WO2012023299A1 - エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 - Google Patents
エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 Download PDFInfo
- Publication number
- WO2012023299A1 WO2012023299A1 PCT/JP2011/054541 JP2011054541W WO2012023299A1 WO 2012023299 A1 WO2012023299 A1 WO 2012023299A1 JP 2011054541 W JP2011054541 W JP 2011054541W WO 2012023299 A1 WO2012023299 A1 WO 2012023299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slit
- air
- seawater
- aeration
- aeration apparatus
- Prior art date
Links
- 239000013535 sea water Substances 0.000 title claims description 89
- 238000006477 desulfuration reaction Methods 0.000 title claims description 32
- 230000023556 desulfurization Effects 0.000 title claims description 32
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims description 21
- 239000003546 flue gas Substances 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 13
- 238000005276 aerator Methods 0.000 title abstract 3
- 238000005273 aeration Methods 0.000 claims abstract description 95
- 239000012528 membrane Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000002250 absorbent Substances 0.000 claims description 4
- 230000002745 absorbent Effects 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 abstract description 31
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 9
- 238000010790 dilution Methods 0.000 description 9
- 239000012895 dilution Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000013505 freshwater Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 208000004434 Calcinosis Diseases 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1481—Removing sulfur dioxide or sulfur trioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2311—Mounting the bubbling devices or the diffusers
- B01F23/23113—Mounting the bubbling devices or the diffusers characterised by the disposition of the bubbling elements in particular configurations, patterns or arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23124—Diffusers consisting of flexible porous or perforated material, e.g. fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23124—Diffusers consisting of flexible porous or perforated material, e.g. fabric
- B01F23/231241—Diffusers consisting of flexible porous or perforated material, e.g. fabric the outlets being in the form of perforations
- B01F23/231242—Diffusers consisting of flexible porous or perforated material, e.g. fabric the outlets being in the form of perforations in the form of slits or cut-out openings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23126—Diffusers characterised by the shape of the diffuser element
- B01F23/231265—Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23128—Diffusers having specific properties or elements attached thereto
- B01F23/231283—Diffusers having specific properties or elements attached thereto having elements to protect the parts of the diffusers, e.g. from clogging when not in use
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/74—Treatment of water, waste water, or sewage by oxidation with air
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
- C02F3/201—Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/11—Air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/103—Water
- B01D2252/1035—Sea water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/18—Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to wastewater treatment of flue gas desulfurization devices applied to power plants such as coal-fired, crude oil-fired, and heavy oil-fired, and more particularly, wastewater of exhaust gas desulfurization devices that use the seawater method (used seawater).
- the present invention relates to an aeration apparatus that decarboxylates air by aeration, a seawater flue gas desulfurization apparatus including the aeration apparatus, and a method for operating the aeration apparatus.
- combustion exhaust gas (hereinafter referred to as “gas”) discharged from a boiler is sulfur such as sulfur dioxide (SO 2 ) contained in the exhaust gas.
- SO 2 sulfur dioxide
- SOx oxide
- a desulfurization method of a flue gas desulfurization apparatus that performs such a desulfurization treatment, a limestone gypsum method, a spray dryer method, a seawater method, and the like are known.
- the flue gas desulfurization apparatus (hereinafter referred to as “seawater flue gas desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent.
- a desulfurization tower (absorption tower) having a cylindrical shape such as a substantially cylindrical shape
- a wet-based gas-liquid contact is generated using seawater as an absorption liquid.
- SOTS Seawater Oxidation Treatment System
- SOTS Seawater Oxidation Treatment System
- the carbon dioxide is decarboxylated (explosion) by aeration that causes fine bubbles to flow out from the aeration apparatus installed in (Patent Documents 1 to 3).
- the aeration nozzle used in the aeration apparatus is one in which many small slits are provided in a diffused film made of rubber or the like covering the periphery of the base material. Generally, it is called “diffuser nozzle”. Such an aeration nozzle can cause a large number of fine bubbles of approximately the same size to flow out from the slit by the pressure of the supplied air. Conventionally, in the case of a rubber diffuser membrane, the length of the slit is about 1 to 3 mm.
- Precipitation occurs when seawater located outside the diffuser membrane soaks into the diffuser membrane from the slit, and constantly touches the air passing through the slit for a long time to dry (concentrate the seawater). ) Is promoted and presumed to be precipitated.
- the present invention provides an aeration apparatus capable of discharging precipitates generated in a slit of a diffuser film to the outside of the diffuser film, a seawater flue gas desulfurization apparatus including the aeration apparatus, and an operation method of the aeration apparatus.
- the issue is to provide.
- a first invention of the present invention for solving the above-described problem is an aeration apparatus that is immersed in the water to be treated and generates fine bubbles in the water to be treated, and an air supply pipe that supplies air by discharge means; And an aeration nozzle having a diffuser membrane having a slit to which the air is supplied, and the opening shape is deformed by the pressure of the air supplied by the slit.
- the second invention is the aeration apparatus according to the first invention, wherein the slit has at least a bent portion.
- a third invention is an aeration apparatus according to the first or second invention, characterized by having a control device for controlling a temporary increase in the supply of air every predetermined time.
