(SOC;),藉由迴授電源儲存裝置l〇5之電壓對應 得知電荷狀態初始值(SOC。),接著進行步驟204 ;步驟204,判斷併 網指標(如<)是否為1,若是,接著進行步驟206,若否,接著進行 - 步驟205 ;步驟205,該系統操作於獨立供電模式,接著進行步驟 _ 207 ;步驟206,該系統操作於市電併網模式,接著進行步驟207 ; 步驟207,電源儲存裝置狀態決策,藉由電源儲存裝置105之即時 電流對時間積分,除以電源儲存裝置105總容量後,再加上原本電 〇 荷狀態(SOC),可估測出目前電源儲存裝置105電荷狀態(SOC),本 — 決策預期將電源儲存裝置10 5電荷狀態(SOC )維持於預設之最大 • 值,應付輸出於獨立供電模式下重載情況以及系統啟動情況使 用,因此在得知電源儲存裝置105電荷狀態(SOC)後,可由電源儲 存裝置105電荷狀態控制或是採用線性對應關係,計算出電源儲存 裝置虛擬充電功率命令(Ρ3>ι;),接者再進行步驟208 ;步驟208,電 力網絡狀態決策,藉由迴授市電電壓並設定其正常狀態下之峰值 ^ 大小範圍,判斷該交流電壓之峰值大小是否為正常狀態,並以鎖 相迴路控制估測市電電壓之相角,當市電電壓之大小為正常,且 成功估測出市電電壓之相角時,設定併網指標(/«&)為1,反之, 設定併網指標(/Mg)為〇,接者進行步驟209 ;步驟209,判斷停機 指標(/m^)是否為1,若是,表示目前輸入電能功率總和無法供應 負載需求電能功率總和,迫使電源管理控制方法201主程式結束並 將智慧型混合式電源轉換控制系統101停機,若否,代表智慧型混 合式電源轉換控制系統101為正常操作狀態,接著回復進行步驟 9 201041267 204。 電源官理控制方法201中,步驟 圖 驟205獨立供電模式控制流程 士 Θ 3所不,此副程式執 们… ι栝·步驟301 ’併網開關載止, 叮將该系統輸出交流電能與市電 雕接者進仃步驟302 ;步驟 302,迴授系統輸入/輪出之 电机並叶舁系統整體輪出功率 整體輪出功率(辦於直流負_耗功率⑹及交 Ο ο[10] R_J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system, 55 IEEE Trans. Circuits and Systems Part /, vol. 55, no. 4, pp. 953-964, 2008. The smart hybrid power conversion control system disclosed in the present invention has a structure as shown in FIG. 1. The system is composed of a power management control unit 102, a first power source 103, a second power source 104, and a power storage device. 5. DC load 106, AC load 107, power network 108, power network 1〇9, signal network 1〇1〇, dual input DC/DC converter 1011, bidirectional DC/DC converter 1012, DC/AC converter 1〇13 and DC busbar 1014 are combined, and the power supply network 1〇9, the control network 1〇1〇 direction and its system architecture are shown in Fig. 1. The intelligent hybrid power conversion control disclosed by the invention In the system 1〇1, the power management control unit 1〇2 is connected to each power converter by the signal network 1010, and is calculated by intelligent control method by feedback system input/round power and DC bus 1014 voltage and current signals. Out of electricity The power command, management and control of each power converter and input/output power supply can reduce the virtual power generated by improper power management in the system, 7 201041267 to improve the overall efficiency of the system; the main working system of the dual input DC/DC converter 1011 The first power source .103 power and the second power source 104 are simultaneously converted into the DC bus 1014 power, and one of the two power sources can be separately converted into the DC bus 1014, and the DC bus 1014 can be used to supply the power. The DC load 106 and the subsequent DC-/AC converter 1013; the main function of the bidirectional DC/DC converter 1012 is to convert the power storage device 05 power into the DC bus 1014, or the DC bus 1014 through the power. The bidirectional DC/DC converter 1012 charges the power storage device 105, and the bidirectional DC/DC converter 1012 has the function of bidirectional power flow; the main function of the DC/' AC converter 10:1.3 is DC convergence. The row 1 014 energy is converted into AC 'electric energy, the AC load 107 is supplied or powered in parallel with the power network 108, and the power network 108 can also be powered The DC/AC converter 1013 functions as a bidirectional power flow in a rectified manner. The intelligent hybrid power conversion control system 101 disclosed in the present invention, wherein the control flow of the power management control unit 102 is The power management control method 201, the control flow of the method 如图 is as shown in FIG. 2, and the digital signal processor is used for digital control, and the power supply optimization process is achieved by the intelligent power management process, and each input power is generated. The power control command can effectively manage the input/output power of the intelligent hybrid power conversion control system 101, so that the system can be operated in an independent power supply mode or a grid-connected power supply mode. The main steps of the power management control method 201 include: step 202, When the power management control method 201 is started, the grid-connected indicator (/ melon^) is set to 0 first, which means that the system is preset to an independent power supply mode, and the shutdown indicator (office 7) is set to 0, indicating that the system is in a normal operating state. Then proceeding to step 203; step 203 estimating the initial state of charge state of the power storage device 8 201041267 105 (SOC; The initial state of charge state (SOC) is obtained by feedback of the voltage of the power storage device 105. Then, proceed to step 204; step 204, determine whether the grid-connected indicator (such as <) is 1, if yes, proceed to step 206, and if not, proceed to - step 205; step 205, the system operates in an independent power supply mode, Next, step _ 207 is performed; in step 206, the system operates in the mains grid-connected mode, and then step 207 is performed; step 207, the power storage device state decision is made by integrating the instantaneous current versus time of the power storage device 105, and dividing the power storage device After the total capacity of 105, plus the original state of charge (SOC), the current state of charge (SOC) of the power storage device 105 can be estimated. The present decision is expected to maintain the state of charge (SOC) of the power storage device 105. The maximum value is set, and the output is used in the overload mode of the independent power supply mode and the system startup condition. Therefore, after the charge state (SOC) of the power storage device 105 is known, the charge state of the power storage device 105 can be controlled or linearly corresponding. Relationship, calculate the power storage device virtual charging power command (Ρ3>ι;), and then proceed to step 208; step 208, power network State decision, by returning the mains voltage and setting the peak value range under its normal state, judging whether the peak value of the AC voltage is normal, and using the phase-locked loop control to estimate the phase angle of the mains voltage, when the mains voltage When the size is normal, and the phase angle of the mains voltage is successfully estimated, the grid-connected indicator (/«&) is set to 1. Otherwise, the grid-connected indicator (/Mg) is set to 〇, and the step is performed in step 209; 209. Determine whether the shutdown indicator (/m^) is 1. If yes, it indicates that the sum of the current input power power cannot supply the sum of the load demand power, forcing the power management control method 201 to end the main program and the intelligent hybrid power conversion control system 101 Shutdown, if not, represents the smart hybrid power conversion control system 101 in a normal operating state, and then proceeds to step 9 201041267 204. In the power supply control method 201, the step 205 is independent power supply mode control flow, and the sub-program is... ι栝·Step 301 'Connecting the network switch, 叮 Output the system AC power and the mains The splicer proceeds to step 302; in step 302, the system inputs/rounds the motor and the overall power of the leaf yoke system is rotated (in the case of DC negative _ power consumption (6) and Ο ο

>瓜負載消耗功率)之和, C 尸第flC 進订乂驟303 ;步驟303,根據迴 才又第—電源1〇4電壓及 P ” 原1G4電能能否取得, Γ者進订步驟3〇4,若否,接著進行步驟305;步驟304, =:::控制方式決定第,功率命勢並設定第二 電源功“令⑷為第二電源最大擷 驟306 ;步驟306,判 2,贿)’接者進行步 统敕外φ 取功率(U是否大於系 和,若θ P 冊裝置虛擬充電功率命令(〇之 右疋’接者進行步驟3〇7,若 獨立供_下十_大!^ 驟烟;步驟斯, ^ ( 2,MPPT)大於系統整體輸 ^ = 館存裝置虛擬充電功率命令(v)之和時,設定第 統整繼功率(辦電^電源功率命令⑻為系 H原儲存裝置虛擬充電功率命令、 和,之後結束獨立供電權 ά . 3,ν ^拉式返回電源管理控制方法2〇1主 ^ ^ 8,當第二電源最大擷取功率(尸,. 輸出功率⑻與電源儲存f置虛擬充電ΗΑ(2,_)小於系統整體 第二電源最大揭取功率,= (()之和,再判斷 2’ΜΡΡΤ)/、《又疋之第—電源最大功率(6 ) 201041267 ㈣統整體輸出功率(伽電_存裝置虛擬充電功 、3,V之和,右是,接著進行步驟309,若否,接著進行步 驟薦;步驟309,獨立供雷心 進仃步 與第,最下,第二電源最大擷取功率(巧,_) 源儲«置虛擬充電功:純整體輸出功率(伽電 7 (化)之和時,將系統整體輸出功率 (乃)與電源儲存裝置虛擬充 人* , ❹ 率'^(6,ν )之和,減去第二電源最 大操取功率(Ρ 包源取 °又疋為第—電源功率命令(/〇,之後社 束獨立供電模式流程 ,Λ1Λ 、口電源官理控制方法201主程式;步驟 3〇1〇 ’獨立供電模式下 P + M 0帛—電源最大擷取功率(U與第1 ’、取 1率(矸max)之和,小於系續餐辦仏 乐統整體輸出功率(微電源儲存裝 置虛擬充電功率命令 3,ν σ寺,設定第一電源功率命令(戶、為 第一電源最大功率1 1)為 ,’卿)’亚且將第二電源最大擷取功率 源最大功率之和(…去系統整體輸出功率(:: 咖ΓΓ為電源儲存裝置虛擬充電功率命令(v),之後進行步驟 乂驟305 ’ f二電源電能不 , _ 令(ΡΊΑ焚拉土 于丁 *又疋第一电源功率命 =2)為各’接者進行步驟則;步驟則,判斷第—電源最大 "(/?,max)是否大於系統整體輸出功率(尸)盥電源儲存梦、 電功率命令(P 原儲存裝置虛擬充 3,V 右疋,接者進行步驟3012,若否,接著進 行v驟3 〇 13 ;步驟3 〇 I 9,想·* μ兩 12獨立供電模式下’第-電源最大功率(户) 大於系統整體輸出功率⑻* 1,max zh、电原儲存裝置虛擬充電功率命令 之和時’將第-電源功率命令(们設定為系統 ⑻與電源錯存裝置虛擬充電功率命輸出功率 刀平之和,之後結束獨立供 11 201041267 電模式流程,返回電源管理控 “汗上 J方法01主程式;步驟3013,獨 立供電模式下,第一電源最大功 (l,max )小於系統整體輸出功率(户) 與電源儲存裝置虛擬充電功入人 1 •漆人入》、 叩7 (化)之和時,設定第一電源功 率〒々(々)為第一電源最大功率 、,η & (丨,職)’亚且將電源儲存裝置虛擬 充電功率命令(户3:)設定為第— 電源最大功率(6輝)減去系統整體 輸出功率(乃)之差’之後進行歩驄土 驟3014,步驟3014,判斷電源儲 〇 (仏)疋否大於零,若是,電源儲存裝置 擬充電功率叩7(心)為正’代表系統具備足夠輸入電能,可對 電原館存裝置1G5充電,之後結束獨立供電模式流程,返回電源 目理控制方法201主程式’若否,接著進行步驟3⑴5 ;步驟3⑽, 電源儲存裝置虛擬充電功率命令(〇為負,即電源儲存裝置⑽ 域電狀態時,判斷電源儲存裝置1〇5電荷狀態⑻C)是否小於設 定之電源儲存裝置105電荷狀態最小值(奶,若是,接著進行 Ο步驟3016 ’若否,接著進行步驟說步驟3017,判斷電源儲存 裝置虛擬充電功率命令(<)是否小於設定之電賴存裝置最小功 率(户3,mJ ’換言之,判斷電源儲存裝置1〇5是否超過其設定放電最 大功率’若是,接著進行步驟3〇16,若否,結束獨立供電模式流 程’返回電源管理控制方法2〇1主程式;步驟3〇16,此時輸入電 此功率總和無法供應負載需求電能功率總和’設定停機指標(/〇 為1 ’之後結束獨立供電模式流程,返回電源管理控制方法 主程式。 電源管理控制方法201中,步驟206市電併網模式控制流程如 12 201041267 圖4所示,此副程式執行步驟包括:步驟401,併網開關導通,可 將該系統輸出交流電能與市電連接,並設定第一電能功率命令(<) 為零,接者進行步驟402 ;步驟402,迴授系統輸入/輸出之電壓及 - 電流,並計算系統整體輸出功率(乃),此時系統整體輸出功率定義 . 為直流負載消耗功率(Prfe),接者進行步驟403 ;步驟403,根據迴授 第二電源104電壓及電流,判斷第二電源104電能能否取得,若是, 接著進行步驟404,若否,接著進行步驟405 ;步驟404,以最大功 ® 率擷取控制方式決定第二電源功率命令(P/),並設定第二電源功率 _ 命令(P/)為第二電源最大擷取功率(Ρ2>ΜΡΡΤ),接者進行步驟406 ;步 ' 驟406,判斷第二電源最大擷取功率(Ρ2Μρρτ)是否大於系統整體輸出 功率(f)與電源儲存裝置虛擬充電功率命令(&/)之和,若是,接著 進行步驟407,若否,接著進行步驟408 ;步驟407,市電併網模式 下,第二電源最大擷取功率(Ρ2Μρρτ)大於系統整體輸出功率(/p與電 源儲存裝置虛擬充電功率命令(P3>v*)之和時,將第二電源最大擷取 ^ 功率(p2>MPPT),減去系統整體輸出功率(ip,再減去電源儲存裝置虛 擬充電功率命令(p3>v*),計算所得之正值,設定為市電併網功率命 令(巧*),換言之,此時將第二電源104電能扣除系統需求所剩餘之 電能,全部饋入市電當中,之後結束市電併網模式流程,返回電 源管理控制方法201主程式;步驟408,市電併網模式下,第二電 源最大擷取功率(ρ2>ΜΡΡΤ)小於系統整體輸出功率(ip與電源儲存裝 置虛擬充電功率命令(P3/)之和時,將第二電源最大擷取功率 (P2MPPT),減去系統整體輸出功率(乃),再減去電源儲存裝置虛擬充 13 201041267 電功率命令(〇,計算所得之負值,設定為市電併網功率命令 (<)’換言之,此時將第二電源104電能扣除系統需求後所不足之 電能,由市電反饋回該系統#卜之後結束市電併網模式流程, 返回電源管理控制方法201主程式;步驟405,第二電源電能不可 取得時,設定第二電源功率命令為零,接者進行步驟4〇9 :步 驟彻’將市電併網功率命令(()設定為負的系統整體輸出功率⑻ 與電源儲存裝置虛擬充電功率命令(ν)之和,此時由市電反饋電 能回該系統當中,之後結束市電併網模式流程,返回電源管理控 制方法201主程式。 本1¾明所揭示之智慧型混合式電源轉換控制系統丨〇 1,其特徵 為.第一點,系統包含第一電源1〇3、第二電源1〇4及一組電源儲 存裴置105 ’可由任一組電源單獨供電或由兩個電源至三個電源同 犄i、電,第二點,系統之第一電源j 〇3及第一電源丄⑽使用單一雙 輸入直流/直流轉換器1〇11,簡化傳統習用多組直流/直流轉換器之 系統架構;第三點,系統包含雙向直流/直流轉換器1012,可達成 電源儲存裝置1〇5充放電所需之雙向電力潮流之功能;第四點,系 、先輸出可以為直流匯流排1014上直流負載106,以及直流/交流變流 器1013輪出之交流負載1〇7,亦可與電力網絡1〇8併聯供電;第五 點,系統與電力網絡1〇8併聯供電時,可將電力網絡1〇8電能轉換 後對電源儲存裝置105充電。 14 201041267 【實施方式】 圖5表示本發明所揭示智慧型混合式電源轉換控制系統實施 例之一 500之系統架構,並標示各電源轉換器所需之脈波寬度調 - 變訊號507以及迴授訊號508方向於圖5當中;該實施例中第一 - 電源103採用燃料電池501,其電壓及電流分別表示為心及心, 第二電源104採用太陽光電池502,其電壓及電流分別表示為Γρν及 /PV,電源儲存裝置105採用蓄電池503,其電壓及電流分別表示 〇 為ΓΒΑΤ&/ΒΑΤ,直流匯流排1014上電壓為匕,,流經直流負載106 • 之電流為/Λ,輸出交流負載107上之電壓及電流分別表示為κ及 ' (,電力網絡108之電壓為\,市電併網電流則表示為,而雙輸 入直流/直流轉換器1011、雙向直流/直流轉換器1012、直流/交流 變流器1013與電源管理控制單元102分別以雙輸入直流/直流轉換 器實施例之一 600、雙向直流/直流轉換器實施例之一 700、直流/ 交流變流器實施例之一 800與電源管理控制單元實施例之一 504> sum of melon load power consumption, C corpse flC order 303; step 303, according to the return and the first - power supply 1 〇 4 voltage and P ” original 1G4 power can be obtained, the latter step 3 〇4, if not, proceed to step 305; step 304, =::: control mode determines the first power front potential and sets the second power supply "order (4) to the second power supply maximum step 306; step 306, judge 2, Bribe) 'taker to take the step outside the φ take power (U is greater than the system and if the θ P book device virtual charging power command (〇 right 疋 ' pick up step 3 〇 7, if independent _ lower ten _ Large!^Smoke; Steps, ^ (2, MPPT) is greater than the sum of the system's overall output = virtual memory power command (v), set the system's overall relay power (power ^ power command (8) is The H original storage device virtual charging power command, and then the independent power supply right. 3, ν ^ pull back power management control method 2 〇 1 main ^ ^ 8, when the second power maximum draw power (corpse,. Output power (8) and power storage f set virtual charging ΗΑ (2, _) is less than the system's overall second power supply maximum uncovering power, = ((), and then judge 2'ΜΡΡΤ) /, "again the first - power maximum power (6) 201041267 (four) unified overall output power (gamma_ storage device virtual charging work, 3, V sum, right is Then, proceed to step 309, if not, follow the steps recommended; step 309, independently supply the thunder and the first, the bottom, the second power source maximum draw power (smart, _) source storage «set virtual charging work: Pure overall output power (when the sum of gamma 7 is the sum of the system's overall output power (ie) and the power storage device virtual charge *, ❹ rate '^(6, ν), minus the second power supply maximum Take power (Ρ package source take ° and then the first - power power command (/ 〇, after the social bundle independent power supply mode process, Λ 1 Λ, port power supply control method 201 main program; step 3 〇 1 〇 'independent power supply mode P + M 0帛—the maximum power drawn by the power supply (the sum of U and the first ', the first rate (矸max) is less than the overall output power of the system. (Micro power storage device virtual charging power command 3 , ν σ Temple, set the first power power command (household, the maximum power of the first power source 1 1) For, 'Qing'' and the second power source can draw the sum of the maximum power of the power source (...to the overall output power of the system (:: Curry is the power storage device virtual charging power command (v), then step by step 305 'f two power supply is not, _ 令 ΡΊΑ ΡΊΑ ΡΊΑ ΡΊΑ 于 于 于 于 于 于 于 于 于 于 于 于 于 于 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋, max) is greater than the system's overall output power (corpse) 盥 power storage dream, electric power command (P original storage device virtual charge 3, V right 疋, pick up step 3012, if not, then proceed to v 3 〇 13; steps 3 〇I 9, think · * μ two 12 independent power supply mode 'the first power supply maximum power (household) is greater than the system's overall output power (8) * 1, max zh, the original storage device virtual charging power command sum when 'the first - Power supply command (we set the sum of the system (8) and the power supply faulty device virtual charging power output power level, then end the independent 11 201041267 electrical mode flow, return to the power management control "Khan on the J method 01 main program; steps 3013, alone In the power supply mode, the maximum power (l,max) of the first power supply is less than the total output power of the system (household) and the power storage device virtual charging power input 1 • the sum of the painter and the 叩7 (chemical), set the first The power supply 〒々(々) is the maximum power of the first power supply, η & (丨, job)' and the power storage device virtual charging power command (house 3:) is set to the first - the maximum power of the power (6 hui) After subtracting the difference between the overall output power of the system, then perform the earth step 3014, step 3014, to determine whether the power storage device (仏) is greater than zero, and if so, the power storage device is intended to charge power 叩7 (heart) is positive. 'The representative system has enough input power to charge the electric source storage device 1G5, then end the independent power supply mode flow, return to the power supply control method 201 main program' If no, then proceed to step 3 (1) 5; step 3 (10), the power storage device virtual The charging power command (〇 is negative, that is, when the power storage device (10) is in the domain power state, it is determined whether the power storage device 1〇5 charge state (8) C) is smaller than the set power storage device 105 charge state. Value (milk, if yes, proceed to step 3016) If no, proceed to step 3017 to determine if the power storage device virtual charging power command (<) is less than the minimum power of the set power storage device (house 3, mJ ' In other words, it is determined whether the power storage device 1〇5 exceeds its set discharge maximum power. If yes, proceed to step 3〇16, and if not, terminate the independent power supply mode flow 'return power management control method 2〇1 main program; step 3〇16 At this time, the sum of the input power and the sum of the power cannot be supplied to the sum of the load demand power. 'Set the stop indicator (/〇1' to end the independent power supply mode flow, and return to the main program of the power management control method. In the power management control method 201, the step 206 mains grid-connected mode control flow is as shown in FIG. 4 of FIG. 4, and the sub-program execution step includes: step 401, the grid-connected switch is turned on, and the system outputs AC power and the mains connection, and Set the first power power command (<) to zero, and then proceed to step 402; step 402, feedback the system input/output voltage and current, and calculate the overall system output power (ie), then the system overall output power Definition: For DC load power consumption (Prfe), proceed to step 403; step 403, according to feedback of the second power source 104 voltage and current, determine whether the second power 104 power can be obtained, and if so, proceed to step 404, if not And then proceeding to step 405; step 404, determining the second power command (P/) by the maximum power rate control mode, and setting the second power source _ command (P/) to the second power source maximum draw power ( Ρ2>ΜΡΡΤ), the receiver proceeds to step 406; step 406, determining whether the maximum power drawn by the second power source (Ρ2Μρρτ) is greater than the overall output power of the system (f) and the power storage device Set the sum of the virtual charging power commands (&/), and if yes, proceed to step 407. If not, proceed to step 408; in step 407, the maximum power drawn by the second power source (Ρ2Μρρτ) is greater than the overall system. When the output power (/p is equal to the power storage device virtual charging power command (P3>v*), the second power source is maximized to draw power (p2>MPPT), minus the overall system output power (ip, minus The power storage device virtual charging power command (p3>v*), the calculated positive value is set as the mains grid-connected power command (intelligent*), in other words, the second power source 104 power is deducted from the remaining power of the system demand. All are fed into the mains, and then the mains grid-connected mode flow is returned to the power management control method 201 main program; in step 408, in the mains grid-connected mode, the second power maximum draw power (ρ2 > ΜΡΡΤ) is less than the overall system output power ( When the ip is combined with the virtual storage power command (P3/) of the power storage device, the maximum power drawn by the second power source (P2MPPT) is subtracted from the overall output power of the system, and then subtracted. Power storage device virtual charge 13 201041267 Electric power command (〇, calculated negative value, set to the mains grid-connected power command (<)' In other words, the second power 104 energy is deducted from the system demand after the power is insufficient The utility power feedback back to the system #b, and then ends the mains grid-connected mode process, and returns to the power management control method 201 main program; in step 405, when the second power source is not available, the second power command is set to zero, and the step 4 is performed. 9: The step is to 'set the mains grid-connected power command (() to the sum of the system's overall output power (8) and the power storage device's virtual charging power command (ν). At this time, the mains feedback power is returned to the system, and then ends. The mains grid-connected mode process returns to the power management control method 201 main program. The intelligent hybrid power conversion control system 丨〇1 disclosed in the present invention is characterized in that: the first point, the system comprises a first power source 1-3, a second power source 〇4, and a set of power storage devices 105' It can be powered by either group of power supplies or by two power sources to three power sources, i. The second point, the system's first power source j 〇3 and the first power source 丄 (10) use a single dual input DC/DC converter. 1〇11, simplifying the system architecture of traditional multi-group DC/DC converters; thirdly, the system includes a bidirectional DC/DC converter 1012, which can achieve the bidirectional power flow required for charging and discharging the power storage device 1〇5. The fourth point, the first output, may be the DC load 106 on the DC bus 1014, and the AC load 1〇7 of the DC/AC converter 1013, or may be connected in parallel with the power network 1〇8; When the system is powered in parallel with the power network 1〇8, the power network storage device 105 can be charged after the power network 1〇8 is converted. [Embodiment] FIG. 5 shows a system architecture of one embodiment of a smart hybrid power conversion control system disclosed in the present invention, and indicates a pulse width modulation signal 507 and feedback required for each power converter. The signal 508 is in the direction of FIG. 5; in this embodiment, the first power source 103 uses a fuel cell 501 whose voltage and current are respectively represented as a heart and a heart, and the second power source 104 uses a solar cell 502 whose voltage and current are respectively represented as Γρν. And /PV, the power storage device 105 uses a battery 503 whose voltage and current respectively represent ΓΒΑΤ&/ΒΑΤ, the voltage on the DC bus 1014 is 匕, and the current flowing through the DC load 106 is /Λ, and the output AC load The voltage and current on 107 are expressed as κ and ' (, the voltage of the power network 108 is \, the grid-connected current of the mains is expressed as, and the dual-input DC/DC converter 1011, the bidirectional DC/DC converter 1012, DC / AC converter 1013 and power management control unit 102 are respectively one of two-input DC/DC converter embodiments 600, bidirectional DC/DC converter embodiment 700, One example of a DC / AC converter 800 with one of the embodiments Embodiment power management control unit 504

D μ 予以實施,其中電源管理控制單元實施例之一 504由數位訊號處 理器505及驅動電路506組合而成,本實施例使用德州儀器公司 所生產的TMS32〇F2812數位信號處理器505,主要功能為迴授系 統輸入/輸出電壓及電流訊號,經電源管理控制方法201產生各輸 入/輸出電源之功率命令以及脈波寬度調變訊號507,以控制系統 中各電源轉換器。 本發明智慧型混合式電源轉換控制系統實施例之一 500中, 雙輸入直流/直流轉換器實施例之一 600之電路架構表示如圖6所 15 201041267 示,該轉換器之實施例由第一電源電路601、第二電源電路6〇2、 主動式箝制電路603以及全橋式電路6G4所組成,當輸入電源之 燃料電池洲或太陽光電池502兩者其中之一發生故障,或是電 源管理控制方法2(M因應不同輸出負載及節省能源之目的,欲調 節輸入電源不輸出功率時,可將第—電關關⑹或第二電源開 關(¾)截止,完成電源切離之目的。雙輸入直流/直流轉換器實施 例之- 6GG電路操作方式敘述如下:源電路_及第二電 源電路602主要透過第—開關⑷及第二開關⑹之切換,將燃料 電池501及太陽光電池5〇2之電壓源形式之電能分別轉換為第一 電感電流⑷)及第二電感電流⑷)’再經由全橋式電路_之開關 切換以轉換為交流電流,透過隔離變壓器(7;)之昇壓,分時序對直 抓匯机排1014之電容(c^)充電及提供能量給輸出直流負载 (也)田第龟感电流及第二電感電流(U透過隔離變壓 器(7;)昇Μ過程t,因隔離變壓器(7;)存在_電感,電感電流無 法即時傳遞至隔離變壓器(7;),因此會對第一開關⑷或第二開關 ⑹寄生電容充電’-般開關之寄生電容值皆报小,導致開關截止 時產生電㈣波’㈣開關造成損壞’所以雙輸人直流/直流轉換 器實施例之-6GG加人主動式箝制電路6G3以解決此問題,當開 關第-開_)或第二開關w截止時,第—電感電流⑹或第二 電感電流⑹可it過箝制開關(知)寄生二極體對箝制電容⑹充 電,可有效箝㈣關電壓並避免突波現象發生,之後再㈣制開 關⑹導通’將儲存於箝制電容(Cc)之能量透過隔離變壓器⑺對 16 201041267 直流匯流排1014供電;本發明所揭示之雙輸入直流/直流轉換器實 施例之一 600成功達成雙輸入電源直流電力轉換之目的,且具有 電器隔離及輸入電流連續之特性,電路結構還能降低系統成本, . 非常適用於高性能之潔淨能源分散式發電系統。 . 本發明智慧型混合式電源轉換控制系統實施例之一 500中, 雙向直流/直流轉換器實施例之一 700之電路架構表示如圖7所 示,該轉換器之實施例採用傳統昇壓/降壓型雙向直流/直流轉換 〇 器,蓄電池503可透過此轉換器將蓄電池503之電力與直流匯流 ' 排1014接執,依照電源管理控制方法201之需求,昇壓/降壓型雙 ' 向直流/直流轉換器可以降壓操作模式對蓄電池503充電,或於獨 立供電操作下,燃料電池501及太陽光電池502電力不足以供給 負載時,以昇壓操作模式將蓄電池503電力轉換至高壓直流匯流 排1014,再轉換為交流電能供應輸出交流負載107使用。傳統昇 壓/降壓型雙向直流/直流轉換器中存在二極體反向恢復電流之問 w 題,以及不具柔性切換之效果,一般最為詬病為其轉換效率不佳 及高電流突波之問題,因此本發明雙向直流/直流轉換器實施例之 一 700 設計為同步導通模式(Synchronous Conducting .Mode, SCM),使 第三電感電流波形為跨越零點之鋸齒波,在蓄電池503於充電 及放電兩種操作狀態下,該轉換器中兩個開關均具有開關導通零 電壓切換之效果,並且避免二極體反向恢復短路電流現象發生, 提升雙向直流/直流轉換器實施例之一 700之轉換效率及穩定度。 本發明智慧型混合式電源轉換控制系統實施例之一 500中, 17 201041267 直流/交流變流器實施例之一 800之電路架構表示如圖8所示,由 於全橋式直流/交流變流器電路動態模型明確,可實現較複雜之智 慧型控制方式來達成良好之輸出交流正弦電源,透過常用之正弦 • 脈波寬度調變技術(Sinusoidal Pulse-Width-Modulation,SPWM)來控 - 制,因此本發明採用此變流器做為直流/交流變流器實施例之一 800。該變流器係使用直流匯流排1014電壓(F&)作為輸入電源, 輸出則可依不同負載及電源情況下,將併網開關(\)截止或是導 ^ 通,使其操作於獨立供電模式或是市電併網模式;獨立供電模式 下,變流器輸出正弦電壓之規範,一般可參照IEEE Std. 1547,須 符合總諧波失真在諧波管制規範限制5%之内,而本實施例將以電 壓控制方式,使輸出正弦電壓規格滿足交流輸出電壓穩定度 UOVrms (±1%)、頻率及穩定度60Hz (±0.5Hz)、電壓波形為正弦波 及輸出電壓總諧波失真<2%,並以此輸出電壓(V。)供應交流負載 107(心);市電併網模式下,倘若能將與電力網絡電壓(vg)同相位D μ is implemented, wherein one of the power management control unit embodiments 504 is composed of a digital signal processor 505 and a driving circuit 506. This embodiment uses a TMS32〇F2812 digital signal processor 505 produced by Texas Instruments. To feedback the system input/output voltage and current signals, the power management control method 201 generates power commands for each input/output power source and a pulse width modulation signal 507 to control each power converter in the system. In one of the embodiments of the intelligent hybrid power conversion control system 500 of the present invention, the circuit architecture of one of the two-input DC/DC converter embodiments 600 is shown in FIG. 6 15 201041267, and the embodiment of the converter is first The power circuit 601, the second power circuit 〇2, the active clamp circuit 603, and the full bridge circuit 6G4 are composed of one of the fuel cell or the solar cell 502 of the input power source, or the power management control Method 2 (M) For the purpose of adjusting the output load and saving energy, if the input power supply is not to output power, the first power off (6) or the second power switch (3⁄4) can be cut off to complete the power cutoff. DC/DC converter embodiment - 6GG circuit operation mode is as follows: source circuit _ and second power supply circuit 602 mainly through the switching of the first switch (4) and the second switch (6), the fuel cell 501 and the solar cell 5 〇 2 The electric energy in the form of a voltage source is converted into a first inductor current (4)) and a second inductor current (4)) respectively, and then switched by a switch of the full bridge circuit to convert into an alternating current. Through the boosting of the isolation transformer (7;), the timing is applied to charge the capacitor (c^) of the direct-collecting machine row 1014 and provide energy to the output DC load (also) Tiandi turtle current and second inductor current (U through The isolation transformer (7;) rises the process t, because the isolation transformer (7;) exists _ inductance, the inductor current can not be immediately transmitted to the isolation transformer (7;), so the first switch (4) or the second switch (6) parasitic capacitance is charged The parasitic capacitance value of the '-like switch is reported to be small, causing the electric (four) wave '(four) switch to cause damage when the switch is turned off'. Therefore, the double-input DC/DC converter embodiment of the -6GG plus active clamping circuit 6G3 solves this problem. The problem is that when the switch first-on_) or the second switch w is turned off, the first inductor current (6) or the second inductor current (6) can be charged by the clamp switch (known) parasitic diode to clamp the clamp capacitor (6), which can effectively clamp (4) Turn off the voltage and avoid the occurrence of a surge phenomenon, and then turn on the (4) switch (6) to conduct the power stored in the clamp capacitor (Cc) through the isolation transformer (7) to the 16 201041267 DC bus 1014; the dual input DC / disclosed in the present invention One of the stream converter embodiments 600 successfully achieves the purpose of dual input power DC power conversion, and has the characteristics of electrical isolation and continuous input current, and the circuit structure can also reduce system cost. Very suitable for high performance clean energy distributed power generation system. In one of the embodiments of the intelligent hybrid power conversion control system of the present invention 500, the circuit architecture of one of the embodiments of the bidirectional DC/DC converter 700 is shown in FIG. 7, and the embodiment of the converter uses a conventional boost/ The step-down bidirectional DC/DC converter, the battery 503 can connect the power of the battery 503 with the DC bus '1014 through the converter, according to the requirements of the power management control method 201, the step-up/step-down type The DC/DC converter can charge the battery 503 in a step-down operation mode, or in the independent power supply operation, when the fuel cell 501 and the solar cell 502 are insufficient to supply the load, the battery 503 is converted into the high voltage DC current in the boost operation mode. Row 1014 is then converted to an AC power supply output AC load 107 for use. The traditional step-up/step-down bidirectional DC/DC converter has the problem of diode reverse recovery current and the effect of non-flexible switching. It is generally the most problematic for its poor conversion efficiency and high current surge. Therefore, one of the embodiments of the bidirectional DC/DC converter 700 of the present invention is designed as a Synchronous Conducting Mode (SCM), so that the third inductor current waveform is a sawtooth wave crossing the zero point, and the battery 503 is charged and discharged. In the operating state, both switches in the converter have the effect of switching on and off zero voltage switching, and avoiding the reverse recovery short circuit current phenomenon of the diode, improving the conversion efficiency of one of the two-way DC/DC converter embodiments 700 And stability. In one of the embodiments of the intelligent hybrid power conversion control system of the present invention, the circuit architecture of one of the embodiments of the DC/AC converter embodiment of the present invention is shown in Fig. 8, due to the full bridge DC/AC converter. The circuit dynamic model is clear, and a more complex intelligent control method can be realized to achieve a good output AC sinusoidal power supply, which is controlled by a commonly used Sinusoidal Pulse-Width-Modulation (SPWM) technique. The present invention employs this converter as one of the DC/AC converter embodiments 800. The converter uses DC bus 1014 voltage (F&) as the input power, and the output can be cut off or turned on by the grid switch (\) according to different loads and power conditions, so that it operates independently. Mode or mains grid-connected mode; in independent power supply mode, the converter output sinusoidal voltage specification, generally refer to IEEE Std. 1547, must comply with the total harmonic distortion within 5% of the harmonic control specification, and this implementation For example, the output sinusoidal voltage specification satisfies the AC output voltage stability UOVrms (±1%), the frequency and stability of 60Hz (±0.5Hz), the voltage waveform is sine wave and the output voltage total harmonic distortion is controlled by voltage control method. %, and supply AC load 107 (heart) with this output voltage (V.); in the grid-connected mode, if it can be in phase with the power network voltage (vg)

D 之電流饋入市電,達成單位功因併網之效果,即能有效減少虛功 率之產生,使能源使用效率得以提升,本實施例將以電流控制方 式,使併網電流(^)相位與市電電壓(')相位之功率因數0.98以 上,於市電併網模式下亦具良好之電力品質。 電源管理控制廣泛應用於電力電子應用當中,舉凡輸出電壓 穩定與電力品質之改善、太陽光電池與風力發電機之最大功率擷 取控制、電池快速充電器之應用以及多輸入能源電能之調配上, 均需要電源管理控制系統,特別是多輸入電源之電力調節應用 18 201041267 上,由於同時欲達成數個目標,例如直流匯流排電壓穩定、根據 不同負載條件控制輸入電源之功率、變流器單位功因併網、等, 因此,功率調配之電源端需要以電流控制方式,穩定電壓之功能 • 則以電壓控制方式,況且還需要暸解輸入電源之電壓範圍變動之 - 狀態,傳統使用類比電路組合而成控制架構已無法滿足此多功能 之需求,且其亦較不具有修改上的彈性,因此,本發明所揭示之 電源管理控制方法201採用數位訊號處理器505做為電源管理控 ® 制單元實施例之一 504主要核心,此作法儼然成為目前研究發展 之趨勢及應用之主流。當系統處於市電併網模式206時,將併網 — 開關(\)導通,當系統供電量不足負載使用時將由市電輔助供電, 若系統發電量大於負載所需,則把多餘電力單位功因饋入市電, 間接降低電費支出;當市電發生故障無法供電時,為防止孤島效 應所造成維修人員感電危險及系統損壞,此時併網開關(\)將斷路 與市電切離,此時系統操作於獨立供電模式205,對負載供電。本The current of D is fed into the mains to achieve the effect of grid connection of the unit power, which can effectively reduce the generation of virtual power and improve the energy use efficiency. In this embodiment, the current control mode is used to make the grid-connected current (^) phase and The power factor of the mains voltage (') phase is above 0.98, and it also has good power quality in the grid-connected mode of the mains. Power management control is widely used in power electronics applications, such as output voltage stability and power quality improvement, maximum power capture control of solar cells and wind turbines, application of battery quick chargers, and deployment of multiple input energy sources. Need power management control system, especially for multi-input power supply regulation 18 201041267, due to several goals at the same time, such as DC bus voltage stability, control of input power according to different load conditions, converter unit power Grid-connected, etc. Therefore, the power supply side of the power supply needs to be controlled by current, and the function of stabilizing the voltage is controlled by voltage. In addition, it is necessary to understand the state of the voltage range of the input power supply, and the traditional analog circuit is combined. The control architecture has been unable to meet the requirements of the multi-function, and it is less flexible. Therefore, the power management control method 201 disclosed in the present invention uses the digital signal processor 505 as a power management control unit. One of the 504 main cores, this approach is stunned It has become the mainstream of current research and development trends and applications. When the system is in the mains grid-connected mode 206, the grid-connected switch (\) will be turned on. When the system power supply is insufficient, the power will be supplied by the mains. If the system generates more power than the load, the excess power unit will be fed. Incoming to the city, indirectly reduce the electricity bill; when the mains fails, the power supply is dangerous, and the system is damaged. Independent power supply mode 205, powering the load. this

D 電源管理控制方法201設計準則,則是要避免蓄電池503額外的 充放電次數,造成多餘能源轉換過程中之能源消耗,進而提升電 源轉換控制系統整體效率,因此蓄電池503供電僅用於燃料電池 501啟動暫態期間及獨立操作模式下,當直流負載106或交流負載 107容量大於燃料電池501及太陽光電池502發電容量時,燃料電 池501及太陽光電池502與蓄電池503同時供電,然而當蓄電池 503電壓過低時,則可視負載情形及市電併網與否,自動判定其充 電能量來自於燃料電池501、太陽光電池502或是電力網絡108 ; 19 201041267 另一方面,由於燃料電池501工作時需供給其發電燃料,因此其 輸入功率亦是主要控制目標,燃料電池501輸入功率命令可根據 輸出負載情形自動調整,即能達成高效率智慧型電源管理控制之 目標。 . 本發明所揭示之智慧型混合式電源轉換控制系統實施例之一 500中,燃料電池501輸入電壓為23〜28V,額定輸入功率500W, 本實施例以可程式化直流電源供應器以模擬燃料電池501輸出功 〇 率曲線,並依照燃料電池501特性,仿效其操作於歐姆線性區, ‘ 此時輸出電壓(Frc)及電流(/Fe)關係可表示為D power management control method 201 design criteria is to avoid the additional charge and discharge times of the battery 503, resulting in energy consumption during the excess energy conversion process, thereby improving the overall efficiency of the power conversion control system, so the battery 503 power supply is only used for the fuel cell 501 In the startup transient period and the independent operation mode, when the capacity of the DC load 106 or the AC load 107 is greater than the power generation capacity of the fuel cell 501 and the solar cell 502, the fuel cell 501 and the solar cell 502 are simultaneously powered by the battery 503, but when the battery 503 is over voltage When low, depending on the load situation and the grid connection of the mains, it is automatically determined that the charging energy comes from the fuel cell 501, the solar cell 502 or the power network 108; 19 201041267 On the other hand, since the fuel cell 501 needs to be supplied with electricity during operation Fuel, so its input power is also the main control target, and the fuel cell 501 input power command can be automatically adjusted according to the output load situation, that is, the goal of high-efficiency intelligent power management control can be achieved. In one of the embodiments of the intelligent hybrid power conversion control system disclosed in the present invention, the fuel cell 501 has an input voltage of 23 to 28 V and a rated input power of 500 W. This embodiment uses a programmable DC power supply to simulate fuel. The battery 501 outputs a power curve, and according to the characteristics of the fuel cell 501, it operates in the ohmic linear region, where the output voltage (Frc) and current (/Fe) relationship can be expressed as

Ffc = 28.5-0.22/fc (1) 太陽光電池502之輸入電壓502為22〜26V,其額定功率為200W, 而直流匯流排1014電壓則設計為200V,以滿足高於全橋式 直流/交流變流器輸出iioV^v峰值電壓;本發明所揭示之智慧型混 合式電源轉換控制系統實施例之一 500中,雙輸入直流/直流轉換 D 器實施例之一 600之輸入輸出電壓關係可表示為Ffc = 28.5-0.22/fc (1) The input voltage 502 of the solar cell 502 is 22~26V, its rated power is 200W, and the DC bus 1014 voltage is designed to be 200V to meet the higher than full bridge DC/AC. The streamer outputs iioV^v peak voltage; in one of the embodiments of the intelligent hybrid power conversion control system disclosed in the present invention 500, the input-output voltage relationship of one of the two-input DC/DC converter D embodiments 600 can be expressed as

Vbus=nkVvc{\~dx) = nkV?Y I {\-d2) (2a) ί/j + β?2 — 1 (2b) 其中岣及名分別代表第一開關(β)及第二開關(*S2)責任週期,《為 隔離變壓器(2;)匝數比,A:為變壓器耦合係數。為確保電路於安全 之操作條件下並符合式(2b),考慮最差的情況,即雙輸入電源均操 作於最低電壓,Frc = 23V以及Fpv = 22V,最大之開關貴任週期預設 為0.7,並假設耦合係數為0.96,代入式(2a)可得變壓器匝數比 20 201041267 «>2.84,適當選擇變壓器匝數比n = 3.5以避免於重載情形下,責任 週期過大導致電流漣波過大及較差電源轉換效率。為進一步確保 於雙輸入電源一併供電操作下,雙輸入電源均操作於最高電壓仍 符合式(2b),考慮Ffc = 28V以及FPV = 26V,並由式(2a)求得< =0.53以 及4=0.56,得知此操作條件下仍符合式(2b),雙輸入直流/直流轉 換器實施例之一 600可有效操作於雙輸入電源一併供電;此電源 轉換器之主動式箝制電路603,將所有開關截止時之電壓箝制於箝 制電容電壓(Frc),箝制電容電壓經推導可表示Vbus=nkVvc{\~dx) = nkV?YI {\-d2) (2a) ί/j + β?2 — 1 (2b) where 岣 and name represent the first switch (β) and the second switch (* S2) The duty cycle, "for the isolation transformer (2;) turns ratio, A: for the transformer coupling coefficient. To ensure that the circuit operates under safe operating conditions and conforms to equation (2b), consider the worst case scenario where the dual input supply operates at the lowest voltage, Frc = 23V and Fpv = 22V, and the maximum switch duty cycle is preset to 0.7. And assume that the coupling coefficient is 0.96, and the substitution factor (2a) can be obtained as the transformer turns ratio 20 201041267 «>2.84, properly select the transformer turns ratio n = 3.5 to avoid overloading, the duty cycle is too large, causing current ripple Excessive and poor power conversion efficiency. In order to further ensure that the dual input power supply is supplied with power, the dual input power supply operates at the highest voltage and still conforms to equation (2b), considering Ffc = 28V and FPV = 26V, and the equation (2a) finds < = 0.53 and 4=0.56, knowing that the operating condition still satisfies the formula (2b), one of the two-input DC/DC converter embodiments 600 can be effectively operated by the dual input power supply; the active clamp circuit 603 of the power converter , the voltage of all switches is clamped to the clamp capacitor voltage (Frc), and the clamp capacitor voltage is deduced to indicate

Vcc = VbJnk (3) 可得知箝制電容電壓Fcc =59.5V,亦即開關&、&、&、\、*S5、& 及&截止電壓箝制於59.5V,因此挑選耐壓100V之MOSFET IRFPS3810作為低壓侧的開關;高壓側二極體A、Z)2、乌及1)4截 止電壓等於直流匯流排1014電壓200V,因此選用耐壓300V之快 速二極體SF10〇5G;第一電源開關(*SP1)及第二電源開關(\2)採用 48V繼電器予以實現,可達成電源截止及電氣隔離之效果。被動 元件規格則根據電壓及電流漣波允許範圍適當選取如下:第一電 容ς=2200//Ρ、第二電容(:2=1100奸、箝制電容Cc = 110//F、輸出直 流電容=47/iFx2、第一電感A =330//H以及第二電感L2 =160//H。 圖9表示直流匯流排1014輸出功率500W,燃料電池501輸 出電壓為23.4V,雙輸入直流/直流轉換器實施例之一 600操作於 燃料電池501單獨供電模式下之實驗波形:(a)表示各開關驅動訊 號電壓波形;(b)表示第一開關驅動訊號7;、第一電感電流心、第 21 201041267 一開關電壓以及第一 開關電流,第一開關4導通前Vcc = VbJnk (3) It can be known that the clamp capacitor voltage Fcc = 59.5V, that is, the switches &ampl, &, &, \, *S5, && cutoff voltage clamped at 59.5V, so select the withstand voltage 100V MOSFET IRFPS3810 as a low-voltage side switch; high-voltage side diode A, Z) 2, Wu and 1) 4 cut-off voltage is equal to DC bus 1014 voltage 200V, so the choice of high voltage 300V fast diode SF10 〇 5G; The first power switch (*SP1) and the second power switch (\2) are implemented using a 48V relay to achieve power cutoff and electrical isolation. Passive component specifications are appropriately selected according to the allowable range of voltage and current chopping: first capacitor ς = 2200 / / Ρ, second capacitor (: 2 = 1100, clamp capacitor Cc = 110 / / F, output DC capacitor = 47 /iFx2, the first inductor A = 330 / / H and the second inductor L2 = 160 / / H. Figure 9 shows DC bus 1014 output power 500W, fuel cell 501 output voltage is 23.4V, dual input DC / DC converter One of the embodiments 600 operates on the experimental waveform of the fuel cell 501 in a separate power supply mode: (a) represents each switch drive signal voltage waveform; (b) represents the first switch drive signal 7;, the first inductor current core, 21 201041267 a switching voltage and a first switching current, before the first switch 4 is turned on

開關電㈣至零伏特,因此開關導通具零電壓切換之特 性’而《U截止時電壓箝制於箝制電容電壓L,有效改善變壓 器漏感所造成開關電壓突波現象;⑷表示第—開關驅動訊號I 箝制電容電箝制開關電壓%^及_開關電流‘,籍 制電容電壓L為定值且與所設計之箝制電壓59.5v相符,所有低 壓側開關截止時均箝制於此電壓值,箝制開關電流。於開關導 通前為負’箝制開關&導通時具零電壓切換之特性;⑷表示第— 開關驅動訊號7;、隔離變壓器一次側電流i第三開關電壓^以 及第三開關電流‘,隔離變壓器一次側電流‘為正值時通過開 關&及V電流為負值時通過開㈣及&經變壓器升壓後,轉換 為高壓直流匯流排1()14電源;(e)表示第—開關驅動訊^、直流 匯流排電壓匕、第―二極體電壓〜以及第-二極體電流^直流 匯流排電舒⑽穩定輸出細v且二極體無反向恢復電流問題。 圖1〇表示直流匯流排輸出功率7猜時,燃料電池5〇1輸出 电壓23.3V及太陽光電池5〇2輸出電壓22 ιν,雙輸入直流/直流 轉換器實施例之一 _操作於燃料電池5〇1及太陽光電池5〇2 一 併供電核式下之實驗波形:⑻表示各開關驅動訊號電壓波形;⑻ 表t第一開關驅動訊號K、第一電感電流U一開關«W乂 及第開關電流,_,由圖中顯示出第—電感電流L連續,第一開 關在此操作模式下導通具零電㈣換之特性,且第—開關㈣止 時電壓甜制於箝制電容電壓L,有效改善變壓器漏感所造成開關 22 201041267 電壓突波現象;(C)表示第一開關驅動訊號石、第二電感電流L、 第一開關電壓以及弟二開關電流’由圖中顯示出第二電 感電流L連續,第二開關在此操作模式下導通亦具零電壓切換之 ' 特性,截止時電壓箝制於箝制電容電壓厂cc,有效改善變壓器漏感 •所造成開關電壓突波現象;(d)表示第一開關驅動訊號7;、箝制電 容電壓Fcc、箝制開關電壓%&冗以及箝制開關電流心沉,箝制電容 電壓Fcc為定值,且與所設計之箝制電壓59 5V相符,所有低壓側 〇開關截止時均箝制於此電壓值,箝制開關電流於開關導通前 為負,箝制開關&導通時具零電壓切換之特性;(e)表示第一開關 驅動訊號7i、隔離變壓器—次側電流‘、第三開關電壓^以及 第三開關電流’由S1中顯示出第三開關電流^透過變壓器對 直流匯流排1014供電,並且電感電流可在開關^^^及&同 時導通時,以分流形式減低導通損失;⑴表示第—開關驅動訊號 )S直肌匯/爪排电壓、第二二極體電壓~以及第三二極體電流 L,圖中直舰流排電壓L穩定輪出2請且二極體無反向恢復 電流問題。 本發明所揭7F之智慧型混合式電源轉換控㈣統實施例之一 _中,蓄電池5〇3輸入電壓為96V±1〇%,雙向直流/直流轉換器 實施例之- 700之額定放電功率及充電功率設計為5〇〇w,其輸入 與輸出電壓關係可表示為Switching power (four) to zero volts, so the switch conducts the characteristic of zero voltage switching' and the voltage is clamped to the clamp capacitor voltage L when U is cut off, which effectively improves the switching voltage surge caused by the leakage inductance of the transformer; (4) indicates the first switch drive signal I clamp capacitor capacitance clamp voltage %^ and _switch current ', the capacitor voltage L is fixed value and is consistent with the designed clamp voltage 59.5v, all low-voltage side switches are clamped to this voltage value when cut off, clamp switch current . Before the switch is turned on, it is a negative 'clamp switch'; when it is turned on, it has the characteristic of zero voltage switching; (4) means the first switch drive signal 7; the isolation transformer primary side current i the third switch voltage ^ and the third switch current', the isolation transformer When the primary current 'is positive', when the switch & and the V current is negative, the voltage is boosted by the open (four) and & and converted to the high voltage DC bus 1 () 14 power supply; (e) indicates the first switch Drive signal ^, DC bus voltage 匕, the first - diode voltage ~ and the - diode current ^ DC bus bar electric Shu (10) stable output fine v and the diode has no reverse recovery current problem. Figure 1A shows the DC bus output power 7 guess, the fuel cell 5〇1 output voltage 23.3V and the solar cell 5〇2 output voltage 22 ιν, one of the two-input DC/DC converter embodiments_operating on the fuel cell 5 〇1 and solar cell 5〇2 The experimental waveforms under the power supply mode: (8) indicates the waveform of each switch drive signal; (8) Table t the first switch drive signal K, the first inductor current U, the switch «W乂 and the switch The current, _, is shown in the figure as the first-inductor current L is continuous, the first switch in this mode of operation is turned on with zero power (four) for the characteristics, and the first switch (four) stop voltage is sweetened to the clamp capacitor voltage L, effective Improve the transformer leakage inductance caused by the switch 22 201041267 voltage surge phenomenon; (C) indicates the first switch drive signal stone, the second inductor current L, the first switch voltage and the second switch current 'shows the second inductor current L continuous, the second switch is also turned on in this mode of operation with zero voltage switching characteristics. When the voltage is cut off, the voltage is clamped to the clamp capacitor voltage factory cc, effectively improving the leakage inductance of the transformer. Phenomenon; (d) indicates the first switch drive signal 7; clamp capacitor voltage Fcc, clamp switch voltage % & redundancy and clamp switch current sink, clamp capacitor voltage Fcc is fixed, and the clamp voltage is designed to be 59 5V Correspondingly, all low-voltage side switches are clamped to this voltage value when they are turned off, the clamp switch current is negative before the switch is turned on, and the clamp switch & switch has zero voltage switching characteristics; (e) indicates the first switch drive signal 7i, Isolation transformer - secondary current ', third switching voltage ^ and third switching current 'shows the third switching current in S1 ^ through the transformer to the DC bus 1014, and the inductor current can be in the switch ^^^ & At the same time, the conduction loss is reduced by shunting; (1) indicates the first switch drive signal) S straight muscle sink / claw row voltage, the second diode voltage ~ and the third diode current L, the straight ship flow chart in the figure The voltage L is stable and the 2 is required, and the diode has no reverse recovery current problem. In the smart hybrid power conversion control (4) embodiment of the invention, the input voltage of the battery 5〇3 is 96V±1〇%, and the rated discharge power of the bidirectional DC/DC converter embodiment is -700. And the charging power is designed to be 5〇〇w, and the relationship between input and output voltage can be expressed as

VbuS = VB^l{\-dd) ⑷ 其中《分別代表下臂開關⑹責任週期,由於上臂開關⑹及下臂 23 201041267 開關⑹截止時均須承受直流匯流排1〇14電壓d篇),因此 上#開關(兄)及下臂開關(&)選取耐壓之m〇sfet 264。被動元件規格則根據電壓及電流漣波允許範圍適當選 取,以滿足第二電感電流於最重載時仍操作在不連續區域,方 可執行同步導通模式,因此選擇第三電容ς=2寧以及第三電感 = 96//Η。 圖11表示直流匯流排1014輸出功率5〇〇w時,蓄電池5〇3 電壓104〜v,雙向直流/直流轉換器實施例之一·操作於蓄電池 503放電板式下之實驗波形:⑷表示下臂開關驅動訊號l、上臂 開關驅動訊號7;以及第三電感電流L,圖中顯示出第三電感電流 h方、下#開關驅動訊號[導通時為正值,_保雙向直流/直流轉換 器實施例之-操作於同步導通模式;⑼表示下臂開關驅動訊 私、上臂開_動訊號c、下臂_電壓以及下臂開關電流 lDSM下$開關在此操作模式下導通具零電壓切換之特性,且下 ’開關&截止時電壓箝制於2〇QV,與直流匯流排電壓L相同;⑷ 表不下#開關驅動訊號、上臂開關驅動訊號[、上臂開關電壓 咖、及上’開目電"Άα ’上臂開關在此操作模式下導通亦具零 電壓切換之特性’截止時電壓亦箝制於綱V,與直流匯流排電壓 L相同,且無傳統上使關關作同步整流因而產生二極體反向恢 傻電流過大之現象發生;⑷表示下臂開關驅動訊號d流匯流 排電壓L、直流匯流排電壓交流成分U及第三電感電流 圖中顯示直流匯流排電壓^穩定輸出2講,且其電壓漣波峰值 24 201041267 1.2V約佔直流匯流排電壓(= 200V)的0.6%,直流匯流排電壓為 穩定狀態。 圖12表示直流匯流排1〇14輸入功率52〇w時,蓄電池5〇3 電壓96.5V,雙向直流/直流轉換器實施例之一 7〇〇操作於蓄電池 503充電模式下之實驗波形:(a)表示下臂開關驅動訊號乃、上臂 開關驅動訊號7;以及第三電感電流L,圖中顯示出第三電感電流 y於上臂開關驅動訊號7;導通時為負值,確保雙向直流/直流轉換 器實施例之一 700操作於同步導通模式;(b)表示下臂開關驅動訊 號工、上臂開關驅動訊號7;、下臂開關電壓以及下臂開關電流 h’srf,下臂開關導通具零電壓切換之特性,且下臂開關&截止時 電壓箝制於2GGV’與直流匯流排電壓l相同;⑷表示下臂開關 驅動訊號、上臂開關驅動訊號[、上f開關電壓以及上臂開 關電流La,上臂開關導通亦具零電壓切換之特性,截止時電壓亦 箝制於2 0 0V ’與直流匯流排電壓l相同,且無傳統上使用開關作 同步整流因而產生二極體反向恢復電流過大之現象發生;⑷表示 下臂開關驅動訊號Trf、直流匯流排電壓n流匯賴電壓交流 成刀Piffle以及第一電感電流L,圖中顯示直流匯流排電壓匕^穩定 輸出200V,且其電壓漣波峰值13v、約佔直流匯流排電壓 d = 2_)的0.65°/。’直流匯流排電壓為穩定狀態。 本發明所揭示之智慧型混合式電_換控㈣統實施例之一 5〇〇中’直/父流變流器實施例之—8⑼,& 2_直流匯流排電 壓^所供應,獨立供電操作模式下,交流輸出電壓⑷設計為 25 201041267 110Vrms/60Hz ’當輪出電壓(vj經控制後,與市電網絡電壓(^)同 相位以及同大小時,再將併網開關(&)導通與市電網絡併網供電, 本實施例採用單極性(Unipolar)脈波寬度調變的開關切換方式來控 制輸出電壓’獨立供電下全橋式直流/交流變流器動態模型可 簡化表示成 h〇=-^IL0)vo+{llL〇)Vbusdi t = (UC〇H/(RacCJ ( 其中4代表變流器開關切換之責任週期,&代表交流負載1〇7。 由於第七開關(*s7)、第八開關⑹ '第九開關(&)及第十開關(〜) 截止時最大需承受直流匯流排㈣(D,因此開關均選取耐壓 250V之MOSFETIRFP240,而併網開關⑹則採用u〇Va。繼電器 予以貫現,併網供電下全橋式直流/交流變流器動態模型可再簡化 表示如下: ❹ 由此式可得知,藉由控制變流器開關切換之責任週期⑷,可決定 電流流向以達成蓄電池503充電所需電力,或將輸入多餘電力饋 入市電網絡1〇8當中。被動元件規格聽據濾除高頻成份之準則 適當選取如τ:輸出直流電容k寧皮電感 I。= 4.2mH以及輸出濾波電容c。=3〇^f。 圖13表tf本U智慧型混合式電源轉換控制系統實施例之一 _中,直流/交流践器實_之—_操作於獨立供電模式下, 直流匯抓排電壓^、父流輸出電壓&以及輸出濾波電感電流^之 26 201041267 實驗波形:(a)表示交流輸出功率240W時之實驗波形,其中直流 匯流排電壓穩定於200V持續供應變流器,而交流輸出電壓V。為 110.4Vms/60.1Hz,其電壓總諧波失真量測為1.5%; (b)表示交流輸 出功率670W時之實驗波形,此時交流輸出電壓V。為 110.2Vrms/60.1Hz,其電壓總諧波失真量測為1.7%; (c)表示交流輸 出功率1020W時之實驗波形,此時交流輸出電壓%為 110.4Vrms/60.0Hz,其電壓總諧波失真量測為1.9%。 圖14表示本發明智慧型混合式電源轉換控制系統實施例之一 中500,直流/交流變流器實施例之一 800操作於市電併網模式下, 饋入市電網絡220W時,市電電壓及輸出濾波電感電流L之實驗 波形,圖中顯示出濾波電感電流L與市電電壓vg接近同相位,且 併網電流有效值及併網功率因素量測為2.lArms及0.981,成功達 成單位公因併網。 圖15表示本發明智慧型混合式電源轉換控制系統實施例之一 500中,直流/交流變流器實施例之一 800操作於獨立供電模式與 市電併網模式切換時,交流輸出電壓V。以及市電電壓vg之暫態響應 實驗波形:(a)表示市電併網操作模式下,將併網開關\截止並轉 換為獨立供電操作模式,其併網開關切換之操作點設置於市電電 壓\之零交越點,可有效避免切換所造成之短路電流及突波電 壓,並可縮短暫態時間,其暫態切換時間約為5ms ; (b)表示由獨 立供電操作模式下,交流輸出電壓V。已與市電電壓vg相同相位時, 將併網開關&導通並轉換為市電併網操作模式,其暫態切換時間 27 201041267 約為2ms 雖然本發明已前述較佳實_㈣,然其並非㈣限定样 明’任何《此技藝者,再不麟本發明之精神和範圍内,冬可 2種之變動與修改,因此本發明之保護範圍當視後附之申請專 利祀圍所界定者為準。 【圖式簡單說明】VbuS = VB^l{\-dd) (4) where "representing the lower arm switch (6) duty cycle respectively, since the upper arm switch (6) and the lower arm 23 201041267 switch (6) are both subjected to the DC busbar 1〇14 voltage d), therefore The #switch (brother) and lower arm switch (&) select the pressure-resistant m〇sfet 264. The passive component specification is appropriately selected according to the allowable range of voltage and current chopping, so that the second inductor current can still operate in the discontinuous region at the most heavy load, and the synchronous conduction mode can be performed, so the third capacitor ς=2 宁 and The third inductance = 96 / / Η. Figure 11 shows the output voltage of the battery 5〇3 when the output power of the DC bus 1014 is 5〇〇w, one of the embodiments of the bidirectional DC/DC converter, the operation waveform of the battery 503, and the (4) indicates the lower arm. Switch drive signal l, upper arm switch drive signal 7; and third inductor current L, the figure shows the third inductor current h side, the bottom # switch drive signal [positive value when conducting, _ guarantee bidirectional DC / DC converter implementation For example, the operation is in the synchronous conduction mode; (9) indicates the characteristics of the lower arm switch drive signal, the upper arm open signal _ motion signal c, the lower arm _ voltage, and the lower arm switch current lDSM under the switch mode. And under the 'switch & cut-off voltage clamped at 2〇QV, the same as the DC bus voltage L; (4) Table # switch drive signal, upper arm switch drive signal [, upper arm switch voltage coffee, and on the 'open eye electricity' ;Άα 'The upper arm switch is also switched to zero voltage switching in this mode of operation. 'The voltage is also clamped to the V at the cut-off voltage, which is the same as the DC bus voltage L, and has not been conventionally turned off for synchronous rectification. Therefore, the reverse polarity of the diode is excessively generated; (4) the lower arm switch drive signal d-stream bus voltage L, the DC bus voltage AC component U, and the third inductor current diagram show the DC bus voltage ^ stable The output is 2, and its voltage chopping peak 24 201041267 1.2V accounts for 0.6% of the DC bus voltage (= 200V), and the DC bus voltage is stable. Figure 12 shows the experimental waveform of the battery 5〇3 voltage 96.5V when the input power of the DC bus 1〇14 is 52〇w, and the operation of one of the two-way DC/DC converters in the battery 503 charging mode: (a ) indicates the lower arm switch drive signal, the upper arm switch drive signal 7; and the third inductor current L. The figure shows the third inductor current y on the upper arm switch drive signal 7; when turned on, it is a negative value to ensure bidirectional DC/DC conversion. One of the device embodiments 700 operates in a synchronous conduction mode; (b) represents a lower arm switch drive signal, an upper arm switch drive signal 7; a lower arm switch voltage and a lower arm switch current h'srf, and a lower arm switch conducts a zero voltage Switching characteristics, and the lower arm switch & cut-off voltage clamped at 2GGV' is the same as DC bus voltage l; (4) indicates lower arm switch drive signal, upper arm switch drive signal [, upper f switch voltage and upper arm switch current La, upper arm The switch conduction also has the characteristics of zero voltage switching. The voltage is also clamped at 2000V when turned off. 'The same as the DC bus voltage l, and there is no traditionally used switch for synchronous rectification. The phenomenon that the reverse recovery current of the diode is excessively generated occurs; (4) indicates that the lower arm switch drive signal Trf, the DC bus voltage n flow converges the voltage AC knives Piffle, and the first inductor current L, and the DC bus voltage is shown in the figure.匕^ The output is stable at 200V, and its voltage chopping peak is 13v, which is about 0.65°/ of the DC bus voltage d = 2_). 'The DC bus voltage is steady. The intelligent hybrid electric_switch control (four) system disclosed in the present invention is provided in the 'straight/parent flow converter embodiment-8-8', & 2_DC bus voltage ^ is supplied, independent In the power supply operation mode, the AC output voltage (4) is designed as 25 201041267 110Vrms/60Hz 'When the voltage is turned on (wj is controlled, when it is in phase with the mains network voltage (^) and the same size, then the grid switch (&) The power supply is connected to the mains network and connected to the grid. In this embodiment, the unipolar (Unipolar) pulse width modulation switching method is used to control the output voltage. The dynamic model of the full bridge DC/AC converter can be simplified and expressed in h. 〇=-^IL0)vo+{llL〇)Vbusdi t = (UC〇H/(RacCJ (where 4 represents the duty cycle of the converter switching, & represents the AC load 1〇7. Since the seventh switch (*s7 ), the eighth switch (6) 'The ninth switch (&) and the tenth switch (~) are required to withstand the DC busbar (4) at the cut-off. Therefore, the switch selects the MOSFET IRFP240 with a withstand voltage of 250V, and the grid-connected switch (6) adopts u〇Va. The relay is fully realized, and the whole bridge is powered by the grid. The flow/AC converter dynamic model can be further simplified as follows: ❹ From this equation, it can be known that by controlling the duty cycle (4) of the converter switching, the current flow can be determined to achieve the power required to charge the battery 503, or Input excess power is fed into the mains network 1〇8. Passive component specifications are appropriately selected according to the criteria for filtering high-frequency components such as τ: output DC capacitor k-nine inductor I. = 4.2mH and output filter capacitor c.=3〇 ^f. Figure 13 shows a tf U-power hybrid power conversion control system embodiment _, DC / AC implements _ - _ operating in independent power supply mode, DC sinking voltage ^, parent flow Output voltage & and output filter inductor current ^ 26 201041267 Experimental waveform: (a) shows the experimental waveform of AC output power 240W, where the DC bus voltage is stable at 200V continuous supply converter, and the AC output voltage V. 110.4Vms/60.1Hz, the total harmonic distortion of the voltage is measured as 1.5%; (b) The experimental waveform when the AC output power is 670W, at this time, the AC output voltage V is 110.2Vrms/60.1Hz, and its voltage total harmonic Lost The measurement is 1.7%; (c) shows the experimental waveform when the AC output power is 1020 W, at which time the AC output voltage % is 110.4 Vrms/60.0 Hz, and the voltage total harmonic distortion measurement is 1.9%. Figure 14 shows the wisdom of the present invention. In one of the embodiments of the hybrid power conversion control system, one of the embodiments of the DC/AC converter 800 is operated in the grid-connected mode of the mains, and the mains voltage and the output filter inductor current L are fed into the commercial power network 220W. Waveform, the figure shows that the filter inductor current L is close to the same phase as the mains voltage vg, and the grid-connected current RMS and grid-connected power factor measurements are 2.lArms and 0.981, and the unit common cause is successfully connected to the grid. Figure 15 is a diagram showing an embodiment of the intelligent hybrid power conversion control system of the present invention. In one of the embodiments of the DC/AC converter, the AC output voltage V is operated when the independent power supply mode is switched to the commercial power grid-connected mode. And the transient response experiment waveform of the mains voltage vg: (a) indicates that the grid-connected switch is turned off and converted into an independent power supply operation mode in the grid-connected operation mode, and the operation point of the grid-connected switch is set to the mains voltage. The zero crossing point can effectively avoid the short circuit current and the surge voltage caused by the switching, and can shorten the transient time. The transient switching time is about 5ms; (b) indicates the AC output voltage V in the independent power supply operation mode. . When the phase is the same as the mains voltage vg, the grid-connected switch & is turned on and converted to the mains grid-connected operation mode, and the transient switching time 27 201041267 is about 2 ms. Although the present invention has been described above as a better _ (four), it is not (d) The scope of protection of the present invention is subject to the definition of the patent application, which is defined by the appended patent application, and the scope of the invention is not limited to the scope of the invention. [Simple description of the map]

第1圖表示本發明「智慧型混合式電源轉換控制系統」之 系統架構 第2圖絲本發明「智慧型混合式電源轉換控制系統」中, 電源管理控制方法之控制流程 第3圖表示本發明「智慧型混合式電源轉換控制系統」中, — 電源管理控制方法之獨立供電模式控制流程 圖表不本發明「智慧型混合式電源轉換控制系統」中, 電源管理控制方法之市電併網模式控制流程 5 表示本發明「智慧型混合式電源轉換控制系統」實 施例之一之系統架構 第6圖表不本發明「智慧型混合式電源轉換控制系統」實 施例之一中,雙輸入直流/直流轉換器實施例之一之 電路架構 7 1^1 表不本發明「智慧型混合式電源轉換控制系統」實 施例之一中’雙向直流/直流轉換器實施例之一之電 28 路架構 第8圖 # _ 士 X7F發明「智慧型混合式電源轉換控制系統」實 &例之中,直流/交流變流器實施例之一之電路架 構 、 第9圖 声-士 & &丁 ^明「智慧型混合式電源轉換控制系統」實 包例之一中’雙輸入直流/直流轉換器實施例之一操 0 作於燃料電池單獨供電模式下之實驗波形 第1.0圖 矣+ 士 & „ - 八务明智慧型混合式電源轉換控制系統」實 J之中,雙輸入直流/直流轉換器實施例之一操 作於燃料電池及太陽光電池—併供電模式下之實驗 波形 第11圖表示本發明「智慧型混合式電源轉換控制系統」實 施例之一中,雙向直流/直流轉換器實施例之一操作 於蓄電池放電模式下之實驗波形 1 第12圖表示本發明「智慧型混合式電源轉換控制系統」實 施例之一中,雙向直流/直流轉換器實施例之—操作 於蓄電池充電模式下之實驗波形 第13圖表示本發明「智慧型混合式電源轉換控制系統」银 施例之一中,直流/交流變流器實施例之一操作於獨 立供電模式下之實驗波形 第14圖表示本發明「智慧型混合式電源轉換控制系統」實 施例之一中,直流/交流變流器實施例之—操作於市 29 201041267 電併網模式下之實驗波形 第15圖=示本發明「智慧型混合式電源轉換控制H實 之中’直流/交流變流ϋ實施例之―操作於獨 立供電杈式與市電併網模式切換時,暫態響應之實 驗波形 【主要元件符號說明】 101:智慧型混合式電源轉換控制系統 102 :電源管理控制單元 103 :第一電源 104 :第二電源 105 :電源儲存裝置 106 :直流負载 107 :交流負載 108 :電力網絡 109 :電源網絡 1010 :訊號網絡 1011 ·雙輸入直流/直流轉換琴 1012 :雙向直流/直流轉換器 1013 :直流/交流變流器 1014 :直流匯流排 201 :電源管理控制方法 30 201041267 205 :獨立供電模式 206 :市電併網模式 :併網指標 • :停機指標 :電荷狀態初始值 •SOC :電荷狀態 •電荷狀態最小值 〇 P3/ :電源儲存裝置虛擬充電功率命令 尽min :電源儲存裝置最小功率 ' β:系統整體輸出功率 4:直流負載消耗功率 圪:交流負載消耗功率 Ρ/ :第二電源功率命令 尸2ΜΡΡΤ :第二電源最大擷取功率 〇 if :第一電源功率命令 矸max ••第一電源最大功率 :市電併網功率命令 311 is a system architecture of a "smart hybrid power conversion control system" of the present invention. FIG. 2 is a control flow of a power management control method in the "smart hybrid power conversion control system" of the present invention. FIG. 3 shows the present invention. In the "Smart Hybrid Power Conversion Control System", the independent power supply mode control flow chart of the power management control method is not in the "smart hybrid power conversion control system" of the present invention, and the power supply management control method is used for the power supply grid connection mode control flow. 5 is a system architecture of one embodiment of the "smart hybrid power conversion control system" of the present invention. FIG. 6 is not a dual input DC/DC converter in one embodiment of the "smart hybrid power conversion control system" of the present invention. Circuit structure 7 of the embodiment 1 1 1 shows the electric 28-way architecture of one of the bidirectional DC/DC converter embodiments in one of the embodiments of the "smart hybrid power conversion control system" of the present invention. FIG. _ Shi X7F invented the "smart hybrid power conversion control system" in the real & example, DC / AC converter implementation One of the circuit architectures, Figure 9 - Sounds && Ding ^ Ming "Smart Hybrid Power Conversion Control System" one of the practical examples of the 'dual input DC / DC converter' In the fuel cell single-supply mode, the experimental waveform is shown in Figure 1.0 矣 + 士 & „ - 八务明智能-type hybrid power conversion control system. In the J, one of the two-input DC/DC converter embodiments operates on Fuel cell and solar cell - experimental waveform in the power supply mode Fig. 11 shows one of the embodiments of the "intelligent hybrid power conversion control system" of the present invention, one of the bidirectional DC/DC converter embodiments operating in the battery discharge mode The experimental waveform 1 is shown in Fig. 12. In the embodiment of the "smart hybrid power conversion control system" of the present invention, the experimental waveform of the embodiment of the bidirectional DC/DC converter operating in the battery charging mode is shown in Fig. 13. In one of the silver embodiments of the "smart hybrid power conversion control system" of the present invention, one of the DC/AC converter embodiments operates in an independent power supply mode. FIG. 14 is a diagram showing an experimental waveform of an embodiment of a DC/AC converter according to an embodiment of a DC/AC converter according to an embodiment of the present invention. FIG. 14 is an embodiment of a DC/AC converter. = The invention shows the "intelligent hybrid power conversion control H" in the "DC / AC converter" embodiment - operating in the independent power supply mode and the mains grid mode switching, the experimental waveform of the transient response [main components DESCRIPTION OF SYMBOLS 101: Intelligent hybrid power conversion control system 102: Power management control unit 103: First power supply 104: Second power supply 105: Power storage device 106: DC load 107: AC load 108: Power network 109: Power network 1010: Signal Network 1011 · Dual Input DC/DC Converter 1012: Bidirectional DC/DC Converter 1013: DC/AC Converter 1014: DC Bus 201: Power Management Control Method 30 201041267 205: Independent Power Mode 206: Mains Grid-connected mode: Grid-connected indicator • : Stop indicator: Initial state of charge state • SOC: Charge state • Charge state minimum 〇 P3/ : Power reserve Device virtual charging power command exhaust min: power storage device minimum power ' β: system overall output power 4: DC load power consumption 圪: AC load power consumption Ρ / : second power power command corpse 2 ΜΡΡΤ : second power supply maximum draw power 〇if : First power supply command 矸 max •• First power maximum power: Mains grid-connected power command 31

Claims (1)

201041267 七、申請專利範圍: 1. 一種智慧型混合式電源轉換控制系統,其中包含 一電源管理控制單元:以訊號網絡與各電源轉換器連接,用以 管理控制各電源轉換器及輸入/輸出電源; ' 一第一電源:經電源轉換後,用以提供系統輸出功率,亦可對 . 電源儲存裝置充電; 一第二電源:經電源轉換後,用以提供系統輸出功率,亦可對 電源儲存裝置充電; 一電源儲存裝置:經電源轉換後,用以提供系統輸出功率,或 Ο 接受對本裝置充電之功率; 一雙輸入直流/直流轉換器:將第一電源電能及第二電源電能同 時轉換為直流匯流排電能,亦可將兩電源其中之一單獨轉換為 ' 直流匯流排電能; 一雙向直流/直流轉換器:將電源儲存裝置電能轉換為直流匯流 排電能,或是由直流匯流排電能透過此雙向直流/直流轉換器對 電源儲存裝置充電,此雙向直流/直流轉換器具雙向電力潮流之 功能; 一直流匯流排:直流匯流排電能可供應直流負載,亦可經直流/ ^ 交流變流器轉換為交流電能後,供應交流負載或與電力網絡併 聯供電,直流匯流排電能同時可透過雙向直流/直流轉換器對電 源儲存裝置充電; 一直流負載:使用直流匯流排高壓直流電源之負載; 一直流/交流變流器:將直流匯流排電能轉換為交流電能,供應 交流負載或與電力網絡併聯供電,亦可將電力網絡電能以整流 方式反饋回直流匯流排,此直流/交流變流器具雙向電力潮流之 功能, 一交流負載:使用直流/交流變流器輸出交流電能之負載; 一電力網絡:市電電力網絡所構成; 一電源網絡:各電源轉換器連接至輸入/輸出電源及直流匯流排 32 201041267 之電能所構成之網絡; 一訊號網絡:各電源轉換器連接 號所構成之網絡; 目理控鮮元之控制訊 ίΓΐ'ΓΓΓ換控制系統之特徵為:第-點,系統包 第包源、弟一電源及一組電源儲存裳置,可 Γϊίί::電源至三個電源同時供電;第二點,系統:、 第-電源及弟-電源使料m ==直流轉換器之系統架構;第三=統= Ο Ο Γ流ίΓ;第四點,系統輸出可以為直流匯流:上S 載’以及直W交流變流n輸出之交流負載,亦可與電力網絡 聯供電;第五點,系統盥電力網 ° 電能轉換後對電源儲存裝if併聯供電時,可將電力網絡 2‘ΐΓίί利範圍第1項之智慧型混合式電源轉換控制系統,其 m源可為使用燃料發電之直流電源或使用燃料發電之交 机電源整流為直流電源,作為電源供應。 3 · ΐ ί請專利範圍第1項之智慧型混合式電源轉換控制系統,其 If源可為太陽光電池、直流風力發電機或交流風力發電 機整视為直流電源,作為電源供應。 4· 請專利1請第1項之智慧型混合式電_換控制系統,其 ^源儲存裝置可為二次電池或超電容,作為電源儲存及供 之用。 5. t申請^•利範圍第1項之智慧型混合式電源轉換控制系統,其 直机/父流變流器可為單相變流器或三相變流器。 6·=申請專利範15第i項之智慧型混合式電源轉換控制系統,其 中電力網絡可為市電單相電源或市電三相電源,與系統輸出作 併聯供電之用。 7.如申凊專利範圍第丨項之智慧型混合式電源轉換控制系統,其 中電源官理控制單元之控制流程為電源管理控制方法,該方法 係用以產生各輸入電源之功率控制命令,俾使有效管理智慧型 33 201041267 混合式電源轉換控制系統之輸入/輸出電源,其主程式步驟包 括:步驟202,當電源管理控制方法啟動時,先設定併網指標 為0,代表該系統預設為獨立供電模式,並設定停機指標為〇, 代表該系統為正常操作狀態,接著進行步驟203 ;步驟203估 - 測電源儲存裝置電荷狀態初始值,藉由迴授電源儲存裝置之電 壓對應得知電荷狀態初始值,接著進行步驟204 ;步驟204,判 斷併網指標是否為1,若是,接著進行步驟206,若否,接著進 行步驟205 ;步驟205,該系統操作於獨立供電模式,接著進行 步驟207 ;步驟206,該系統操作於市電併網模式,接著進行步 0 驟207 ;步驟207,電源儲存裝置狀態決策,藉由電源儲存裝置 之即時電流對時間積分,除以電源儲存裝置總容量後,再加上 原本電荷狀態,可估測出目前電源儲存裝置電荷狀態,本決策 - 預期將電源儲存裝置電荷狀態維持於預設之最大值,應付輸出 於獨立供電模式下重載情況以及系統啟動情況使用,因此在得 知電源儲存裝置電荷狀態後,可由電源儲存裝置電荷狀態控制 或是採用線性對應關係,計算出電源儲存裝置虛擬充電功率命 令,接者再進行步驟208 ;步驟208,電力網絡狀態決策,藉由 迴授市電電壓並設定其正常狀態下之峰值大小範圍,判斷該交 流電壓之峰值大小是否為正常狀態,並以鎖相迴路控制估測市 > 電電壓之相角,當市電電壓之大小為正常,且成功估測出市電 電壓之相角時,設定併網指標為1,反之,設定併網指標為〇, 接者進行步驟209 ;步驟209,判斷停機指標是否為1,若是, 表示目前輸入電能功率總和無法供應負載需求電能功率總和, 迫使電源管理控制方法主程式結束並將智慧型混合式電源轉換 控制系統停機,若否,代表智慧型混合式電源轉換控制系統為 正常操作狀態,接著回復進行步驟204。 8.如申請專利範圍第7項之電源管理控制方法,其中步驟205獨 立供電模式之副程式執行步驟包括:步驟301,併網開關截止, 可將該系統輸出交流電能與市電切離,接者進行步驟302 ;步 驟302,迴授系統輸入/輸出之電壓及電流,並計算系統整體輸 34 201041267 耗整=二功步率等於直流負载消耗功率及交流 二電源電壓及電流,判斷第:電:二步驟303,根據迴授第 ,制方式決定第二電源功=,二驟以最大功 . 纟令為第二電源最大_功_ ^二電源功率 判斷第二電源最大_ 接者進灯步驟梅;步驟306, 儲存裝置虛擬充電功率命令:和大:=二出=與電源 *否,接著進行步驟:步驟3〇广;二 =驟广 ‘==於體;_與電心 電功率命令之和,之後結束 :裝置虛擬充 控制方法主程式;步驟308,當第電回電源管理 斷第二電源最大操;=;;;=:?=和,再判 和,若電源儲存裝置虛擬充電功率命令之 u9獨若否,接著進行步驟·步 最大功率之和,大於操取功率與第一電源 電功率命令之和時,'將存裝置虛擬充 奋雷访宝人人“⑯糸、.先正體輸出功率與電源儲存裝置虛擬 取功率之… 理控制方法主獨源管 大操取功率與第-電源最大功率之和:小於 命電源最大功率,並且將第二電源二= 之和’统整體輸出功率之差’設定為電 Γ 電功率命令,之後進行步驟3〇14;步驟3〇5, 第一電源電成不可取得時,設定第二電源功率命令為零,接者 35 201041267 進行步驟3011 ;步驟3011,判斷第一電源最大功率是否大於系 統整體輸出功率與電源儲存裝置虛擬充電功率命令之和,若 是,接著進行步驟3012,若否,接著進行步驟3013 ;步驟3012, 獨立供電模式下,第一電源最大功率大於系統整體輸出功率與 電源儲存裝置虛擬充電功率命令之和時,將第一電源功率命令 % 設定為系統整體輸出功率與電源儲存裝置虛擬充電功率命令之 ' 和,之後結束獨立供電模式流程,返回電源管理控制方法主程 式;步驟3013,獨立供電模式下,第一電源最大功率小於系統 整體輸出功率與電源儲存裝置虛擬充電功率命令之和時,設定 0 第一電源功率命令為第一電源最大功率,並且將電源儲存裝置 虛擬充電功率命令設定為第一電源最大功率減去系統整體輸出 功率之差,之後進行步驟3014 ;步驟3014,判斷電源儲存裝置 虛擬充電功率命令是否大於零,若是,電源儲存裝置虛擬充電 功率命令為正,代表系統具備足夠輸入電能,可對電源儲存裝 置充電,之後結束獨立供電模式流程,返回電源管理控制方法 主程式,若否,接著進行步驟3015 ;步驟3015,電源儲存裝置 虛擬充電功率命令為負,即電源儲存裝置為放電狀態時,判斷 電源儲存裝置電荷狀態是否小於設定之電源儲存裝置電荷狀態 最小值,若是,接著進行步驟3016,若否,接著進行步驟3017 ; Ο 步驟3017,判斷電源儲存裝置虛擬充電功率命令是否小於設定 之電源儲存裝置最小功率,換言之,判斷電源儲存裝置是否超 過其設定放電最大功率,若是,接著進行步驟3016,若否,結 束獨立供電模式流程,返回電源管理控制方法主程式;步驟 3016,此時輸入電能功率總和無法供應負載需求電能功率總 和,設定停機指標為1,之後結束獨立供電模式流程,返回電 源管理控制方法主程式。 9.如申請專利範圍第7項之電源管理控制方法,其中步驟206市 電併網模式之副程式執行步驟包括:步驟401,併網開關導通, 可將該系統輸出交流電能與市電連接,並設定第一電能功率命 令為零,接者進行步驟402 ;步驟402,迴授系統輸入/輸出之 36 201041267 電壓及電流,並計算系統整體輸出功率,此時系統整體輸出功 率定義為直流負載消耗功率,接者進行步驟403 ;步驟403,根 據迴授第二電源電壓及電流,判斷第二電源電能能否取得,若 是,接著進行步驟404,若否,接著進行步驟405 ;步驟404, . 以最大功率擷取控制方式決定第二電源功率命令,並設定第二 電源功率命令為第二電源最大擷取功率,接者進行步驟406 ; ' 步驟406,判斷第二電源最大擷取功率是否大於系統整體輸出 功率與電源儲存裝置虛擬充電功率命令之和,若是,接著進行 步驟407,若否,接著進行步驟408 ;步驟407,市電併網模式 0 下,第二電源最大擷取功率大於系統整體輸出功率與電源儲存 裝置虛擬充電功率命令之和時,將第二電源最大擷取功率,減 " 去系統整體輸出功率,再減去電源儲存裝置虛擬充電功率命 - 令,計算所得之正值,設定為市電併網功率命令,換言之,此 時將第二電源電能扣除系統需求所剩餘之電能,全部饋入市電 當中,之後結束市電併網模式流程,返回電源管理控制方法主 程式;步驟408,市電併網模式下,第二電源最大擷取功率小 於系統整體輸出功率與電源儲存裝置虛擬充電功率命令之和 時,將第二電源最大擷取功率,減去系統整體輸出功率,再減 去電源儲存裝置虛擬充電功率命令,計算所得之負值,設定為 〇 市電併網功率命令,換言之,此時將第二電源電能扣除系統需 求後所不足之電能,由市電反饋回該系統當中,之後結束市電 併網模式流程,返回電源管理控制方法主程式;步驟405,第 二電源電能不可取得時,設定第二電源功率命令為零,接者進 行步驟409 ;步驟409,將市電併網功率命令設定為負的系統整 體輸出功率與電源儲存裝置虛擬充電功率命令之和,此時由市 電反饋電能回該系統當中,之後結束市電併網模式流程,返回 電源管理控制方法主程式。 37201041267 VII. Patent application scope: 1. A smart hybrid power conversion control system, which includes a power management control unit: connected to each power converter by a signal network to manage and control each power converter and input/output power ; a first power source: after the power conversion, to provide system output power, can also charge the power storage device; a second power source: after the power conversion, to provide system output power, can also be stored in the power supply Device charging; a power storage device: used to provide system output power after power conversion, or 接受 accept power to charge the device; a dual input DC/DC converter: converts first power and second power simultaneously For DC bus power, one of the two power sources can be separately converted into 'DC bus energy; One bidirectional DC/DC converter: converts power storage device power into DC bus energy, or DC bus energy Charging the power storage device through this bidirectional DC/DC converter, this bidirectional DC/ The flow converter has the function of two-way power flow; a DC bus: DC bus energy can supply DC load, or can be converted into AC power by DC / ^ AC converter, supply AC load or parallel power supply with power network, DC The bus power can simultaneously charge the power storage device through the bidirectional DC/DC converter; a DC load: a load using a DC bus high voltage DC power supply; a DC/AC converter: converts the DC bus power into AC power, Supply AC load or supply power in parallel with the power network, or return the power network power to the DC bus bar by rectification, the function of the DC/AC converter bidirectional power flow, an AC load: use DC/AC converter output AC power load; a power network: a mains power network; a power network: each power converter is connected to the input / output power and DC bus 32 201041267 power network; a signal network: each power converter a network of connection numbers; The control signal Γΐ Γΐ 'ΓΓΓ 控制 控制 控制 控制 ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ ΓΓΓ System:, system power supply and power supply - power supply m == DC converter system architecture; third = system = Ο Γ Γ Γ 第四; fourth point, system output can be DC sink: upper S load 'and straight W AC converter n output AC load, can also be connected with the power network; fifth, the system 盥 power network ° power conversion after the power storage installed if parallel power supply, the power network 2' ΐΓ ίί profit range item 1 The smart hybrid power conversion control system, wherein the m source can be rectified into a DC power source for a DC power source that uses fuel to generate electricity or a power source that uses fuel to generate power as a power supply. 3 · ΐ ί Please select the intelligent hybrid power conversion control system of the first patent range. The If source can be regarded as a power supply for solar cells, DC wind turbines or AC wind turbines. 4. Please apply the intelligent hybrid electric_change control system of the first item of patent 1. The source storage device can be a secondary battery or an ultra-capacitor, which can be stored and supplied as a power source. 5. t Apply for the intelligent hybrid power conversion control system of the first item. The straight/parent converter can be a single-phase converter or a three-phase converter. 6·=Application for the intelligent hybrid power conversion control system of the patent item fifteenth item i, wherein the power network can be a commercial single-phase power supply or a commercial three-phase power supply, and is connected in parallel with the system output for power supply. 7. The smart hybrid power conversion control system according to the third aspect of the patent application, wherein the control flow of the power supply control unit is a power management control method, and the method is used to generate power control commands for each input power source, To effectively manage the input/output power of the smart power conversion control system of the 201041267 hybrid power conversion control system, the main program steps include: Step 202: When the power management control method is started, first set the grid connection indicator to 0, indicating that the system is preset to Independent power supply mode, and set the shutdown indicator to 〇, indicating that the system is in the normal operating state, and then proceeding to step 203; step 203 is to estimate the initial value of the charge state of the power storage device, and the charge is known by the voltage of the power storage device. The initial value of the state is followed by step 204; step 204, determining whether the grid-connected indicator is 1, if yes, proceeding to step 206; if not, proceeding to step 205; step 205, the system operating in the independent power supply mode, and then performing step 207 Step 206, the system operates in the mains grid-connected mode, and then proceeds to step 207; step 207 The state of the power storage device state, by the real-time current-to-time integration of the power storage device, divided by the total capacity of the power storage device, plus the original state of charge, can estimate the current state of charge of the power storage device, this decision - expected The charge state of the power storage device is maintained at a preset maximum value, and the output is used in the independent power supply mode under the heavy load condition and the system startup condition. Therefore, after the charge state of the power storage device is known, the charge state of the power storage device can be controlled or adopted. The linear correspondence relationship is calculated, and the power storage device virtual charging power command is calculated, and then the step 208 is performed; in step 208, the power network state is determined, and the AC voltage is determined by returning the mains voltage and setting the peak size range in the normal state. Whether the peak size is normal, and the phase angle of the electric power is estimated by the phase-locked loop control. When the magnitude of the mains voltage is normal and the phase angle of the mains voltage is successfully estimated, the grid-connected indicator is set to 1. Otherwise, set the grid-connected indicator to 〇, and the receiver proceeds to step 209; step 209 , to determine whether the shutdown indicator is 1, if it is, the current input power sum is not able to supply the sum of the load demand power, forcing the power management control method main program to end and the intelligent hybrid power conversion control system to stop, if not, on behalf of the smart The hybrid power conversion control system is in a normal operating state, and then proceeds to step 204. 8. The power management control method of claim 7, wherein the step 205 independent power supply mode subroutine execution step comprises: step 301, the grid switch is turned off, and the system outputs the AC power and the city power, and the receiver is disconnected. Go to step 302; Step 302, feedback the system input/output voltage and current, and calculate the overall system output 34 201041267 Tendency = 2 power step rate is equal to DC load power consumption and AC two power supply voltage and current, judge the first: electricity: In the second step 303, according to the feedback system, the second power source is determined, and the second power is the maximum power. The second power source is the maximum power _ ^ _ ^ two power sources determine the second power source maximum _ the receiver enters the light step Mei Step 306, the storage device virtual charging power command: and the big: = two out = and the power supply * no, then proceed to the steps: step 3 〇 wide; two = sudden wide ' = = in the body; _ and the electric heart power command sum After that: the device virtual charging control method main program; step 308, when the first electrical power back to the second power supply maximum operation; =;;; =:? = and then, if the power storage device virtual charging power command The u9 alone is not, then the sum of the maximum power of the step and step is greater than the sum of the operating power and the first power electric power command, 'the virtual device is filled with the thunder and the other person is 16", the first positive body output The power and power storage device virtual power is taken... The control method is the sum of the power of the main single source and the maximum power of the first power supply: less than the maximum power of the power supply, and the sum of the second power supply and the overall output power The difference ' is set to the electric power command, then step 3〇14; step 3〇5, when the first power supply is not available, the second power command is set to zero, and the receiver 35 201041267 proceeds to step 3011; step 3011 Determining whether the maximum power of the first power source is greater than the sum of the overall output power of the system and the virtual power charging command of the power storage device. If yes, proceed to step 3012. If not, proceed to step 3013; in step 3012, the first power source in the independent power supply mode. When the maximum power is greater than the sum of the overall output power of the system and the virtual charging power command of the power storage device, the first power command % is set. For the system's overall output power and power storage device virtual charging power command 'and, then end the independent power supply mode flow, return to the power management control method main program; Step 3013, in the independent power supply mode, the first power supply maximum power is less than the system's overall output power When the sum of the power storage device virtual charging power command is reached, the first power command is set to the first power maximum power, and the power storage device virtual charging power command is set to the difference between the first power maximum power and the overall system output power. Then, step 3014 is performed; step 3014, it is determined whether the power storage device virtual charging power command is greater than zero, and if so, the power storage device virtual charging power command is positive, indicating that the system has sufficient input power to charge the power storage device, and then terminate the independent The power supply mode process returns to the power management control method main program. If not, proceed to step 3015; in step 3015, the power storage device virtual charging power command is negative, that is, when the power storage device is in a discharging state, the power storage device is in a charge state. Whether the state is less than the minimum value of the set power storage device charge state, and if so, proceed to step 3016; if not, proceed to step 3017; Ο step 3017, determining whether the power storage device virtual charging power command is less than the set power storage device minimum power, In other words, it is determined whether the power storage device exceeds its set discharge maximum power. If yes, proceed to step 3016. If not, the independent power supply mode flow is terminated, and the power management control method main program is returned; in step 3016, the input power power sum cannot supply the load. The sum of the required power and power, set the stop indicator to 1, then end the independent power supply mode flow, and return to the power management control method main program. 9. The power management control method of claim 7, wherein the step 206 of the utility mode of the utility grid connection mode comprises: step 401, the grid connection switch is turned on, and the system outputs the alternating current power and the mains connection, and sets The first power power command is zero, and the process proceeds to step 402. In step 402, the system input/output 36 201041267 voltage and current are fed back, and the overall output power of the system is calculated. At this time, the overall output power of the system is defined as the DC load power consumption. Step 403: Step 403, determining whether the second power supply can be obtained according to the feedback of the second power voltage and current, and if yes, proceeding to step 404; if not, proceeding to step 405; step 404, . The control mode determines the second power command, and sets the second power command to the second power maximum draw power, and the process proceeds to step 406; 'Step 406, determining whether the second power maximum draw power is greater than the overall system output. The sum of the power and the power storage device virtual charging power command, if yes, proceed to step 407, if no Then proceed to step 408; step 407, when the main power is connected to the network mode 0, when the maximum power drawn by the second power source is greater than the sum of the overall output power of the system and the virtual charging power command of the power storage device, the maximum power of the second power source is extracted, minus &quot Go to the overall output power of the system, and then subtract the virtual charging power of the power storage device, and calculate the positive value, set to the mains power grid-connected power command, in other words, the second power supply is deducted from the system's demand. , all feed into the mains, then end the mains grid-connected mode process, return to the power management control method main program; step 408, the mains grid-connected mode, the second power supply maximum draw power is less than the system's overall output power and power storage device virtual charging When the power command is summed, the maximum power drawn by the second power source is subtracted, the overall output power of the system is subtracted, and the virtual charging power command of the power storage device is subtracted, and the calculated negative value is set, and the power supply is connected to the grid power command, in other words, At this time, the second power source is deducted from the power demand of the system, and the power is insufficient. The electric feedback is returned to the system, and then the mains grid-connected mode flow is terminated, and the power management control method main program is returned; in step 405, when the second power supply is not available, the second power supply command is set to zero, and the terminal proceeds to step 409; 409, the utility power grid-connected power command is set to the sum of the overall system output power and the power storage device virtual charging power command. At this time, the utility power feedback power is returned to the system, and then the utility power grid-connected mode flow is returned, and the power management control is returned. Method main program. 37
TW98114791A 2009-05-04 2009-05-04 Intelligent hybrid power conversion control system TWI387176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98114791A TWI387176B (en) 2009-05-04 2009-05-04 Intelligent hybrid power conversion control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98114791A TWI387176B (en) 2009-05-04 2009-05-04 Intelligent hybrid power conversion control system

Publications (2)

Publication Number Publication Date
TW201041267A true TW201041267A (en) 2010-11-16
TWI387176B TWI387176B (en) 2013-02-21

Family

ID=44996242

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98114791A TWI387176B (en) 2009-05-04 2009-05-04 Intelligent hybrid power conversion control system

Country Status (1)

Country Link
TW (1) TWI387176B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904902A (en) * 2014-04-08 2014-07-02 扬州大学 Multi-energy input power converter control device
TWI450472B (en) * 2011-08-09 2014-08-21 Nat Univ Chung Hsing Method and device of flexible controlled current charging scheme for combinational batteries
TWI465028B (en) * 2011-06-10 2014-12-11 Univ Yuan Ze Grid-tie power inverter with multiple modes, power supply system using the same, and method for controlling operating mode thereof
TWI493834B (en) * 2011-12-28 2015-07-21 Monolithic Power Systems Inc A power supply system and its power supply unit and method
TWI498517B (en) * 2012-04-17 2015-09-01 Multi - standby solar power supply system
US9859755B2 (en) 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
CN107797003A (en) * 2016-09-05 2018-03-13 中国计量科学研究院 A kind of virtual load experimental rig and method for the detection of charging pile metering performance
TWI662783B (en) * 2018-01-05 2019-06-11 黃柏原 Solar dual-drive permanent magnet synchronous motor
TWI671537B (en) * 2018-08-17 2019-09-11 星博電子股份有限公司 Battery exchange station control system and method
TWI749906B (en) * 2020-11-25 2021-12-11 台達電子工業股份有限公司 Power system and pulse width modulation method using the same
TWI773372B (en) * 2021-06-09 2022-08-01 談光雄 Micro grid system and pre-synchronization estimation method
US11611291B2 (en) 2020-11-25 2023-03-21 Delta Electronics, Inc. Power system and pulse width modulation method therefor
TWI832250B (en) * 2022-05-19 2024-02-11 博大科技股份有限公司 power converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497868B (en) * 2013-07-11 2015-08-21 Univ Nan Kai Technology Charging control circuit by making use of solar energy and fuel cell
TWI584565B (en) * 2015-05-29 2017-05-21 Chang Chi Lee Low input and output current ripple down boost power converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW411651B (en) * 1998-08-28 2000-11-11 Twinhead Int Corp An intelligent battery system
US6615118B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy power management system and method
US6801028B2 (en) * 2002-11-14 2004-10-05 Fyre Storm, Inc. Phase locked looped based digital pulse converter
US6946753B2 (en) * 2002-11-14 2005-09-20 Fyre Storm, Inc. Switching power converter controller with watchdog timer
TWI270241B (en) * 2004-11-05 2007-01-01 Tzung-Rung Tsai Electric power integration supply system
TWI299228B (en) * 2005-05-18 2008-07-21 Ite Tech Inc Power supply conversion circuit and method thereof, and a circuitry incorporating the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465028B (en) * 2011-06-10 2014-12-11 Univ Yuan Ze Grid-tie power inverter with multiple modes, power supply system using the same, and method for controlling operating mode thereof
TWI450472B (en) * 2011-08-09 2014-08-21 Nat Univ Chung Hsing Method and device of flexible controlled current charging scheme for combinational batteries
TWI493834B (en) * 2011-12-28 2015-07-21 Monolithic Power Systems Inc A power supply system and its power supply unit and method
TWI498517B (en) * 2012-04-17 2015-09-01 Multi - standby solar power supply system
TWI658949B (en) * 2012-07-16 2019-05-11 美商維電股份有限公司 Wireless power receiver, wireless power transmitter, method of operating a wireless power receiver, and method of operating a wireless power transmitter
US9859755B2 (en) 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
CN103904902B (en) * 2014-04-08 2016-05-11 扬州大学 A kind of multiple-energy-source input electric power controller for transducer
CN103904902A (en) * 2014-04-08 2014-07-02 扬州大学 Multi-energy input power converter control device
CN107797003A (en) * 2016-09-05 2018-03-13 中国计量科学研究院 A kind of virtual load experimental rig and method for the detection of charging pile metering performance
CN107797003B (en) * 2016-09-05 2023-10-20 中国计量科学研究院 Virtual load test device and method for detecting metering performance of charging pile
TWI662783B (en) * 2018-01-05 2019-06-11 黃柏原 Solar dual-drive permanent magnet synchronous motor
TWI671537B (en) * 2018-08-17 2019-09-11 星博電子股份有限公司 Battery exchange station control system and method
TWI749906B (en) * 2020-11-25 2021-12-11 台達電子工業股份有限公司 Power system and pulse width modulation method using the same
US11611291B2 (en) 2020-11-25 2023-03-21 Delta Electronics, Inc. Power system and pulse width modulation method therefor
TWI773372B (en) * 2021-06-09 2022-08-01 談光雄 Micro grid system and pre-synchronization estimation method
TWI832250B (en) * 2022-05-19 2024-02-11 博大科技股份有限公司 power converter

Also Published As

Publication number Publication date
TWI387176B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
TW201041267A (en) Intelligent hybrid power conversion control system
Xue et al. Topologies of single-phase inverters for small distributed power generators: an overview
Jang et al. A single-stage fuel cell energy system based on a buck--boost inverter with a backup energy storage unit
CN100563086C (en) Active bi-directional electric power adjuster
US20120087165A1 (en) Apparatus and method for controlling a power inverter
WO2015117261A1 (en) Circuit structure and control method for charging and discharging of vanadium battery
TW201014132A (en) A bi-directional DC/DC power converter having a neutral terminal
CN110120679B (en) Household photovoltaic energy storage converter coupled with direct current side of photovoltaic inverter
WO2013000185A1 (en) Grid-connected inverter
CN101741133A (en) Optical network hybrid power supply uniterruptable power supply having function of correcting power factor on network side
Mozaffari et al. A single-phase inverter/rectifier topology with suppressed double-frequency ripple
WO2016054856A1 (en) Energy double-fed device with pfc and grid compensation functions
CN106953538A (en) It is a kind of that the method for improving photovoltaic combining inverter conversion efficiency is bypassed based on relay
TW200522492A (en) Method of starting power-converting apparatus
JP2020533931A (en) Control processing method for an inverter device having an H5 topology structure
TWM408678U (en) Photovoltaic powered system
CN102255356B (en) Efficient uninterruptible power supply
Bojoi et al. New dc-dc converter with reduced low-frequency current ripple for fuel cell in single-phase distributed generation
CN206790117U (en) A kind of micro grid control system
CN205430087U (en) Single -phase two -way DC -AC converter of high reliability
CN101572512A (en) Ant colony parallel photovoltaic generating system
KR101403868B1 (en) Development of PV Power Conditioners for sinusoidal modulation PWM boost chopper
Ravichandrudu et al. Design and performance of a bidirectional isolated Dc-Dc converter for renewable power system
Testa et al. Compensation of the low frequency current ripple in single phase grid connected fuel cell power systems
CN105846465B (en) A kind of alternating current-direct current mixed power supply system and method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees