TWI749906B - Power system and pulse width modulation method using the same - Google Patents

Power system and pulse width modulation method using the same Download PDF

Info

Publication number
TWI749906B
TWI749906B TW109141368A TW109141368A TWI749906B TW I749906 B TWI749906 B TW I749906B TW 109141368 A TW109141368 A TW 109141368A TW 109141368 A TW109141368 A TW 109141368A TW I749906 B TWI749906 B TW I749906B
Authority
TW
Taiwan
Prior art keywords
pulse width
signal
width modulation
modulation unit
voltage level
Prior art date
Application number
TW109141368A
Other languages
Chinese (zh)
Other versions
TW202221443A (en
Inventor
胡凱維
達爾 米
吳秉衡
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109141368A priority Critical patent/TWI749906B/en
Application granted granted Critical
Publication of TWI749906B publication Critical patent/TWI749906B/en
Publication of TW202221443A publication Critical patent/TW202221443A/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A power system is disclosed. The power system comprises a pulse width modulation device which outputs first to fourth driving signals. The pulse width modulation comprises a control unit, and a pulse width modulation unit. The control unit generates a control signal. The pulse width modulation unit divides the control signal into a positive cycle signal and a negative cycle signal, and clamps a portion of the positive cycle signal greater than or equal to a maximum voltage threshold to the maximum voltage threshold to form a first comparison waveform, and clamping the positive cycle signal to a reference voltage level to form a second comparison waveform. The pulse width modulation unit adds up a low voltage threshold and the first comparison waveform within a first time interval to form a first oblique signal, and adds up the low voltage threshold and the second comparison waveform within the first time interval to form a first pulse width signal. The pulse width modulation unit adjusts the first driving signal and the third driving signal according to the first oblique signal, and adjusts the second driving signal and the fourth driving signal according to the first pulse width signal.

Description

電源系統及其適用之脈寬調變方法Power supply system and its applicable pulse width modulation method

本案為一種電源系統,尤指一種可補償最小脈寬限制所造成的輸出電壓失真之電源系統及其適用之脈寬調變方法 This case is a power system, especially a power system that can compensate for the output voltage distortion caused by the minimum pulse width limitation and its applicable pulse width modulation method

在各種不同的工業應用上,常會使用到電源系統來進行電壓的轉換。電源系統包含複數個電晶體,藉由複數個電晶體分別進行導通或斷開之開關切換,電源系統便將所接收之電壓轉換,以提供給負載使用。 In various industrial applications, power systems are often used for voltage conversion. The power supply system includes a plurality of transistors, and the power supply system converts the received voltage for use by the load by switching on or off the plurality of transistors respectively.

此外,電源系統更包含控制單元及脈寬調變單元,控制單元輸出控制訊號,使電源系統之輸出電壓可依據控制訊號來對應調整,脈寬調變單元則依據控制訊號產生複數個脈寬訊號,使複數個電晶體依據對應的脈寬訊號來進行開關切換。 In addition, the power system further includes a control unit and a pulse width modulation unit. The control unit outputs a control signal so that the output voltage of the power system can be adjusted according to the control signal. The pulse width modulation unit generates a plurality of pulse width signals according to the control signal. , So that a plurality of transistors are switched on and off according to the corresponding pulse width signal.

電源系統之每一個電晶體通常包含寄生二極體,而二極體有反向恢復電流(reverse recovery current)的特性,即寄生二極體會在一定的時間內有著反向的電流,故若在反向恢復電流期間使對應的電晶體切換為導通,則會瞬間切斷寄生二極體上之反向電流,這種突然的電流截斷會在電路上造成突波電壓(surge voltage),進而造成電源系統之電路元件的損壞。為了避免上述情況發生, 目前大部分的電源系統都會在開關進行切換的實現上,附加最小脈寬限制技術,以確保電晶體之寄生二極體上的反向恢復電流能完整的結束。 Each transistor in the power system usually contains a parasitic diode, and the diode has the characteristic of a reverse recovery current (reverse recovery current), that is, the parasitic diode will have a reverse current for a certain period of time. Switching the corresponding transistor to conduction during the reverse recovery current will instantly cut off the reverse current on the parasitic diode. This sudden current cutoff will cause a surge voltage on the circuit, which in turn will cause Damage to the circuit components of the power supply system. In order to avoid the above situation, At present, most power systems add minimum pulse width limitation technology to the realization of the switch to ensure that the reverse recovery current on the parasitic diode of the transistor can be completely ended.

然而由於電源系統附加了最小脈寬限制技術,故在最小脈寬限制的期間內,電源系統所輸出之輸出電壓將依據最小脈寬限制而被箝制,並無法準確地追隨控制單元輸出之控制訊號來調整,導致電源系統所輸出之輸出電能在最小脈寬限制的期間內存在失真的問題。 However, due to the additional minimum pulse width limitation technology of the power system, during the period of the minimum pulse width limitation, the output voltage output by the power system will be clamped according to the minimum pulse width limitation and cannot accurately follow the control signal output by the control unit. To adjust, the output power output by the power system has distortion problems during the period of the minimum pulse width limitation.

因此,實有必要發展一種改良之電源系統及其適用之脈寬調變方法,以解決上述習知技術所面臨之問題。 Therefore, it is necessary to develop an improved power supply system and its applicable pulse width modulation method to solve the problems faced by the above-mentioned conventional technologies.

本案之目的在於提供一種電源系統及其適用之脈寬調變方法,俾解決傳統電源系統在使用最小脈寬限制技術時,電源系統的輸出電壓無法在最小脈寬限制的期間內準確地依據控制單元輸出之控制訊號來調整,導致輸出電能存在失真的問題。 The purpose of this case is to provide a power system and its applicable pulse width modulation method, so as to solve the problem that the output voltage of the power system cannot be accurately controlled within the period of the minimum pulse width limitation when the traditional power system uses the minimum pulse width limitation technology. The control signal output by the unit is adjusted, which leads to the problem of distortion of the output electric energy.

為達上述目的,本案之一較廣實施態樣為一種電源系統,包含電源轉換裝置及一脈寬調變裝置,其中脈寬調變裝置輸出第一至第四驅動訊號以運轉電源轉換裝置,並且脈寬調變裝置包含:控制單元,用以產生控制訊號,其中控制訊號為周期性訊號;以及脈寬調變單元,依據參考電壓準位決定控制訊號的臨界時間點,且依據臨界時間點將控制訊號區分為正周期訊號及負周期訊號,其中控制訊號於臨界時間點接近參考電壓準位於誤差範圍內;脈寬調變單元箝位正周期訊號之大於或等於最大電壓閥值的部分於最大電壓閥值以形成第一比較波形,並且脈寬調變單元還將正周期訊號箝位於參考電壓準位以作為第二比 較波形,並且脈寬調變單元取樣落入臨界時間點至第一預定時間的第一時間區間內的第一及第二比較波形;其中脈寬調變單元疊加低電壓閥值和落入第一時間區間內的第一比較波形以形成第一斜波訊號;其中脈寬調變單元疊加低電壓閥值和落入第一時間區間內的第二比較波形以形成第一脈寬訊號;其中於第一時間區間內,脈寬調變單元比較第一斜波訊號與第一三角波以調整第一及第三驅動訊號,且脈寬調變單元比較第一脈寬訊號與第二三角波以調整第二及第四驅動訊號,其中第一及第二三角波之間的相位差為180度。 To achieve the above objective, one of the broader implementation aspects of this case is a power supply system, including a power conversion device and a pulse width modulation device, wherein the pulse width modulation device outputs first to fourth driving signals to operate the power conversion device, And the pulse width modulation device includes: a control unit for generating a control signal, wherein the control signal is a periodic signal; and a pulse width modulation unit, which determines the critical time point of the control signal according to the reference voltage level, and according to the critical time point The control signal is divided into a positive period signal and a negative period signal. The control signal is close to the reference voltage at the critical time point and is within the error range; the pulse width modulation unit clamps the part of the positive period signal greater than or equal to the maximum voltage threshold at the maximum The voltage threshold is used to form the first comparison waveform, and the pulse width modulation unit also clamps the positive period signal at the reference voltage level as the second ratio Compare the waveforms, and the pulse width modulation unit samples the first and second comparison waveforms in the first time interval from the critical time point to the first predetermined time; wherein the pulse width modulation unit superimposes the low voltage threshold and falls into the first time interval A first comparison waveform in a time interval to form a first ramp signal; wherein the pulse width modulation unit superimposes the low voltage threshold and a second comparison waveform falling in the first time interval to form the first pulse width signal; wherein In the first time interval, the pulse width modulation unit compares the first ramp signal with the first triangle wave to adjust the first and third driving signals, and the pulse width modulation unit compares the first pulse width signal with the second triangle wave to adjust The second and fourth driving signals, wherein the phase difference between the first and second triangular waves is 180 degrees.

為達上述目的,本案之另一較廣實施態樣為一種脈寬調變方法,包括:接收控制訊號,其中控制訊號為周期性訊號;依據參考電壓準位決定控制訊號的臨界時間點;依據臨界時間點將控制訊號區分為正周期訊號及負周期訊號,其中控制訊號於臨界時間點接近參考電壓準位於誤差範圍內;箝位正周期訊號之大於或等於最大電壓閥值的部分於最大電壓閥值以形成第一比較波形;箝位正周期訊號於參考電壓準位以作為第二比較波形;取樣落入臨界時間點至第一預定時間的第一時間區間內的第一及第二比較波形;疊加低電壓閥值和落入第一時間區間內的第一比較波形以形成第一斜波訊號;疊加低電壓閥值和落入第一時間區間內的第二比較波形以形成第一脈寬訊號;於第一時間區間內比較第一斜波訊號與第一三角波以調整第一及第三驅動訊號;以及於第一時間區間內脈寬調變單元比較第一脈寬訊號與第二三角波以調整第二及第四驅動訊號,其中第一及第二三角波之間的相位差為180度。 To achieve the above purpose, another broad implementation aspect of this case is a pulse width modulation method, which includes: receiving a control signal, wherein the control signal is a periodic signal; determining the critical time point of the control signal according to the reference voltage level; The critical time point divides the control signal into a positive cycle signal and a negative cycle signal. The control signal is close to the reference voltage at the critical time point and is within the error range; clamps the part of the positive cycle signal greater than or equal to the maximum voltage threshold at the maximum voltage threshold Value to form the first comparison waveform; clamp the positive periodic signal at the reference voltage level as the second comparison waveform; sample the first and second comparison waveforms in the first time interval from the critical time point to the first predetermined time ; Superimpose the low voltage threshold value and the first comparison waveform falling within the first time interval to form a first ramp signal; superimpose the low voltage threshold value and the second comparison waveform falling within the first time interval to form the first pulse Wide signal; compare the first ramp signal with the first triangle wave in the first time interval to adjust the first and third driving signals; and compare the first pulse width signal with the second pulse width signal in the first time interval The triangular wave is used to adjust the second and fourth driving signals, wherein the phase difference between the first and second triangular waves is 180 degrees.

