JP2004140909A - Control method of parallel connection self-excited ac power supply - Google Patents

Control method of parallel connection self-excited ac power supply Download PDF

Info

Publication number
JP2004140909A
JP2004140909A JP2002302079A JP2002302079A JP2004140909A JP 2004140909 A JP2004140909 A JP 2004140909A JP 2002302079 A JP2002302079 A JP 2002302079A JP 2002302079 A JP2002302079 A JP 2002302079A JP 2004140909 A JP2004140909 A JP 2004140909A
Authority
JP
Japan
Prior art keywords
voltage
power supply
excited
source
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302079A
Other languages
Japanese (ja)
Other versions
JP4110467B2 (en
Inventor
Mikisuke Fujii
藤井 幹介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002302079A priority Critical patent/JP4110467B2/en
Publication of JP2004140909A publication Critical patent/JP2004140909A/en
Application granted granted Critical
Publication of JP4110467B2 publication Critical patent/JP4110467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel AC power supply system of a master-slave system in which an electric power is stably supplied to a load even if a master stops due to failure, etc. <P>SOLUTION: In this control method, an inverter 2a and a controller 9a, for example, operate as a voltage source (master) while inverters 2b and 2c and controllers 9b and 9c operate as a current source (slave). Here, a fluctuation tolerance range for a different frequency and voltage effective value is set for each current source, and if a frequency or voltage at a grid point exceeds the fluctuation tolerable range, the voltage source is judged to be defective. And a corresponding controller switches function so that a corresponding inverter operates as a voltage source, resulting in allowing a stable power to be supplied to a load. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、直流電圧を交流電圧に変換する自励式交流電源装置の制御方式に関する。
【0002】
【従来の技術】
直流電圧を交流電圧に変換する方式には、例えば図7に示すような、自己消弧形スイッチング素子3にダイオード4を逆並列接続した電圧形インバータ2a〜2cを用いる自励式変換方式がある。同図のインバータは交流リアクトル5a〜5cと交流遮断器6a〜6cを介して交流電圧母線に接続され、負荷8に電力を供給する。この電圧形インバータには定格電圧,定格周波数で電圧源として動作するモードと、電流を所定の値となるように電圧を変化させる電流源として動作するモードがある。複数の電圧形インバータを並列接続し、1台を電圧源として動作させ、その他を電流源として動作させる方式があり、マスタスレーブ方式と呼ばれている。
【0003】
このようなマスタスレーブ方式で、各電圧形インバータを制御する制御方式として、従来図8に示すものが知られている(例えば、非特許文献1参照)。
図8では、マスタとなるインバータはマスタ制御部41(マスタとなるインバータを2aとすれば制御器9a)により、また、スレーブとなるインバータはスレーブ制御部42(スレーブとなるインバータを2b…2cとすれば制御器9b…9c)によりそれぞれ制御される。
【0004】
マスタ制御部41では、基準周波数25を積分器31で積分し、正弦関数器32により正弦関数を求め、基準電圧実効値30にゲイン演算器43でゲインを掛けた値に、求められた上記正弦関数をさらに掛け算器33で掛け合わせて電圧指令を生成する。この電圧指令と電圧検出器12を介して検出される連系点電圧との偏差を電圧調節器(AVR)34に入力し、その出力と上記電圧指令との和と別途与えられるキャリア36とを用いて、PWM(パルス幅変調)演算器39によりゲートパルスを生成し、連系点での電圧が定格電圧,定格周波数となるようにする。
【0005】
一方、スレーブ制御部42は、図7の負荷電流検出器7と割り算器10により求めた負荷電流の1/Nの値(37)と、電流検出器11b…11cで求めた出力電流との偏差を電流調節器(ACR)38に入力し、その出力と連系点電圧との和と別途与えられるキャリア36とを用いて、PWM(パルス幅変調)演算器39によりゲートパルスを生成する。
なお、マスタとスレーブの切り替えはここでは切替スイッチ35により行なわれるが、その切り替えを装置停止後などに手動または自動による切り替え信号40により行なうことは常識的に行なわれている。
【0006】
【非特許文献1】
「コンビネーション ボルテージ−コントロールド アンド カレント−コントロールド アンド ピーダブリュエム インバーターズ フォア ユーピーエス パラレル オペレーション」アイイーイーイー トランザクションオン パワー エレクトロニクス、ボリューム10、ナンバー5、セプテンバー1995、ページ547−557(「Combination Voltage−Controlled and Current−Controlled PWM Inverters for UPS Parallel Operation」IEEE TRANSACTION ON POWER ELECTRONICS」VOL.10、NO.5、SEPTEMBER1995、p.547−557)
【0007】
【発明が解決しようとする課題】
しかしながら、上記のようなマスタスレーブ方式による並列交流電源システムにおいて、マスタが故障により停止すると、スレーブを停止させて全ての遮断器(6a〜6c)を開放してしまうので、負荷に供給される電圧は完全に0となり、次にマスタが起動するまで電力を供給できなくなると言う問題が生じる。
したがって、この発明の課題は、マスタが停止した場合でも、負荷に安定に電力を供給することにある。
【0008】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、直流電圧を交流電圧に変換する複数の自励式交流電源装置を交流側で並列接続し、そのうちの1台の交流電源装置を電圧源、他の交流電源装置を電流源としてそれぞれ動作させる並列接続自励式交流電源装置において、
電流源として動作する各交流電源装置の連系点での周波数変動許容範囲および電圧実効値変動許容範囲を互いに異ならせ、少なくとも一方の範囲を逸脱した交流電源装置を電圧源として動作させることを特徴とする。
【0009】
請求項2の発明では、直流電圧を交流電圧に変換する複数の自励式交流電源装置を交流側で並列接続し、そのうちの1台の交流電源装置を電圧源、他の交流電源装置を電流源としてそれぞれ動作させる並列接続自励式交流電源装置において、
電流源として動作する各交流電源装置の連系点での周波数変動許容範囲を互いに異ならせ、この範囲を逸脱した交流電源装置を電圧源として動作させることを特徴とする。
【0010】
請求項3の発明では、直流電圧を交流電圧に変換する複数の自励式交流電源装置を交流側で並列接続し、そのうちの1台の交流電源装置を電圧源、他の交流電源装置を電流源としてそれぞれ動作させる並列接続自励式交流電源装置において、
電流源として動作する各交流電源装置の連系点での電圧実効値変動許容範囲を互いに異ならせ、この範囲を逸脱した交流電源装置を電圧源として動作させることを特徴とする。
【0011】
上記請求項1または2の発明においては、最初に電圧源に切り替わる電流源の周波数変動許容範囲を最も狭くすることができ(請求項4の発明)、または、前記電流源を電圧源に切り替える場合は、切替え時点の周波数から規定の周波数へと徐々に戻すことができる(請求項6の発明)。
上記請求項1または3の発明においては、最初に電圧源に切り替わる電流源の電圧実効値変動許容範囲を最も狭くすることができ(請求項5の発明)、または、前記電流源を電圧源に切り替える場合は、切替え時点の電圧実効値から規定の電圧実効値へと徐々に戻すことができる(請求項7の発明)。
【0012】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。
電流源として動作する電圧形インバータでは、通常時は従来の場合と同様に、電流指令37と出力電流との偏差を電流調節器38に入力し、その出力と連系点電圧との和が選択されるように切り替えスイッチ35が動作し、これとキャリア36とでPWM演算を行なっている。
【0013】
このような構成において、マスタが停止したことを検出するために、連系点電圧をフェーズロックドループ回路(PLL:位相同期回路)20に入力し、その出力である周波数と周波数許容値21とを比較器22で比較するとともに、実効値演算器26の出力と電圧実効値許容値27とを比較器28により、それぞれ比較する。
【0014】
PLL回路20は例えば図2に詳細に示すように、基準信号45と周波数現在値48を積分器51にて積分した信号との位相差を位相比較器49で求め、その出力を調節器50に入力した後基準周波数47と加算することにより周波数現在値48を求める。
一方、実効値演算器26は例えば図3に示すように、電圧検出値55を二乗演算器58に入力し、その出力を平方根演算器59に入力して実効値を求め、さらにこの実効値をホールド回路60に入力して、これをホールド信号56で保持するようにしている。
【0015】
上記比較器22,28の出力は論理和演算回路23に入力され、周波数または電圧実効値の少なくとも一方が許容範囲を越えた場合は、切り替え器35を切り替えて電圧源として動作する。このとき、PLL回路20の調節器用ホールド信号46と、ホールド回路60のホールド信号56が出力される。
【0016】
ホールドされた現在の周波数と基準周波数25との偏差はランプ関数発生器(HLR)24に入力され、この出力と基準周波数25との和を積分器31で積分し、さらに正弦関数器32を用いて正弦関数を求める。また、上記ホールドされた電圧実効値と基準電圧実効値30との偏差はHLR29に入力され、その出力と基準電圧実効値30との和をゲイン演算器43によって振幅値とし、これに上記関数器32からの正弦関数を掛けて電圧指令を生成する。この電圧指令と連系点電圧との偏差を電圧調節器34に入力し、その出力と上記電圧指令との和と別途与えられるキャリア36とを用いて、PWM演算器39によりゲートパルスを生成する。なお、HLR24,29の入出力特性を図4に示す。つまり、ホールドされた現在の周波数または電圧実効値は、切り替え時点の各値から徐々に基準周波数または基準電圧実効値へと戻すように制御されることになる。
【0017】
以上で、通常時にスレーブとして動作する電圧形インバータの動作を説明したが、このとき周波数および電圧実効値の許容変動範囲を、各電圧形インバータごとに互いに異ならせるようにする。したがって、図5のように電流源から電圧源への切り替えを周波数変動範囲のみで実施する場合は、各電圧形インバータごとに周波数変動範囲を、また、図6のように電流源から電圧源への切り替えを電圧実効値変動範囲のみで実施する場合は、各電圧形インバータごとに電圧実効値変動範囲を変えるものであり、この許容範囲によって複数の電流源の起動優先順位を決める、例えば、最初に切り替える電流源の許容範囲を最も狭くし、順次許容範囲を広げて行くようにする。なお、図5,図6のその他の構成は図1と同様であるので、説明は省略する。
【0018】
【発明の効果】
この発明によれば、マスタスレーブ方式で並列接続される電圧形インバータにおいて、マスタが停止した場合でも負荷への電力供給を安定に行なうことが可能となり、電圧の位相とび,振幅とびのない運転を継続することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す構成図
【図2】図1のPLL回路の詳細例を示すブロック図
【図3】図1の電圧実効値演算回路の詳細例を示すブロック図
【図4】図1のランプ関数発生器(HLR)の特性説明図
【図5】この発明の第2の実施の形態を示す構成図
【図6】この発明の第3の実施の形態を示す構成図
【図7】従来のマスタスレーブ方式を示す構成図
【図8】図7のマスタ制御部,スレーブ制御部を示す詳細構成図
【符号の説明】
1a〜1c…直流電源、2a〜2c…電圧形インバータ、3…自己消弧素子、4…ダイオード、5a〜5c…交流リアクトル、6a〜6c…交流遮断器、7…負荷電流検出器、8…負荷、9a〜9c…制御器、10…割り算器、11a〜11c…出力電流検出器、12a〜12c…電圧検出器、20…PLL(フェーズロックドループ回路:位相同期回路)、21…周波数許容値、22…周波数比較器、23…論理和演算器、24,29…ランプ関数発生器(HLR)、25,47…基準周波数、26…電圧実効値演算器、27…電圧実効値許容値、28…電圧実効値比較器、30…基準電圧実効値、31,51…積分器、32…正弦波関数発生器、33…掛け算器、34…電圧調節器(AVR)、35…切り替え器、36…キャリア、37…出力電流指令、38…電流調節器(ACR)、39…PWM演算器、40…切り替え信号、41…マスタ制御部、42…スレーブ制御部、43…ゲイン演算器、45…同期基準信号、46…演算器ホールド信号、48…周波数現在値、49…位相比較器、50…調節器、55…電圧検出値、56…ホールド信号、57…電圧振幅値、58…二乗演算器、59…平方根演算器、60…ホールド回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control system for a self-excited AC power supply that converts a DC voltage into an AC voltage.
[0002]
[Prior art]
As a method of converting a DC voltage to an AC voltage, for example, there is a self-excited conversion method using voltage-type inverters 2a to 2c in which a diode 4 is connected in anti-parallel to a self-extinguishing type switching element 3, as shown in FIG. The inverter shown in the figure is connected to an AC voltage bus via AC reactors 5a to 5c and AC circuit breakers 6a to 6c, and supplies power to a load 8. The voltage-source inverter has a mode in which it operates as a voltage source at a rated voltage and a rated frequency, and a mode in which it operates as a current source that changes a voltage so that a current has a predetermined value. There is a system in which a plurality of voltage-source inverters are connected in parallel, one is operated as a voltage source, and the other is operated as a current source, which is called a master-slave system.
[0003]
As a control method for controlling each voltage source inverter in such a master-slave method, a control method shown in FIG. 8 is conventionally known (for example, see Non-Patent Document 1).
In FIG. 8, the master inverter is a master controller 41 (controller 9a if the master inverter is 2a), and the slave inverter is a slave controller 42 (the slave inverters are 2b... 2c). Then, they are controlled by the controllers 9b... 9c).
[0004]
The master controller 41 integrates the reference frequency 25 with the integrator 31, finds a sine function with the sine function unit 32, and multiplies the reference voltage effective value 30 by the gain with the gain calculator 43 to obtain the sine function. The function is further multiplied by a multiplier 33 to generate a voltage command. The deviation between the voltage command and the interconnection point voltage detected via the voltage detector 12 is input to a voltage regulator (AVR) 34, and the output thereof and the sum of the voltage command and a separately provided carrier 36 are output. The gate pulse is generated by the PWM (pulse width modulation) calculator 39 so that the voltage at the interconnection point becomes the rated voltage and the rated frequency.
[0005]
On the other hand, the slave control unit 42 calculates the deviation between the 1 / N value (37) of the load current obtained by the load current detector 7 and the divider 10 in FIG. 7 and the output current obtained by the current detectors 11b. Is input to a current controller (ACR) 38, and a gate pulse is generated by a PWM (pulse width modulation) calculator 39 using the sum of the output of the current controller 38 and the interconnection point voltage and a separately provided carrier 36.
Here, the switching between the master and the slave is performed by the changeover switch 35, but it is common sense to perform the switching by the manual or automatic switching signal 40 after the apparatus stops.
[0006]
[Non-patent document 1]
"Combination Voltage-Controlled and Current-Controlled and PW Bluetooth Inverters for UPS Parallel Operation" IEE Transaction on Power Electronics, Volume 10, Number 5, September 1995, pp. 547-557 ("Combination Voltage-Controlled"). and Current-Controlled PWM Inverters for UPS Parallel Operation "IEEE TRANSACTION ON POWER ELECTRONICS" VOL.10, NO.5, SEPTEMBER1995, p.547-557)
[0007]
[Problems to be solved by the invention]
However, in the above-described master-slave parallel AC power supply system, if the master stops due to a failure, the slave is stopped and all the circuit breakers (6a to 6c) are opened. Becomes completely 0, and power cannot be supplied until the next time the master is started.
Therefore, an object of the present invention is to stably supply power to a load even when a master stops.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, a plurality of self-excited AC power supply devices for converting a DC voltage to an AC voltage are connected in parallel on the AC side, and one of the AC power supply devices is connected to a voltage source. In a parallel-connected self-excited AC power supply that operates each of the other AC power supplies as a current source,
The frequency variation allowable range and the voltage effective value variation allowable range at the interconnection point of each AC power supply device operating as a current source are different from each other, and the AC power supply device deviating from at least one of the ranges is operated as a voltage source. And
[0009]
According to the invention of claim 2, a plurality of self-excited AC power supplies for converting a DC voltage to an AC voltage are connected in parallel on the AC side, one of the AC power supplies is a voltage source, and the other AC power supply is a current source. In a parallel-connected self-excited AC power supply that operates as
The present invention is characterized in that the allowable range of the frequency variation at the interconnection point of each AC power supply device operating as a current source is different from each other, and the AC power supply device outside this range is operated as a voltage source.
[0010]
According to the third aspect of the present invention, a plurality of self-excited AC power supplies for converting a DC voltage to an AC voltage are connected in parallel on the AC side, and one of the AC power supplies is a voltage source and the other AC power supply is a current source. In a parallel-connected self-excited AC power supply that operates as
The present invention is characterized in that the permissible ranges of voltage effective value fluctuation at the interconnection point of each AC power supply device operating as a current source are different from each other, and an AC power supply device outside this range is operated as a voltage source.
[0011]
According to the first or second aspect of the present invention, the allowable range of the frequency variation of the current source which is first switched to the voltage source can be minimized (the invention of claim 4), or the current source is switched to the voltage source. Can be gradually returned from the frequency at the time of switching to the prescribed frequency (the invention of claim 6).