- a fourth invention is the aeration apparatus according to the third invention, wherein the control device temporarily increases the supply of air and controls to send water to the air supply pipe.
- a fifth invention includes a desulfurization tower using seawater as an absorbent, a water channel for flowing and draining the used seawater discharged from the desulfurization tower, and a fine bubble installed in the water channel. And a first to fourth aeration apparatus that performs decarboxylation by generating water.
- the sixth aspect of the invention uses the first to fourth aeration devices that are immersed in the water to be treated and generate fine bubbles in the water to be treated.
- An aeration apparatus operating method is characterized in that temporary increase is performed to prevent clogging of the slit.
- the seventh invention is the operation method of the aeration apparatus according to the sixth invention, wherein the air supply is temporarily increased or the water is supplied to the air supply pipe alone.
- FIG. 1 is a schematic view of a seawater flue gas desulfurization apparatus according to the present embodiment.
- FIG. 2A is a plan view of the aeration nozzle.
- FIG. 2-2 is a front view of the aeration nozzle.
- FIG. 3 is a schematic diagram of the internal structure of the aeration nozzle.
- FIG. 4A is a schematic diagram of the shape of the first slit of the aeration nozzle according to the present embodiment.
- FIG. 4B is a schematic diagram of the shape of the second slit of the aeration nozzle according to the present embodiment.
- FIG. 4-3 is a schematic view of the shape of the third slit of the aeration nozzle according to the present embodiment.
- FIG. 4-4 is a schematic view of the shape of the fourth slit of the aeration nozzle according to the present embodiment.
- FIG. 4-5 is a schematic view of the shape of the fifth slit of the aeration nozzle according to the present embodiment.
- FIG. 4-6 is a schematic diagram of the shape of the sixth slit of the aeration nozzle according to the present embodiment.
- FIG. 4-7 is a schematic diagram of the shape of the seventh slit of the aeration nozzle according to the present example.
- FIG. 4-8 is a schematic view of the shape of the eighth slit of the aeration nozzle according to the present embodiment.
- FIG. 4-9 is a schematic view of the shape of the ninth slit of the aeration nozzle according to the present example.
- FIG. 5A is a diagram illustrating the state of outflow of air (humid air with low saturation), intrusion of seawater, and concentrated seawater in the slit of the diffuser membrane.
- FIG. 5B is a diagram illustrating the state of air outflow, seawater intrusion, concentrated seawater, and precipitates in the slit of the diffuser membrane.
- FIG. 5-3 is a diagram showing the state of outflow of air, intrusion of seawater, concentrated seawater, and precipitates (when the precipitates grow) in the slit of the diffuser membrane.
- FIG. 6 is a schematic diagram of the aeration apparatus according to the present embodiment.
- FIG. 7 is a schematic view of another aeration apparatus according to the present embodiment.
- FIG. 8 is a graph showing the relationship between the passage of time and the fluctuation of the pressure loss of the diffuser membrane when the air amount is temporarily increased.
- FIG. 1 is a schematic view of a seawater flue gas desulfurization apparatus according to the present embodiment. As shown in FIG. 1
- a seawater flue gas desulfurization apparatus 100 includes a flue gas desulfurization absorption tower 102 that makes a gas-liquid contact between exhaust gas 101 and seawater 103 to desulfurize SO 2 to sulfurous acid (H 2 SO 3 ),
- a dilution mixing tank 105 is provided below the smoke desulfurization absorption tower 102 to dilute and mix the used seawater 103A containing sulfur with the seawater 103 for dilution, and is provided downstream of the dilution mixing tank 105 for use in dilution. It comprises an oxidation tank 106 that performs a water quality recovery process of the finished seawater 103B.
- seawater flue gas desulfurization apparatus 100 a part of the seawater 103 for absorption in the seawater 103 supplied through the seawater supply line L 1 in the flue gas desulfurization absorption tower 102 is brought into gas-liquid contact with the exhaust gas 101, thereby SO 2 in 101 is absorbed by seawater 103. And the used seawater 103A which absorbed the sulfur content with the flue gas desulfurization absorption tower 102 is mixed with the seawater 103 for dilution supplied to the dilution mixing tank 105 provided in the lower part of the flue gas desulfurization absorption tower 102.
- reference numeral 102 a is a spray nozzle for a liquid column that ejects seawater upward
- 120 is an aeration device
- 122 a is air bubbles
- L 1 is a seawater supply line
- L 2 is a diluted seawater supply line
- L 3 is a desulfurized seawater supply.
- L, L 4 is an exhaust gas supply line
- L 5 is an air supply line.
- FIG. 2-1 is a plan view of the aeration nozzle
- FIG. 2-2 is a front view of the aeration nozzle
- FIG. 3 is a schematic diagram of the internal structure of the aeration nozzle.
- the aeration nozzle 123 has a rubber diffuser film 11 covering the periphery of a base material and is provided with many small slits 12. It is called a “diffuser nozzle”.
- the aeration nozzle 123 can open a large number of fine bubbles of substantially equal size when the diffuser membrane 11 is expanded by the pressure of the air 122 supplied from the air supply line L 5 and the slit 12 is opened. .
- FIG 2-1 as shown in Figure 2-2, aeration nozzles 123, the header 15 provided in the branch pipe of the plurality of branched from the air supply line L 5 (8 in this embodiment) (not shown) On the other hand, it is attached via a flange 16.
- a resin pipe or the like is used for the branch pipe and header 15 installed in the diluted used seawater 103B in consideration of corrosion resistance.
- the aeration nozzle 123 uses a substantially cylindrical support 20 made of resin in consideration of the corrosion resistance against diluted used seawater 103 ⁇ / b> B, and many aeration nozzles 123 cover the outer periphery of the support 20. After covering the rubber diffuser film 11 in which the slits 12 are formed, the left and right ends are fixed by fastening members 22 such as wires and bands.
- the above-described slit 12 is closed in a normal state where no pressure is applied.
- the slit 12 is always open.
- the one end 20a of the support body 20 is capable of introducing the air 122 in a state of being attached to the header 15, and the other end 20b is opened so that the seawater 103 can be introduced.
- the one end 20 a side communicates with the inside of the header 15 through the air introduction port 20 c that penetrates the header 15 and the flange 16.
- the inside of the support body 20 is divided
- the air diffuser 11 is pressurized and expanded between the inner peripheral surface of the diffuser membrane 11 and the outer peripheral surface of the support. Air outlets 20e and 20f for allowing the air 122 to flow out into the pressurized space 11a are opened. Therefore, the air 122 flowing into the aeration nozzle 123 from the header 15 flows into the inside of the support 20 from the air inlet 20c and then is pressurized from the side air outlets 20e and 20f as shown by arrows in the drawing. It will flow out to 11a.
- the fastening member 22 fixes the diffuser membrane 11 to the support 20 and prevents air flowing in from the air outlets 20e and 20f from leaking out from both ends.
- the air 122 flowing from the header 15 through the air introduction port 20c flows out to the pressurized space 11a through the air outlets 20e and 20f, so that the slit 12 is initially formed. Since it is closed, it accumulates in the pressurizing space 11a and raises the internal pressure. As a result of the increase in the internal pressure, the diffuser membrane 11 expands upon receiving a pressure increase in the pressurized space 11a, and the slits 12 formed in the diffuser membrane 11 are opened to dilute and use the fine bubbles in the air 122. It flows out into the seawater 103B. Generation of such fine bubbles is performed in all aeration nozzles 123 that receive air supply via the branch pipes L 5A to 5H and the header 15 (see FIGS. 6 and 7).
- FIGS. 4-1 to 4-9 show various slit shapes formed in the diffuser film of the aeration nozzle according to the present embodiment.
- FIG. 4A is a schematic diagram of the shape of the first slit of the aeration nozzle according to the present embodiment.
- the shape of the first slit 12A is formed by a linear basic slit 12a and a branching slit 12b intersecting at the center of the linear basic slit 12a.
- the opening amount of the first slit 12 ⁇ / b> A varies depending on the pressure (air amount) of the supplied air 122.
- the amount of opening at the bent portion of the intersection 12c between the linear basic slit 12a and the branch slit 12b increases, so that the pressure of the supplied air increases. (When the amount of air increases), the discharge of precipitates to the outside of the diffuser membrane is facilitated.
- the salinity of seawater is 3.4%, and 3.4% salt is dissolved in 96.6% water.
- This salt is 77.9% sodium chloride, 9.6% magnesium chloride, 6.1% magnesium sulfate, 4.0% calcium sulfate, 2.1% potassium chloride, and 0.2% other It has a configuration.
- calcium sulfate is the first salt to be precipitated as the seawater is concentrated (seawater is dried), and the threshold for precipitation is about 14% in the salt concentration of seawater.
- FIG. 5A is a diagram illustrating the state of outflow of air (humid air with low saturation), intrusion of seawater, and concentrated seawater in the slit of the diffuser membrane.
- FIG. 5-2 is a diagram showing the state of air outflow and seawater intrusion, concentrated seawater and precipitates in the slit of the diffuser membrane.
- FIG. 5-3 is a diagram showing the state of outflow of air, intrusion of seawater, concentrated seawater, and precipitates (when the precipitates grow) in the slit of the diffuser membrane.
- the slit 12 refers to a cut formed in the diffuser membrane 11, and the gap between the slits 12 serves as a passage through which air is discharged.
- the slit wall surface 12x forming this passage is in contact with the seawater 103, but is dried and concentrated by the introduction of air 122 to become the concentrated seawater 103a, and then the precipitate 103b is deposited on the slit wall surface to block the passage of the slit.
- FIG. 5A shows a situation in which the concentration of seawater salt gradually progresses and the concentrated seawater 103a is formed because the relative humidity of the air 122 is low (the degree of saturation is low). However, even when the concentration of seawater begins, precipitation of calcium sulfate or the like does not occur when the salt concentration of seawater is approximately 14% or less.
- FIG. 5-2 shows a state where the precipitate 103b is locally generated in a part of the concentrated seawater 103a where the salt concentration of the seawater exceeds 14%.
- the precipitate 103b is very small, the pressure loss when the air passes through the slit 12 slightly increases, but the air 122 can pass therethrough. Therefore, in this state, as described later, by causing pressure fluctuations, the precipitation can be removed forcibly, thereby enabling operation for a long period of time.
- FIG. 5-3 shows a state in which, as the concentration of the concentrated seawater 103a progresses, the state becomes a plugging state due to the precipitate 103b and the pressure loss increases. Even in such a state, the passage of the air 122 remains. Even in this state, it is possible to operate over a long period of time by forcibly removing precipitates by causing pressure fluctuations as described later. For this reason, in this embodiment, as shown in FIG. 4A, the opening shape of the slit can be deformed by the pressure of the supplied air (air amount) to prevent the blockage.
- FIG. 4B is a schematic diagram of the shape of the second slit of the aeration nozzle according to the present embodiment.
- the shape of the second slit 12B is formed by a straight basic slit 12a and branch slits 12b formed so as to be orthogonal to both ends of the straight basic slit 12a. Yes.
- the opening shape of the second slit 12 ⁇ / b> B is deformed by the pressure (air amount) of the supplied air 122.
- FIG. 4-3 is a schematic view of the shape of the third slit of the aeration nozzle according to the present embodiment.
- the shape of the third slit 12C includes a straight basic slit 12a and a branch slit 12b formed so as to branch slightly before both ends of the straight basic slit 12a. Is formed.
- the opening shape of the third slit 12C is deformed by the pressure of the supplied air 122 (the amount of air).
- FIG. 4-4 is a schematic view of the shape of the fourth slit of the aeration nozzle according to the present embodiment.
- the fourth slit 12D has a straight basic slit 12a and branch slits 12b and 12b formed so as to branch into a V shape at the end of the linear basic slit 12a. And is formed from.
- the opening shape of the fourth slit 12D is deformed by the pressure of the supplied air 122 (the amount of air).
- the linear basic slit 12a and the V-shaped branch slit formed at the end portion. Since the opening amount at the bent portion of the intersecting portion 12c with 12b, 12b increases, the discharge of the precipitate to the outside of the diffuser membrane becomes easy.
- FIG. 4-5 is a schematic view of the shape of the fifth slit of the aeration nozzle according to the present embodiment.
- the fifth slit 12E has a straight basic slit 12a and branch slits 12b and 12b formed to branch at both ends of the straight basic slit 12a at an acute angle. Formed from.
- the opening shape of the fifth slit 12E is deformed by the pressure (air amount) of the supplied air 122.
- the opening amount at the bent portion 12f at both ends of the linear basic slit 12a increases. This facilitates the discharge of precipitates to the outside of the diffuser membrane.
- FIG. 4-6 is a schematic diagram of the shape of the sixth slit of the aeration nozzle according to the present embodiment.
- the sixth slit 12F has a straight basic slit 12a and branch slits 12b and 12b formed so as to branch into L-shapes at both ends of the linear basic slit 12a. And is formed from.
- the opening shape of the sixth slit 12F is deformed by the pressure (air amount) of the supplied air 122.
- the linear basic slit 12a and the L-shaped branch slit formed at the end portion. Since the opening amount in the bent part 12f with 12b and 12b increases, discharge
- FIG. 4-7 is a schematic diagram of the shape of the seventh slit of the aeration nozzle according to the present example.
- the shape of the seventh slit 12G is a straight basic slit 12a and branch slits 12b, 12b formed so as to branch into a V shape at the end of the straight basic slit 12a. And is formed from.
- the opening shape of the seventh slit 12G is deformed by the pressure of the supplied air 122 (the amount of air).
- the linear basic slit 12a and the V-shaped branch slit formed at the end portion. Since the opening amount in the crossing part 12c with 12b and 12b increases, discharge
- FIG. 4-8 is a schematic view of the shape of the eighth slit of the aeration nozzle according to the present embodiment.
- the shape of the eighth slit 12H is formed from an S-shaped slit 12d.
- the opening shape of the eighth slit 12H is deformed by the pressure of the supplied air 122 (the amount of air).
- the pressure of the supplied air increases (when the amount of air increases)
- the amount of opening at the bent portion of the curve of the S-shaped slit 12d increases. This facilitates the discharge of precipitates to the outside of the diffuser membrane.
- FIG. 4-9 is a schematic view of the shape of the ninth slit of the aeration nozzle according to the present example.
- the shape of the ninth slit 12I is formed of a U-shaped slit 12e.
- the opening shape of the ninth slit 12I is deformed by the pressure of the supplied air 122 (the amount of air).
- the bent portion increases the amount of opening in the curve of the U-shaped slit 12e when the pressure of the supplied air increases (when the amount of air increases). This facilitates the discharge of precipitates to the outside of the diffuser membrane.
- FIG. 6 and 7 are schematic views of the aeration apparatus according to the present embodiment.
- the aeration apparatus 120A according to the present embodiment is an aeration apparatus that is immersed in diluted used seawater (not shown) that is water to be treated and generates fine bubbles in the diluted used seawater.
- a control device (not shown) that controls a temporary increase in the supply of 122 every predetermined time.
- the air supply line L 5 is provided with two coolers 131A and 131B and two filters 132A and 132B. As a result, the air compressed by the blowers 121A to 121D is cooled and then filtered.
- the four blowers are usually operated with three blowers, one of which is reserved. Also, the reason why there are two each of the coolers 131A and 131B and the filters 132A and 132B is that they need to be operated continuously, so that usually only one is operated and the other is used for maintenance.
- a command is issued by the control device every time a predetermined time elapses, and the supply of the air 122 is temporarily increased.
- FIG. 8 is a graph showing the passage of time and pressure fluctuation.
- a purge operation for increasing the air amount is performed for a predetermined time.
- pressure fluctuation occurs (the amount of air temporarily increases), and the expansion of the diffuser membrane 11 increases, so that the sulfuric acid deposited in the slit 12 Calcium deposits are discharged to the outside, and the slit 12 becomes normal.
- the clogging of the slits 12 and the gaps between the slits 12 due to the precipitation of calcium sulfate in continuous operation are prevented, and the pressure loss of the diffuser membrane 11 can be prevented.
- the increase interval may be changed as appropriate in accordance with the state of precipitation of the precipitates, but it may be preferably performed about once every two days. This is because the precipitate can be easily discharged to the outside of the diffuser membrane by increasing the supply of air at an early stage of the deposition and performing the pressure fluctuation passing through the slit 12.
- the spare blower 121D is further driven to generate a large amount of air.
- 122 may be supplied to the air supply line L 5 .
- the amount of air introduced into the aeration nozzle 123 is increased by the activation of the spare blower 121D.
- the slit 12 of the diffuser membrane 11 opens widely, and calcium sulfate can be discharged and removed to the seawater side. Therefore, the clogging of the slits 12 and the gaps between the slits 12 due to the precipitation of calcium sulfate are prevented, and the pressure loss of the diffuser membrane 11 can be prevented.
- an additional blower may be used to set a predetermined purge condition such that the precipitate is pushed out from the slit 12 and cleaned.
- a water supply line L 6 for supplying fresh water 141 to the air supply line L 5 is further provided. Then, control for temporarily increasing the supply of air 122 by a control device (not shown) may be performed, and control for sending fresh water 141 to the air supply line L 5 may be performed.
- the fresh water 141 is introduced into the aeration nozzle 123 by supplying the fresh water 141.
- the slit 12 of the diffuser membrane 11 is washed, and precipitates such as calcium sulfate adhering to the slit 12 can be dissolved and removed.
- fresh water 141 is used as water supply, but instead of fresh water, seawater (for example, seawater 103 in the diluted seawater supply line L 2 , used seawater 103A in the diluted mixing tank 105).
- seawater for example, seawater 103 in the diluted seawater supply line L 2 , used seawater 103A in the diluted mixing tank 105.
- diluted used seawater 103B or the like in the oxidation tank 106) or water vapor may be used.
- seawater is taken as an example of the water to be treated in the present embodiment, but the present invention is not limited to this.
- Plugging due to the deposition of sludge components in step (3) can be prevented, and stable operation can be achieved over a long period of time.
- the tube type aeration nozzle is used as the aeration apparatus in the present embodiment.
- the present invention is not limited to this.
- the disk type or flat plate type aeration apparatus, ceramics, and metal scattering are used. It can be applied to Qi devices.
- the precipitate generated in the slit of the aeration film of the aeration apparatus can be discharged to the outside of the diffusion film, and is applied to, for example, a seawater flue gas desulfurization apparatus.
- stable operation can be performed continuously over a long period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Treating Waste Gases (AREA)
- Physical Water Treatments (AREA)
- Gas Separation By Absorption (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
上述した脱硫塔内で吸収剤として使用した脱硫後の海水(使用済海水)は、たとえば、上部が開放された長い水路(Seawater Oxidation Treatment System;SOTS)内を流れ排水される際、水路の底面に設置したエアレーション装置から微細気泡を流出させるエアレーションによって脱炭酸(爆気)される(特許文献1~3)。
図1に示すように、海水排煙脱硫装置100は、排ガス101と海水103とを気液接触してSO2を亜硫酸(H2SO3)へ脱硫反応させる排煙脱硫吸収塔102と、排煙脱硫吸収塔102の下側に設けられ、硫黄分を含んだ使用済海水103Aを希釈用の海水103と希釈混合する希釈混合槽105と、希釈混合槽105の下流側に設けられ、希釈使用済海水103Bの水質回復処理を行う酸化槽106とからなるものである。
図1中、符号102aは海水を上方に噴出させる液柱用の噴霧ノズル、120はエアレーション装置、122aは気泡、L1は海水供給ライン、L2は希釈海水供給ライン、L3は脱硫海水供給ライン、L4は排ガス供給ライン、L5は空気供給ラインである。
図2-1は、エアレーションノズルの平面図、図2-2は、エアレーションノズルの正面図、図3はエアレーションノズルの内部構造概略図である。
図2-1、図2-2に示すように、エアレーションノズル123は、基材の周囲を覆うゴム製の散気膜11に小さなスリット12が多数設けられたものであり、一般的には「ディフューザノズル」と呼ばれている。このようなエアレーションノズル123は、空気供給ラインL5から供給される空気122の圧力により散気膜11が膨張すると、スリット12が開いて略均等な大きさの微細気泡を多数流出させることができる。
このため、一端20a側は、ヘッダ15及びフランジ16を貫通する空気導入口20cを介してヘッダ15内部と連通している。そして、支持体20の内部は、支持体20の軸方向の途中に設けた仕切板20dにより分割され、この仕切板20dにより空気の流通が阻止されている。さらに、この仕切板20dよりヘッダ15側となる支持体20の側面には、散気膜11の内周面と支持体外周面との間に、すなわち、散気膜11を加圧して膨張させる加圧空間11aへ空気122を流出させるための空気出口20e、20fが開口している。従って、ヘッダ15からエアレーションノズル123に流入する空気122は、図中に矢印で示すように、空気導入口20cから支持体20の内部へ流入した後、側面の空気出口20e、20fから加圧空間11aへ流出することとなる。
なお、締結部材22は、散気膜11を支持体20に固定するとともに、空気出口20e、20fから流入する空気が両端部から漏出することを防止するものである。
このような微細気泡の発生は、枝管L5A~5H及びヘッダ15を介して空気供給を受ける全てのエアレーションノズル123で実施される(図6、7参照)。
図4-1~図4-9は、本実施例に係るエアレーションノズルの散気膜に形成される種々のスリットの形状を示す。
図4-1に示すように、第1のスリット12Aの形状は、直線状基本スリット12aと、その直線状基本スリット12aの中央部で交差する分岐スリット12bとから形成されている。そして、前記第1のスリット12Aは、供給される空気122の圧力(空気量)により、その開口量が変化するものである。
このように、従来のような直線状スリットのみの場合と異なり、直線状基本スリット12aと分岐スリット12bとの交差部12cの折れ曲がり部における開口量が増大するので、供給する空気の圧力が高くなると(空気量が増加すると)、散気膜の外側への析出物の排出が容易となる。
図5-1は、散気膜のスリットにおける、空気(飽和度の低い湿り空気)の流出と海水の浸入、および濃縮海水の状況を示す図である。図5-2は、散気膜のスリットにおける、空気の流出と海水の浸入、濃縮海水および析出物の状況を示す図である。図5-3は、散気膜のスリットにおける、空気の流出と海水の浸入、濃縮海水及び析出物の状況(析出物が成長した場合)を示す図である。
ここで、本発明において、スリット12とは、散気膜11に形成される切れ込みをいい、スリット12の間隙は空気が排出される通路となる。
この通路を形成するスリット壁面12xは、海水103が接触しているが、空気122の導入によって乾燥・濃縮され、濃縮海水103aとなり、その後スリット壁面に析出物103bが析出され、スリットの通路を閉塞するものとなる。
よって、この状態において、後述するように圧力変動を生じさせることにより、強制的に析出を除去することで、長期間に亙っての運転が可能となる。
このため、本実施例では、図4-1に示すように、供給する空気の圧力(空気量)によりスリットの開口形状が変形できるようにすることで、閉塞を防止するようにしている。
図4-2に示すように、第2のスリット12Bの形状は、直線状基本スリット12aと、その直線状基本スリット12aの両端部に直交するように形成された分岐スリット12bとから形成されている。そして、前記第2のスリット12Bは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、直線状基本スリット12aと端部に形成された分岐スリット12bとの交差部12cの折れ曲がり部における開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-3に示すように、第3のスリット12Cの形状は、直線状基本スリット12aと、その直線状基本スリット12aの両端部の少し手前において分岐するように形成された分岐スリット12bとから形成されている。そして、前記第3のスリット12Cは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、直線状基本スリット12aと端部に形成された分岐スリット12bとの交差部12cの折れ曲がり部における開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-4に示すように、第4のスリット12Dの形状は、直線状基本スリット12aと、その直線状基本スリット12aの端部にV字に分岐するように形成された分岐スリット12b、12bとから形成されている。そして、前記第4のスリット12Dは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、直線状基本スリット12aと端部に形成されたV字の分岐スリット12b、12bとの交差部12cの折れ曲がり部における開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-5に示すように、第5のスリット12Eの形状は、直線状基本スリット12aと、その直線状基本スリット12aの両端部に鋭角に分岐するように形成された分岐スリット12b、12bとから形成されている。そして、前記第5のスリット12Eは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、直線状基本スリット12aの両端部の折れ曲がり部12fにおける開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-6に示すように、第6のスリット12Fの形状は、直線状基本スリット12aと、その直線状基本スリット12aの両端部にL字に分岐するように形成された分岐スリット12b、12bとから形成されている。そして、前記第6のスリット12Fは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、直線状基本スリット12aと端部に形成されたL字の分岐スリット12b、12bとの折れ曲がり部12fにおける開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-7に示すように、第7のスリット12Gの形状は、直線状基本スリット12aと、その直線状基本スリット12aの端部にV字に分岐するように形成された分岐スリット12b、12bとから形成されている。そして、前記第7のスリット12Gは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、直線状基本スリット12aと端部に形成されたV字の分岐スリット12b、12bとの交差部12cにおける開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-8に示すように、第8のスリット12Hの形状は、S字状スリット12dから形成されている。そして、前記第8のスリット12Hは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、S字状スリット12dのカーブの折れ曲がり部における開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図4-9に示すように、第9のスリット12Iの形状は、U字状スリット12eから形成されている。そして、前記第9のスリット12Iは、供給される空気122の圧力(空気量)により、その開口形状が変形するものである。
このように折れ曲がり部は、従来のような直線状スリットのみの場合と異なり、供給する空気の圧力が高くなると(空気量が増加すると)、U字状スリット12eのカーブにおける開口量が増大するので、散気膜の外側への析出物の排出が容易となる。
図6に示すように、本実施例に係るエアレーション装置120Aは、被処理水である希釈使用済海水(図示せず)中に浸漬され、希釈使用済海水中に微細気泡を発生させるエアレーション装置であって、空気122を吐出手段であるブロア121A~121Dにより供給する空気供給ラインL5と、水が含まれた空気が供給されるスリットを有する散気膜11を備えたエアレーションノズル123と、空気122の供給の一時的な増大を所定時間毎に制御する制御装置(図示せず)とを具備するものである。
また、空気供給ラインL5には、2基の冷却器131A、131Bと、2基のフィルタ132A、132Bとが各々設けられている。これにより、ブロア121A~121Dにより圧縮された空気は冷却され、次いで濾過されている。
なお、ブロアが4基あるのは、通常は3基で運転しており、その内の1基は予備としている。また、冷却器131A、131Bと、フィルタ132A、132Bとが各々2基あるのは、連続して運転する必要から、通常は片方のみで運転し、他方はメンテナンス用としている。
図8に示すように、定常運転をしている際、所定時間経過した後、空気量を増加させるパージ運転を所定時間行っている。
このように、所定時間毎に空気122の供給が増大されるので、圧力変動が生じ(一時的に空気量が多くなる)、散気膜11の膨張が増大するので、スリット12に析出した硫酸カルシウムの析出物が外部に排出され、スリット12が正常となる。
この結果、連続した運転における硫酸カルシウムの析出によるスリット12の詰まりやスリット12の間隙が狭くなることが防止され、散気膜11の圧力損失を防止できる。
これは、析出初期の早い段階で空気の供給を増大させ、スリット12を通過する圧力変動を行うことで、容易に析出物を散気膜の外側へ排出することができるからである。
よって、硫酸カルシウムの析出によるスリット12の詰まりやスリット12の間隙が狭くなることが防止され、散気膜11の圧力損失を防止できる。
また、ブロアの容量が不足の場合には、追加のブロアを用いて、スリット12から析出物を押出して一掃するような所定のパージ条件とするようにすればよい。
この結果、硫酸カルシウムの析出によるスリット12の詰まりやスリット12の間隙が狭くなることが防止され、散気膜11の圧力損失を防止できる。
12 スリット
12A~12I 第1~第9のスリット
100 海水排煙脱硫装置
102 排煙脱硫吸収塔
103 海水
103A 使用済海水
103B 希釈使用済海水
105 希釈混合槽
106 酸化槽
120、120A、120B エアレーション装置
123 エアレーションノズル
Claims (7)
- 被処理水中に浸漬され、被処理水中に微細気泡を発生させるエアレーション装置であって、
空気を吐出手段により供給する空気供給配管と、
前記空気が供給されるスリットを有する散気膜を備えたエアレーションノズルとを具備すると共に、
前記スリットが供給する空気の圧力により開口形状が変形することを特徴とするエアレーション装置。 - 請求項1において、
前記スリットが少なくとも折れ曲がり部を有してなることを特徴とするエアレーション装置。 - 請求項1又は2において、
空気の供給の一時的な増加を所定時間毎に制御する制御装置を有することを特徴とするエアレーション装置。 - 請求項3において、
前記制御装置により空気の供給の一時的な増加をすると共に、水を空気供給配管に送る制御を行うことを特徴とするエアレーション装置。 - 海水を吸収剤として使用する脱硫塔と、
前記脱硫塔から排出された使用済海水を流して排水する水路と、
前記水路内に設置され、前記使用済海水中に微細気泡を発生して脱炭酸を行う請求項1乃至4のエアレーション装置とを具備することを特徴とする海水排煙脱硫装置。 - 被処理水中に浸漬され、被処理水中に微細気泡を発生させる請求項1乃至4のエアレーション装置を用い、
吐出手段により空気を供給する際、所定時間毎に、空気の供給の一時的な増大を実行し、目詰まりを防止することを特徴とするエアレーション装置の運転方法。 - 請求項6において、
前記空気の供給の一時的な増大を行う際、または単独で、水を空気供給配管に送ることを特徴とするエアレーション装置の運転方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2012701142A MY185752A (en) | 2010-08-18 | 2011-02-28 | Aeration apparatus, seawater flue gas desulphurization apparatus including the same, and method for operating aeration apparatus |
CN2011800324715A CN102985372A (zh) | 2010-08-18 | 2011-02-28 | 通风装置及具备该装置的海水排烟脱硫装置、通风装置的运转方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-183499 | 2010-08-18 | ||
JP2010183499A JP5535823B2 (ja) | 2010-08-18 | 2010-08-18 | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012023299A1 true WO2012023299A1 (ja) | 2012-02-23 |
Family
ID=45593243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054541 WO2012023299A1 (ja) | 2010-08-18 | 2011-02-28 | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120043283A1 (ja) |
JP (1) | JP5535823B2 (ja) |
CN (1) | CN102985372A (ja) |
MY (1) | MY185752A (ja) |
SA (1) | SA111320564B1 (ja) |
TW (1) | TWI430961B (ja) |
WO (1) | WO2012023299A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014104388A (ja) * | 2012-11-26 | 2014-06-09 | Kurita Water Ind Ltd | 散気装置及び散気方法 |
JP2015148360A (ja) * | 2014-02-05 | 2015-08-20 | パナソニックIpマネジメント株式会社 | 給湯機 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108558040A (zh) * | 2018-06-22 | 2018-09-21 | 尚川(北京)水务有限公司 | 新型高分子弹性体板式微孔曝气器 |
TR202015439A1 (tr) * | 2020-09-29 | 2022-04-21 | Arçeli̇k Anoni̇m Şi̇rketi̇ | Di̇füzör i̇çeren bi̇r hava temi̇zleme ci̇hazi |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185245A (ja) * | 1998-12-22 | 2000-07-04 | Monobe Engineering:Kk | 曝気装置 |
JP2003245684A (ja) * | 2002-02-27 | 2003-09-02 | Hiroyasu Ogawa | メンブラン型散気管を用いた間欠散気による汚水処理法 |
JP2004033889A (ja) * | 2002-07-02 | 2004-02-05 | Sumitomo Heavy Ind Ltd | 散気方法及び散気システム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3293861A (en) * | 1961-11-13 | 1966-12-27 | Hinde James Nelson | Method of distributing fluids in bodies of liquid and apparatus therefor |
JP3498402B2 (ja) * | 1995-02-06 | 2004-02-16 | 石川島播磨重工業株式会社 | 脱硫装置 |
CN1498866A (zh) * | 2002-11-06 | 2004-05-26 | 多元水环保技术产业(中国)有限公司 | 一种曝气方法及曝气器 |
JP5072470B2 (ja) * | 2007-07-24 | 2012-11-14 | 三菱重工業株式会社 | エアレーション装置 |
JP5330658B2 (ja) * | 2007-07-24 | 2013-10-30 | 三菱重工業株式会社 | エアレーション装置 |
-
2010
- 2010-08-18 JP JP2010183499A patent/JP5535823B2/ja not_active Expired - Fee Related
-
2011
- 2011-02-28 WO PCT/JP2011/054541 patent/WO2012023299A1/ja active Application Filing
- 2011-02-28 CN CN2011800324715A patent/CN102985372A/zh active Pending
- 2011-02-28 MY MYPI2012701142A patent/MY185752A/en unknown
- 2011-03-31 TW TW100111385A patent/TWI430961B/zh not_active IP Right Cessation
- 2011-06-29 SA SA111320564A patent/SA111320564B1/ar unknown
- 2011-08-10 US US13/206,630 patent/US20120043283A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185245A (ja) * | 1998-12-22 | 2000-07-04 | Monobe Engineering:Kk | 曝気装置 |
JP2003245684A (ja) * | 2002-02-27 | 2003-09-02 | Hiroyasu Ogawa | メンブラン型散気管を用いた間欠散気による汚水処理法 |
JP2004033889A (ja) * | 2002-07-02 | 2004-02-05 | Sumitomo Heavy Ind Ltd | 散気方法及び散気システム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014104388A (ja) * | 2012-11-26 | 2014-06-09 | Kurita Water Ind Ltd | 散気装置及び散気方法 |
JP2015148360A (ja) * | 2014-02-05 | 2015-08-20 | パナソニックIpマネジメント株式会社 | 給湯機 |
Also Published As
Publication number | Publication date |
---|---|
TWI430961B (zh) | 2014-03-21 |
US20120043283A1 (en) | 2012-02-23 |
JP5535823B2 (ja) | 2014-07-02 |
SA111320564B1 (ar) | 2015-01-22 |
MY185752A (en) | 2021-06-03 |
TW201208987A (en) | 2012-03-01 |
JP2012040493A (ja) | 2012-03-01 |
CN102985372A (zh) | 2013-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012115764A (ja) | 海水脱硫装置の排水水路及び海水排煙脱硫システム | |
JP5535823B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 | |
JP5535861B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置 | |
JP5535953B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 | |
JP2009028570A (ja) | エアレーション装置 | |
JP5583037B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 | |
JP5582952B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置 | |
WO2014196458A1 (ja) | 海水脱硫装置及び海水脱硫システム | |
JP5582917B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 | |
JP5535817B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の加湿方法 | |
JP5535824B2 (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置 | |
JP6742830B2 (ja) | 傾斜曝気と混合自動回復を備える海水プラント | |
JP2012236164A (ja) | エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法 | |
JP2013022512A (ja) | エアレーション装置及び海水排煙脱硫装置 | |
JP2012239922A (ja) | 海水排煙脱硫装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180032471.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11817948 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10731/CHENP/2012 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201006779 Country of ref document: TH |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11817948 Country of ref document: EP Kind code of ref document: A1 |