1:電源系統 1: Power system

Vout:輸出電壓 Vout: output voltage

2:脈寬調變裝置 2: Pulse width modulation device

3:電源轉換裝置 3: Power conversion device

P1~P4:第一驅動訊號至第四驅動訊號 P1~P4: the first drive signal to the fourth drive signal

30、30’:開關模組 30, 30’: Switch module

Q1~Q4、Q1a~Q4a:第一電晶體至第四電晶體 Q1~Q4, Q1a~Q4a: the first transistor to the fourth transistor

Vdc:直流電壓源 Vdc: DC voltage source

T、T1:輸出節點 T, T1: output node

D1~D4、D1a~D4a:寄生二極體 D1~D4, D1a~D4a: parasitic diode

D10:第一二極體 D10: The first diode

D20:第二二極體 D20: The second diode

20:控制單元 20: control unit

21:脈寬調變單元 21: Pulse width modulation unit

Sc、Sc’:控制訊號 Sc, Sc’: control signal

Sc+:正周期訊號 Sc+: positive periodic signal

Sc-:負周期訊號 Sc-: negative cycle signal

t0、t1、t2、t1’、t2:時間 t0, t1, t2, t1’, t2: time

Vmin:低電壓閥值 Vmin: Low voltage threshold

Vmax:最大電壓閥值 Vmax: Maximum voltage threshold

ePWM1:第一三角波 ePWM1: The first triangle wave

ePWM2:第二三角波 ePWM2: The second triangle wave

S1a:第一斜波訊號 S1a: The first ramp signal

S2a:第一脈寬訊號 S2a: The first pulse width signal

S3a:第二脈寬訊號 S3a: Second pulse width signal

S4a:第二斜波訊號 S4a: Second ramp signal

S1:第一比較波形 S1: The first comparison waveform

S2:第二比較波形 S2: Second comparison waveform

S3:第三比較波形 S3: Third comparison waveform

S4:第四比較波形 S4: Fourth comparison waveform

S1’:第一參考波形 S1’: The first reference waveform

S2’:第二參考波形 S2’: Second reference waveform

S3’:第三參考波形 S3’: Third reference waveform

S4’:第四參考波形 S4’: Fourth reference waveform

△T1:第一時間區間 △T1: The first time interval

△T2:第二時間區間 △T2: The second time interval

Vref:參考電壓準位 Vref: Reference voltage level

第1A圖為本案較佳實施例之電源系統1的電路方塊示意圖;第1B圖為第1圖所示之電源轉換裝置3的第一較佳實施例之電路結構示意圖; 第1C圖為第1圖所示之電源轉換裝置3的第二較佳實施例之電路結構示意圖;第2圖為解釋第1A圖所示之脈寬調變單元21在運作時的訊號時序圖;第3A圖為解釋脈寬調變單元21產生第一斜波訊號S1a及第一參考波形S1’的訊號時序圖;第3B圖為解釋脈寬調變單元21產生第一脈寬訊號S2a及第二參考波形S2’的訊號時序圖;第4A圖為在第一時間區間△T1時第一三角波ePWM1、第二三角波ePWM2、第一斜波訊號S1a、第一脈寬訊號S2a、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖;第4B圖為在第一時間區間△T1時第一三角波ePWM1、第二三角波ePWM2、第一參考波形S1’、第二參考波形S2’、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖;第5A圖為解釋脈寬調變單元21產生第二脈寬訊號S3a及第三參考波形S3’的訊號時序圖;第5B圖為解釋脈寬調變單元21產生第二斜波訊號S4a及第四參考波形S4’的訊號時序圖;第6A圖為在第二時間區間時第一三角波ePWM1、第二三角波ePWM2、第二脈寬訊號S3a、第二斜波訊號S4a、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖;第6B圖為在第二時間區間時第一三角波ePWM1、第二三角波ePWM2、第三參考波形S3’、第四參考波形S4’、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖; 第7圖為附加了最小脈寬限制技術之傳統電源系統所輸出之輸出電流的波形示意圖;第8圖為本案之電源系統1所輸出之輸出電流的波形示意圖。 Figure 1A is a schematic block diagram of the circuit of the power supply system 1 of the preferred embodiment of the present invention; Figure 1B is a schematic diagram of the circuit structure of the first preferred embodiment of the power conversion device 3 shown in Figure 1; Fig. 1C is a schematic diagram of the circuit structure of the second preferred embodiment of the power conversion device 3 shown in Fig. 1; Fig. 2 is a signal timing diagram explaining the operation of the pulse width modulation unit 21 shown in Fig. 1A Fig. 3A is a signal timing diagram explaining the pulse width modulation unit 21 generating the first ramp signal S1a and the first reference waveform S1'; Fig. 3B is explaining the pulse width modulation unit 21 generating the first pulse width signal S2a and The signal timing diagram of the second reference waveform S2'; Figure 4A shows the first triangular wave ePWM1, the second triangular wave ePWM2, the first ramp signal S1a, the first pulse width signal S2a, and the first drive during the first time interval △T1 The signal timing diagram of the signal P1 to the fourth driving signal P4; Figure 4B shows the first triangular wave ePWM1, the second triangular wave ePWM2, the first reference waveform S1', the second reference waveform S2', and the first time interval △T1. A signal timing diagram of the driving signal P1 to the fourth driving signal P4; Fig. 5A is a signal timing diagram explaining the pulse width modulation unit 21 generating the second pulse width signal S3a and the third reference waveform S3'; Fig. 5B is an explanation The pulse width modulation unit 21 generates a signal timing diagram of the second ramp signal S4a and the fourth reference waveform S4'; Figure 6A shows the first triangular wave ePWM1, the second triangular wave ePWM2, and the second pulse width signal during the second time interval S3a, the second ramp signal S4a, the signal timing diagram of the first drive signal P1 to the fourth drive signal P4; Figure 6B shows the first triangular wave ePWM1, the second triangular wave ePWM2, and the third reference waveform S3 in the second time interval ', the fourth reference waveform S4', the signal timing diagram of the first driving signal P1 to the fourth driving signal P4; Figure 7 is a schematic diagram of the output current waveform of the traditional power supply system with the addition of the minimum pulse width limitation technology; Figure 8 is a schematic diagram of the output current output of the power system 1 of this case.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上當作說明之用,而非架構於限制本案。 Some typical embodiments embodying the features and advantages of this case will be described in detail in the following description. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of this case, and the descriptions and drawings therein are essentially for illustrative purposes, rather than being constructed to limit the case.

請參閱第1A圖、第1B圖、第1C圖、第2圖、第3A圖、第3B圖、第4A圖及第4B圖,其中第1A圖為本案較佳實施例之電源系統1的電路方塊示意圖,第1B圖為第1圖所示之電源轉換裝置3的第一較佳實施例之電路結構示意圖,第1C圖為第1圖所示之電源轉換裝置3的第二較佳實施例之電路結構示意圖,第2圖為解釋第1A圖所示之脈寬調變單元21在運作時的訊號時序圖,第3A圖為解釋脈寬調變單元21產生第一斜波訊號S1a及第一參考波形S1’的訊號時序圖,第3B圖為解釋脈寬調變單元21產生第一脈寬訊號S2a及第二參考波形S2’的訊號時序圖,第4A圖為在第一時間區間△T1時第一三角波ePWM1、第二三角波ePWM2、第一斜波訊號S1a、第一脈寬訊號S2a、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖,第4B圖為在第一時間區間△T1時第一三角波ePWM1、第二三角波ePWM2、第一參考波形S1’、第二參考波形S2’、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖。如第1A-1C圖、第2圖、第3A-3B圖及第4A-4B圖所示,本實施例之電源系統1用以將所接收之輸入電壓,例如電池、太陽能板或電容等所提供之直流電壓,轉換為交流之輸出電壓Vout,以提供給交流負載,例如馬達、 電網或工業產品等,其中輸出電壓Vout可為但不限於三相輸出電壓。電源系統1包含脈寬調變裝置2及電源轉換裝置3。脈寬調變裝置2可輸出第一驅動訊號P1、第二驅動訊號P2、第三驅動訊號P3及第四驅動訊號P4至電源轉換裝置3,以運轉電源轉換裝置3。電源轉換裝置3可包含開關模組30,開關模組30可包含複數個電晶體,例如第1B圖所示之四個電晶體Q1-Q4,電源轉換裝置3用以接收輸入電壓,並藉由開關模組30之複數個電晶體在分別接收第一驅動訊號P1、第二驅動訊號P2、第三驅動訊號P3及第四驅動訊號P4中而進行選擇性地導通或斷開之切換時,將輸入電壓轉換為輸出電壓Vout。開關模組30依據第一至第四驅動訊號P1~P4進行選擇性地導通或截止,使得直流電壓經由開關模組30而被轉換為交流電壓。因此,於此實施例中,輸入電壓為直流電壓源Vdc,且輸出電壓Vout為交流電壓,但本發明不限於此。 Please refer to Fig. 1A, Fig. 1B, Fig. 1C, Fig. 2, Fig. 3A, Fig. 3B, Fig. 4A and Fig. 4B, among which Fig. 1A is the circuit of the power supply system 1 of the preferred embodiment Block diagram, Figure 1B is a schematic diagram of the circuit structure of the first preferred embodiment of the power conversion device 3 shown in Figure 1, and Figure 1C is the second preferred embodiment of the power conversion device 3 shown in Figure 1 Fig. 2 is a signal timing diagram explaining the operation of the pulse width modulation unit 21 shown in Fig. 1A, and Fig. 3A is a diagram explaining the pulse width modulation unit 21 generating the first ramp signal S1a and the first ramp signal S1a. A signal timing diagram of the reference waveform S1', Figure 3B is a diagram explaining the signal timing diagram of the pulse width modulation unit 21 generating the first pulse width signal S2a and the second reference waveform S2', and Figure 4A is the signal timing diagram in the first time interval △ The signal timing diagram of the first triangular wave ePWM1, the second triangular wave ePWM2, the first ramp signal S1a, the first pulse width signal S2a, the first driving signal P1 to the fourth driving signal P4 at T1, Fig. 4B is at the first time The signal timing diagram of the first triangular wave ePWM1, the second triangular wave ePWM2, the first reference waveform S1', the second reference waveform S2', and the first driving signal P1 to the fourth driving signal P4 in the interval ΔT1. As shown in Figures 1A-1C, Figure 2, Figure 3A-3B, and Figure 4A-4B, the power supply system 1 of this embodiment is used to receive input voltages, such as batteries, solar panels, or capacitors. The provided DC voltage is converted into an AC output voltage Vout to be supplied to AC loads, such as motors, For power grids or industrial products, etc., the output voltage Vout may be, but not limited to, a three-phase output voltage. The power supply system 1 includes a pulse width modulation device 2 and a power conversion device 3. The pulse width modulation device 2 can output the first driving signal P1, the second driving signal P2, the third driving signal P3, and the fourth driving signal P4 to the power conversion device 3 to operate the power conversion device 3. The power conversion device 3 may include a switch module 30. The switch module 30 may include a plurality of transistors, such as the four transistors Q1-Q4 shown in Figure 1B. The power conversion device 3 is used to receive the input voltage and When the plurality of transistors of the switch module 30 respectively receive the first drive signal P1, the second drive signal P2, the third drive signal P3, and the fourth drive signal P4 to selectively switch on or off, The input voltage is converted to the output voltage Vout. The switch module 30 is selectively turned on or off according to the first to fourth driving signals P1 to P4, so that the DC voltage is converted into an AC voltage through the switch module 30. Therefore, in this embodiment, the input voltage is a DC voltage source Vdc, and the output voltage Vout is an AC voltage, but the invention is not limited to this.

於一些實施例中,如第1B圖所示,開關模組30可為I-type的三階層開關模組,且開關模組30之複數個電晶體分別為第一電晶體Q1、第二電晶體Q2、第三電晶體Q3及第四電晶體Q4。第一電晶體Q1包含控制端、第一端點及第二端點,其中第一電晶體Q1的控制端耦接第一驅動訊號P1,且第一電晶體Q1的第一端點耦接直流電壓源Vdc。第二電晶體Q2包含控制端、第一端點及第二端點,其中第二電晶體Q2的控制端耦接第二驅動訊號P2,且第二電晶體Q2的第一端點耦接第一電晶體Q1的第二端點。第三電晶體Q3包含控制端、第一端點及第二端點,其中第三電晶體Q3的控制端耦接第三驅動訊號P3,且第三電晶體Q3的第一端點耦接第二電晶體Q2的第二端點以形成輸出節點T,而電源轉換裝置3經由輸出節點T輸出該輸出電壓Vout。第四電晶體Q4包含控制端、第一端點及第二端點,其中第四電晶體Q4的控制端耦接第四驅動訊號P4,且第四電晶體Q4的第一端點耦 接第三電晶體Q3的第二端點,且第四電晶體Q4的第二端點耦接直流電壓源Vdc的接地端。於第3圖中,當電源轉換裝置3接收輸入電壓V時,電源轉換裝置3會將輸入電壓調整為開關模組30可接受的直流電壓源Vdc。於其他一些實施例中,直流電壓源Vdc也可以直接為輸入電壓,但本發明不限於此。 In some embodiments, as shown in FIG. 1B, the switch module 30 may be an I-type three-level switch module, and the plurality of transistors of the switch module 30 are the first transistor Q1 and the second transistor respectively. Crystal Q2, third transistor Q3, and fourth transistor Q4. The first transistor Q1 includes a control terminal, a first terminal, and a second terminal. The control terminal of the first transistor Q1 is coupled to the first driving signal P1, and the first terminal of the first transistor Q1 is coupled to a direct current Voltage source Vdc. The second transistor Q2 includes a control terminal, a first terminal, and a second terminal. The control terminal of the second transistor Q2 is coupled to the second driving signal P2, and the first terminal of the second transistor Q2 is coupled to the first terminal. The second terminal of a transistor Q1. The third transistor Q3 includes a control terminal, a first terminal, and a second terminal. The control terminal of the third transistor Q3 is coupled to the third driving signal P3, and the first terminal of the third transistor Q3 is coupled to the second terminal. The second terminal of the two transistors Q2 forms an output node T, and the power conversion device 3 outputs the output voltage Vout through the output node T. The fourth transistor Q4 includes a control terminal, a first terminal, and a second terminal. The control terminal of the fourth transistor Q4 is coupled to the fourth driving signal P4, and the first terminal of the fourth transistor Q4 is coupled to The second terminal of the third transistor Q3 is connected, and the second terminal of the fourth transistor Q4 is coupled to the ground terminal of the DC voltage source Vdc. In Figure 3, when the power conversion device 3 receives the input voltage V, the power conversion device 3 adjusts the input voltage to a DC voltage source Vdc acceptable to the switch module 30. In some other embodiments, the DC voltage source Vdc can also be the input voltage directly, but the invention is not limited to this.

於一些實施例中,第一電晶體Q1至第四電晶體Q4可分別由金氧半導體場校電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor;MOSFET)所構成,但不以此為限,亦可為雙極性接面型電晶體(bipolar junction transistor;BJT)等。於一些實施例中,第一至第四電晶體Q1~Q4可為高電壓導通半導體(如:N型MOSFET、NPN型BJT)或低電壓導通半導體(如:P型MOSFET、PNP型BJT)。為了方便說明本發明之操作,僅以第一至第四電晶體Q1~Q4皆為N型MOSFET作為範例說明,但本發明不限於此。另外,每一第一至第四電晶體Q1~Q4的第一端代表N型MOSFET的汲極,且每一第一至第四電晶體Q1~Q4的第二端代表N型MOSFET的源極,且每一第一至第四電晶體Q1~Q4的控制端代表N型MOSFET的閘極。 In some embodiments, the first transistor Q1 to the fourth transistor Q4 may be respectively formed of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), but it is not limited thereto. It can also be a bipolar junction transistor (BJT), etc. In some embodiments, the first to fourth transistors Q1 to Q4 can be high-voltage conduction semiconductors (such as N-type MOSFET, NPN-type BJT) or low-voltage conduction semiconductors (such as: P-type MOSFET, PNP-type BJT). In order to facilitate the description of the operation of the present invention, only the first to fourth transistors Q1 to Q4 are N-type MOSFETs as an example, but the present invention is not limited to this. In addition, the first end of each of the first to fourth transistors Q1~Q4 represents the drain of the N-type MOSFET, and the second end of each of the first to fourth transistors Q1~Q4 represents the source of the N-type MOSFET , And the control terminal of each of the first to fourth transistors Q1~Q4 represents the gate of the N-type MOSFET.

另外,第一電晶體Q1至第四電晶體Q4更可分別包含寄生二極體D1-D4,其中寄生二極體D1之陽極端電連接第一電晶體Q1之第二端,寄生二極體D1之陰極端電連接第一電晶體Q1之第一端,寄生二極體D2之陽極端電連接第二電晶體Q2之第二端,寄生二極體D2之陰極端電連接第二電晶體Q2之第一端,寄生二極體D3之陽極端電連接第三電晶體Q3之第二端,寄生二極體D3之陰極端電連接第三電晶體Q3之第一端,寄生二極體D4之陽極端電連接第四電晶體Q4之第二端,寄生二極體D4之陰極端電連接第四電晶體Q4之第一端。另外,於一些實施例中,開關模組30更可包含第一二極體D10及第二二極體D20,其中第一二 極體D10之陰極端電連接於第一電晶體Q1之第二端及第二電晶體Q2之第一端之間,第一二極體D10之陽極端與第二二極體D20之陰極端電連接,第二二極體D20之陽極端電連接於第三電晶體Q3之第二端及第四電晶體Q4之第一端之間。 In addition, the first transistor Q1 to the fourth transistor Q4 may further include parasitic diodes D1-D4, wherein the anode end of the parasitic diode D1 is electrically connected to the second end of the first transistor Q1, and the parasitic diode The cathode terminal of D1 is electrically connected to the first terminal of the first transistor Q1, the anode terminal of the parasitic diode D2 is electrically connected to the second terminal of the second transistor Q2, and the cathode terminal of the parasitic diode D2 is electrically connected to the second transistor. The first terminal of Q2, the anode terminal of the parasitic diode D3 is electrically connected to the second terminal of the third transistor Q3, the cathode terminal of the parasitic diode D3 is electrically connected to the first terminal of the third transistor Q3, the parasitic diode The anode terminal of D4 is electrically connected to the second terminal of the fourth transistor Q4, and the cathode terminal of the parasitic diode D4 is electrically connected to the first terminal of the fourth transistor Q4. In addition, in some embodiments, the switch module 30 may further include a first diode D10 and a second diode D20, where the first and second diodes The cathode terminal of the polar body D10 is electrically connected between the second terminal of the first transistor Q1 and the first terminal of the second transistor Q2, the anode terminal of the first diode D10 and the cathode terminal of the second diode D20 Electrically connected, the anode end of the second diode D20 is electrically connected between the second end of the third transistor Q3 and the first end of the fourth transistor Q4.

當然,電源轉換裝置3之開關模組30亦可為T-type的三階層開關模組,即如第1C圖所示,且開關模組30之複數個電晶體分別為第一電晶體Q1、第二電晶體Q2、第三電晶體Q3及第四電晶體Q4。第一電晶體Q1包含控制端、第一端點及第二端點,其中第一電晶體Q1的控制端耦接第一驅動訊號P1,且第一電晶體Q1的第一端點耦接直流電壓源Vdc。第二電晶體Q2包含控制端、第一端點及第二端點,其中第二電晶體Q2的控制端耦接第二驅動訊號P2,且第二電晶體Q2的第一端點耦接直流電壓源Vdc。第三電晶體Q3包含控制端、第一端點及第二端點,其中第三電晶體Q3的控制端耦接第三驅動訊號P3,且第三電晶體Q3的第二端點耦接第二電晶體Q2的第二端點。第四電晶體Q4包含控制端、第一端點及第二端點,其中第四電晶體Q4的控制端耦接第四驅動訊號P4,且第四電晶體Q4的第一端點共同耦接於第三電晶體Q3的第一端點及第一電晶體Q1的第二端點,以共同形成輸出節點T1,而電源轉換裝置3經由輸出節點T1輸出該輸出電壓Vout,且第四電晶體Q4的第二端點耦接直流電壓源Vdc的接地端。另外,第一電晶體Q1至第四電晶體Q4更可分別包含寄生二極體D1a-D4a,其中寄生二極體D1a之陽極端電連接第一電晶體Q1之第二端,寄生二極體D1a之陰極端電連接第一電晶體Q1之第一端,寄生二極體D2a之陽極端電連接第二電晶體Q2之第二端,寄生二極體D2a之陰極端電連接直流電壓源Vdc,寄生二極體D3a之陽極端電連接第三電晶體Q3之第二端,寄生二極體D3a之陰極端電連接第三電晶體Q3之第一端,寄生二極體D4a之陽極端電連接第四電晶體Q4之第二端,寄生二極體D4a之 陰極端電連接第四電晶體Q4之第一端。由於第1C圖之開關模組30的作動與第1B圖所示之開關模組30的作動方式相同,且皆可達到相同之效果,故下述提及之技術內容,僅以第1B圖所示之開關模組30來示範性說明。 Of course, the switch module 30 of the power conversion device 3 can also be a T-type three-level switch module, as shown in FIG. 1C, and the plurality of transistors of the switch module 30 are the first transistors Q1, The second transistor Q2, the third transistor Q3, and the fourth transistor Q4. The first transistor Q1 includes a control terminal, a first terminal, and a second terminal. The control terminal of the first transistor Q1 is coupled to the first driving signal P1, and the first terminal of the first transistor Q1 is coupled to a direct current Voltage source Vdc. The second transistor Q2 includes a control terminal, a first terminal, and a second terminal. The control terminal of the second transistor Q2 is coupled to the second driving signal P2, and the first terminal of the second transistor Q2 is coupled to DC Voltage source Vdc. The third transistor Q3 includes a control terminal, a first terminal, and a second terminal. The control terminal of the third transistor Q3 is coupled to the third driving signal P3, and the second terminal of the third transistor Q3 is coupled to the second terminal. The second terminal of the second transistor Q2. The fourth transistor Q4 includes a control terminal, a first terminal, and a second terminal. The control terminal of the fourth transistor Q4 is coupled to the fourth driving signal P4, and the first terminal of the fourth transistor Q4 is commonly coupled The first terminal of the third transistor Q3 and the second terminal of the first transistor Q1 together form an output node T1, and the power conversion device 3 outputs the output voltage Vout through the output node T1, and the fourth transistor The second terminal of Q4 is coupled to the ground terminal of the DC voltage source Vdc. In addition, the first transistor Q1 to the fourth transistor Q4 may further include parasitic diodes D1a-D4a, wherein the anode end of the parasitic diode D1a is electrically connected to the second end of the first transistor Q1, and the parasitic diode The cathode terminal of D1a is electrically connected to the first terminal of the first transistor Q1, the anode terminal of the parasitic diode D2a is electrically connected to the second terminal of the second transistor Q2, and the cathode terminal of the parasitic diode D2a is electrically connected to the DC voltage source Vdc , The anode terminal of the parasitic diode D3a is electrically connected to the second terminal of the third transistor Q3, the cathode terminal of the parasitic diode D3a is electrically connected to the first terminal of the third transistor Q3, and the anode terminal of the parasitic diode D4a is electrically connected Connect the second end of the fourth transistor Q4, the parasitic diode D4a The cathode terminal is electrically connected to the first terminal of the fourth transistor Q4. Since the operation of the switch module 30 in Figure 1C is the same as that of the switch module 30 shown in Figure 1B, and both can achieve the same effect, the technical content mentioned below is only shown in Figure 1B The switch module 30 is shown as an example.

脈寬調變裝置2所輸出之第一驅動訊號P1、第二驅動訊號P2、第三驅動訊號P3及第四驅動訊號P4分別提供給第一電晶體Q1、第二電晶體Q2、第三電晶體Q3以及第四電晶體Q4,使第一電晶體Q1、第二電晶體Q2、第三電晶體Q3以及第四電晶體Q4分別進行導通或斷開之切換。於一些實施例中,第一驅動訊號P1及第三驅動訊號P3的波形為互補,第二驅動訊號P2及第四驅動訊號P4的波形為互補,換言之,即第一電晶體Q1的作動方式與第三電晶體Q3的作動方式為互補,第二電晶體Q2的作動方式與第四電晶體Q4的作動方式為互補。 The first driving signal P1, the second driving signal P2, the third driving signal P3, and the fourth driving signal P4 output by the pulse width modulation device 2 are provided to the first transistor Q1, the second transistor Q2, and the third transistor, respectively. The transistor Q3 and the fourth transistor Q4 enable the first transistor Q1, the second transistor Q2, the third transistor Q3, and the fourth transistor Q4 to switch on or off respectively. In some embodiments, the waveforms of the first driving signal P1 and the third driving signal P3 are complementary, and the waveforms of the second driving signal P2 and the fourth driving signal P4 are complementary. In other words, the operation mode of the first transistor Q1 is The operation mode of the third transistor Q3 is complementary, and the operation mode of the second transistor Q2 is complementary to the operation mode of the fourth transistor Q4.

脈寬調變裝置2更包含控制單元20及脈寬調變單元21。控制單元20用以產生控制訊號Sc給脈寬調變單元21,且脈寬調變單元21依據控制訊號Sc控制電源轉換裝置3中的開關模組30,其中控制訊號Sc可為但不限於周期性訊號。一些實施例中,控制單元20更會藉由電壓採樣元件或電流採樣元件等分別採樣電源轉換裝置3的輸出電壓Vout及輸出電流,以依據採樣結果對應調整控制訊號Sc。脈寬調變單元21依據參考電壓準位Vref,例如第2圖所示為零電壓準位之參考電壓準位Vref,決定控制訊號Sc的臨界時間點,且依據臨界時間點將控制訊號區Sc分為為正半周期之正周期訊號Sc+及為負半周期之負周期訊號Sc-,如第2圖所示,以零電壓準位來決定控制訊號Sc的臨界時間點時,則控制訊號Sc的臨界時間點即為t0,故控制訊號Sc在時間t0以後為正週期訊號Sc+,控制訊號Sc在時間t0之前為負週期訊號Sc-,其中控制訊號Sc於臨界時間點t0接近參考電壓準位Vref於可容許的誤差範圍內。 The pulse width modulation device 2 further includes a control unit 20 and a pulse width modulation unit 21. The control unit 20 is used to generate a control signal Sc to the pulse width modulation unit 21, and the pulse width modulation unit 21 controls the switch module 30 in the power conversion device 3 according to the control signal Sc, wherein the control signal Sc can be but not limited to a period Sex signal. In some embodiments, the control unit 20 further samples the output voltage Vout and the output current of the power conversion device 3 through a voltage sampling element or a current sampling element, etc., to adjust the control signal Sc correspondingly according to the sampling result. The pulse width modulation unit 21 determines the critical time point of the control signal Sc according to the reference voltage level Vref, for example, the reference voltage level Vref shown in Figure 2 as the zero voltage level, and divides the control signal area Sc according to the critical time point Is the positive cycle signal Sc+ for the positive half cycle and the negative cycle signal Sc- for the negative half cycle. As shown in Figure 2, when the critical time point of the control signal Sc is determined by the zero voltage level, the The critical time point is t0, so the control signal Sc is a positive cycle signal Sc+ after time t0, and the control signal Sc is a negative cycle signal Sc- before time t0, where the control signal Sc is close to the reference voltage level Vref at the critical time point t0 Within the allowable error range.

另外,脈寬調變單元21箝位正周期訊號Sc+之大於或等於最大電壓閥值Vmax的部分於最大電壓閥值Vmax以形成第一比較波形S1,並且脈寬調變單元21還將正周期訊號Sc+箝位於參考電壓準位Vref以作為第二比較波形S2。又脈寬調變單元21取樣落入臨界時間點(如第2圖所示之時間t0)至第一預定時間t1的第一時間區間△T1內的第一比較波形S1及第二比較波形S2。且脈寬調變單元21更疊加低電壓閥值Vmin和落入第一時間區間△T1內的第一比較波形S1以形成第一斜波訊號S1a(如第3A圖所示),且脈寬調變單元21亦疊加低電壓閥值Vmin和落入第一時間區間△T1內的第二比較波形S2以形成第一脈寬訊號S2a(如第3B圖所示)。 In addition, the pulse width modulation unit 21 clamps the portion of the positive period signal Sc+ that is greater than or equal to the maximum voltage threshold Vmax to the maximum voltage threshold Vmax to form the first comparison waveform S1, and the pulse width modulation unit 21 changes the positive period The signal Sc+ is clamped at the reference voltage level Vref as the second comparison waveform S2. Furthermore, the pulse width modulation unit 21 samples the first comparison waveform S1 and the second comparison waveform S2 in the first time interval ΔT1 from the critical time point (time t0 shown in Figure 2) to the first predetermined time t1 . And the pulse width modulation unit 21 further superimposes the low voltage threshold Vmin and the first comparison waveform S1 falling within the first time interval ΔT1 to form a first ramp signal S1a (as shown in FIG. 3A), and the pulse width The modulation unit 21 also superimposes the low voltage threshold Vmin and the second comparison waveform S2 falling within the first time interval ΔT1 to form the first pulse width signal S2a (as shown in FIG. 3B).

更甚者,於第一時間區間△T1內,脈寬調變單元21比較第一斜波訊號S1a與第一三角波ePWM1以調整第一驅動訊號P1及第三驅動訊號P3,且脈寬調變單元21比較第一脈寬訊號S2a與第二三角波ePWM2以調整第二驅動訊號P2及第四驅動訊號P4(如第4A圖所示),其中第一三角波ePWM1及第二三角波ePWM2之間的相位差為180度。 Furthermore, in the first time interval ΔT1, the pulse width modulation unit 21 compares the first ramp signal S1a with the first triangle wave ePWM1 to adjust the first driving signal P1 and the third driving signal P3, and the pulse width modulation The unit 21 compares the first pulse width signal S2a with the second triangular wave ePWM2 to adjust the second driving signal P2 and the fourth driving signal P4 (as shown in Fig. 4A), wherein the phase between the first triangular wave ePWM1 and the second triangular wave ePWM2 The difference is 180 degrees.

於上述實施例中,第一時間區間△T1即為在控制訊號區Sc的正半周期時,電源系統1執行最小脈寬限制的時間區間。低電壓閥值Vmin為電源系統1在執行最小脈寬限制時,電源系統1的輸出電壓Vout的預設值。 In the above embodiment, the first time interval ΔT1 is the time interval during which the power supply system 1 executes the minimum pulse width limitation during the positive half cycle of the control signal area Sc. The low voltage threshold Vmin is the preset value of the output voltage Vout of the power supply system 1 when the power supply system 1 implements the minimum pulse width limitation.

再者,如第4A圖所示,於第一時間區間△T1內,當脈寬調變單元21判斷第一斜波訊號S1a大於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至高電壓準位,且切換第三驅動訊號P3至低電壓準位,使第一電晶體Q1切換為導通而第三電晶體Q3切換為斷開;此外,於第一時間區間△T1內,當脈寬調變單元21判斷第一脈寬訊號S2a小於第二三角波ePWM2時,脈寬調變單元 21切換第二驅動訊號P2至高電壓準位,且切換第四驅動訊號P4至低電壓準位,使第二電晶體Q2切換為導通而第四電晶體Q4切換為斷開。 Furthermore, as shown in FIG. 4A, in the first time interval ΔT1, when the pulse width modulation unit 21 determines that the first ramp signal S1a is greater than the first triangle wave ePWM1, the pulse width modulation unit 21 switches the first drive The signal P1 is at a high voltage level, and the third driving signal P3 is switched to a low voltage level, so that the first transistor Q1 is switched on and the third transistor Q3 is switched off; in addition, in the first time interval △T1 , When the pulse width modulation unit 21 determines that the first pulse width signal S2a is smaller than the second triangle wave ePWM2, the pulse width modulation unit 21 Switching the second driving signal P2 to a high voltage level, and switching the fourth driving signal P4 to a low voltage level, so that the second transistor Q2 is switched on and the fourth transistor Q4 is switched off.

另外,於第一時間區間△T1內,當脈寬調變單元21判斷第一斜波訊號S1a小於或等於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至低電壓準位且切換第三驅動訊號P3至高電壓準位,使第一電晶體Q1切換為斷開而第三電晶體Q3切換為導通;又於第一時間區間△T1內,當脈寬調變單元21判斷第一脈寬訊號S2a大於或等於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至低電壓準位且切換第四驅動訊號P4至高電壓準位,使第二電晶體Q2切換為斷開而第四電晶體Q4切換為導通。而由第4A圖可知,在控制訊號Sc的正半周期時,輸出電壓Vout係由0、-Vdc/2及Vdc/2來組成。 In addition, in the first time interval ΔT1, when the pulse width modulation unit 21 determines that the first ramp signal S1a is less than or equal to the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 to a low voltage level. And switch the third driving signal P3 to the high voltage level, so that the first transistor Q1 is switched off and the third transistor Q3 is switched on; and in the first time interval △T1, when the pulse width modulation unit 21 When determining that the first pulse width signal S2a is greater than or equal to the second triangular wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a low voltage level and switches the fourth driving signal P4 to a high voltage level, so that the second transistor Q2 is switched off and the fourth transistor Q4 is switched on. It can be seen from Fig. 4A that during the positive half cycle of the control signal Sc, the output voltage Vout is composed of 0, -Vdc/2, and Vdc/2.

由前述內容可知,本案之電源系統1之脈寬調變單元21會在控制訊號Sc的正半周期且於臨界時間點t0至第一預定時間的第一時間區間△T1時,疊加低電壓閥值Vmin和落入第一時間區間△T1內的第一比較波形S1以形成第一斜波訊號S1a,且疊加低電壓閥值Vmin和落入第一時間區間△T1內的第二比較波形S2以形成第一脈寬訊號S2a,換言之,即在控制訊號區Sc於正半周期而電源系統1執行最小脈寬限制的時間區間時,對控制訊號Sc補償了低電壓閥值Vmin,如此一來,本案之電源系統1不但可以滿足最小脈寬的限制,且由於在臨界時間點t0至第一預定時間的第一時間區間△T1內,第一斜波訊號S1a疊加控制訊號Sc的正半周期,與第一脈寬訊號S2a產生之低電壓閥值Vmin相消,故維持理想的控制訊號Sc,且滿足電源系統1執行最小脈寬限制的時間區,因此可確保輸出電壓Vout的準確性。 It can be seen from the foregoing that the pulse width modulation unit 21 of the power supply system 1 of this case will superimpose the low voltage valve during the positive half cycle of the control signal Sc and the first time interval ΔT1 from the critical time point t0 to the first predetermined time. The value Vmin and the first comparison waveform S1 falling within the first time interval ΔT1 form a first ramp signal S1a, and the low voltage threshold Vmin is superimposed with the second comparison waveform S2 falling within the first time interval ΔT1 In order to form the first pulse width signal S2a, in other words, when the control signal area Sc is in the positive half cycle and the power supply system 1 implements the minimum pulse width limit time interval, the control signal Sc is compensated for the low voltage threshold Vmin, so that , The power system 1 of this case can not only meet the minimum pulse width limit, but also because in the first time interval ΔT1 from the critical time point t0 to the first predetermined time, the first ramp signal S1a is superimposed on the positive half cycle of the control signal Sc , Which cancels out the low voltage threshold Vmin generated by the first pulse width signal S2a, so the ideal control signal Sc is maintained, and the time zone for the power supply system 1 to implement the minimum pulse width limitation is satisfied, so the accuracy of the output voltage Vout can be ensured.

以下將再說明電源系統1於控制訊號Sc為負半周期時的運作。請參閱第1圖、第2圖,並配合第5A圖、第5B圖、第6A圖及第6B圖,其中第5A圖為解釋脈寬調變單元21產生第二脈寬訊號S3a及第三參考波形S3’的訊號時序圖,第5B圖為解釋脈寬調變單元21產生第二斜波訊號S4a及第四參考波形S4’的訊號時序圖,第6A圖為在第二時間區間時第一三角波ePWM1、第二三角波ePWM2、第二脈寬訊號S3a、第二斜波訊號S4a、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖,第6B圖為在第二時間區間時第一三角波ePWM1、第二三角波ePWM2、第三參考波形S3’、第四參考波形S4’、第一驅動訊號P1至第四驅動訊號P4的訊號時序示意圖。於一些實施例中,在控制訊號Sc的負半周期時,脈寬調變單元21將負周期訊號Sc-箝位於參考電壓準位Vref以作為第三比較波形S3,且脈寬調變單元21反相負周期訊號Sc-,且箝位已反相的負周期訊號Sc-之大於或等於最大電壓閥值Vmax的部分於最大電壓閥值Vmax以形成第四比較波形S4。 The operation of the power supply system 1 when the control signal Sc is a negative half cycle will be described below. Please refer to Figure 1 and Figure 2 in conjunction with Figure 5A, Figure 5B, Figure 6A and Figure 6B. Figure 5A is for explaining that the pulse width modulation unit 21 generates the second pulse width signal S3a and the third pulse width signal S3a. Referring to the signal timing diagram of the waveform S3', Figure 5B is a diagram explaining the signal timing diagram of the pulse width modulation unit 21 generating the second ramp signal S4a and the fourth reference waveform S4', and Figure 6A is the signal timing diagram in the second time interval. A schematic diagram of the signal timing of a triangular wave ePWM1, a second triangular wave ePWM2, a second pulse width signal S3a, a second ramp signal S4a, and a first driving signal P1 to a fourth driving signal P4. Fig. 6B shows the signal timing in the second time interval. A schematic diagram of the signal timing of a triangular wave ePWM1, a second triangular wave ePWM2, a third reference waveform S3', a fourth reference waveform S4', and the first driving signal P1 to the fourth driving signal P4. In some embodiments, when the negative half cycle of the control signal Sc is controlled, the pulse width modulation unit 21 clamps the negative cycle signal Sc- to the reference voltage level Vref as the third comparison waveform S3, and the pulse width modulation unit 21 Invert the negative period signal Sc-, and clamp the portion of the inverted negative period signal Sc- that is greater than or equal to the maximum voltage threshold Vmax at the maximum voltage threshold Vmax to form a fourth comparison waveform S4.

此外,脈寬調變單元21更可取樣落入臨界時間點t0至第二預定時間t2的第二時間區間△T2內的第三比較波形S3及第四比較波形S4。又脈寬調變單元21更疊加低電壓閥值Vmin和落入第二時間區間△T2內的第三比較波形S3以形成第二脈寬訊號S3a,且脈寬調變單元21亦疊加低電壓閥值Vmin和落入第二時間區間△T2內的第四比較波形S4以形成第二斜波訊號S4a。 In addition, the pulse width modulation unit 21 may further sample the third comparison waveform S3 and the fourth comparison waveform S4 within the second time interval ΔT2 from the critical time point t0 to the second predetermined time t2. Furthermore, the pulse width modulation unit 21 further superimposes the low voltage threshold Vmin and the third comparison waveform S3 falling within the second time interval ΔT2 to form the second pulse width signal S3a, and the pulse width modulation unit 21 also superimposes the low voltage The threshold Vmin and the fourth comparison waveform S4 falling within the second time interval ΔT2 form a second ramp signal S4a.

更甚者,於第二時間區間△T2內,脈寬調變單元21比較第二脈寬訊號S3a與第一三角波ePWM1以調整第一驅動訊號P1及第三驅動訊號P3,且脈寬調變單元21比較第二斜波訊號S4a與第二三角波ePWM2以調整第二驅動訊號P2及第四驅動訊號P4。於上述實施例中,第二時間區間△T2即為在控制訊號區Sc於負半周期時,電源系統1執行最小脈寬限制的時間區間。 Furthermore, in the second time interval ΔT2, the pulse width modulation unit 21 compares the second pulse width signal S3a with the first triangular wave ePWM1 to adjust the first driving signal P1 and the third driving signal P3, and the pulse width modulation The unit 21 compares the second ramp signal S4a with the second triangle wave ePWM2 to adjust the second driving signal P2 and the fourth driving signal P4. In the above embodiment, the second time interval ΔT2 is the time interval during which the power supply system 1 executes the minimum pulse width limitation when the control signal area Sc is in the negative half cycle.

更甚者,如第6A圖所示,於第二時間區間△T2內,當脈寬調變單元21判斷第二脈寬訊號S3a大於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至高電壓準位,且切換第三驅動訊號P3至低電壓準位,使第一電晶體Q1切換為導通而第三電晶體Q3切換為斷開。另外,於第二時間區間△T2內,當脈寬調變單元21判斷第二斜波訊號S4a小於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至高電壓準位,且切換第四驅動訊號P4至低電壓準位,使第二電晶體Q2切換為導通而第四電晶體Q4切換為斷開。 Furthermore, as shown in FIG. 6A, in the second time interval ΔT2, when the pulse width modulation unit 21 determines that the second pulse width signal S3a is greater than the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first The driving signal P1 is switched to a high voltage level, and the third driving signal P3 is switched to a low voltage level, so that the first transistor Q1 is switched on and the third transistor Q3 is switched off. In addition, in the second time interval ΔT2, when the pulse width modulation unit 21 determines that the second ramp signal S4a is smaller than the second triangle wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a high voltage level, and The fourth driving signal P4 is switched to the low voltage level, so that the second transistor Q2 is switched on and the fourth transistor Q4 is switched off.

另外,於第二時間區間△T2內,當脈寬調變單元21判斷第二脈寬訊號S3a小於或等於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至低電壓準位且切換第三驅動訊號P3至高電壓準位,使第一電晶體Q1切換為斷開而第三電晶體Q3切換為導通;又於第二時間區間△T2內,當脈寬調變單元21判斷第二斜波訊號S4a大於或等於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至低電壓準位且切換第四驅動訊號P4至高電壓準位,使第二電晶體Q2切換為斷開而第四電晶體Q4切換為導通。而由第6A圖可知,在控制訊號Sc的負半周期時,輸出電壓Vout係由0、-Vdc/2及Vdc/2來組成。 In addition, in the second time interval ΔT2, when the pulse width modulation unit 21 determines that the second pulse width signal S3a is less than or equal to the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 to a low voltage level. And switch the third driving signal P3 to the high voltage level, so that the first transistor Q1 is switched off and the third transistor Q3 is switched on; and in the second time interval △T2, when the pulse width modulation unit 21 When judging that the second ramp signal S4a is greater than or equal to the second triangular wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a low voltage level and switches the fourth driving signal P4 to a high voltage level, so that the second transistor Q2 is switched off and the fourth transistor Q4 is switched on. It can be seen from Fig. 6A that during the negative half cycle of the control signal Sc, the output voltage Vout is composed of 0, -Vdc/2, and Vdc/2.

請再參閱第7圖及第8圖,並配合第1圖至第6B圖,其中第7圖為附加了最小脈寬限制技術之傳統電源系統所輸出之輸出電流的波形示意圖,第8圖為本案之電源系統1所輸出之輸出電流的波形示意圖。如圖所示,首先,根據第7圖所示可知,在傳統電源系統之控制單元所輸出之控制訊號Sc’接近零交越點時,由於傳統電源系統進入最小脈寬限制的時間區間,故傳統電源系統所輸出之輸出電流(包含U相電流、V相電流及W相電流)上會產生失真的現象,然而由於本案之電源系統1在控制訊號區Sc於正半周期及負半周期而電源系統1執行最小脈 寬限制的時間區間時,會對控制訊號Sc補償低電壓閥值Vmin,故如第8圖所示,本案之電源系統1所輸出之輸出電流(包含U相電流、V相電流及W相電流)可大幅改善失真的現象。 Please refer to Figures 7 and 8 again, in conjunction with Figures 1 to 6B. Figure 7 is a waveform diagram of the output current output by a traditional power system with minimum pulse width limiting technology. Figure 8 is The waveform diagram of the output current output by the power supply system 1 in this case. As shown in the figure, first, as shown in figure 7, when the control signal Sc' output by the control unit of the traditional power system is close to the zero-crossing point, since the traditional power system enters the time interval limited by the minimum pulse width, The output current (including U-phase current, V-phase current and W-phase current) output by the traditional power system will produce distortion. However, because the power system 1 in this case controls the signal area Sc in the positive half cycle and the negative half cycle. The power supply system 1 performs the minimum pulse When the time interval is wide limited, the low voltage threshold Vmin will be compensated for the control signal Sc. Therefore, as shown in Figure 8, the output current (including U-phase current, V-phase current and W-phase current) output by the power supply system 1 in this case ) Can greatly improve the distortion phenomenon.

請再參閱第3A-3B圖及第4B圖,並配合第2圖,又於一些實施例中,脈寬調變單元21可取樣於第一時間區間△T1之外,例如第3A圖所示之時間t1以後的第一比較波形S1,以作為第一參考波形S1’,且脈寬調變單元21還取樣於第一時間區間△T1之外,例如第3B圖所示之時間t1以後的第二比較波形S2以作為第二參考波形S2’,且如第4B圖所示,脈寬調變單元21並比較第一參考波形S1’與第一三角波ePWM1以調整第一驅動訊號P1及第三驅動訊號P3,其中當脈寬調變單元21判斷第一參考波形S1’大於第一三角波ePWM1時,則脈寬調變單元21切換第一驅動訊號P1至高電壓準位,且將第三驅動訊號P3切換至低電壓準位。另外,當脈寬調變單元21判斷第一參考波形S1’小於或等於第一三角波ePWM1時,則脈寬調變單元21切換第一驅動訊號P1至低電壓準位,且切換第三驅動訊號P3切換至高電壓準位。更甚者,當脈寬調變單元21判斷該第二參考波形S2’恆小於第二三角波ePWM2時,則脈寬調變單元21維持第二驅動訊號P2至高電壓準位且維持第四驅動訊號P4至低電壓準位。 Please refer to FIGS. 3A-3B and 4B again, and in conjunction with FIG. 2, and in some embodiments, the pulse width modulation unit 21 may sample outside the first time interval ΔT1, for example, as shown in FIG. 3A The first comparison waveform S1 after the time t1 is used as the first reference waveform S1', and the pulse width modulation unit 21 also samples outside the first time interval ΔT1, for example, after the time t1 shown in Figure 3B The second comparison waveform S2 is used as the second reference waveform S2', and as shown in FIG. 4B, the pulse width modulation unit 21 compares the first reference waveform S1' with the first triangular wave ePWM1 to adjust the first driving signal P1 and the second Three driving signals P3. When the pulse width modulation unit 21 determines that the first reference waveform S1' is greater than the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 to a high voltage level, and drives the third The signal P3 is switched to the low voltage level. In addition, when the pulse width modulation unit 21 determines that the first reference waveform S1' is less than or equal to the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 to a low voltage level, and switches the third driving signal P3 switches to the high voltage level. Furthermore, when the pulse width modulation unit 21 determines that the second reference waveform S2' is constantly smaller than the second triangular wave ePWM2, the pulse width modulation unit 21 maintains the second driving signal P2 to the high voltage level and maintains the fourth driving signal P4 to low voltage level.

請再參閱第5A-5B圖及第6B圖,並配合第2圖,又於一些實施例中,脈寬調變單元21還取樣於第二時間區間△T2之外,例如第5A圖所示之時間t2以前,的第三比較波形S3以作為第三參考波形S3’,且脈寬調變單元21還取樣於第二時間區間△T2之外,例如第5B圖所示之時間t2以前,的第四比較波形S4以作為第四參考波形S4’,且如第6B圖所示,脈寬調變單元21比較第四參考波形S4’與第二三角波ePWM2以調整第二驅動訊號P2及第四驅動訊號P4,其中當脈寬調變 單元21判斷第四參考波形S4’小於第二三角波ePWM2時,則脈寬調變單元21切換第二驅動訊號P2至高電壓準位,且將第四驅動訊號P4切換至低電壓準位。另外,當脈寬調變單元21判斷第四參考波形S4’大於或等於第二三角波ePWM2時,則脈寬調變單元21切換第二驅動訊號P2至低電壓準位,且切換第四驅動訊號P4至高電壓準位。更甚者,當脈寬調變單元21判斷第三參考波形S3’恆小於第一三角波ePWM1時,則脈寬調變單元21維持第一驅動訊號P1至低電壓準位且維持第三驅動訊號P3至高電壓準位。 Please refer to FIG. 5A-5B and FIG. 6B again, and in conjunction with FIG. 2, and in some embodiments, the pulse width modulation unit 21 also samples outside the second time interval ΔT2, for example, as shown in FIG. 5A Before the time t2, the third comparison waveform S3 is used as the third reference waveform S3', and the pulse width modulation unit 21 also samples outside the second time interval ΔT2, for example, before the time t2 shown in Fig. 5B, The fourth comparison waveform S4 is used as the fourth reference waveform S4', and as shown in FIG. 6B, the pulse width modulation unit 21 compares the fourth reference waveform S4' with the second triangular wave ePWM2 to adjust the second driving signal P2 and the first Four-drive signal P4, when pulse width modulation When the unit 21 determines that the fourth reference waveform S4' is smaller than the second triangle wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a high voltage level, and switches the fourth driving signal P4 to a low voltage level. In addition, when the pulse width modulation unit 21 determines that the fourth reference waveform S4' is greater than or equal to the second triangular wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a low voltage level, and switches the fourth driving signal P4 to high voltage level. Furthermore, when the pulse width modulation unit 21 determines that the third reference waveform S3' is constantly smaller than the first triangular wave ePWM1, the pulse width modulation unit 21 maintains the first driving signal P1 to a low voltage level and maintains the third driving signal P3 to high voltage level.

於一些實施例中,第一三角波ePWM1及第二三角波ePWM2分別為控制訊號Sc的載波,且第一三角波ePWM1及第二三角波ePWM2之頻率至少為控制訊號Sc之頻率的十倍。而由於第一三角波ePWM1及第二三角波ePWM2的頻率大於控制訊號Sc的頻率十倍以上,所以放大波形來看,對載波而言與控制訊號Sc相關的波形為直線,即如第4A-4B圖及第6A-6B圖所示。 In some embodiments, the first triangular wave ePWM1 and the second triangular wave ePWM2 are respectively the carrier of the control signal Sc, and the frequency of the first triangular wave ePWM1 and the second triangular wave ePWM2 are at least ten times the frequency of the control signal Sc. Since the frequency of the first triangular wave ePWM1 and the second triangular wave ePWM2 is more than ten times greater than the frequency of the control signal Sc, the enlarged waveform shows that the waveform related to the control signal Sc is a straight line for the carrier, as shown in Figure 4A-4B And as shown in Figure 6A-6B.

以下將再說明係適用於前述實施例中的電源系統1之脈寬調變裝置2之本案之脈寬調變方法的步驟流程。本案之脈寬調變方法包含下列步驟。 The following will explain the steps of the pulse width modulation method of the present application applicable to the pulse width modulation device 2 of the power supply system 1 in the foregoing embodiment. The pulse width modulation method of this case includes the following steps.

首先,於步驟s1中,脈寬調變裝置2之脈寬調變單元21接收控制單元20所輸出之控制訊號Sc,其中控制訊號Sc為周期性訊號。 First, in step s1, the pulse width modulation unit 21 of the pulse width modulation device 2 receives the control signal Sc output by the control unit 20, wherein the control signal Sc is a periodic signal.

於步驟s2中,脈寬調變單元21依據參考電壓準位Vref決定控制訊號Sc的臨界時間點。 In step s2, the pulse width modulation unit 21 determines the critical time point of the control signal Sc according to the reference voltage level Vref.

於步驟s3中,脈寬調變單元21依據臨界時間點將控制訊號Sc區分為正周期訊號Sc+及負周期訊號Sc-,其中控制訊號Sc於臨界時間點接近參考電壓準位Vref於誤差範圍內。 In step s3, the pulse width modulation unit 21 divides the control signal Sc into a positive period signal Sc+ and a negative period signal Sc- according to the critical time point, wherein the control signal Sc is close to the reference voltage level Vref at the critical time point within the error range.

於步驟s4中,脈寬調變單元21箝位正周期訊號Sc+之大於或等於最大電壓閥值Vmax的部分於最大電壓閥值Vmax以形成第一比較波形S1。 In step s4, the pulse width modulation unit 21 clamps the portion of the positive period signal Sc+ that is greater than or equal to the maximum voltage threshold Vmax to the maximum voltage threshold Vmax to form the first comparison waveform S1.

於步驟s5中,脈寬調變單元21將正周期訊號Sc+箝位於參考電壓準位Vref以作為第二比較波形S2。 In step s5, the pulse width modulation unit 21 clamps the positive period signal Sc+ at the reference voltage level Vref as the second comparison waveform S2.

於步驟s6中,脈寬調變單元21取樣落入臨界時間點(如第2圖所示之時間t0)至第一預定時間t1的第一時間區間△T1內的第一比較波形S1及第二比較波形S2。 In step s6, the pulse width modulation unit 21 samples the first comparison waveform S1 and the first comparison waveform S1 and the first time interval ΔT1 from the critical time point (time t0 shown in Figure 2) to the first predetermined time t1 2. Compare the waveform S2.

於步驟s7中,脈寬調變單元21疊加低電壓閥值Vmin和落入第一時間區間△T1內的第一比較波形S1以形成第一斜波訊號S1a(如第3A圖所示)。 In step s7, the pulse width modulation unit 21 superimposes the low voltage threshold Vmin and the first comparison waveform S1 falling within the first time interval ΔT1 to form a first ramp signal S1a (as shown in FIG. 3A).

於步驟s8中,脈寬調變單元21疊加低電壓閥值Vmin和落入第一時間區間△T1內的第二比較波形S2以形成第一脈寬訊號S2a(如第3B圖所示)。 In step s8, the pulse width modulation unit 21 superimposes the low voltage threshold Vmin and the second comparison waveform S2 falling within the first time interval ΔT1 to form a first pulse width signal S2a (as shown in FIG. 3B).

於步驟s9中,在第一時間區間△T1內,脈寬調變單元21比較第一斜波訊號S1a與第一三角波ePWM1以調整第一驅動訊號P1及第三驅動訊號P3。 In step s9, in the first time interval ΔT1, the pulse width modulation unit 21 compares the first ramp signal S1a with the first triangular wave ePWM1 to adjust the first driving signal P1 and the third driving signal P3.

於步驟s10中,在第一時間區間△T1內,脈寬調變單元21比較第一脈寬訊號S2a與第二三角波ePWM2以調整第二驅動訊號P2及第四驅動訊號P4(如第4A圖所示)。其中第一三角波ePWM1及第二三角波ePWM2之間的相位差為180度。 In step s10, in the first time interval ΔT1, the pulse width modulation unit 21 compares the first pulse width signal S2a with the second triangular wave ePWM2 to adjust the second driving signal P2 and the fourth driving signal P4 (as shown in Fig. 4A) Shown). The phase difference between the first triangular wave ePWM1 and the second triangular wave ePWM2 is 180 degrees.

另外,當步驟s9的比較結果為脈寬調變單元21判斷第一斜波訊號S1a大於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至高電壓準位,且切換第三驅動訊號P3至低電壓準位,使第一電晶體Q1切換為導通而第三電晶體Q3切換為斷開。又當步驟s10的比較結果為脈寬調變單元21判斷第一脈寬訊號S2a小於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至高電 壓準位,且切換第四驅動訊號P4至低電壓準位,使第二電晶體Q2切換為導通而第四電晶體Q4切換為斷開。 In addition, when the comparison result of step s9 is that the pulse width modulation unit 21 determines that the first ramp signal S1a is greater than the first triangle wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 to the high voltage level, and switches the third The signal P3 is driven to a low voltage level, so that the first transistor Q1 is switched on and the third transistor Q3 is switched off. When the comparison result of step s10 is that the pulse width modulation unit 21 determines that the first pulse width signal S2a is smaller than the second triangular wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a high voltage. And switch the fourth driving signal P4 to a low voltage level, so that the second transistor Q2 is switched on and the fourth transistor Q4 is switched off.

反之,當步驟s9的比較結果為脈寬調變單元21判斷第一斜波訊號S1a小於或等於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至低電壓準位且切換第三驅動訊號P3至高電壓準位,使第一電晶體Q1切換為斷開而第三電晶體Q3切換為導通。又當步驟s10的比較結果為脈寬調變單元21判斷第一脈寬訊號S2a大於或等於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至低電壓準位且切換第四驅動訊號P4至高電壓準位,使第二電晶體Q2切換為斷開而第四電晶體Q4切換為導通。 Conversely, when the comparison result of step s9 is that the pulse width modulation unit 21 determines that the first ramp signal S1a is less than or equal to the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 to a low voltage level and switches The third driving signal P3 reaches the high voltage level, so that the first transistor Q1 is switched off and the third transistor Q3 is switched on. When the comparison result of step s10 is that the pulse width modulation unit 21 determines that the first pulse width signal S2a is greater than or equal to the second triangular wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a low voltage level and switches the first pulse width signal S2a to a low voltage level. The four driving signal P4 reaches the high voltage level, so that the second transistor Q2 is switched off and the fourth transistor Q4 is switched on.

於一些實施例中,本案之脈寬調變方法更包含下列步驟。 In some embodiments, the pulse width modulation method of this case further includes the following steps.

於步驟s1’中,脈寬調變單元21將負周期訊號Sc-箝位於參考電壓準位Vref以作為第三比較波形S3。 In step s1', the pulse width modulation unit 21 clamps the negative period signal Sc- at the reference voltage level Vref as the third comparison waveform S3.

於步驟s2’中,脈寬調變單元21反相負周期訊號Sc-,且箝位已反相的負周期訊號Sc-之大於或等於最大電壓閥值Vmax的部分於最大電壓閥值Vmax以形成第四比較波形S4。 In step s2', the pulse width modulation unit 21 inverts the negative period signal Sc-, and clamps the inverted negative period signal Sc- which is greater than or equal to the maximum voltage threshold Vmax to the maximum voltage threshold Vmax. A fourth comparison waveform S4 is formed.

於步驟s3’中,脈寬調變單元21可取樣落入臨界時間點t0至第二預定時間t2的第二時間區間△T2內的第三比較波形S3及第四比較波形S4。 In step s3', the pulse width modulation unit 21 may sample the third comparison waveform S3 and the fourth comparison waveform S4 within the second time interval ΔT2 from the critical time point t0 to the second predetermined time t2.

於步驟s4’中,脈寬調變單元21疊加低電壓閥值Vmin和落入第二時間區間△T2內的第三比較波形S3以形成第二脈寬訊號S3a。 In step s4', the pulse width modulation unit 21 superimposes the low voltage threshold Vmin and the third comparison waveform S3 falling within the second time interval ΔT2 to form the second pulse width signal S3a.

於步驟s5’中,脈寬調變單元21疊加低電壓閥值Vmin和落入第二時間區間△T2內的第四比較波形S4以形成第二斜波訊號S4a。 In step s5', the pulse width modulation unit 21 superimposes the low voltage threshold Vmin and the fourth comparison waveform S4 falling within the second time interval ΔT2 to form the second ramp signal S4a.

於步驟s6’中,於第二時間區間△T2內,脈寬調變單元21比較第二脈寬訊號S3a與第一三角波ePWM1以調整該第一驅動訊號P1及第三驅動訊號P3。 In step s6', in the second time interval ΔT2, the pulse width modulation unit 21 compares the second pulse width signal S3a with the first triangular wave ePWM1 to adjust the first driving signal P1 and the third driving signal P3.

於步驟s7’中,脈寬調變單元21比較第二斜波訊號S4a與第二三角波ePWM2以調整第二驅動訊號P2及第四驅動訊號P4。 In step s7', the pulse width modulation unit 21 compares the second ramp signal S4a with the second triangle wave ePWM2 to adjust the second driving signal P2 and the fourth driving signal P4.

另外,在步驟s6’中,在第二時間區間△T2內,當脈寬調變單元21判斷第二脈寬訊號S3a大於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至高電壓準位。又在步驟s7’中,在第二時間區間△T2內,當脈寬調變單元21判斷第二斜波訊號S4a小於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至高電壓準位,且切換第四驅動訊號P4至低電壓準位,使第二電晶體Q2切換為導通而第四電晶體Q4切換為斷開。 In addition, in step s6', in the second time interval ΔT2, when the pulse width modulation unit 21 determines that the second pulse width signal S3a is greater than the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first driving signal P1 Highest voltage level. In step s7', in the second time interval ΔT2, when the pulse width modulation unit 21 determines that the second ramp signal S4a is smaller than the second triangle wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to high The fourth driving signal P4 is switched to the low voltage level, so that the second transistor Q2 is switched on and the fourth transistor Q4 is switched off.

反之,當在步驟s6’中,在第二時間區間△T2內,當脈寬調變單元21判斷第二脈寬訊號S3a小於或等於第一三角波ePWM1時,脈寬調變單元21切換第一驅動訊號P1至低電壓準位且切換第三驅動訊號P3至高電壓準位,使第一電晶體Q1切換為斷開而第三電晶體Q3切換為導通。又在步驟s7’中,當脈寬調變單元21判斷第二斜波訊號S4a大於或等於第二三角波ePWM2時,脈寬調變單元21切換第二驅動訊號P2至低電壓準位且切換第四驅動訊號P4至高電壓準位,使第二電晶體Q2切換為斷開而第四電晶體Q4切換為導通。 Conversely, in step s6', within the second time interval ΔT2, when the pulse width modulation unit 21 determines that the second pulse width signal S3a is less than or equal to the first triangular wave ePWM1, the pulse width modulation unit 21 switches the first The driving signal P1 is switched to a low voltage level and the third driving signal P3 is switched to a high voltage level, so that the first transistor Q1 is switched off and the third transistor Q3 is switched on. Also in step s7', when the pulse width modulation unit 21 determines that the second ramp signal S4a is greater than or equal to the second triangle wave ePWM2, the pulse width modulation unit 21 switches the second driving signal P2 to a low voltage level and switches the first The four driving signal P4 reaches the high voltage level, so that the second transistor Q2 is switched off and the fourth transistor Q4 is switched on.

於一些實施例中,上述提及之控制單元可為但不限於包含微控制器,脈寬調變單元可為但不限於包含脈寬調變器。 In some embodiments, the aforementioned control unit may include but is not limited to a microcontroller, and the pulse width modulation unit may include, but is not limited to, a pulse width modulator.

綜上所述,本案提供一種電源系統及其適用之脈寬調變方法,其中本案之電源系統可在控制訊號區於正半周期及負半周期且執行最小脈寬限制 的時間區間時,對控制訊號補償低電壓閥值,故本案之電源系統所輸出之輸出電能可大幅改善失真的現象。 In summary, this project provides a power supply system and its applicable pulse width modulation method. The power supply system of this project can control the signal area in the positive half cycle and the negative half cycle and implement the minimum pulse width limit In the time interval of, the low-voltage threshold is compensated for the control signal, so the output electric energy output by the power system of this case can greatly improve the distortion phenomenon.

須注意,上述僅是為說明本案而提出之較佳實施例,本案不限於所述之實施例,本案之範圍由如附專利申請範圍決定。且本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附專利申請範圍所欲保護者。 It should be noted that the above is only a preferred embodiment for explaining this case, this case is not limited to the described embodiment, and the scope of this case is determined by the attached patent application scope. Moreover, this case can be modified in many ways by those who are familiar with this technology, but it is not deviated from the protection of the scope of the patent application.

Sc:控制訊號 Sc: control signal

Sc+:正周期訊號 Sc+: positive periodic signal

S1:第一比較波形 S1: The first comparison waveform

S1’:第一參考波形 S1’: The first reference waveform

Vmax:最大電壓閥值 Vmax: Maximum voltage threshold

Vmin:低電壓閥值 Vmin: Low voltage threshold

t0、t1:時間 t0, t1: time

ΔT1:第一時間區間 ΔT1: the first time interval

Vref:參考電壓準位 Vref: Reference voltage level

Claims (18)

一種電源系統,包含一電源轉換裝置及一脈寬調變裝置,其中該脈寬調變裝置輸出一第一至第四驅動訊號以運轉該電源轉換裝置,並且該脈寬調變裝置包含: 一控制單元,用以產生一控制訊號,其中該控制訊號為周期性訊號;以及 一脈寬調變單元,依據一參考電壓準位決定該控制訊號的一臨界時間點,且依據該臨界時間點將該控制訊號區分為一正周期訊號及一負周期訊號,其中該控制訊號於該臨界時間點接近該參考電壓準位於一誤差範圍內; 其中該脈寬調變單元箝位該正周期訊號之大於或等於一最大電壓閥值的部分於該最大電壓閥值以形成一第一比較波形,並且該脈寬調變單元還將該正周期訊號箝位於該參考電壓準位以作為一第二比較波形,並且該脈寬調變單元取樣落入該臨界時間點至一第一預定時間的一第一時間區間內的該第一及第二比較波形; 其中該脈寬調變單元疊加一低電壓閥值和落入該第一時間區間內的該第一比較波形以形成一第一斜波訊號; 其中該脈寬調變單元疊加該低電壓閥值和落入該第一時間區間內的該第二比較波形以形成一第一脈寬訊號; 其中於該第一時間區間內,該脈寬調變單元比較該第一斜波訊號與一第一三角波以調整該第一及第三驅動訊號,且該脈寬調變單元比較該第一脈寬訊號與一第二三角波以調整該第二及第四驅動訊號,其中該第一及第二三角波之間的一相位差為180度。 A power supply system includes a power conversion device and a pulse width modulation device, wherein the pulse width modulation device outputs a first to fourth driving signal to operate the power conversion device, and the pulse width modulation device includes: A control unit for generating a control signal, wherein the control signal is a periodic signal; and A pulse width modulation unit determines a critical time point of the control signal according to a reference voltage level, and divides the control signal into a positive period signal and a negative period signal according to the critical time point, wherein the control signal is at the The critical time point is close to the reference voltage and is within an error range; The pulse width modulation unit clamps the portion of the positive period signal that is greater than or equal to a maximum voltage threshold to the maximum voltage threshold to form a first comparison waveform, and the pulse width modulation unit also changes the positive period The signal clamp is located at the reference voltage level as a second comparison waveform, and the pulse width modulation unit samples the first and second time intervals falling within a first time interval from the critical time point to a first predetermined time Compare waveforms; The pulse width modulation unit superimposes a low voltage threshold value and the first comparison waveform falling within the first time interval to form a first ramp signal; The pulse width modulation unit superimposes the low voltage threshold value and the second comparison waveform falling within the first time interval to form a first pulse width signal; In the first time interval, the pulse width modulation unit compares the first ramp signal with a first triangular wave to adjust the first and third driving signals, and the pulse width modulation unit compares the first pulse A wide signal and a second triangular wave are used to adjust the second and fourth driving signals, wherein a phase difference between the first and second triangular waves is 180 degrees. 如請求項1所述之電源系統,其中於該第一時間區間內,如果該脈寬調變單元判斷該第一斜波訊號大於該第一三角波,則該脈寬調變單元切換該第一驅動訊號至一高電壓準位且切換該第三驅動訊號至一低電壓準位; 其中於該第一時間區間內,如果該脈寬調變單元判斷該第一脈寬訊號小於該第二三角波,則該脈寬調變單元切換該第二驅動訊號至該高電壓準位且切換該第四驅動訊號至該低電壓準位。 The power supply system according to claim 1, wherein in the first time interval, if the pulse width modulation unit determines that the first ramp signal is greater than the first triangular wave, the pulse width modulation unit switches the first Driving the signal to a high voltage level and switching the third driving signal to a low voltage level; In the first time interval, if the pulse width modulation unit determines that the first pulse width signal is smaller than the second triangle wave, the pulse width modulation unit switches the second driving signal to the high voltage level and switches The fourth driving signal reaches the low voltage level. 如請求項2所述之電源系統,其中於該第一時間區間內,如果該脈寬調變單元判斷該第一斜波訊號小於或等於該第一三角波,則該脈寬調變單元切換該第一驅動訊號至該低電壓準位且切換該第三驅動訊號至該高電壓準位; 其中於該第一時間區間內,如果該脈寬調變單元判斷該第一脈寬訊號大於或等於該第二三角波時,該脈寬調變單元切換該第二驅動訊號至該低電壓準位且切換該第四驅動訊號至該高電壓準位。 The power supply system according to claim 2, wherein in the first time interval, if the pulse width modulation unit determines that the first ramp signal is less than or equal to the first triangle wave, the pulse width modulation unit switches the The first driving signal is switched to the low voltage level and the third driving signal is switched to the high voltage level; In the first time interval, if the pulse width modulation unit determines that the first pulse width signal is greater than or equal to the second triangular wave, the pulse width modulation unit switches the second driving signal to the low voltage level And switch the fourth driving signal to the high voltage level. 如請求項2所述之電源系統,其中該脈寬調變單元將該負周期訊號箝位於該參考電壓準位以作為一第三比較波形; 其中該脈寬調變單元反相該負周期訊號,且箝位已反相的負周期訊號之大於或等於該最大電壓閥值的部分於該最大電壓閥值以形成一第四比較波形。 The power supply system according to claim 2, wherein the pulse width modulation unit clamps the negative period signal at the reference voltage level as a third comparison waveform; The pulse width modulation unit inverts the negative period signal, and clamps the portion of the inverted negative period signal greater than or equal to the maximum voltage threshold at the maximum voltage threshold to form a fourth comparison waveform. 如請求項4所述之電源系統, 其中該脈寬調變單元取樣落入該臨界時間點至一第二預定時間的一第二時間區間內的該第三及第四比較波形; 其中該脈寬調變單元疊加該低電壓閥值和落入該第二時間區間內的該第三比較波形以形成一第二脈寬訊號; 其中該脈寬調變單元疊加該低電壓閥值和落入該第二時間區間內的該第四比較波形以形成一第二斜波訊號; 其中於該第二時間區間內,該脈寬調變單元比較該第二脈寬訊號與該第一三角波以調整該第一及第三驅動訊號,且該脈寬調變單元比較該第二斜波訊號與一第二三角波以調整該第二及第四驅動訊號。 The power supply system according to claim 4, wherein the pulse width modulation unit samples the third and fourth comparison waveforms that fall within a second time interval from the critical time point to a second predetermined time; The pulse width modulation unit superimposes the low voltage threshold value and the third comparison waveform falling within the second time interval to form a second pulse width signal; The pulse width modulation unit superimposes the low voltage threshold value and the fourth comparison waveform falling within the second time interval to form a second ramp signal; In the second time interval, the pulse width modulation unit compares the second pulse width signal with the first triangular wave to adjust the first and third driving signals, and the pulse width modulation unit compares the second slope A wave signal and a second triangular wave are used to adjust the second and fourth driving signals. 如請求項5所述之電源系統,其中於該第二時間區間內,如果該脈寬調變單元判斷該第二脈寬訊號大於該第一三角波,則該脈寬調變單元切換該第一驅動訊號至該高電壓準位且切換該第三驅動訊號至該低電壓準位; 其中於該第二時間區間內,如果該脈寬調變單元判斷該第二斜波訊號小於該第二三角波,則該脈寬調變單元切換該第二驅動訊號至該高電壓準位且切換該第四驅動訊號至該低電壓準位。 The power supply system according to claim 5, wherein in the second time interval, if the pulse width modulation unit determines that the second pulse width signal is greater than the first triangular wave, the pulse width modulation unit switches the first Driving the signal to the high voltage level and switching the third driving signal to the low voltage level; In the second time interval, if the pulse width modulation unit determines that the second ramp signal is smaller than the second triangle wave, the pulse width modulation unit switches the second driving signal to the high voltage level and switches The fourth driving signal reaches the low voltage level. 如請求項5所述之電源系統, 其中於該第二時間區間內,如果該脈寬調變單元判斷該第二脈寬訊號小於或等於該第一三角波,則該脈寬調變單元切換該第一驅動訊號至該低電壓準位且切換該第三驅動訊號至該高電壓準位; 其中於該第二時間區間內,如果該脈寬調變單元判斷該第二斜波訊號大於或等於該第二三角波,則該脈寬調變單元切換該第二驅動訊號至該低電壓準位且切換該第四驅動訊號至該高電壓準位。 The power supply system according to claim 5, wherein in the second time interval, if the pulse width modulation unit determines that the second pulse width signal is less than or equal to the first triangular wave, the pulse width modulation unit switches the The first driving signal is switched to the low voltage level and the third driving signal is switched to the high voltage level; In the second time interval, if the pulse width modulation unit determines that the second ramp signal is greater than or equal to the second triangle wave, the pulse width modulation unit switches the second driving signal to the low voltage level And switch the fourth driving signal to the high voltage level. 如請求項2所述之電源系統,其中該脈寬調變單元還取樣於該第一時間區間之外的該第一比較波形以作為一第一參考波形,且該脈寬調變單元還取樣於該第一時間區間之外的該第二比較波形以作為一第二參考波形; 其中該脈寬調變單元比較該第一參考波形與該第一三角波以調整該第一及第三驅動訊號。 The power supply system according to claim 2, wherein the pulse width modulation unit further samples the first comparison waveform outside the first time interval as a first reference waveform, and the pulse width modulation unit also samples The second comparison waveform outside the first time interval is used as a second reference waveform; The pulse width modulation unit compares the first reference waveform with the first triangle wave to adjust the first and third driving signals. 如請求項8所述之電源系統,如果該脈寬調變單元判斷該第一參考波形大於該第一三角波,則該脈寬調變單元切換該第一驅動訊號至該高電壓準位且切換該第三驅動訊號至該低電壓準位; 如果該脈寬調變單元判斷該第一參考波形小於或等於該第一三角波,則該脈寬調變單元切換該第一驅動訊號至該低電壓準位且切換該第三驅動訊號至該高電壓準位。 For the power supply system of claim 8, if the pulse width modulation unit determines that the first reference waveform is greater than the first triangle wave, the pulse width modulation unit switches the first driving signal to the high voltage level and switches The third driving signal to the low voltage level; If the pulse width modulation unit determines that the first reference waveform is less than or equal to the first triangle wave, the pulse width modulation unit switches the first driving signal to the low voltage level and switches the third driving signal to the high Voltage level. 如請求項8所述之電源系統,其中如果該脈寬調變單元判斷該第二參考波形恆小於該第二三角波,則該脈寬調變單元維持該第二驅動訊號至該高電壓準位且維持該第四驅動訊號至該低電壓準位。The power supply system according to claim 8, wherein if the pulse width modulation unit determines that the second reference waveform is constantly smaller than the second triangular wave, the pulse width modulation unit maintains the second driving signal to the high voltage level And maintain the fourth driving signal to the low voltage level. 如請求項5所述之電源系統,其中該脈寬調變單元還取樣於該第二時間區間之外的該第三比較波形以作為一第三參考波形,且該脈寬調變單元還取樣於該第二時間區間之外的該第四比較波形以作為一第四參考波形; 其中該脈寬調變單元比較該第四參考波形與該第二三角波以調整該第二及第四驅動訊號。 The power supply system according to claim 5, wherein the pulse width modulation unit further samples the third comparison waveform outside the second time interval as a third reference waveform, and the pulse width modulation unit also samples The fourth comparison waveform outside the second time interval is used as a fourth reference waveform; The pulse width modulation unit compares the fourth reference waveform with the second triangle wave to adjust the second and fourth driving signals. 如請求項11所述之電源系統,如果該脈寬調變單元判斷該第四參考波形小於該第二三角波,則該脈寬調變單元切換該第二驅動訊號至該高電壓準位且切換該第四驅動訊號至該低電壓準位; 如果該脈寬調變單元判斷該第四參考波形大於或等於該第二三角波,則該脈寬調變單元切換該第二驅動訊號至該低電壓準位且切換該第四驅動訊號至該高電壓準位。 For the power supply system of claim 11, if the pulse width modulation unit determines that the fourth reference waveform is smaller than the second triangle wave, the pulse width modulation unit switches the second driving signal to the high voltage level and switches The fourth driving signal to the low voltage level; If the pulse width modulation unit determines that the fourth reference waveform is greater than or equal to the second triangle wave, the pulse width modulation unit switches the second driving signal to the low voltage level and switches the fourth driving signal to the high Voltage level. 如請求項11所述之電源系統,其中如果該脈寬調變單元判斷該第三參考波形恆小於該第一三角波,則該脈寬調變單元維持該第一驅動訊號至該低電壓準位且維持該第三驅動訊號至該高電壓準位。The power supply system according to claim 11, wherein if the pulse width modulation unit determines that the third reference waveform is constantly smaller than the first triangular wave, the pulse width modulation unit maintains the first driving signal to the low voltage level And maintain the third driving signal to the high voltage level. 如請求項1所述之電源系統,其中該第一及第二三角波之頻率至少為該控制訊號之一頻率的十倍。The power supply system according to claim 1, wherein the frequencies of the first and second triangular waves are at least ten times of a frequency of the control signal. 一種脈寬調變方法,包括: 接收一控制訊號,其中該控制訊號為周期性訊號; 依據一參考電壓準位決定該控制訊號的一臨界時間點; 依據該臨界時間點將該控制訊號區分為一正周期訊號及一負周期訊號,其中該控制訊號於該臨界時間點接近該參考電壓準位於一誤差範圍內; 箝位該正周期訊號之大於或等於一最大電壓閥值的部分於該最大電壓閥值以形成一第一比較波形; 箝位該正周期訊號於該參考電壓準位以作為一第二比較波形; 取樣落入該臨界時間點至一第一預定時間的一第一時間區間內的該第一及第二比較波形; 疊加一低電壓閥值和落入該第一時間區間內的該第一比較波形以形成一第一斜波訊號; 疊加該低電壓閥值和落入該第一時間區間內的該第二比較波形以形成一第一脈寬訊號; 於該第一時間區間內比較該第一斜波訊號與一第一三角波以調整該第一及第三驅動訊號;以及 於該第一時間區間內該脈寬調變單元比較該第一脈寬訊號與一第二三角波以調整該第二及第四驅動訊號,其中該第一及第二三角波之間的一相位差為180度。 A pulse width modulation method, including: Receiving a control signal, where the control signal is a periodic signal; Determine a critical time point of the control signal according to a reference voltage level; The control signal is divided into a positive period signal and a negative period signal according to the critical time point, wherein the control signal is within an error range close to the reference voltage at the critical time point; Clamping the portion of the positive period signal greater than or equal to a maximum voltage threshold at the maximum voltage threshold to form a first comparison waveform; Clamping the positive period signal at the reference voltage level as a second comparison waveform; Sampling the first and second comparison waveforms falling within a first time interval from the critical time point to a first predetermined time; Superimposing a low voltage threshold value and the first comparison waveform falling within the first time interval to form a first ramp signal; Superimposing the low voltage threshold value and the second comparison waveform falling within the first time interval to form a first pulse width signal; Comparing the first ramp signal with a first triangular wave in the first time interval to adjust the first and third driving signals; and In the first time interval, the pulse width modulation unit compares the first pulse width signal with a second triangular wave to adjust the second and fourth driving signals, wherein a phase difference between the first and second triangular waves is Is 180 degrees. 如請求項15所述之脈寬調變方法,其中於該第一時間區間內,如果判斷該第一斜波訊號大於該第一三角波,則切換該第一驅動訊號至一高電壓準位且切換該第三驅動訊號至一低電壓準位; 其中於該第一時間區間內,如果判斷該第一脈寬訊號小於該第二三角波,則切換該第二驅動訊號至該高電壓準位且切換該第四驅動訊號至該低電壓準位; 其中於該第一時間區間內,如果判斷該第一斜波訊號小於或等於該第一三角波,則切換該第一驅動訊號至該低電壓準位且切換該第三驅動訊號至該高電壓準位; 其中於該第一時間區間內,如果判斷該第一脈寬訊號大於或等於該第二三角波時,則切換該第二驅動訊號至該低電壓準位且切換該第四驅動訊號至該高電壓準位。 The pulse width modulation method according to claim 15, wherein in the first time interval, if it is determined that the first ramp signal is greater than the first triangle wave, the first driving signal is switched to a high voltage level and Switch the third driving signal to a low voltage level; In the first time interval, if it is determined that the first pulse width signal is smaller than the second triangular wave, then switch the second drive signal to the high voltage level and switch the fourth drive signal to the low voltage level; In the first time interval, if it is determined that the first ramp signal is less than or equal to the first triangle wave, then switch the first drive signal to the low voltage level and switch the third drive signal to the high voltage level Bit In the first time interval, if it is determined that the first pulse width signal is greater than or equal to the second triangular wave, then switch the second driving signal to the low voltage level and switch the fourth driving signal to the high voltage Level. 如請求項15所述之脈寬調變方法,更包括: 箝位該負周期訊號於該參考電壓準位以作為一第三比較波形; 反相該負周期訊號並箝位該已反相的負周期訊號之大於或等於該最大電壓閥值的部分於該最大電壓閥值以形成一第四比較波形; 取樣落入該臨界時間點至一第二預定時間的一第二時間區間內的該第三及第四比較波形; 疊加該低電壓閥值和落入該第二時間區間內的該第三比較波形以形成一第二脈寬訊號; 疊加該低電壓閥值和落入該第二時間區間內的該第四比較波形以形成一第二斜波訊號; 於該第二時間區間內比較該第二脈寬訊號與該第一三角波以調整該第一及第三驅動訊號;以及 於該第二時間區間內比較該第二斜波訊號與一第二三角波以調整該第二及第四驅動訊號。 The pulse width modulation method described in claim 15 further includes: Clamping the negative period signal at the reference voltage level as a third comparison waveform; Inverting the negative period signal and clamping the portion of the inverted negative period signal greater than or equal to the maximum voltage threshold to the maximum voltage threshold to form a fourth comparison waveform; Sampling the third and fourth comparison waveforms falling within a second time interval from the critical time point to a second predetermined time; Superimposing the low voltage threshold value and the third comparison waveform falling within the second time interval to form a second pulse width signal; Superimposing the low voltage threshold value and the fourth comparison waveform falling within the second time interval to form a second ramp signal; Comparing the second pulse width signal with the first triangular wave in the second time interval to adjust the first and third driving signals; and The second ramp signal and a second triangular wave are compared in the second time interval to adjust the second and fourth driving signals. 如請求項17所述之脈寬調變方法,其中於該第二時間區間內,如果判斷該第二脈寬訊號大於該第一三角波,則切換該第一驅動訊號至一高電壓準位且切換該第三驅動訊號至一低電壓準位; 其中於該第二時間區間內,如果判斷該第二斜波訊號小於該第二三角波,則切換該第二驅動訊號至該高電壓準位且切換該第四驅動訊號至該低電壓準位; 其中於該第二時間區間內,如果判斷該第二脈寬訊號小於或等於該第一三角波,則切換該第一驅動訊號至該低電壓準位且切換該第三驅動訊號至該高電壓準位; 其中於該第二時間區間內,如果判斷該第二斜波訊號大於或等於該第二三角波,則切換該第二驅動訊號至該低電壓準位且切換該第四驅動訊號至該高電壓準位。 The pulse width modulation method according to claim 17, wherein in the second time interval, if it is determined that the second pulse width signal is greater than the first triangular wave, the first driving signal is switched to a high voltage level and Switch the third driving signal to a low voltage level; In the second time interval, if it is determined that the second ramp signal is smaller than the second triangle wave, switch the second drive signal to the high voltage level and switch the fourth drive signal to the low voltage level; In the second time interval, if it is determined that the second pulse width signal is less than or equal to the first triangular wave, the first driving signal is switched to the low voltage level and the third driving signal is switched to the high voltage level Bit In the second time interval, if it is determined that the second ramp signal is greater than or equal to the second triangle wave, the second driving signal is switched to the low voltage level and the fourth driving signal is switched to the high voltage level Bit.
TW109141368A 2020-11-25 2020-11-25 Power system and pulse width modulation method using the same TWI749906B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109141368A TWI749906B (en) 2020-11-25 2020-11-25 Power system and pulse width modulation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109141368A TWI749906B (en) 2020-11-25 2020-11-25 Power system and pulse width modulation method using the same

Publications (2)

Publication Number Publication Date
TWI749906B true TWI749906B (en) 2021-12-11
TW202221443A TW202221443A (en) 2022-06-01

Family

ID=80681276

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141368A TWI749906B (en) 2020-11-25 2020-11-25 Power system and pulse width modulation method using the same

Country Status (1)

Country Link
TW (1) TWI749906B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113053B2 (en) * 2004-12-15 2006-09-26 Smk Corporation Pulse-width modulation signal generating device and method for generating pulse-width modulation signals
TW201041267A (en) * 2009-05-04 2010-11-16 Univ Yuan Ze Intelligent hybrid power conversion control system
US8531251B2 (en) * 2007-06-24 2013-09-10 Pike Group Llc Through-zero pulse-width modulation process with period-average-zero
TW201429135A (en) * 2012-12-19 2014-07-16 Fujitsu Ltd Power supply device
TW201439707A (en) * 2013-01-30 2014-10-16 Nvidia Corp A current-parking switching regulator downstream controller
CN108377092A (en) * 2017-02-01 2018-08-07 英飞凌科技奥地利有限公司 Isolated power converters and its control method
TW201923504A (en) * 2017-10-06 2019-06-16 日商艾普凌科有限公司 Switching regulator
TWI711244B (en) * 2019-09-27 2020-11-21 通嘉科技股份有限公司 Power supplies

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113053B2 (en) * 2004-12-15 2006-09-26 Smk Corporation Pulse-width modulation signal generating device and method for generating pulse-width modulation signals
US8531251B2 (en) * 2007-06-24 2013-09-10 Pike Group Llc Through-zero pulse-width modulation process with period-average-zero
TW201041267A (en) * 2009-05-04 2010-11-16 Univ Yuan Ze Intelligent hybrid power conversion control system
TW201429135A (en) * 2012-12-19 2014-07-16 Fujitsu Ltd Power supply device
TW201439707A (en) * 2013-01-30 2014-10-16 Nvidia Corp A current-parking switching regulator downstream controller
CN108377092A (en) * 2017-02-01 2018-08-07 英飞凌科技奥地利有限公司 Isolated power converters and its control method
TW201923504A (en) * 2017-10-06 2019-06-16 日商艾普凌科有限公司 Switching regulator
TWI711244B (en) * 2019-09-27 2020-11-21 通嘉科技股份有限公司 Power supplies

Also Published As

Publication number Publication date
TW202221443A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
EP3301804B1 (en) Inverter, method and device for controlling the same
US8611120B2 (en) Power conversion apparatus
US10038392B2 (en) Inverter
US10205444B2 (en) PWM control method for five-level inverting circuit, control circuit and inverter
US9979322B2 (en) Modulator for a hybrid converter system
AU2014393710B2 (en) Multi level inverter
JP6613883B2 (en) 3-level power conversion circuit
EP3029821B1 (en) Semiconductor device and power conversion device
WO2018171782A1 (en) T-type active clamp five-level three-phase inverter and grid-connected inversion power generation system
EP3618256A1 (en) Bridge circuit for inverter or rectifier
KR101959643B1 (en) Converter and power conversion device using same
US20150092467A1 (en) Driver Circuit for a Pair of Semiconductor Switches in a Leg of a Three-Level Inverter Half-Bridge
JP6025045B2 (en) Inverter
TWI749906B (en) Power system and pulse width modulation method using the same
US20200169177A1 (en) Power conversion system
JPWO2019167244A1 (en) Power converter and electric motor system
JPWO2016170569A1 (en) Converter and power conversion device using the same
US12034381B2 (en) Bidirectional DC-AC conversion circuit and a starting method thereof
US11611291B2 (en) Power system and pulse width modulation method therefor
TW202224301A (en) Motor drive circuit and motor module
CN118508774A (en) Power converter and inverter circuit control method
KR20200118932A (en) High speed switching inverter