According to the first or third aspect of the present invention, the allowable range of the effective voltage variation of the current source which is first switched to the voltage source can be minimized (the invention of claim 5), or the current source can be used as the voltage source. In the case of switching, it is possible to gradually return from the voltage effective value at the time of switching to a prescribed voltage effective value (the invention of claim 7).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
In a voltage source inverter that operates as a current source, the deviation between the current command 37 and the output current is input to the current regulator 38 as in the conventional case, and the sum of the output and the interconnection point voltage is selected. The changeover switch 35 is operated so that the PWM operation is performed between the changeover switch 35 and the carrier 36.
[0013]
In such a configuration, in order to detect that the master has stopped, the interconnection point voltage is input to a phase locked loop circuit (PLL: phase locked loop circuit) 20, and the output frequency and the allowable frequency value 21 are output. In addition to the comparison by the comparator 22, the output of the effective value calculator 26 and the voltage effective value allowable value 27 are compared by the comparator 28.
[0014]
As shown in detail in FIG. 2, for example, the PLL circuit 20 obtains a phase difference between the reference signal 45 and a signal obtained by integrating the current frequency value 48 by the integrator 51 with the phase comparator 49, and outputs the output to the controller 50. After the input, the current value 48 is obtained by adding the reference frequency 47 to the current frequency 48.
On the other hand, as shown in FIG. 3, for example, the effective value calculator 26 inputs the detected voltage value 55 to the square calculator 58, inputs the output thereof to the square root calculator 59, obtains the effective value, and further calculates the effective value. The signal is input to a hold circuit 60 and is held by a hold signal 56.
[0015]
The outputs of the comparators 22 and 28 are input to the OR circuit 23. When at least one of the frequency and the effective voltage value exceeds the allowable range, the switch 35 is switched to operate as a voltage source. At this time, the controller hold signal 46 of the PLL circuit 20 and the hold signal 56 of the hold circuit 60 are output.
[0016]
The deviation between the held current frequency and the reference frequency 25 is input to a ramp function generator (HLR) 24, the sum of the output and the reference frequency 25 is integrated by an integrator 31, and a sine function unit 32 is used. To find the sine function. The deviation between the held voltage effective value and the reference voltage effective value 30 is input to the HLR 29, and the sum of the output and the reference voltage effective value 30 is used as an amplitude value by the gain calculator 43. A voltage command is generated by multiplying the sine function from S32. The deviation between the voltage command and the interconnection point voltage is input to a voltage regulator 34, and a gate pulse is generated by a PWM calculator 39 using the sum of the output and the voltage command and a separately provided carrier 36. . FIG. 4 shows the input / output characteristics of the HLRs 24 and 29. That is, the held current frequency or effective value of voltage is controlled so as to gradually return to the reference frequency or effective value of reference voltage from each value at the time of switching.
[0017]
The operation of the voltage-source inverter that normally operates as a slave has been described above. At this time, the allowable variation range of the frequency and the effective value of the voltage is made different for each voltage-source inverter. Therefore, when the switching from the current source to the voltage source is performed only in the frequency variation range as shown in FIG. 5, the frequency variation range is set for each voltage source inverter, and as shown in FIG. Is performed only in the effective range of the voltage effective value, the effective range of the voltage effective value is changed for each voltage source inverter, and the starting priority of a plurality of current sources is determined based on the allowable range. , The allowable range of the current source to be switched is made the narrowest, and the allowable range is sequentially expanded. 5 and FIG. 6 are the same as those in FIG.
[0018]
【The invention's effect】
According to the present invention, in a voltage-source inverter connected in parallel in a master-slave manner, it is possible to stably supply power to a load even when the master stops, and to perform operation without voltage phase jump and amplitude jump. Can continue.
[Brief description of the drawings]
1 is a configuration diagram showing a first embodiment of the present invention; FIG. 2 is a block diagram showing a detailed example of a PLL circuit of FIG. 1; FIG. 3 is a detailed example of a voltage effective value calculation circuit of FIG. 1; FIG. 4 is a diagram illustrating the characteristics of a ramp function generator (HLR) in FIG. 1; FIG. 5 is a configuration diagram illustrating a second embodiment of the present invention; FIG. 6 is a third embodiment of the present invention; FIG. 7 is a configuration diagram showing a conventional master-slave system. FIG. 8 is a detailed configuration diagram showing a master controller and a slave controller in FIG. 7.
1a-1c DC power supply, 2a-2c voltage source inverter, 3 self-extinguishing element, 4 diode, 5a-5c AC reactor, 6a-6c AC breaker, 7 load current detector, 8 ... Load, 9a to 9c: controller, 10: divider, 11a to 11c: output current detector, 12a to 12c: voltage detector, 20: PLL (phase locked loop circuit: phase locked loop), 21: allowable frequency value , 22: frequency comparator, 23: logical OR calculator, 24, 29 ... ramp function generator (HLR), 25, 47 ... reference frequency, 26 ... voltage effective value calculator, 27 ... voltage effective value allowable value, 28 ... voltage effective value comparator, 30 ... reference voltage effective value, 31, 51 ... integrator, 32 ... sine wave function generator, 33 ... multiplier, 34 ... voltage regulator (AVR), 35 ... switcher, 36 ... Carrier, 37 Output current command, 38: current controller (ACR), 39: PWM calculator, 40: switching signal, 41: master controller, 42: slave controller, 43: gain calculator, 45: synchronization reference signal, 46: Arithmetic unit hold signal, 48: current frequency value, 49: phase comparator, 50: controller, 55: voltage detection value, 56: hold signal, 57: voltage amplitude value, 58: square operator, 59: square root operator , 60 ... hold circuit.

Claims (7)

直流電圧を交流電圧に変換する複数の自励式交流電源装置を交流側で並列接続し、そのうちの1台の交流電源装置を電圧源、他の交流電源装置を電流源としてそれぞれ動作させる並列接続自励式交流電源装置において、
電流源として動作する各交流電源装置の連系点での周波数変動許容範囲および電圧実効値変動許容範囲を互いに異ならせ、少なくとも一方の範囲を逸脱した交流電源装置を電圧源として動作させることを特徴とする並列接続自励式交流電源装置の制御方式。
A plurality of self-excited AC power supplies for converting a DC voltage to an AC voltage are connected in parallel on the AC side, and one of the AC power supplies is operated as a voltage source and the other AC power supply is operated as a current source. In the excited AC power supply,
The allowable range of frequency fluctuation and the allowable range of voltage effective value fluctuation at the interconnection point of each AC power supply device operating as a current source are different from each other, and the AC power supply device deviating from at least one of the ranges is operated as a voltage source. The control method of the self-excited AC power supply connected in parallel.
直流電圧を交流電圧に変換する複数の自励式交流電源装置を交流側で並列接続し、そのうちの1台の交流電源装置を電圧源、他の交流電源装置を電流源としてそれぞれ動作させる並列接続自励式交流電源装置において、
電流源として動作する各交流電源装置の連系点での周波数変動許容範囲を互いに異ならせ、この範囲を逸脱した交流電源装置を電圧源として動作させることを特徴とする並列接続自励式交流電源装置の制御方式。
A plurality of self-excited AC power supplies for converting a DC voltage to an AC voltage are connected in parallel on the AC side, and one of the AC power supplies is operated as a voltage source and the other AC power supply is operated as a current source. In the excited AC power supply,
A parallel-connected self-excited AC power supply characterized in that the allowable range of frequency variation at the interconnection point of each AC power supply that operates as a current source is different from each other, and an AC power supply that deviates from this range is operated as a voltage source. Control method.
直流電圧を交流電圧に変換する複数の自励式交流電源装置を交流側で並列接続し、そのうちの1台の交流電源装置を電圧源、他の交流電源装置を電流源としてそれぞれ動作させる並列接続自励式交流電源装置において、
電流源として動作する各交流電源装置の連系点での電圧実効値変動許容範囲を互いに異ならせ、この範囲を逸脱した交流電源装置を電圧源として動作させることを特徴とする並列接続自励式交流電源装置の制御方式。
A plurality of self-excited AC power supplies for converting a DC voltage to an AC voltage are connected in parallel on the AC side, and one of the AC power supplies is operated as a voltage source and the other AC power supply is operated as a current source. In the excited AC power supply,
A parallel-connected self-excited AC characterized in that the permissible ranges of effective voltage fluctuations at the interconnection point of each AC power supply device operating as a current source are different from each other, and an AC power supply device outside this range is operated as a voltage source. Power supply control method.
最初に電圧源に切り替わる電流源の周波数変動許容範囲を最も狭くすることを特徴とする請求項1または2のいずれかに記載の並列接続自励式交流電源装置の制御方式。3. The control method for a parallel-connected self-excited AC power supply device according to claim 1, wherein an allowable range of frequency fluctuation of a current source which is switched to a voltage source first is narrowed. 最初に電圧源に切り替わる電流源の電圧実効値変動許容範囲を最も狭くすることを特徴とする請求項1または3のいずれかに記載の並列接続自励式交流電源装置の制御方式。4. The control method for a parallel-connected self-excited AC power supply device according to claim 1, wherein an allowable range of voltage effective value fluctuation of a current source which is first switched to a voltage source is narrowed. 前記電流源を電圧源に切り替える場合は、切替え時点の周波数から規定の周波数へと徐々に戻すことを特徴とする請求項1または2のいずれかに記載の並列接続自励式交流電源装置の制御方式。3. The control method for a parallel-connected self-excited AC power supply device according to claim 1, wherein when the current source is switched to a voltage source, the frequency is gradually returned from a frequency at the time of switching to a specified frequency. . 前記電流源を電圧源に切り替える場合は、切替え時点の電圧実効値から規定の電圧実効値へと徐々に戻すことを特徴とする請求項1または3のいずれかに記載の並列接続自励式交流電源装置の制御方式。4. The parallel-connected self-excited AC power supply according to claim 1, wherein when the current source is switched to a voltage source, the voltage effective value at the time of switching is gradually returned to a prescribed voltage effective value. 5. Device control method.
JP2002302079A 2002-10-16 2002-10-16 Control system for parallel-connected self-excited AC power supply Expired - Fee Related JP4110467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302079A JP4110467B2 (en) 2002-10-16 2002-10-16 Control system for parallel-connected self-excited AC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302079A JP4110467B2 (en) 2002-10-16 2002-10-16 Control system for parallel-connected self-excited AC power supply

