TWI773372B - Micro grid system and pre-synchronization estimation method - Google Patents

Micro grid system and pre-synchronization estimation method Download PDF

Info

Publication number
TWI773372B
TWI773372B TW110120950A TW110120950A TWI773372B TW I773372 B TWI773372 B TW I773372B TW 110120950 A TW110120950 A TW 110120950A TW 110120950 A TW110120950 A TW 110120950A TW I773372 B TWI773372 B TW I773372B
Authority
TW
Taiwan
Prior art keywords
microgrid
grid
mode
controller
angular frequency
Prior art date
Application number
TW110120950A
Other languages
Chinese (zh)
Other versions
TW202249383A (en
Inventor
談光雄
林法正
Original Assignee
談光雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 談光雄 filed Critical 談光雄
Priority to TW110120950A priority Critical patent/TWI773372B/en
Application granted granted Critical
Publication of TWI773372B publication Critical patent/TWI773372B/en
Publication of TW202249383A publication Critical patent/TW202249383A/en

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A micro grid system is provided for being connected with a power grid system, and includes: a master sub-system, a slave sub-system and a controller for controlling the master sub-system and the slave sub-system to execute a grid connection mode or an island mode. Before the island mode is switched into the grid connection mode, the controller executes a pre-synchronization estimation procedure to determine whether the grid connection mode can be executed by a phase difference between the micro grid system and the power grid system.

Description

微電網系統及預同步判斷方法 Microgrid system and pre-synchronization judgment method

本揭露係關於一種微電網系統及其控制方法,特別是一種可切換運作模式的微電網系統及其預同步判斷方法。 The present disclosure relates to a microgrid system and a control method thereof, in particular to a microgrid system with switchable operation modes and a pre-synchronization judgment method thereof.

微電網系統是將分散式電源與鄰近負載組成的新微型電網,可用於與市電系統搭配使用。在市電系統正常供電的情況下,微電網系統可與市電系統連結而一起運轉,此模式稱之為併網模式。在市電系統不正常供電的情況下,例如市電系統發生故障或電力品質未滿足需求時,微電網系統可解除與市電的連結,並獨立進行運作,此模式稱之為孤島運轉模式。 Microgrid systems are new microgrids composed of distributed power sources and adjacent loads that can be used in conjunction with utility power systems. In the case of the normal power supply of the mains system, the microgrid system can be connected with the mains system to operate together. This mode is called grid-connected mode. When the mains system does not supply power normally, such as when the mains system fails or the power quality does not meet the demand, the microgrid system can disconnect from the mains and operate independently. This mode is called the islanding mode.

然而,目前欠缺一種良好的控制機制,可在適當的時機執行由孤島運轉模式轉換至併網模式,舉例來說,當從孤島運轉模式切換成併網模式時(例如市電系統由故障情況恢復成正常時),微電網系統與市電系統的電壓相角可能不同步,此時立即執行併網模式即會產生問題。 However, there is currently a lack of a good control mechanism that can perform the transition from the islanded operation mode to the grid-connected mode at an appropriate time, for example, when switching from the islanded operation mode to the grid-connected mode (for example, the utility power system is restored from a fault condition to the grid-connected mode). When it is normal), the voltage phase angle of the microgrid system and the mains system may be out of sync. At this time, if the grid-connected mode is executed immediately, there will be problems.

因此,需要一種微電網系統以及預同步判斷方法來改善上述問題。 Therefore, a microgrid system and a pre-synchronization judgment method are needed to improve the above problems.

本揭露提供一種微電網系統,用於與一市電系統連結,包含:主要子系統、從屬子系統、微電網控制器,控制該主要子系統及該從屬子系統的運作,以執行併網模式或孤島運轉模式,其中,當從孤島運轉模式準備切換成併網模式時,微電網控制器即執行預同步判斷程序,以根據微電網系統與市電系統的相位差判斷是否執行併網模式。 The present disclosure provides a microgrid system for connecting with a mains system, comprising: a main subsystem, a subordinate subsystem, and a microgrid controller, which controls the operation of the main subsystem and the subordinate subsystem to execute a grid-connected mode or The islanding operation mode, in which, when preparing to switch from the islanding operation mode to the grid-connected mode, the microgrid controller executes a pre-synchronization judgment program to determine whether to execute the grid-connected mode according to the phase difference between the microgrid system and the mains system.

本揭露另提供一種預同步判斷方法,用於微電網系統中,其中微電網系統用於與市電系統連結,並包含主要子系統、從屬子系統及微電網控制器,且微電網控制器藉由控制主要子系統及從屬子系統的運作,以執行併網模式或孤島運轉模式,其中該方法包含步驟:微電網控制器預備從孤島運轉模式切換為併網模式;微電網控制器根據微電網系統於孤島運轉模式下的微電網頻率命令或角頻率值取得角度命令;微電網控制器比較角度命令及市電系統的相角;以及微電網控制器根據角度命令及市電系統的相角的比較結果決定是否切換成併網模式。 The present disclosure further provides a pre-synchronization determination method for use in a microgrid system, wherein the microgrid system is used for connecting with the mains system, and includes a main subsystem, a slave subsystem and a microgrid controller, and the microgrid controller is configured by Control the operation of the main subsystem and the subordinate subsystems to execute the grid-connected mode or the islanding operation mode, wherein the method includes the steps: the microgrid controller prepares to switch from the islanding operation mode to the grid-connected mode; the microgrid controller is based on the microgrid system. Obtain the angle command from the microgrid frequency command or the angular frequency value in the island operation mode; the microgrid controller compares the angle command with the phase angle of the mains system; and the microgrid controller determines based on the comparison result of the angle command and the phase angle of the mains system Whether to switch to grid-connected mode.

從下列的詳細描述並結合附圖,本揭露的其他的新穎特徵將變得更為清楚。 Other novel features of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying drawings.

1:微電網系統 1: Microgrid system

2:市電系統 2: Mains system

3:靜態切換開關 3: Static toggle switch

4:微電網控制器 4: Microgrid Controller

5:主要子系統 5: Main Subsystems

6:從屬子系統 6: Slave subsystem

7:控制電路 7: Control circuit

71:功率計算及鎖向迴路模組 71: Power calculation and lock loop module

72:比例積分計算模組 72: Proportional integral calculation module

73:abc/dq座標軸轉換模組 73: abc/dq coordinate axis conversion module

74:dq/abc座標軸轉換模組 74: dq/abc coordinate axis conversion module

75:正弦波脈波寬度調變模組 75: Sine wave pulse width modulation module

76a~76d:模式切換開關 76a~76d: Mode switch

77:預同步預測模組 77: Pre-sync prediction module

77a:預同步觸發程序開關 77a: Pre-sync trigger program switch

78:角頻率計算模組 78: Angular frequency calculation module

79:積分器 79: Integrator

8:控制電路 8: Control circuit

81:功率計算及鎖向迴路模組 81: Power calculation and lock loop module

82a~82d:比例積分計算模組 82a~82d: Proportional integral calculation module

83:dq/abc座標軸轉換模組 83: dq/abc coordinate axis conversion module

84a~84c:比例控制器 84a~84c: Proportional controller

85:正弦波脈波寬度調變模組 85: Sine wave pulse width modulation module

S61~S65:步驟 S61~S65: Steps

圖1是本揭露一實施例的微電網系統的示意圖。 FIG. 1 is a schematic diagram of a microgrid system according to an embodiment of the present disclosure.

圖2是本揭露一實施例的微電網系統的微電網控制器的運作示意圖。 FIG. 2 is a schematic diagram of the operation of the microgrid controller of the microgrid system according to an embodiment of the present disclosure.

圖3是本揭露一實施例的微電網系統的細部結構示意圖。 FIG. 3 is a schematic diagram of a detailed structure of a microgrid system according to an embodiment of the present disclosure.

圖4是本揭露一實施例的微電網系統的主要子系統的控制電路的電路圖。 FIG. 4 is a circuit diagram of a control circuit of a main subsystem of a microgrid system according to an embodiment of the present disclosure.

圖5是本揭露一實施例的微電網系統的從屬子系統的控制電路圖。 FIG. 5 is a control circuit diagram of a slave subsystem of a microgrid system according to an embodiment of the present disclosure.

圖6是本揭露一實施例的預同步判斷方法的步驟流程圖。 FIG. 6 is a flow chart of the steps of a pre-synchronization determination method according to an embodiment of the present disclosure.

當結合附圖閱讀時,下列實施例用於清楚地展示本揭露的上述及其他技術內容、特徵及/或效果。透過具體實施方式的闡述,人們將進一步瞭解本揭露所採用的技術手段及效果,以達到上述的目的。此外,由於本揭露所揭示的內容應易於理解且可為本領域技術人員所實施,因此,所有不脫離本揭露的概念的相等置換或修改應包含在權利要求中。 When read in conjunction with the accompanying drawings, the following embodiments are used to clearly demonstrate the above and other technical contents, features and/or effects of the present disclosure. Through the description of the specific embodiments, people will further understand the technical means and effects adopted by the present disclosure to achieve the above-mentioned purposes. In addition, since the contents disclosed in the present disclosure should be easily understood and implemented by those skilled in the art, all equivalent replacements or modifications without departing from the concepts of the present disclosure should be included in the claims.

應注意的是,在本文中,除了特別指明者之外,「一」元件不限於單一的該元件,還可指一或更多的該元件。 It should be noted that, herein, unless otherwise specified, "a" element is not limited to a single element, but may also refer to one or more of the element.

此外,說明書及請求項中例如「第一」或「第二」等序數僅為描述所請求的元件,而不代表或不表示所請求的元件具有任何順序的序數,且不是所請求的元件及另一所請求的元件之間或製造方法的步驟之間的順序。這些序數的使用僅是為了將具有特定名稱的一個請求元件與具有相同名稱的另一請求元件區分開來。 In addition, ordinal numbers such as "first" or "second" in the specification and claims are merely to describe the claimed elements, and do not represent or imply that the claimed elements have any order of ordinal numbers, and are not the claimed elements and Another claimed sequence between elements or steps of a method of manufacture. These ordinal numbers are used only to distinguish one request element with a particular name from another request element with the same name.

此外,說明書及權利要求中例如「相鄰」一詞是用於描述相互鄰近,不必然表示相互接觸。 Furthermore, in the specification and claims, for example, the word "adjacent" is used to describe being adjacent to each other, and does not necessarily mean that they are in contact with each other.

此外,本揭露中關於“當...”或“...時”等描述表示”當下、之前或之後”等態樣,而不限定為同時發生之情形,在此先行敘明。本揭露中關於“設置於...上”等類似描述係表示兩元件的對應位置關係,並不限定兩元件之間是否有所接觸,除非特別有限定,在此先行敘明。再者,本揭露記載多個功效時,若在功效之間使用“或”一詞,係表示功效可獨立存在,但不排除多個功效可同時存在。 In addition, descriptions such as "when..." or "when..." in the present disclosure represent aspects such as "now, before, or after", and are not limited to simultaneous occurrences, which are described here first. In the present disclosure, descriptions such as "arranged on" and the like refer to the corresponding positional relationship between two elements, and do not limit whether there is contact between the two elements, unless otherwise specified, which is described in advance. Furthermore, when the disclosure describes multiple effects, if the word "or" is used between the effects, it means that the effects can exist independently, but it does not exclude that multiple effects can exist simultaneously.

此外,說明書及權利要求中例如「連接」或「耦接」一詞不僅指與另一元件直接連接,也可指與另一元件間接連接或電性連接。另外,電性連接包含直接連接、間接連接或二元件間以無線電信號交流的態樣。 In addition, words such as "connected" or "coupled" in the description and claims refer not only to direct connection with another element, but also to indirect connection or electrical connection with another element. In addition, the electrical connection includes a direct connection, an indirect connection, or an aspect in which the two components communicate with each other by radio signals.

此外,說明書及權利要求中,「約」、「大約」、「實質上」、「大致上」之用語通常表示在一值與一給定值的差距在該給定值的10%內,或5%內,、或3%之內、,或2%之內、,或1%之內、,或0.5%之內的範圍。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「實質上」、「大致上」的情況下,仍可隱含「約」、「大約」、「實質上」、「大致上」之含義。此外,用語「範圍為第一數值至第二數值」、「範圍介於第一數值至第二數值之間」表示所述範圍包含第一數值、第二數值以及它們之間的其它數值。 Furthermore, in the specification and claims, the terms "about", "approximately", "substantially" and "substantially" generally mean that the difference between a value and a given value is within 10% of the given value, or Within 5%, or within 3%, or within 2%, or within 1%, or within the range of 0.5%. The quantity given here is an approximate quantity, that is, "about", "approximately", "approximately", "approximately", "approximately", "approximately", "approximately", "approximately", "approximately", "approximately", "substantially" and "substantially" may still be implied without the specific description of "about", "approximately", "substantially", "substantially" The meaning of "substantially" and "substantially". Furthermore, the terms "range is from the first value to the second value", "range is between the first value and the second value" means that the range includes the first value, the second value and other values in between.

此外,各元件可以適合的方式來實現成單一電路或一積體電路,且可包括一或多個主動元件,例如,電晶體或邏輯閘,或一或多個被動元件,例如,電阻、電容、或電感,但不限於此。各元件可以適合的方式來彼此連接,例如,分別配合輸入信號及輸出信號,使用一或多條線路來形成串聯或並聯。此外,各元件可允許輸入信號及輸出信號依序或並列進出。上述組態皆是依照實際應用而定。 In addition, each element may be implemented as a single circuit or an integrated circuit in a suitable manner, and may include one or more active elements, such as transistors or logic gates, or one or more passive elements, such as resistors, capacitors , or inductance, but not limited thereto. The elements may be connected to each other in a suitable manner, eg, using one or more lines to form a series or parallel connection with the input signal and the output signal, respectively. In addition, each element may allow input and output signals to enter and exit sequentially or in parallel. The above configurations are all determined according to the actual application.

此外,在本文中,「系統」、「設備」、「裝置」、「模組」、或「單元」等用語,是指一電子元件或由多個電子元件所組成的一數位電路、一類比電路、或其他更廣義電路,且除了特別指明者之外,它們不必然有位階或層級關係。 In addition, in this document, terms such as "system", "equipment", "device", "module", or "unit" refer to an electronic component or a digital circuit composed of a plurality of electronic components, an analog circuits, or other broader circuits, and they do not necessarily have a hierarchical or hierarchical relationship unless otherwise specified.

此外,本揭露所揭示的不同實施例的技術特徵可結合形成另一實施例。 In addition, the technical features of different embodiments disclosed in the present disclosure may be combined to form another embodiment.

圖1是本揭露一實施例的微電網系統1的示意圖。如圖1所示,微電網系統1可用於與一市電系統2連結,其中微電網系統1可透過至少一靜態切換開關3與市電系統2電性連接。微電網系統1可包含一微電網控制器4、一主要子系統5及至少一從屬子系統6。微電網控制器4可控制主要子系統5及從屬子系統6的運作,以使微電網系統1執行一併網模式或一孤島運轉模式。併網模式可執行於市電系統2正常供電時,而孤島運轉模式可執行於市電系統2不正常供電時,例如停止供電或供電品質不良時,且不限於此。 FIG. 1 is a schematic diagram of a microgrid system 1 according to an embodiment of the present disclosure. As shown in FIG. 1 , the microgrid system 1 can be used to connect with a mains system 2 , wherein the microgrid system 1 can be electrically connected to the mains system 2 through at least one static switch 3 . The microgrid system 1 may include a microgrid controller 4 , a master subsystem 5 and at least one slave subsystem 6 . The microgrid controller 4 can control the operation of the main subsystem 5 and the subordinate subsystems 6, so that the microgrid system 1 can execute a grid-connected mode or an island operation mode. The grid-connected mode can be implemented when the utility power system 2 is normally powered, and the island operation mode can be implemented when the utility power system 2 is not powered normally, such as when the power supply is stopped or the power supply quality is poor, but not limited thereto.

於併網模式執行時,微電網控制器4可控制靜態切換開關3導通,使微電網系統1與市電系統2之間產生連結,此時微電網系統1與市電系統2可一起運轉而供電。 When the grid-connected mode is executed, the microgrid controller 4 can control the static switch 3 to be turned on, so that the microgrid system 1 and the mains system 2 are connected. At this time, the microgrid system 1 and the mains system 2 can operate together to supply power.

於孤島運轉模式執行時,微電網控制器4可控制靜態切換開關3斷開,使微電網系統1與市電系統2之間的連結中斷,此時微電網系統1可獨立運轉而供電。 When the island operation mode is executed, the microgrid controller 4 can control the static switch 3 to be disconnected, so that the connection between the microgrid system 1 and the mains system 2 is interrupted. At this time, the microgrid system 1 can operate independently to supply power.

在某些情況下,例如當市電系統2從不正常供電恢復成正常供電時,微電網系統1將從孤島運轉模式切換成併網模式,此時若微電網系統1與市電系統2的供電情形不同步時(例如供電的電壓相角不同),併網模式的運作可能會產生問題。本發明的特色之一在於可解決此問題。 In some cases, for example, when the mains system 2 recovers from abnormal power supply to normal power supply, the microgrid system 1 will switch from the island operation mode to the grid-connected mode. The operation of grid-connected mode may cause problems when not synchronized (eg the voltage phase angle of the power supply is different). One of the features of the present invention is that it can solve this problem.

圖2是本發明一實施例的微電網系統1的微電網控制器4的運作示意圖,並請同時參考圖1。如圖2所示,當微電網系統1從孤島運轉模式準備切換成併網模式時,微電網系統1可執行一預同步判斷方法,亦即微電網控制器4可執行一預同步判斷程序,以根據微電網系統1與市電系統2的相位差判斷是否切換成併網模式。藉此,可確保併網模式的運作可正常執行。 FIG. 2 is a schematic diagram of the operation of the microgrid controller 4 of the microgrid system 1 according to an embodiment of the present invention, and please refer to FIG. 1 at the same time. As shown in FIG. 2 , when the microgrid system 1 is ready to switch from the island operation mode to the grid-connected mode, the microgrid system 1 can execute a pre-synchronization judgment method, that is, the microgrid controller 4 can execute a pre-synchronization judgment procedure, In order to determine whether to switch to the grid-connected mode according to the phase difference between the micro-grid system 1 and the mains system 2 . Thereby, it can be ensured that the operation of the grid-connected mode can be performed normally.

接著說明微電網系統1的細部結構。圖3是本發明一實施例的微電網系統1的細部結構示意圖,並請同時參考圖1及圖2。 Next, the detailed structure of the microgrid system 1 will be described. FIG. 3 is a schematic diagram of a detailed structure of the microgrid system 1 according to an embodiment of the present invention, and please refer to FIG. 1 and FIG. 2 at the same time.

如圖3所示,主要子系統5與從屬子系統6可分別透過靜態切換開關3與市電系統2。微電網控制器4可透過一控制電路7與主要子系統5電性連接,並藉由該控制電路7來控制主要子系統5。微電網控制器4可透過另一控制電路8與從屬子系統6電性連接,並藉由該另一控制電路8來控制從屬子系統6。微電網控制器4亦可與靜態切換開關3電性連接,以控制靜態切換開關3的導通與否。 As shown in FIG. 3 , the main subsystem 5 and the slave subsystem 6 can pass through the static switch 3 and the mains system 2 respectively. The microgrid controller 4 can be electrically connected to the main subsystem 5 through a control circuit 7 , and the main subsystem 5 is controlled by the control circuit 7 . The microgrid controller 4 can be electrically connected to the slave subsystem 6 through another control circuit 8 , and controls the slave subsystem 6 through the other control circuit 8 . The microgrid controller 4 can also be electrically connected to the static switch 3 to control the conduction of the static switch 3 .

在一實施例中,微電網系統1可由各種分散式電源結合電力電子轉換器組成,且不限於此。在一實施例中,主要子系統5可例如是一儲能系統,且不限於此。在一實施例中,從屬子系統6可例如是一太陽能光電系統,且不限於此。 In one embodiment, the microgrid system 1 may be composed of various distributed power sources combined with power electronic converters, but is not limited thereto. In one embodiment, the main subsystem 5 may be, for example, an energy storage system, but is not limited thereto. In one embodiment, the slave subsystem 6 may be, for example, a solar photovoltaic system, but is not limited thereto.

在一實施例中,於併網模式下,主要子系統5及從屬子系統6皆可執行一實功率及虛功率控制模式。在一實施例中,於孤島運轉模式下,主要子系統5可執行一電壓及頻率控制模式,從屬子系統6可執行實功率及虛功率控制模式。 In one embodiment, in the grid-connected mode, both the master subsystem 5 and the slave subsystem 6 can execute a real power and imaginary power control mode. In one embodiment, in the islanding mode, the master subsystem 5 can execute a voltage and frequency control mode, and the slave subsystem 6 can execute a real power and imaginary power control mode.

接著將詳細說明主要子系統5及從屬子系統6的控制方式。 Next, the control methods of the master subsystem 5 and the slave subsystem 6 will be described in detail.

首先說明主要子系統5的部分。圖4是本發明一實施例的微電網系統1的主要子系統5的控制電路7的電路圖,並請同時參考圖1至圖3。 Parts of the main subsystem 5 will be described first. FIG. 4 is a circuit diagram of the control circuit 7 of the main subsystem 5 of the microgrid system 1 according to an embodiment of the present invention, and please refer to FIGS. 1 to 3 at the same time.

如圖4所示,控制電路7可包含一功率計算及鎖相迴路(power calculation and phase lock loop,power calculation and PLL)模組71、複數個比例積分計算(proportional integral,PI)模組72a~72d、一abc/dq座標軸轉換模組73、一dq/abc座標軸轉換模組74、一正弦波脈波寬度調變(sinusoidal pulse width modulation,SPWM)模組75、複數個模式切換開關76a~76d及一預同步預測(pre-synchronization estimation)模組77,其中預同步預測模組77與一預同步觸發程序開關77a電性連接。在一實施例中,上述各模組及開關可由電子電路來實現,且不限於此。此外,主要子系統5為三相電網系統。 As shown in FIG. 4 , the control circuit 7 may include a power calculation and phase lock loop (power calculation and phase lock loop, power calculation and PLL) module 71, a plurality of proportional integral (PI) modules 72a~ 72d, an abc/dq coordinate axis conversion module 73, a dq/abc coordinate axis conversion module 74, a sinusoidal pulse width modulation (SPWM) module 75, a plurality of mode switching switches 76a~76d and a pre-synchronization estimation module 77, wherein the pre-synchronization estimation module 77 is electrically connected with a pre-synchronization trigger switch 77a. In one embodiment, the above modules and switches can be implemented by electronic circuits, but not limited thereto. Furthermore, the main subsystem 5 is a three-phase grid system.

控制電路7與主要子系統5的連接方式可參考圖4的範例,但不限於此。 The connection between the control circuit 7 and the main subsystem 5 may refer to the example in FIG. 4 , but is not limited thereto.

首先說明併網模式時,控制電路7的運作方式。 First, the operation of the control circuit 7 in the grid-connected mode will be described.

在一實施例中,當主要子系統5執行併網模式時,靜態切換開關3導通,市電系統2與主要子系統5同時運轉。此時,功率計算及鎖相迴路模組71可透過一電壓感應器量測主要子系統5的系統端電壓V a V b V c ,以及取得主要子系統5的輸出電流i sa i sb i sc ,之後功率計算及鎖相迴路模組71可根據系統端電壓V a V b V c 及輸出電流i sa i sb i sc 計算出主要子系統5的實功率P s 、虛功率Q s 、微電網頻率f及微電網線間電壓峰值V ab,peak 及電壓相角θ e In one embodiment, when the main subsystem 5 executes the grid-connected mode, the static switch 3 is turned on, and the mains system 2 and the main subsystem 5 operate simultaneously. At this time, the power calculation and phase-locked loop module 71 can measure the system terminal voltages Va, Vb, Vc of the main subsystem 5 through a voltage sensor, and obtain the output currents isa , i of the main subsystem 5 sb , isc , then the power calculation and phase-locked loop module 71 can calculate the real power Ps of the main subsystem 5 according to the system terminal voltages Va , Vb , Vc and the output currents isa , isb , isc , the virtual power Q s , the microgrid frequency f and the microgrid line-to-line voltage peak V ab,peak and the voltage phase angle θ e .

在一實施例中,微電網控制器4可控制模式切換開關76a、76b切換為併網模式(Mode I),使一實功率命令P * s 及實功率P s 的比較結果(例如兩者之差,但不限於此)輸入至比例積分計算模組72a,以及使一虛功率命令Q * s 及虛功率Q s 的比較結果(例如兩者之差,但不限於此)輸入至比例積分計算模組72b,而比例積分計算模組72a執行比例積分計算後可輸出一q軸控制電流命令i * sq ,且比例積分計算模組72b執行比例積分計算後可輸出另一d軸控制電流命令i * sd In one embodiment, the microgrid controller 4 can control the mode switching switches 76a, 76b to switch to the grid-connected mode (Mode I), so that a comparison result of the real power command P * s and the real power Ps (for example, the difference, but not limited thereto) is input to the proportional-integral calculation module 72a , and a comparison result of the imaginary power command Q * s and the imaginary power Qs (such as the difference between the two, but not limited thereto) is input to the proportional-integral calculation module 72b, and the proportional-integral calculation module 72a can output a q-axis control current command i * sq after performing proportional-integral calculation, and the proportional-integral calculation module 72b can output another d-axis control current command i after performing proportional-integral calculation * sd .

在一實施例中,微電網控制器4可控制模式切換開關76c切換為併網模式(Mode I),使abc/dq座標軸轉換模組73根據電壓相角θ e 將輸出電流i sa i sb i sc 由三相轉換為q軸電流i sq 及d軸電流i sd 。之後,q軸控制電流命令i * sq 與q軸電流i sq 的比較結果(例如兩者之差,但不限於此)可輸入至比例積分計算模組72c以進行比例積分計算,而d軸控制電流命令i * sd 與d軸電流i sd 的比較結果(例如兩者之差,但不限於此)可輸入至比例積分計算模組72d以進行比例積分計算。 In one embodiment, the microgrid controller 4 can control the mode switch 76c to switch to the grid-connected mode (Mode I), so that the abc/dq coordinate axis conversion module 73 outputs currents isa and isb according to the voltage phase angle θe . , i sc are converted from three-phase to q-axis current i sq and d-axis current is sd . Afterwards, the comparison result of the q-axis control current command i * sq and the q-axis current i sq (such as the difference between the two, but not limited thereto) can be input to the proportional-integral calculation module 72c for proportional-integral calculation, while the d-axis control The comparison result of the current command i * sd and the d-axis current isd (eg, the difference between the two, but not limited thereto) can be input to the proportional-integral calculation module 72d for proportional-integral calculation.

在一實施例中,微電網控制器4可控制模式切換開關76d切換為併網模式(Mode I),而比例積分計算模組72c及比例積分計算模組72d的計算結果可輸入至dq/abc座標軸轉換模組74以進行座標轉換,進而形成三相控制訊號 u cona u conb u conc 。在一實施例中,三相控制訊號u cona u conb u conc 可透過正弦波脈波寬度調變模組75進行調變,並輸出至主要子系統5,進而達成主要子系統5的實功率及虛功率控制。 In one embodiment, the microgrid controller 4 can control the mode switch 76d to switch to the grid-connected mode (Mode I), and the calculation results of the proportional-integral calculation module 72c and the proportional-integral calculation module 72d can be input to dq/abc The coordinate axis conversion module 74 is used for coordinate conversion to form three-phase control signals u cona , u conb , and u conc . In one embodiment, the three-phase control signals u cona , u conb , and u conc can be modulated by the sine wave pulse width modulation module 75 and output to the main subsystem 5 , thereby achieving the actual operation of the main subsystem 5 . Power and virtual power control.

藉此,主要子系統5於併網模式時所進行的實功率及虛功率控制模式已可被理解。 In this way, the real power and imaginary power control modes performed by the main subsystem 5 in the grid-connected mode can be understood.

接著說明孤島運轉模式時,控制電路7的運作方式。 Next, the operation of the control circuit 7 in the island operation mode will be described.

在一實施例中,當主要子系統5執行孤島運轉模式時,靜態切換開關3斷開,因此由主要子系統5負責維持微電網系統1的供電電壓及頻率。 In one embodiment, when the main subsystem 5 executes the island operation mode, the static switch 3 is turned off, so the main subsystem 5 is responsible for maintaining the supply voltage and frequency of the microgrid system 1 .

在一實施例中,微電網控制器4可提供(例如管理者透過微電網控制器4進行設定)的一微電網線間電壓峰值命令V * ab,peak 及微電網頻率命令f *。此外,微電網控制器4可將各模式切換開關76a~76d切換為孤島運轉模式(Mode II)。 In one embodiment, the microgrid controller 4 can provide (eg, the administrator can set through the microgrid controller 4) a microgrid line-to-line voltage peak command V * ab,peak and a microgrid frequency command f * . In addition, the microgrid controller 4 can switch the mode switching switches 76a to 76d to the island operation mode (Mode II).

在一實施例中,微電網線間電壓峰值命令V * ab,peak 與微電網線間電壓峰值V ab,peak 的比較結果(例如兩者之差,但不限於此)可透過比例積分計算模組72a進行比例積分計算,進而形成q軸控制電流命令i * sq 。此外,微電網頻率命令f *與微電網頻率f的比較結果(例如兩者之差,但不限於此)可透過比例積分計算模組72b進行比例積分計算,進而形成d軸控制電流命令i * sd 。另外,微電網頻率命令f *可透過一角頻率計算模組78及一積分器79進行運算後而形成一電壓相角命令θ* e In one embodiment, the comparison result between the microgrid line-to-line voltage peak command V * ab,peak and the microgrid line-to-line voltage peak value V ab,peak (such as the difference between the two, but not limited to this) can be calculated by proportional integration. The group 72a performs proportional and integral calculations to form the q-axis control current command i * sq . In addition, the comparison result of the microgrid frequency command f * and the microgrid frequency f (for example, the difference between the two, but not limited to this) can be calculated by the proportional integral calculation module 72b, thereby forming the d-axis control current command i * sd . In addition, the microgrid frequency command f * can be calculated by an angular frequency calculation module 78 and an integrator 79 to form a voltage phase angle command θ * e .

在一實施例中,abc/dq座標軸轉換模組73根據電壓相角命令θ* e 將輸出電流i sa i sb i sc 由三相轉換為q軸電流i sq 及d軸電流i sd ,而q軸控制電流命令i * sq 與q軸電流i sq 的比較結果(例如兩者之差,但不限於此)可透過比例積分計算模組72c進行比例積分計算,d軸控制電流命令i * sd 與d軸電流i sd 的比較結果(例如兩者之差,但不限於此)可透過比例積分計算模組72d進行比例積分計算。 In one embodiment, the abc/dq coordinate axis conversion module 73 converts the output currents isa , isb , isc from three - phase into the q-axis current i sq and the d-axis current isd , according to the voltage phase angle command θ * e , The comparison result of the q-axis control current command i * sq and the q-axis current i sq (such as the difference between the two, but not limited to this) can be calculated by the proportional-integral calculation module 72c, and the d-axis control current command i * The comparison result of the sd and the d-axis current i sd (for example, the difference between the two, but not limited thereto) can be calculated by the proportional-integral calculation module 72d.

在一實施例中,比例積分計算模組72c及比例積分計算模組72d的計算結果可輸入至dq/abc座標軸轉換模組74以進行座標轉換,進而形成三相控制訊號u cona u conb u conc 。在一實施例中,三相控制訊號u cona u conb u conc 可透過正弦波脈波寬度調變模組75進行調變,並輸出至主要子系統5,進而達成主要子系統5的電壓及頻率控制。 In one embodiment, the calculation results of the proportional-integral calculation module 72c and the proportional-integral calculation module 72d can be input to the dq/abc coordinate axis conversion module 74 for coordinate conversion, thereby forming the three-phase control signals u cona , u conb , u conc . In one embodiment, the three-phase control signals u cona , u conb , and u conc can be modulated by the sine wave PWM module 75 and output to the main subsystem 5 , thereby achieving the voltage of the main subsystem 5 and frequency control.

藉此,主要子系統5於孤島運轉模式時所進行的電壓及頻率控制模式已可被理解。 In this way, the voltage and frequency control modes performed by the main subsystem 5 in the islanding mode can be understood.

接著說明併網模式及孤島運轉模式時,控制電路8的運作方式。圖5是本發明一實施例的微電網系統1的從屬子系統6的控制電路8的電路圖,並請同時參考圖1至圖4。 Next, the operation of the control circuit 8 in the grid-connected mode and the island operation mode will be described. FIG. 5 is a circuit diagram of the control circuit 8 of the slave subsystem 6 of the microgrid system 1 according to an embodiment of the present invention, and please refer to FIGS. 1 to 4 at the same time.

在一實施例中,從屬子系統6於執行併網模式及孤島運轉模式時,皆執行實功率及虛功率控制模式,且皆採用定功率控制。 In one embodiment, when the slave subsystem 6 executes the grid-connected mode and the islanding mode, both execute the real power and imaginary power control modes, and both use constant power control.

如圖5所示,控制電路8可包含一功率計算及鎖相迴路(power calculation and PLL)模組81、複數個比例積分計算(PI)模組82a~82b、一dq/abc座標軸轉換模組83、複數個比例(proportional,P)控制器84a~84c及一正弦波脈波寬度調變(SPWM)模組85。在一實施例中,上述各模組及開關可由電子電路來實現,且不限於此。此外,從屬子系統6為三相電網系統。 As shown in FIG. 5, the control circuit 8 may include a power calculation and phase-locked loop (power calculation and PLL) module 81, a plurality of proportional integral calculation (PI) modules 82a-82b, and a dq/abc coordinate axis conversion module. 83. A plurality of proportional (P) controllers 84 a ˜ 84 c and a sine wave pulse width modulation (SPWM) module 85 . In one embodiment, the above modules and switches can be implemented by electronic circuits, but not limited thereto. Furthermore, the slave subsystem 6 is a three-phase grid system.

控制電路8與從屬子系統6的連接方式可參考圖5的範例,但不限於此。 The connection between the control circuit 8 and the slave subsystem 6 may refer to the example of FIG. 5 , but is not limited thereto.

在一實施例中,當從屬子系統6執行併網模式或孤島運轉模式時,功率計算及鎖相迴路模組81可透過一電壓感應器量測從屬子系統6的系統端電壓V a V b V c ,以及取得從屬子系統6的輸出電流i su i sv i sw ,之後功率計算及鎖相迴路模組81可根據系統端電壓V a V b V c 及輸出電流i su i sv i sw 計算出從屬子系統6的實功率P p 、虛功率Q p 及電壓相角θ e In one embodiment, when the slave subsystem 6 executes the grid-connected mode or the island operation mode, the power calculation and phase-locked loop module 81 can measure the system terminal voltages Va and V of the slave subsystem 6 through a voltage sensor. b , V c , and obtain the output currents isu , isv , isw of the slave subsystem 6 , and then the power calculation and phase-locked loop module 81 can be based on the system terminal voltages Va , Vb , Vc and the output current i su , isv and isw calculate the real power P p , the imaginary power Q p and the voltage phase angle θ e of the slave subsystem 6 .

在一實施例中,一實功率命令P * p 與實功率P p 的比較結果(例如兩者之差,但不限於此)可輸入至比例積分計算模組82a以進行比例積分計算,而其計算結果可輸入至dq/abc座標軸轉換模組83。此外,一虛功率命令Q * p 與虛功率Q p 的比較結果(例如兩者之差,但不限於此)可輸入至比例積分計算模組82b以進行比例積分計算,而其計算結果亦可輸入至dq/abc座標軸轉換模組83。 In one embodiment, a comparison result of the real power command P * p and the real power Pp (such as the difference between the two, but not limited to this) can be input to the proportional integral calculation module 82a for proportional integral calculation, and its The calculation result can be input to the dq/abc coordinate axis conversion module 83 . In addition, a comparison result of the imaginary power command Q * p and the imaginary power Qp (such as the difference between the two, but not limited to this) can be input to the proportional-integral calculation module 82b for proportional-integral calculation, and the calculation result can also be Input to the dq/abc coordinate axis conversion module 83.

在一實施例中,dq/abc座標軸轉換模組83可根據電壓相角θ e 將比例積分計算模組82a及比例積分計算模組82b的計算結果轉換為三相控制電流命令i * su i * sv i * sw In one embodiment, the dq/abc coordinate axis conversion module 83 can convert the calculation results of the proportional-integral calculation module 82a and the proportional-integral calculation module 82b into three-phase control current commands i * su , i according to the voltage phase angle θ e . * sv , i * sw .

在一實施例中,三相控制電流命令i * su i * sv i * sw 與輸出電流i su i sv i sw 的比較結果(例如兩者之差,但不限於此)可分別透過比例控制器84a~84c進行比例調整,進而形成三相控制訊號u conu u conv u conw 。在一實施例中,三相控制訊號u conu u conv u conw 可透過正弦波脈波寬度調變模組85進行調變,並輸出至從屬子系統6,進而達成從屬子系統6的定功率控制。 In one embodiment , the comparison results of the three-phase control current commands i * su , i * sv , i * sw and the output currents isu , issv , isw (for example, the difference between the two, but not limited thereto) can be respectively The proportion is adjusted through the proportional controllers 84a-84c, thereby forming the three-phase control signals u conu , u conv , and u conw . In one embodiment, the three-phase control signals u conu , u conv , and u conw can be modulated by the sine wave pulse width modulation module 85 and output to the slave subsystem 6 , thereby achieving the determination of the slave subsystem 6 . Power Control.

藉此,從屬子系統6的實功率及虛功率控制模式已可被理解。 Thereby, the real power and imaginary power control modes of the slave subsystem 6 can be understood.

接著說明預同步判斷方法的細節。圖6是本揭露一實施例的預同步判斷方法(亦即微電網控制器4所執行的預同步判斷程序)的步驟流程圖,並請同時參考圖1至圖5。 Next, the details of the pre-synchronization determination method will be described. FIG. 6 is a flowchart of steps of a pre-synchronization determination method (ie, a pre-synchronization determination procedure executed by the microgrid controller 4 ) according to an embodiment of the present disclosure, and please refer to FIGS. 1 to 5 at the same time.

如圖6所示,首先步驟S61被執行,微電網控制器4判斷市電系統2是否已恢復正常供電。 As shown in FIG. 6 , first step S61 is executed, and the microgrid controller 4 determines whether the commercial power system 2 has resumed normal power supply.

假如否,則微電網控制器4使微電網系統1維持孤島運轉模式,且不導通預同步觸發程序開關77a,因此不啟動預同步預測模組77。 If not, the microgrid controller 4 keeps the microgrid system 1 in the island operation mode, and does not turn on the pre-synchronization trigger switch 77a, so the pre-synchronization prediction module 77 is not activated.

假如是,則步驟S62被執行,微電網控制器4使預同步觸發程序開關77a導通,使預同步預測模組77啟動,其中預同步預測模組77可取得微電網系統1的電壓相角命令θ* e 及市電系統2的電壓相角θ g If yes, then step S62 is executed, and the microgrid controller 4 turns on the pre-synchronization triggering program switch 77a to activate the pre-synchronization prediction module 77, wherein the pre-synchronization prediction module 77 can obtain the voltage phase angle command of the microgrid system 1 θ * e and the voltage phase angle θ g of the mains system 2 .

之後,步驟S63被執行,微電網控制器4控制預同步預測模組77對電壓相角命令θ* e 與市電電壓相角θ g 進行比較,並判斷電壓相角命令θ* e 與市電電壓相角θ g 之間的差異是否小於一預設值。 After that, step S63 is executed, the microgrid controller 4 controls the pre-synchronization prediction module 77 to compare the voltage phase angle command θ * e with the mains voltage phase angle θg, and judges that the voltage phase angle command θ * e is in phase with the mains voltage . Whether the difference between the angles θ g is less than a predetermined value.

當電壓相角命令θ* e 與市電電壓相角θ g 之間的差異小於預設值時,表示微電網系統1與市電系統2的供電有同步,此時步驟S64被執行,微電網控制器4可使微電網系統1從孤島運轉模式切換成併網模式。 When the difference between the voltage phase angle command θ * e and the mains voltage phase angle θg is less than the preset value, it means that the power supply of the microgrid system 1 and the mains system 2 are synchronized. At this time, step S64 is executed, and the microgrid controller 4. The microgrid system 1 can be switched from the island operation mode to the grid-connected mode.

反之,當電壓相角命令θ* e 與市電電壓相角θ g 之間的差異大於或等於預設值時,表示微電網系統1與市電系統2的供電並未同步,此時步驟S65被執行,微電網控制器4可執行一角頻率補償程序來更新電壓相角命令θ* e 。之後,重新執行步驟S63至步驟S65,直至微電網系統1電壓相角命令θ* e 及市電電壓相角θ g 之間的差異小於預設值。藉此,預同步判斷方法可完成。 On the contrary, when the difference between the voltage phase angle command θ * e and the mains voltage phase angle θg is greater than or equal to the preset value, it means that the power supply of the microgrid system 1 and the mains system 2 is not synchronized, and step S65 is executed at this time. , the microgrid controller 4 can execute a corner frequency compensation program to update the voltage phase angle command θ * e . After that, steps S63 to S65 are re-executed until the difference between the voltage phase angle command θ * e of the microgrid system 1 and the mains voltage phase angle θg is smaller than the preset value. Thereby, the pre-synchronization determination method can be completed.

關於步驟S62,在一實施例中,電壓相角命令θ* e 可藉由將微電網頻率命令f *透過角頻率計算模組78及積分器79進行運算後而形成,且不限於此。 Regarding step S62, in one embodiment, the voltage phase angle command θ * e can be formed by calculating the microgrid frequency command f * through the angular frequency calculation module 78 and the integrator 79, but is not limited thereto.

關於步驟S63,在一實施例中,微電網控制器4可控制預同步預測模組77計算出電壓相角命令θ* e 與市電電壓相角θ g 之間的差值,並判斷電壓相角命令θ* e 與市電電壓相角θ g 之間的差值的絕對值是否小於預設值。在一實施例中,預設值可介於0.5至5度之間(亦即0.5度

Figure 110120950-A0305-02-0013-7
預設值
Figure 110120950-A0305-02-0013-8
5度),且不限於此。在一實施例中,預設值可介於0.5至2.5度之間(亦即0.5度
Figure 110120950-A0305-02-0013-9
預設值
Figure 110120950-A0305-02-0013-10
2.5度),且不限於此。在一實施例中,預設值可介於0.5至1.5度之間(亦即0.5度
Figure 110120950-A0305-02-0013-11
預設值
Figure 110120950-A0305-02-0013-12
1.5度),且不限於此。在一實施例中,預設值可介於0.5至1度之間(亦即0.5度
Figure 110120950-A0305-02-0013-13
預設值
Figure 110120950-A0305-02-0013-14
1度),且不限於此。在一實施例中,預設值可為1度,且不限於此。 Regarding step S63, in one embodiment, the microgrid controller 4 can control the pre-synchronization prediction module 77 to calculate the difference between the voltage phase angle command θ * e and the mains voltage phase angle θg , and determine the voltage phase angle Whether the absolute value of the difference between the command θ * e and the mains voltage phase angle θg is less than the preset value. In one embodiment, the default value may be between 0.5 and 5 degrees (ie, 0.5 degrees
Figure 110120950-A0305-02-0013-7
default value
Figure 110120950-A0305-02-0013-8
5 degrees), and not limited thereto. In one embodiment, the default value may be between 0.5 and 2.5 degrees (ie, 0.5 degrees
Figure 110120950-A0305-02-0013-9
default value
Figure 110120950-A0305-02-0013-10
2.5 degrees), and not limited thereto. In one embodiment, the default value may be between 0.5 and 1.5 degrees (ie, 0.5 degrees
Figure 110120950-A0305-02-0013-11
default value
Figure 110120950-A0305-02-0013-12
1.5 degrees), and not limited thereto. In one embodiment, the default value may be between 0.5 and 1 degree (ie, 0.5 degree
Figure 110120950-A0305-02-0013-13
default value
Figure 110120950-A0305-02-0013-14
1 degree), and not limited thereto. In one embodiment, the default value may be 1 degree, but is not limited thereto.

關於步驟S65,在一實施例中,在角頻率補償程序下,微電網控制器4可控制預同步預測模組77,在微電網頻率命令f *的目前角頻率值ω中加入 一額外角頻率值,以取得一更新角頻率值,之後再透過積分來更新電壓相角命令θ* e 。在一實施例中,額外角頻率值可呈現為下列方程式:△W d (N+1)=△W d (N)+T;其中△W d (N+1)為額外角頻率值,△W d (N)為目前角頻率值,T為調整角頻率參數,N為角頻率補償程序的執行次數,且為大於1的整數(例如本次執行若為N次,下次執行則為N+1次,並依此類推)。在一實施例中,調整參角頻率數(T)可為0.01rad/s,且不限於此。 Regarding step S65, in one embodiment, under the angular frequency compensation procedure, the microgrid controller 4 can control the pre-synchronization prediction module 77 to add an additional angular frequency to the current angular frequency value ω of the microgrid frequency command f * value to obtain an updated angular frequency value, and then update the voltage phase angle command θ * e through integration. In one embodiment, the additional angular frequency value can be represented by the following equation: ΔW d ( N +1 )=Δ W d ( N )+T; where Δ W d ( N +1) is the additional angular frequency value, Δ W d ( N ) is the current angular frequency value, T is the adjustment angular frequency parameter, N is the execution times of the angular frequency compensation program, and is an integer greater than 1 (for example, if the current execution is N times, the next execution is N +1 and so on). In one embodiment, the adjustment parameter frequency (T) may be 0.01 rad/s, but is not limited thereto.

藉此,可完成微電網系統1與市電系統2之間的預同步判斷,以及即時調整微電網系統1,使微電網系統1與市電系統2完成預同步。 In this way, the pre-synchronization judgment between the micro-grid system 1 and the mains system 2 can be completed, and the micro-grid system 1 can be adjusted in real time, so that the micro-grid system 1 and the mains system 2 can complete the pre-synchronization.

藉此,本發明提供了改良的微電網系統1及預同步判斷方法,可解決現有技術的問題。 Thereby, the present invention provides an improved microgrid system 1 and a pre-synchronization determination method, which can solve the problems of the prior art.

本發明各實施例間的特徵只要不違背發明精神或相衝突,均可任意混合搭配使用。 The features of the various embodiments of the present invention can be arbitrarily mixed and matched as long as they do not violate the spirit of the invention or conflict with each other.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-mentioned embodiments are only examples for convenience of description, and the scope of the claims claimed in the present invention should be based on the scope of the patent application, rather than being limited to the above-mentioned embodiments.

1:微電網系統 1: Microgrid system

2:市電系統 2: Mains system

3:靜態切換開關 3: Static toggle switch

4:微電網控制器 4: Microgrid Controller

5:主要子系統 5: Main Subsystems

6:從屬子系統 6: Slave subsystem

Claims (7)

一種微電網系統,用於與一市電系統連結,包含:一主要子系統;至少一從屬子系統;以及一微電網控制器,控制該主要子系統及該從屬子系統的運作,以執行一併網模式或一孤島運轉模式;其中,當從該孤島運轉模式準備切換成該併網模式時,該微電網控制器更執行一預同步判斷程序,以根據該微電網系統與該市電系統的相位差判斷是否切換成該併網模式;其中於併網模式下,該主要子系統及該至少一從屬子系統執行一實功率及虛功率控制模式,於該孤島運轉模式下,該主要子系統執行一電壓及頻率控制模式,該至少一從屬子系統執行一實功率及虛功率控制模式;其中於該預同步判斷程序中,該微電網控制器將該微電網系統於該孤島運轉模式下的一角度命令與該市電系統的一電壓相角進行比較,其中該角度命令是根據該微電網系統於該孤島運轉模式下的一微電網頻率命令的一目前角頻率值所取得的。 A micro-grid system for connecting with a mains system, comprising: a main subsystem; at least one sub-system; and a micro-grid controller to control the operation of the main sub-system and the sub-system to execute a combination of grid mode or an islanding operation mode; wherein, when preparing to switch from the islanding operation mode to the grid-connected mode, the microgrid controller further executes a pre-synchronization judgment procedure to determine the phase between the microgrid system and the mains system according to the The difference determines whether to switch to the grid-connected mode; wherein in the grid-connected mode, the main subsystem and the at least one subordinate subsystem execute a real power and imaginary power control mode, and in the island operation mode, the main subsystem executes a voltage and frequency control mode, the at least one slave subsystem executes a real power and imaginary power control mode; wherein in the pre-synchronization determination procedure, the microgrid controller places the microgrid system in a state of the islanding operation mode The angle command is compared with a voltage phase angle of the mains system, wherein the angle command is obtained according to a current angular frequency value of a microgrid frequency command of the microgrid system in the island operation mode. 如請求項1所述的微電網系統,其中當該微電網系統的該角度命令及該市電電壓相角之間的差值的絕對值小於一預設值時,該微電網控制器執行該併網模式;當該微電網系統的該角度命令及該市電電壓相角之間的差值的絕對值大於或等於該預設值時,該微電網控制器持續執行一角頻率補償程序來更新該角度命令,直至該微電網系統的該角度命令及該市電電壓相角之間的差值的絕對值小於該預設值。 The microgrid system according to claim 1, wherein when the absolute value of the difference between the angle command of the microgrid system and the phase angle of the mains voltage is less than a preset value, the microgrid controller executes the parallel grid mode; when the absolute value of the difference between the angle command of the microgrid system and the mains voltage phase angle is greater than or equal to the preset value, the microgrid controller continues to execute a corner frequency compensation program to update the angle command until the absolute value of the difference between the angle command of the microgrid system and the mains voltage phase angle is less than the preset value. 如請求項2所述的微電網系統,其中在該角頻率補償程序下,該微電網控制器在該微電網頻率命令的該目前角頻率值中加入一額外角頻率值,以取得一更新角頻率值,進而更新該角度命令。 The microgrid system of claim 2, wherein under the angular frequency compensation procedure, the microgrid controller adds an additional angular frequency value to the current angular frequency value of the microgrid frequency command to obtain an updated angular frequency frequency value to update the angle command. 如請求項3所述的微電網系統,其中該額外角頻率值呈現為:△W d (N+1)=△W d (N)+T;其中△W d (N+1)為額外角頻率值,△W d (N)為目前角頻率值,T為調整角頻率參數,N為該角頻率補償程序執行的次數,且為大於1的整數。 The microgrid system of claim 3, wherein the additional angular frequency value is presented as: Δ W d ( N +1 )=Δ W d ( N )+T; wherein Δ W d ( N +1) is the additional angular Frequency value, △ W d ( N ) is the current angular frequency value, T is the adjusted angular frequency parameter, N is the number of times the angular frequency compensation program is executed, and is an integer greater than 1. 一種預同步判斷方法,用於一微電網系統中,其中該微電網系統用於與一市電系統連結,並包含一主要子系統、至少一從屬子系統及一微電網控制器,且該微電網控制器藉由控制該主要子系統及該從屬子系統的運作,以執行一併網模式或一孤島運轉模式,其中該方法包含步驟:該微電網控制器預備從該孤島運轉模式切換為該併網模式;該微電網控制器根據該微電網系統於該孤島運轉模式下的一微電網頻率命令或一角頻率值取得一角度命令;該微電網控制器比較該角度命令及該市電系統的一市電電壓相角;以及該微電網控制器根據該角度命令及該市電系統的該市電電壓相角的比較結果決定是否切換成該併網模式。 A pre-synchronization judgment method is used in a micro-grid system, wherein the micro-grid system is used for connecting with a commercial power system, and includes a main subsystem, at least one slave subsystem and a micro-grid controller, and the micro-grid system The controller controls the operation of the main subsystem and the slave subsystem to execute a grid-connected mode or an islanding operation mode, wherein the method includes the step of: the microgrid controller prepares to switch from the islanding operation mode to the paralleling operation mode grid mode; the microgrid controller obtains an angle command according to a microgrid frequency command or a corner frequency value of the microgrid system in the island operation mode; the microgrid controller compares the angle command with a mains power of the mains system voltage phase angle; and the microgrid controller determines whether to switch to the grid-connected mode according to the angle command and the comparison result of the mains voltage phase angle of the mains system. 如請求項5所述的方法,其中當該角度命令及該市電電壓相角之間的差值的絕對值小於一預設值時,該微電網控制器執行該併網模式,反之,持續進行一角頻率補償程序來更新該角度命令,直至該角度命令及該相角之間的差值的絕對值小於該預設值。 The method of claim 5, wherein when the absolute value of the difference between the angle command and the mains voltage phase angle is less than a preset value, the microgrid controller executes the grid-connected mode, and otherwise, continues to perform An angle frequency compensation program is used to update the angle command until the absolute value of the difference between the angle command and the phase angle is smaller than the preset value. 如請求項6所述的方法,其中在該角頻率補償程序下,該微電網控制器在該微電網頻率命令的一目前角頻率值中加入一額外角頻率值,以取得一更新角頻率值,進而更新該角度命令。 The method of claim 6, wherein under the angular frequency compensation procedure, the microgrid controller adds an additional angular frequency value to a current angular frequency value of the microgrid frequency command to obtain an updated angular frequency value , which in turn updates the angle command.
TW110120950A 2021-06-09 2021-06-09 Micro grid system and pre-synchronization estimation method TWI773372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110120950A TWI773372B (en) 2021-06-09 2021-06-09 Micro grid system and pre-synchronization estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110120950A TWI773372B (en) 2021-06-09 2021-06-09 Micro grid system and pre-synchronization estimation method

Publications (2)

Publication Number Publication Date
TWI773372B true TWI773372B (en) 2022-08-01
TW202249383A TW202249383A (en) 2022-12-16

Family

ID=83806989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120950A TWI773372B (en) 2021-06-09 2021-06-09 Micro grid system and pre-synchronization estimation method

Country Status (1)

Country Link
TW (1) TWI773372B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201041267A (en) * 2009-05-04 2010-11-16 Univ Yuan Ze Intelligent hybrid power conversion control system
CN103022994A (en) * 2012-12-10 2013-04-03 上海市电力公司 Method for achieving fault isolation and recovery of power distribution network with permeability distribution type power supply
TW201318297A (en) * 2011-10-27 2013-05-01 Atomic Energy Council Energy storage system in microgrid for mode transfer
WO2014067187A1 (en) * 2012-11-05 2014-05-08 深圳航天科技创新研究院 Mixed initiative and anti-islanding detection method and system
TW201517461A (en) * 2013-10-29 2015-05-01 Iner Aec Executive Yuan Detecting device for switching mode of micro-grid energy storage system
CN108599153A (en) * 2018-05-10 2018-09-28 国网江苏省电力有限公司徐州供电分公司 A kind of off-network for low pressure flexibility supplying power allocation system turns grid-connected Phase angle control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201041267A (en) * 2009-05-04 2010-11-16 Univ Yuan Ze Intelligent hybrid power conversion control system
TW201318297A (en) * 2011-10-27 2013-05-01 Atomic Energy Council Energy storage system in microgrid for mode transfer
WO2014067187A1 (en) * 2012-11-05 2014-05-08 深圳航天科技创新研究院 Mixed initiative and anti-islanding detection method and system
CN103022994A (en) * 2012-12-10 2013-04-03 上海市电力公司 Method for achieving fault isolation and recovery of power distribution network with permeability distribution type power supply
TW201517461A (en) * 2013-10-29 2015-05-01 Iner Aec Executive Yuan Detecting device for switching mode of micro-grid energy storage system
CN108599153A (en) * 2018-05-10 2018-09-28 国网江苏省电力有限公司徐州供电分公司 A kind of off-network for low pressure flexibility supplying power allocation system turns grid-connected Phase angle control method

Also Published As

Publication number Publication date
TW202249383A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
Chen et al. Design of parallel inverters for smooth mode transfer microgrid applications
Sajadian et al. Model predictive control of dual-mode operations Z-source inverter: Islanded and grid-connected
Karimi-Ghartemani Universal integrated synchronization and control for single-phase DC/AC converters
US6239997B1 (en) System for connecting and synchronizing a supplemental power source to a power grid
Lee et al. A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings
US6693809B2 (en) Device for equal-rated parallel operation of single-or three-phase voltage sources
WO2015070493A1 (en) Island switching control method for modular multi-level converter
US9705419B2 (en) Control signal generating system and inverter control device thereof for improving grid stability
CN104767415B (en) A kind of control method for parallel of three-phase four-leg inverter
KR101804469B1 (en) UPS having 3 Phase 4 wire inverter with 3-leg
US9853537B2 (en) Multilevel converter for power factor correction and associated operating method
US9935463B2 (en) Redundant point of common coupling (PCC) to reduce risk of microgrid's islanding
KR102281416B1 (en) Uninterruptible power supplies, and test methods for uninterruptible power supplies
KR20160031114A (en) Power System Control Method for Operation With Grid-Connection and Isolation
TWI773372B (en) Micro grid system and pre-synchronization estimation method
CN111555343B (en) Universal distributed control method and system for cascading inverter
WO2014034427A1 (en) Static variable compensator and voltage-control method
US20230006535A1 (en) Controlling a cascaded multilevel converter
Guan et al. Hierarchical controlled grid-connected microgrid based on a novel autonomous current sharing controller
Khayat et al. Communication-less optimal frequency control of islanded microgrids
WO2017069746A1 (en) Grid-forming inverter synchronization for connection to a power grid
Bose et al. Control schemes for intentional islanding operation of distributed generation
Ahmed et al. Autonomous adaptive sensorless controller of inverter-based islanded-distributed generation system
Thacker Control of power conversion systems for the intentional islanding of distributed generation units
JP2004140909A (en) Control method of parallel connection self-excited ac power supply