Publications (2)

Publication Number Publication Date
JP2004140909A true JP2004140909A (en) 2004-05-13
JP4110467B2 JP4110467B2 (en) 2008-07-02

Family

ID=32450262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302079A Expired - Fee Related JP4110467B2 (en) 2002-10-16 2002-10-16 Control system for parallel-connected self-excited AC power supply

Country Status (1)

Country Link
JP (1) JP4110467B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356654C (en) * 2005-07-08 2007-12-19 浙江大学 Automatic master-slave parallel apparatus for inverter
JP2008092734A (en) * 2006-10-04 2008-04-17 Sanken Electric Co Ltd Ac power supply unit
CN102347683A (en) * 2010-07-30 2012-02-08 艾默生网络能源系统北美公司 Parallel connection jitter frequency switch power supply and method
JP2016524283A (en) * 2013-05-21 2016-08-12 キョン ドン ウォン コーポレーション Fuel cell system inverter and fuel cell output control method
US9998029B2 (en) 2016-06-07 2018-06-12 Kabushiki Kaisha Toshiba Inverter and inverter device
JP6602507B1 (en) * 2018-11-22 2019-11-06 三菱電機株式会社 Power conversion system
CN112928940A (en) * 2021-02-01 2021-06-08 合肥同智机电控制技术有限公司 Switching control method and device for master-slave inverter parallel system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157935B (en) * 2011-03-17 2013-03-20 清华大学 Method for discriminating excitation of isolated net

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356654C (en) * 2005-07-08 2007-12-19 浙江大学 Automatic master-slave parallel apparatus for inverter
JP2008092734A (en) * 2006-10-04 2008-04-17 Sanken Electric Co Ltd Ac power supply unit
JP4591710B2 (en) * 2006-10-04 2010-12-01 サンケン電気株式会社 AC power supply
CN102347683A (en) * 2010-07-30 2012-02-08 艾默生网络能源系统北美公司 Parallel connection jitter frequency switch power supply and method
JP2016524283A (en) * 2013-05-21 2016-08-12 キョン ドン ウォン コーポレーション Fuel cell system inverter and fuel cell output control method
EP3001529A4 (en) * 2013-05-21 2016-11-30 Kyung Dong One Corp Method for controlling output of inverters in fuel cell system and fuel cell
US9998029B2 (en) 2016-06-07 2018-06-12 Kabushiki Kaisha Toshiba Inverter and inverter device
JP6602507B1 (en) * 2018-11-22 2019-11-06 三菱電機株式会社 Power conversion system
WO2020105176A1 (en) * 2018-11-22 2020-05-28 三菱電機株式会社 Power conversion system
US10951021B2 (en) 2018-11-22 2021-03-16 Mitsubishi Electric Corporation Power conversion system
CN112928940A (en) * 2021-02-01 2021-06-08 合肥同智机电控制技术有限公司 Switching control method and device for master-slave inverter parallel system

Also Published As

Publication number Publication date
JP4110467B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
Sajadian et al. Model predictive control of dual-mode operations Z-source inverter: Islanded and grid-connected
US8009450B2 (en) Method and apparatus for phase current balance in active converter with unbalanced AC line voltage source
CA2066490C (en) Parallel operation system of ac output inverters
Lee et al. A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings
EP1932231B1 (en) Systems of parallel operating power electronic converters
US10615636B2 (en) Uninterruptible power supply
KR102281416B1 (en) Uninterruptible power supplies, and test methods for uninterruptible power supplies
JP2007236083A (en) Three-phase voltage type ac-dc conversion device
JP4110467B2 (en) Control system for parallel-connected self-excited AC power supply
JP6583922B2 (en) Power converter
EP3806264B1 (en) Control device and power control system
WO2021205700A1 (en) Power conversion device
EP2963800B1 (en) Controlling parallel converter systems for wind turbines
US20230006535A1 (en) Controlling a cascaded multilevel converter
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
JP2008092734A (en) Ac power supply unit
US10581338B2 (en) Power supply system
Rezkallah et al. Implementation of two-level control coordinate for seamless transfer in standalone microgrid
KR100809483B1 (en) Optimum power control system of the apparatus of solar photovoltatic power generation and control method thereof
WO2023233454A1 (en) Power conversion device and control device
JP4091456B2 (en) Uninterruptible power system
JP5481055B2 (en) Power converter
JP2004096831A (en) Continuous commercial feeding type uninterruptible power supply
JPH01255475A (en) Parallel operation control device for constant voltage constant frequency power source device
Saif et al. On Control Design and Implementation of Multilevel SSBC STATCOM Using FPGA

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees