WO2012023218A1 - 微粒化装置及びその性能評価方法とスケールアップ方法 - Google Patents

微粒化装置及びその性能評価方法とスケールアップ方法 Download PDF

Info

Publication number
WO2012023218A1
WO2012023218A1 PCT/JP2010/068262 JP2010068262W WO2012023218A1 WO 2012023218 A1 WO2012023218 A1 WO 2012023218A1 JP 2010068262 W JP2010068262 W JP 2010068262W WO 2012023218 A1 WO2012023218 A1 WO 2012023218A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
mixer
energy dissipation
dissipation rate
Prior art date
Application number
PCT/JP2010/068262
Other languages
English (en)
French (fr)
Inventor
神谷哲
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to CA2808575A priority Critical patent/CA2808575C/en
Priority to JP2012529473A priority patent/JP5652794B2/ja
Priority to SG2013011838A priority patent/SG188231A1/en
Priority to US13/817,103 priority patent/US9492800B2/en
Publication of WO2012023218A1 publication Critical patent/WO2012023218A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2724Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/52Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle with a rotary stirrer in the recirculation tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/812Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow the stirrers co-operating with surrounding stators, or with intermeshing stators, e.g. comprising slits, orifices or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0404Technical information in relation with mixing theories or general explanations of phenomena associated with mixing or generalizations of a concept by comparison of equivalent methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0409Relationships between different variables defining features or parameters of the apparatus or process

Definitions

  • the present invention relates to a mixer having a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator, a so-called rotor-stator type mixer.
  • a so-called rotor / stator type mixer generally includes a stator 2 having a plurality of openings 1 and a rotor arranged with a predetermined gap ⁇ inside the stator 2. 3 is provided.
  • Such a rotor-stator type mixer utilizes a fact that high shear stress is generated in the vicinity of the gap between the rotor 3 rotating at high speed and the stator 2 fixed to the fluid, etc. , Emulsification, dispersion, atomization, mixing, and the like, and are widely used in applications such as preparation and preparation of treatment liquids in the fields of foods, pharmaceuticals, and chemicals.
  • the rotor-stator type mixer is an external circulation mixer in which the treatment liquid circulates as shown by the arrow 5a in FIG. 2 according to the circulation system of the fluid to be treated, and the treatment liquid as shown by the arrow 5b in FIG. Sometimes classified as a circulating internal circulation mixer.
  • Patent Document 1 a rotor stator apparatus and method for particle formation
  • a stator having a plurality of openings, and a rotor arranged with a predetermined gap inside the stator.
  • An apparatus and a method for producing fine particles are proposed that are used in a wide range of fields such as pharmaceuticals, dietary supplements, foods, chemicals, and cosmetics. According to this, it is said that it is efficient, simple, and can be easily scaled up.
  • Non-Patent Documents 1 and 2 the calculation method of the average energy dissipation rate is hardly clarified.
  • Non-Patent Documents 3 to 6 Some examples of research that can be applied to individual mixers and organize the experimental results have been reported (Non-Patent Documents 3 to 6). However, in these research examples (Non-Patent Documents 3 to 6), the effects of only the gap between the rotor and the stator and the influence of only the opening (hole) of the stator are affected by the atomization effect of the mixer. Only different content is reported for each mixer.
  • Non-Patent Documents 7 and 8 Several research examples have been reported in which the atomization mechanism (mechanism) of a rotor-stator type mixer is considered (Non-Patent Documents 7 and 8). These suggest that the energy dissipation rate of turbulent flow contributes to the atomization effect of the droplets, and that the frequency of receiving the shear stress of the treatment liquid (shear frequency) influences the atomization effect. ing.
  • Non-patent Document 9 In the soot scale-up method of a rotor / stator type mixer, several reports have been made on the final droplet size (maximum stable droplet size) obtained by operating for a long time (Non-patent Document 9). However, it is not practical and not very useful in an actual manufacturing site. That is, there have been few reports on useful studies in which the droplet diameter obtained by operating for a predetermined time in consideration of the processing (stirring and mixing) time of the mixer is estimated. Even if the droplet size is estimated in consideration of the processing time of the mixer, it only reports a phenomenon (facts) based on a measured value (experimental value), and is a theoretically analyzed study. No examples have been reported.
  • Patent Document 1 described above describes the superiority (performance) of a predetermined mixer and the numerical range of the design, but does not describe the theoretical basis for the numerical range of the design of a high-performance mixer. It does not describe the type and shape of high-performance mixers.
  • the conventional technology can obtain (1) each individual mixer, (2) use a small device, and (3) operate for a long time. In most cases, the final droplet diameter (maximum stable droplet diameter) is evaluated. That is, in the prior art, (A) a large-scale (actual production scale) apparatus is applied to (A) a wide variety of mixers, and (C) a droplet diameter obtained by operating in a predetermined time, The processing (stirring) time until the droplet diameter was obtained was not evaluated or estimated.
  • a comprehensive performance evaluation method that can be applied to mixers of various shapes that have a particularly large influence on the holes of the stator is established, and a scale that considers the operating conditions (processing time) of the mixer. It is an object to establish a manufacturing method (atomization method) for foods, pharmaceuticals, chemicals, etc. using these performance evaluation methods and scale-up methods.
  • a rotor-stator type mixer having a mixer unit, comprising a stator having a plurality of openings, and a rotor arranged with a predetermined gap inside the stator, the mixer having a structure But, When a process of emulsification, dispersion, atomization or mixing is performed on the fluid to be processed by the mixer, a predetermined droplet diameter of the fluid to be processed can be obtained in a predetermined operation time.
  • the mixer is characterized by being calculated by using Equation 1 and estimating the operation time of the mixer and the droplet diameter of the fluid to be processed obtained thereby.
  • ⁇ t Total energy dissipation rate [m 2 / s 3 ]
  • ⁇ l Local energy dissipation rate of stator opening [m 2 / s 3 ]
  • f s_h shear frequency t
  • m mixing time [s]
  • A: Opening ratio of stator [-] n r Number of rotor blades [-]
  • Clearance between rotor and stator [m]
  • h Stator height [m]
  • l Stator thickness [m]
  • d Stator hole diameter [m]
  • N p Power number [-]
  • N qd Flow rate [-]
  • N Speed [1 / s]
  • V Liquid volume [m 3 ]
  • C h Shape-dependent term in the stator [m 5 ] It is.
  • the invention according to claim 2 2.
  • the invention described in claim 3 3.
  • the invention according to claim 4 The said to-be-processed fluid is introduce
  • the invention according to claim 5 The mixer according to any one of claims 1 to 4, wherein the rotor is provided with a plurality of stirring blades extending radially from a rotation center.
  • the invention described in claim 6 This is a method for evaluating the performance of a rotor / stator type mixer equipped with a mixer unit comprising a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator. And
  • the total energy dissipation rate: ⁇ t is obtained by the following equation 1, and the stator, which is included in the equation 1, is a numerical value specific to each mixer obtained by measuring the dimensions of the rotor / stator and the power / flow rate during operation.
  • This is a method for evaluating the performance of the mixer by evaluating the number of values of the shape-dependent terms in.
  • ⁇ t Total energy dissipation rate [m 2 / s 3 ]
  • ⁇ l Local energy dissipation rate of stator opening [m 2 / s 3 ]
  • f s_h shear frequency t
  • m mixing time [s]
  • A: Opening ratio of stator [-] n r Number of rotor blades [-]
  • Clearance between rotor and stator [m]
  • h Stator height [m]
  • l Stator thickness [m]
  • d Stator hole diameter [m]
  • N p Power number [-]
  • N qd Flow rate [-]
  • N Speed [1 / s]
  • V Liquid volume [m 3 ]
  • C h Shape-dependent term in the stator [m 5 ] It is.
  • the invention described in claim 7 Scale up or scale down a rotor / stator type mixer with a mixer unit, which consists of a stator with a plurality of openings and a rotor arranged with a predetermined gap inside the stator.
  • a method The total energy dissipation rate in the experimental scale and / or pilot plant scale of the mixer obtained by Equation 1: ⁇ t , and the total energy dissipation rate in the actual manufacturing machine of the mixer to be scaled up or down: ⁇ t It is a method characterized by scaling up or down by matching the calculated value.
  • ⁇ t Total energy dissipation rate [m 2 / s 3 ]
  • ⁇ l Local energy dissipation rate of stator opening [m 2 / s 3 ]
  • f s_h shear frequency t
  • m mixing time [s]
  • A: Opening ratio of stator [-] n r Number of rotor blades [-]
  • Clearance between rotor and stator [m]
  • h Stator height [m]
  • l Stator thickness [m]
  • d Stator hole diameter [m]
  • N p Power number [-]
  • N qd Flow rate [-]
  • N Speed [1 / s]
  • V Liquid volume [m 3 ]
  • C h Shape-dependent term in the stator [m 5 ] It is.
  • the fluid to be treated On the other hand, it is a food, medicine or chemical produced by emulsification, dispersion, atomization or mixing, and is obtained by calculating the operation using Equation 1 and by this. It is a food, pharmaceutical or chemical produced by estimating the droplet diameter of the fluid to be treated and subjecting the fluid to be treated to emulsification, dispersion, atomization or mixing with the mixer.
  • ⁇ t Total energy dissipation rate [m 2 / s 3 ]
  • ⁇ l Local energy dissipation rate of stator opening [m 2 / s 3 ]
  • f s_h shear frequency t
  • m mixing time [s]
  • A: Opening ratio of stator [-] n r Number of rotor blades [-]
  • Clearance between rotor and stator [m]
  • h Stator height [m]
  • l Stator thickness [m]
  • d Stator hole diameter [m]
  • N p Power number [-]
  • N qd Flow rate [-]
  • N Speed [1 / s]
  • V Liquid volume [m 3 ]
  • C h Shape-dependent term in the stator [m 5 ] It is.
  • the invention according to claim 9 Using a rotor / stator type mixer having a mixer unit, which is composed of a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator, the fluid to be treated
  • a rotor / stator type mixer having a mixer unit, which is composed of a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator
  • it is a method for producing a food, pharmaceutical or chemical by emulsifying, dispersing, atomizing or mixing, which is calculated using Equation 1 to calculate the operation time of the mixer.
  • Is a method for producing foods, pharmaceuticals or chemicals by estimating the droplet diameter of the fluid to be treated.
  • ⁇ t Total energy dissipation rate [m 2 / s 3 ]
  • ⁇ l Local energy dissipation rate of stator opening [m 2 / s 3 ]
  • f s_h shear frequency t
  • m mixing time [s]
  • A: Opening ratio of stator [-] n r Number of rotor blades [-]
  • Clearance between rotor and stator [m]
  • h Stator height [m]
  • l Stator thickness [m]
  • d Stator hole diameter [m]
  • N p Power number [-]
  • N qd Flow rate [-]
  • N Speed [1 / s]
  • V Liquid volume [m 3 ]
  • C h Shape-dependent term in the stator [m 5 ] It is.
  • an index of total energy dissipation rate ⁇ t is applied.
  • each mixer is designed by using the calculated value of the total energy dissipation rate: ⁇ t that combines the shape-dependent term and the operating condition-dependent term in the stator, and matching the calculated values. can do.
  • the range of high performance is designated by the numerical value of total energy dissipation rate: ⁇ t applicable to the performance evaluation method of each mixer.
  • ⁇ t a range that does not include the conventional mixer (conventional product) is set by the numerical value of the stator shape-dependent term (coefficient) in the calculation formula proposed by the present invention.
  • a range that cannot be easily calculated by a conventional index (theory) it is difficult unless it is actually measured).
  • the present invention proposes a method for producing foods, pharmaceuticals or chemicals by using a rotor / stator type mixer and subjecting the fluid to be treated to emulsification, dispersion, atomization or mixing. Based on the calculation formula to calculate the total energy dissipation rate: ⁇ t [m 2 / s 3 ], the operation time of the mixer and the droplet diameter of the fluid to be processed obtained thereby are estimated, Foods, pharmaceuticals or chemicals having a desired droplet size can be produced.
  • the figure showing the relationship between the total energy dissipation rate (epsilon) t and droplet diameter (atomization tendency) in a small rotor / stator type mixer The figure showing the relationship between the mixing time in a small rotor-stator type mixer, the relationship of a droplet diameter, and an estimated value (theoretical value). The figure showing the relationship between the mixing time in another small rotor-stator type mixer, the relationship of a droplet diameter, and an estimated value (theoretical value). The figure showing the relationship (epsilonization tendency) of the total energy dissipation rate: ⁇ t and the droplet diameter in a medium- and large-sized rotor / stator type mixer.
  • ⁇ t Total energy dissipation rate [m 2 / s 3 ]
  • ⁇ l Local energy dissipation rate of stator opening [m 2 / s 3 ]
  • f s_h shear frequency t
  • m mixing time [s]
  • A: Opening ratio of stator [-] n r Number of rotor blades [-]
  • Clearance between rotor and stator [m]
  • h Stator height [m]
  • l Stator thickness [m]
  • d Stator hole diameter [m]
  • N p Power number [-]
  • N qd Flow rate [-]
  • N Speed [1 / s]
  • V Liquid volume [m 3 ]
  • C h Shape-dependent term in the stator [m 5 ] It is.
  • the total energy dissipation rate: ⁇ t can be expressed as a product (multiplication) of the local energy dissipation rate: ⁇ 1 and the shear frequency: f s_h in the gap (gap) between the rotor and the stator.
  • each mixer obtained by measuring the dimensions of the rotor / stator and the power / flow rate during operation, which are included in the calculation formula proposed by the present invention for deriving the total energy dissipation rate: ⁇ t described above.
  • the performance of the mixer is evaluated by evaluating the number of shape-dependent terms in the stator, which is the numerical value of C h [-].
  • the shape-dependent term in the stator is the opening ratio of the stator: A [-], the rotor blade Number of sheets: n r [-], rotor diameter: D [m], rotor-stator gap: ⁇ [m], stator height: h [m], stator hole diameter: d [m], stator thickness : L [m], flow rate: N qd [-], power: N p [-]
  • ⁇ t agrees with the calculated value of ⁇ t in the actual production machine that scales up or down Scale up or down.
  • the processed fluid is emulsified, dispersed, atomized or mixed using a rotor / stator type mixer to provide food (including dairy products and beverages), pharmaceuticals (excluding pharmaceutical products).
  • Product or chemicals (including cosmetics)
  • the total energy dissipation rate: ⁇ t is calculated using the calculation formula proposed by the present invention to calculate the operation time of the mixer.
  • the flavor, texture, physical properties, quality, etc. are good.
  • the present invention is preferably applied to foods and pharmaceuticals, more preferably applied to foods, and can be applied to nutritional compositions and dairy products. It is more preferable to apply to a nutritional composition or dairy product formulated at a high concentration.
  • Total energy dissipation rate ⁇ t and droplet diameter change (droplet atomization tendency)>
  • a simulated liquid assuming a dairy product was prepared.
  • This emulsified product simulated liquid is composed of milk protein concentrate (MPC, TMP (total milk protein)), rapeseed oil, and water.
  • MPC milk protein concentrate
  • TMP total milk protein
  • rapeseed oil rapeseed oil
  • the performance of the mixer was evaluated by experimentally examining the tendency of atomization of the droplet diameter. As shown in FIG. 3, an external circulation type unit was prepared, and the droplet diameter was measured with a laser diffraction particle size distribution analyzer (Shimadzu Corporation: SALD-2000) in the middle of the flow path.
  • SALD-2000 laser diffraction particle size distribution analyzer
  • both the internal circulation mixer and the external circulation mixer are arranged with a stator 2 having a plurality of openings 1 and a predetermined gap ⁇ inside the stator 2, as shown in FIG.
  • a mixer unit 4 including the rotor 3 is provided. Therefore, when evaluating an internal circulation mixer, as shown in FIG. 4, a mixer comprising a rotor and a stator having the same dimensions (size), shape and structure as the mixer unit provided in the external circulation mixer. Considering that the unit was installed in the internal circulation mixer, the results of the test evaluating the external circulation mixer were used for the evaluation of the internal circulation mixer.
  • the mixer A has a storage capacity of 100 liters
  • the mixer B has a storage capacity of 500 liters
  • the mixer C has a storage capacity of 10 kiloliters, which are the same manufacturer and are provided on the market.
  • the mixer A as shown in Table 2, five types of mixers (stator No. 1 to stator No. 5) having different sizes (sizes) of gaps (gap) ⁇ and the number of openings 1 were examined. .
  • Table 3 shows the experimental conditions in the mixer A and the calculated values of the total energy dissipation rate.
  • FIG. 5 shows the relationship between the processing (mixing) time in the operating conditions shown in Table 3 in the mixer A and the droplet diameter (trend tendency).
  • FIG. 6 shows the relationship between the total energy dissipation rate proposed by the present invention in the mixer A and the droplet diameter (trend tendency).
  • stator numbers 3 and 4 having the same C h / C h_std values show almost the same atomization tendency, so that the mixer is determined by C h / C h_std and the total energy dissipation rate: ⁇ t . It was found that predicting the performance of the system not only captures qualitative trends but also explains (evaluates) quantitative trends.
  • the droplet diameter tends to decrease in the same way. I understood.
  • the total energy dissipation rate ⁇ t calculated by the formula proposed in the present invention can be evaluated in a rotor-stator type mixer by comprehensively considering differences in operating conditions and shapes. It can be said that it is an indicator.
  • FIG. 9 shows the relationship between the total energy dissipation rate ⁇ t proposed by the present invention and the droplet size (atomization tendency) for mixer B, which is a medium-sized mixer, and mixer C, which is a large mixer. It was. It was found that even when the scale (size) of the mixer is different from 200 to 700 liters in volume, the droplet diameter depends on the value (size) of the total energy dissipation rate: ⁇ t . And even if the scale of the mixer differs, it turned out that the same atomization tendency is shown.
  • the total energy dissipation rate proposed in the present invention the value (size) of e t is matched to comprehensively consider the difference in operating conditions and shape. It can be said that it can scale up.
  • the shape of the high-performance mixer was defined with reference to the performance evaluation of the mixer using ⁇ t as an index and the verification results derived from the calculation formula of the present invention. Based on the definition, a high-performance mixer was designed, and an outline of the mixer was shown in FIGS.
  • the powder raw material is quickly dispersed in the preparation liquid without dissipating high energy by separating the stator from the rotor. And the procedure which moves a stator to the vicinity of a rotor after that, and melt
  • Multi-stage homogenizer multi-stage emulsification mechanism
  • the mixer provided with a plurality of mixing portions formed in the gap portion between the rotor and the stator.
  • preliminary atomization is performed in the gap between the first-stage rotor and the stator, and then full-scale atomization is performed in the gap between the second-stage rotor and the stator.
  • the total energy dissipation rate derived based on the calculation formula of the present invention The larger the value of ⁇ t , the better the performance (effect) of atomization and emulsification has been confirmed.
  • the opening formed in the stator The shape of the (hole) is preferably not a comb shape but a circular shape.
  • the hole diameter of the stator is 2 mm or less, there is a risk that the powder raw material will be clogged. Therefore, when the powder raw material is dissolved and emulsified at the same time, the hole diameter of the stator is preferably about 2 to 4 mm.
  • the opening provided in the stator is formed in the circumferential peripheral wall of the stator so as to have a total opening area ratio of 20% or more.
  • opening area ratio The greater the number of holes in the stator (opening area ratio), the higher the shear frequency. On the other hand, there is a problem of the strength of the opening of the stator. Conventionally, generally, an opening area ratio of 18 to 36% is often adopted, but the opening area ratio is preferably 30% or more, and more preferably 40 to 50%.
  • the rotor is preferably provided with a plurality of stirring blades extending radially from the center of rotation.
  • the number of stirring blades is 6 or more, desirably 8 sheets.
  • the total energy dissipation rate derived from the calculation formula proposed by the present invention Based on the performance evaluation of the mixer using ⁇ t as an index and the shape of the high-performance mixer defined with reference to the verification results and the definition The outline of the high-performance mixer designed in this way will be described with reference to FIGS.
  • the rotor-stator type mixer proposed by the present invention is characterized by a mixer unit 14 including a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator.
  • the other structure is the same as that of a conventional rotor / stator type mixer. Therefore, only an example of the mixer unit 14 having the characteristic structure and mechanism in the mixer of the present invention will be described with reference to the drawings.
  • the mixer unit 14 in the rotor-stator type mixer of the present invention is composed of the rotor 13 having the structure shown in FIGS. 12 and 13 and the stators 12 and 22.
  • the stators 12 and 22 are provided with a plurality of circular openings 11a and 11b, respectively, like the stator 2 in the conventional mixer unit 4 illustrated in FIG.
  • the stators 12 and 22 have a circumferential diameter of the stator 22 larger than that of the stator 12, and are arranged concentrically on the mixer unit 14 as shown in FIG.
  • the rotor 13 disposed inside the stators 12 and 22 with a predetermined gap is provided with a plurality of stirring blades extending radially from the rotating shaft 17 serving as a rotation center.
  • eight stirring blades 13a, 13b, 13c, 13d, 13e, 13f, 13g, and 13h are provided.
  • a vertical groove 15 is formed at a position of the same diameter between the radial center of each of the stirring blades 13a to 13h and the radial outer end 16.
  • the stator 12 is inserted into the vertical grooves 15 formed in the stirring blades 13a to 13h.
  • a gap ⁇ 2 is formed between the wall surface 16a of the radially outer end 16 of each of the stirring blades 13a to 13h and the inner peripheral wall surface 22a of the stator 22.
  • the outer peripheral surface 15a of the vertical groove 15 of each stirring blade 13a to 13h and the inner peripheral wall surface 12a of the stator 12 and the inner peripheral surface 15b of the vertical groove 15 of each stirring blade 13a to 13h, and the stator 12
  • a gap is formed between the outer peripheral wall surface 12b.
  • the mixer unit 14 of the rotor / stator type mixer of the present invention has a structure in which the rotor is arranged with a predetermined gap inside each of the stators 12 and 22 having different peripheral diameters.
  • a two-stage mixing portion is formed, that is, a radially inner mixed portion and a radially outer mixed portion. High performance can be realized by such multi-stage mixing.
  • the radially inner mixing portion is between the outer peripheral surface 15a of the vertical groove 15 of each stirring blade 13a to 13h and the inner peripheral wall surface 12a of the stator 12, and to the vertical surface of each stirring blade 13a to 13h.
  • the groove 15 is formed between the inner peripheral surface 15 b and the outer peripheral wall surface 12 b of the stator 12.
  • the radially outer mixed portion is formed between the wall surface 16a of the radially outer end 16 of each of the stirring blades 13a to 13h and the inner peripheral wall surface 22a of the stator 22.
  • the stators 12 and 22 and the rotor 13 can approach and separate from each other in the direction in which the rotating shaft 17 of the rotor 13 extends.
  • the rotor 13 is movable in the direction in which the rotating shaft 17 extends as shown by arrows 22 and 23 in FIG.
  • the rotor 13 moves in the direction of the arrow 22 in FIG. 12B, and the stator 12 is inserted into the vertical groove 15 formed in each of the stirring blades 13a to 13h as described above.
  • the powder raw material is prepared without dissipating high energy by separating the rotor 13 from the stators 12 and 22 as shown by the arrow 23 in FIG. Can be quickly dispersed in the liquid.
  • the rotor 13 is moved as shown by the arrow 22 in FIG. 12B to form the two-stage mixing portion of the above-described radial inner side and radial outer side mixing portion.
  • the procedure of 12 (b) rotating in the direction of arrow 20 to dissolve, atomize and emulsify in earnest is preferable.
  • the nozzle 18 extends radially toward the center along the upper ends of the stators 12 and 22 constituting the mixer unit 14, and the fluid to be processed. Is directly fed into the mixing part (mixer part) through the nozzle 18 from the nozzle opening 19 as shown by the arrow 21 in FIG.
  • the fluid to be processed is an inner mixed portion, and between the outer peripheral surface 15a in the vertical groove 15 of each of the stirring blades 13a to 13h and the inner peripheral wall surface 12a of the stator 12, as indicated by the arrow 21 from the nozzle opening 19.
  • the first stage mixing (preliminary mixing) is performed there.
  • full-scale mixing is performed between the wall surface 16a of the radially outer end 16 of each of the stirring blades 13a to 13h and the inner peripheral wall surface 22a of the stator 22, which is the outer mixing portion. .
  • Table 4 shows the composition and physical properties of this Maybalance 1.0 HP (trademark).
  • Table 5 shows the experimental conditions and the calculated total energy dissipation rate: ⁇ t .
  • FIG. 13 shows the relationship (total atomization tendency) between the total energy dissipation rate: ⁇ t and the droplet diameter.
  • the present invention can exhibit the excellent effects and functions described below, it can be used in various industrial fields in which emulsification, dispersion, and micronization processes are performed, for example, in the manufacturing field of foods, pharmaceuticals, chemicals, and the like. It is.
  • the necessary processing (stirring) time can be estimated, and the operation (processing) should be performed at the minimum necessary time.
  • the operating time of the rotor-stator type Kimisa can be shortened and energy saving can be achieved.
  • the rotor-stator type mixer according to the present invention has a high atomization effect and an emulsification effect, and can produce a product having the same or higher quality as a conventional product in a shorter time than before.
  • Scale-up and scale-down can be performed for a wide variety of rotor-stator type mixers from small to large in consideration of the processing (manufacturing) time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Edible Oils And Fats (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Accessories For Mixers (AREA)
  • Colloid Chemistry (AREA)

Abstract

 多種多様な形状や循環方式のローター・ステータータイプのミキサーに適用できる包括的な性能評価方法を確立する。 ローター・ステータータイプのミキサーにおける全エネルギー消散率:εtを求め、これに含まれる、ローター・ステーターの寸法と運転時の動力・流量を測定することにより得られる、各ミキサーに固有の数値であるミキサー全体の形状依存項の値の多寡を評価することにより、ミキサーの性能を評価する方法。

Description

微粒化装置及びその性能評価方法とスケールアップ方法
 この発明は、複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているミキサー、いわゆるローター・ステータータイプのミキサーに関する。
 いわゆるローター・ステータータイプのミキサーは、一般的に、図1に示すように、複数個の開口部1を備えているステーター2と、ステーター2の内側に所定の隙間δを空けて配置されるローター3とからなるミキサーユニット4を備えている。このようなローター・ステータータイプのミキサーは、高速で回転するローター3と、固定されているステーター2との間の隙間近傍で、高い剪断応力が発生することを利用して、流体などに対して、乳化、分散、微粒化、混合などの処理を行うものであり、食品、医薬品、化学品などの分野において、処理液の調合、調製などの用途で広く使用されている。
 ローター・ステータータイプのミキサーは、処理される流体の循環方式に応じて、図2の矢印5aで示すように処理液が循環する外部循環式ミキサー、図2の矢印5bで示すように処理液が循環する内部循環式ミキサーに分類されることがある。
 このようなローター・ステータータイプのミキサーに関して多種多様な形状や循環方式が提供されている。例えば、特許文献1(粒子形成のための回転子固定子装置および方法)には、複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているミキサーを薬剤、栄養補助食品、食品、化学品、化粧品などの幅広い分野で利用される、粒子の形成に適用する微細粒子の生成のための装置、方法が提案されている。これによれば、効率的で、簡単で、容易にスケールアップすることができるとされている。
 また、以前から種々の形状のミキサーの性能評価方法として、幾つかの指標(理論)が報告されている。
 例えば、前述したローター・ステータータイプのミキサーに限らず、液-液分散操作に着目してみると、液滴径の寸法は、平均的なエネルギー消散率の計算値(大小)で議論できることが報告されている(非特許文献1、2)。ただし、非特許文献1、2では、平均的なエネルギー消散率の計算方法は殆ど明らかにされていない。
 個別のミキサーに適用でき、その実験結果を整理した研究例は幾つか報告されている(非特許文献3~6)。ただし、これらの研究例(非特許文献3~6)では、ミキサーの微粒化効果に対して、ローターとステーターの隙間(ギャップ)のみの影響や、ステーターの開口部(ホール)のみの影響などを考察しており、各ミキサーで異なる内容しか報告されていない。
 ローター・ステータータイプのミキサーの微粒化機構(メカニズム)を考察した研究例は幾つか報告されている(非特許文献7、8)。これらでは、液滴の微粒化効果には、乱流のエネルギー消散率が寄与することや、その微粒化効果には、処理液の剪断応力を受ける頻度(剪断頻度)が影響することが示唆されている。
 ローター・ステータータイプのミキサーの スケールアップ方法では、長時間で運転して得られる最終的な液滴径(最大安定の液滴径)に関して幾つか報告されている(非特許文献9)。しかし、実際の製造現場では実用的ではなく、あまり有用ではない。つまり、ミキサーの処理(撹拌、混合)時間を考慮し、所定の時間で運転して得られる液滴径を推定した有用な研究例は殆ど報告されていない。仮に、ミキサーの処理時間を考慮して、液滴径を推定していても、それは単なる実測値(実験値)に基づく現象(事実)を報告しているのみであり、理論的に解析した研究例は報告されていない。
特表2005-506174号公報
Davies, J. T.; "Drop Sizes of Emulsions Related to Turbulent Energy Dissipation Rates," Chem. Eng. Sci., 40, 839-842 (1985) Davies, J. T.; "A Physical Interpretation of Drop Sizes in Homogenizers and Agitated Tanks, Including the Dispersion of Viscous Oils," Chem. Eng. Sci., 42, 1671-1676 (1987) Calabrese, R. V., M. K. Francis, V. P. Mishra and S. Phongikaroon; "Measurement and Analysis of Drop Size in Batch Rotor-Stator Mixer," Proc. 10th European Conference on Mixing, pp. 149-156, Delft, the Netherlands (2000) Calabrese, R. V., M. K. Francis, V. P. Mishra, G. A. Padron and S. Phongikaroon; "Fluid Dynamics and Emulsification in High Shear Mixers," Proc. 3rd World Congress on Emulsions, pp. 1-10, Lyon, France (2002) Maa, Y. F., and C. Hsu; "Liquid-Liquid Emulsification by Rotor/Stator Homogenization," J. Controlled. Release, 38, 219-228 (1996) Barailler, F., M. Heniche and P. A. Tanguy; "CFD Analysis of a Rotor-Stator Mixer with Viscous Fluids," Chem. Eng. Sci., 61, 2888-2894 (2006) Utomo, A. T., M. Baker and A. W. Pacek; "Flow Pattern, Periodicity and Energy Dissipation in a Batch Rotor-Stator Mixer," Chem. Eng. Res. Des., 86, 1397-1409 (2008) Porcelli, J.; "The Science of Rotor/Stator Mixers," Food Process, 63, 60-66 (2002) Urban K.; "Rotor-Stator and Disc System for Emulsification Processes," Chem. Eng. Technol., 29, 24-31 (2006)
 前述した特許文献1には所定のミキサーの優位性(性能)や設計の数値範囲などが記載されているが、高性能なミキサーの設計の数値範囲などに関して理論的な根拠が記載されておらず、高性能なミキサーの種類や形状などに関して記載されていない。
 前述したように、以前から種々の形状のミキサーの性能評価方法として、幾つかの指標(理論)が報告されているが、これらの指標は、あくまでも形状の同じ個別のミキサーにしか適用できない場合が多く、実際には形状の異なる多種多様なミキサーには適用できない場合が殆どである。
 このように、ローター・ステータータイプのミキサーの性能評価方法やスケールアップ方法に関する研究例は殆ど存在せず、形状の異なる多種多様なミキサーに適用でき、その実験結果を包括的に整理した研究例も殆ど存在していない。
 ローター・ステータータイプのミキサーの性能評価方法やスケールアップ方法に関して、従来技術では、(1)個別のミキサー毎に、(2)小規模の装置を使用し、(3)長時間で運転して得られる最終的な液滴径(最大安定の液滴径)を評価している場合が殆どであった。つまり、従来技術では、(A)多種多様なミキサーに、(B)大規模(実製造規模)の装置を適用し、(C)所定の時間で運転して得られる液滴径や、所定の液滴径が得られるまでの処理(撹拌)時間を評価や推定していなかった。
 そのため、現実的には、実際の処理液を使用して試行錯誤しながら、ミキサーを性能評価し、設計(開発、作製)していた。
 そこで、本発明では、特にステーターの孔部での影響力が大きい多種多様な形状のミキサーに適用できる包括的な性能評価方法を確立すること、そのミキサーの運転条件(処理時間)を考慮したスケールアップ方法を確立すること、さらに、それらの性能評価方法やスケールアップ方法を利用した食品、医薬品、化学品などの製造方法(微粒化方法)を確立することを課題にしている。
 請求項1記載の発明は、
 複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーであって、当該ミキサーの構造が、
 当該ミキサーにより被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すときに、所定の運転時間で、被処理流体の所定の液滴径を得ることができるように、
 式1を用いて計算して、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定することにより設計されていることを特徴とするミキサーである。
Figure JPOXMLDOC01-appb-M000006

 ここで、式1中、
 εt:全エネルギー消散率 [m2/s3]
 εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
 fs_h:剪断頻度
 tm :混合時間 [s]
 A:ステーターの開口率 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 δ :ローターとステーターの隙間 [m]
 h :ステーターの高さ [m]
 l :ステーターの厚み [m]
 d :ステーターの孔径 [m]
 Np :動力数 [-]
 Nqd :流量数 [-]
 N :回転数 [1/s]
 V :液量 [m3]
 Ch:ステーターにおける形状依存項 [m5]
 である。
 請求項2記載の発明は、
 前記ステーターと、ローターとは、ローターの回転軸が延びている方向で相互に近付く、又は離れることができるように構成されていることを特徴とする請求項1記載のミキサーである。
 請求項3記載の発明は、
 前記ミキサーは、周径の異なる複数のステーターを備えており、各ステーターの内側にそれぞれ前記ローターが所定の隙間を空けて配置されることを特徴とする請求項1又は2記載のミキサーである。
 請求項4記載の発明は、
 前記被処理流体は、前記ステーターとその内側に所定の隙間を空けて配置される前記ローターとの間の隙間部に導入されることを特徴とする請求項1乃至3のいずれか一項記載のミキサーである。
 請求項5記載の発明は、
 前記ローターは、回転中心から放射状に延びる複数枚の攪拌翼を供えていることを特徴とする請求項1乃至4のいずれか一項記載のミキサーである。
 請求項6記載の発明は、
 複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーの性能を評価する方法であって、
 以下の式1により全エネルギー消散率:εを求め、この式1に含まれる、ローター・ステーターの寸法と運転時の動力・流量を測定することにより得られる各ミキサーに固有の数値であるステーターにおける形状依存項の値の多寡を評価することにより、ミキサーの性能を評価する方法である。
Figure JPOXMLDOC01-appb-M000007

 ここで、式1中、
 εt:全エネルギー消散率 [m2/s3]
 εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
 fs_h:剪断頻度
 tm :混合時間 [s]
 A:ステーターの開口率 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 δ :ローターとステーターの隙間 [m]
 h :ステーターの高さ [m]
 l :ステーターの厚み [m]
 d :ステーターの孔径 [m]
 Np :動力数 [-]
 Nqd :流量数 [-]
 N :回転数 [1/s]
 V :液量 [m3]
 Ch:ステーターにおける形状依存項 [m5]
 である。
 請求項7記載の発明は、
 複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーをスケールアップ、あるいはスケールダウンする方法であって、
 式1で求められる当該ミキサーの実験機規模及び/又はパイロットプラント規模における全エネルギー消散率:εの値と、スケールアップあるいはスケールダウンする当該ミキサーの実製造機における全エネルギー消散率:εの計算値とを一致させることにより、スケールアップあるいはスケールダウンすることを特徴とする方法である。
Figure JPOXMLDOC01-appb-M000008

 ここで、式1中、
 εt:全エネルギー消散率 [m2/s3]
 εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
 fs_h:剪断頻度
 tm :混合時間 [s]
 A:ステーターの開口率 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 δ :ローターとステーターの隙間 [m]
 h :ステーターの高さ [m]
 l :ステーターの厚み [m]
 d :ステーターの孔径 [m]
 Np :動力数 [-]
 Nqd :流量数 [-]
 N :回転数 [1/s]
 V :液量 [m3]
 Ch:ステーターにおける形状依存項 [m5]
 である。
 請求項8記載の発明は、
 複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーを利用し、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより製造した食品、医薬品あるいは化学品であって、式1を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、前記ミキサーにより、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施して製造した食品、医薬品あるいは化学品である。
Figure JPOXMLDOC01-appb-M000009

 ここで、式1中、
 εt:全エネルギー消散率 [m2/s3]
 εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
 fs_h:剪断頻度
 tm :混合時間 [s]
 A:ステーターの開口率 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 δ :ローターとステーターの隙間 [m]
 h :ステーターの高さ [m]
 l :ステーターの厚み [m]
 d :ステーターの孔径 [m]
 Np :動力数 [-]
 Nqd :流量数 [-]
 N :回転数 [1/s]
 V :液量 [m3]
 Ch:ステーターにおける形状依存項 [m5]
 である。
 請求項9記載の発明は、
 複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーを利用し、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品、医薬品あるいは化学品を製造する方法であって、式1を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、食品、医薬品あるいは化学品を製造する方法である。
Figure JPOXMLDOC01-appb-M000010

 ここで、式1中、
 εt:全エネルギー消散率 [m2/s3]
 εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
 fs_h:剪断頻度
 tm :混合時間 [s]
 A:ステーターの開口率 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 δ :ローターとステーターの隙間 [m]
 h :ステーターの高さ [m]
 l :ステーターの厚み [m]
 d :ステーターの孔径 [m]
 Np :動力数 [-]
 Nqd :流量数 [-]
 N :回転数 [1/s]
 V :液量 [m3]
 Ch:ステーターにおける形状依存項 [m5]
 である。
 本発明においては、全エネルギー消散率:εtという指標を適用している。各社から提供される多種多様な形状や循環方式のミキサーの全エネルギー消散率:εtは、ローター(回転子)とステーター(固定子)の幾何学的な寸法、運転の動力と流量の測定値から個別に計算される。そして、この全エネルギー消散率:εtは、各ミキサーのステーターにおける形状依存項と運転条件依存項とに分離して表現される。
 全エネルギー消散率:εtという指標を用いることにより、各ミキサーの性能を評価する場合、例えば、液滴径の微粒化傾向によって性能を評価するときには、ステーターにおける形状依存項の計算値(大小)を使用することができる。
 また、各ミキサーのスケールアップ・スケールダウンにおいては、ステーターにおける形状依存項と運転条件依存項とを併せた全エネルギー消散率:εtの計算値を使用し、その計算値を一致させることで設計することができる。
 これらの知見によって、理論的かつ実験的に従来品よりも微粒化効果や乳化効果の高いミキサー(高性能のミキサー)を開発(設計)するようにしたものである。
 すなわち、本発明においては、各ミキサーの性能評価方法へ適用できる全エネルギー消散率:εtの数値で、高性能の範囲を指定する。具体的には、全エネルギー消散率:εtを導き出すために、本発明が提案する計算式におけるステーターの形状依存項(係数)の数値で、従来のミキサー(従来品)を含まない範囲を設定したり、従来の指標(理論)では容易に計算できない(実測しないと困難な)範囲を設定することができる。
 そして、ローター・ステータータイプのミキサーを利用し、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品、医薬品あるいは化学品を製造する方法において、本発明が提案する計算式に基づいて、全エネルギー消散率:εt[m2/s3]を計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、望ましい液滴径を有している食品、医薬品あるいは化学品を製造することができる。
ローター・ステータータイプのミキサーが備えているミキサーユニットを説明する斜視図。 外部循環式のローター・ステータータイプのミキサー(外部循環式ミキサー)及び内部循環式のローター・ステータータイプのミキサー(内部循環式ミキサー)を説明する図。 液滴径の微粒化傾向を調査する方式を説明する図。 外部循環式のローター・ステータータイプのミキサー(外部循環式ミキサー)の評価試験結果を、内部循環式のローター・ステータータイプのミキサー(内部循環式ミキサー)の評価に用いる方式を説明する図。 小型のローター・ステータータイプのミキサーにおける処理(混合)時間と液滴径の関係(微粒化傾向)を表す図。 小型のローター・ステータータイプのミキサーにおける全エネルギー消散率:εtと、液滴径の関係(微粒化傾向)を表す図。 小型のローター・ステータータイプのミキサーにおける混合時間と、液滴径の関係及び、推定値(理論値)との関係を表す図。 他の小型のローター・ステータータイプのミキサーにおける混合時間と、液滴径の関係及び、推定値(理論値)との関係を表す図。 中型・大型のローター・ステータータイプのミキサーにおける全エネルギー消散率:εtと、液滴径の関係(微粒化傾向)を表す図。 本発明のローター・ステータータイプのミキサーに採用されるローターの一例を説明する斜視図。 本発明のローター・ステータータイプのミキサーに採用される多段階式乳化機構の一例を説明する分解斜視図。 本発明のローター・ステータータイプのミキサーに採用されるダイレクト・インジェクション方式を説明する図であって、(a)は平面図、(b)は側面図。 市販されている栄養調整食品をローター・ステータータイプのミキサーで混合した場合の全エネルギー消散率:εtと、液滴径の関係(微粒化傾向)を表す図。
 本発明においては、ローター・ステータータイプのミキサーにおける微粒化効果(微粒化傾向)を議論(比較や評価)する目的で、本発明が提案する下記の式1によって導き出される全エネルギー消散率:εtを用いている。
Figure JPOXMLDOC01-appb-M000011

 ここで、式1中、
 εt:全エネルギー消散率 [m2/s3]
 εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
 fs_h:剪断頻度
 tm :混合時間 [s]
 A:ステーターの開口率 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 δ :ローターとステーターの隙間 [m]
 h :ステーターの高さ [m]
 l :ステーターの厚み [m]
 d :ステーターの孔径 [m]
 Np :動力数 [-]
 Nqd :流量数 [-]
 N :回転数 [1/s]
 V :液量 [m3]
 Ch:ステーターにおける形状依存項 [m5]
 である。
 上記の通り、全エネルギー消散率:εtは、ローターとステーターの隙間(ギャップ)における局所エネルギー消散率:ε と、剪断頻度:fs_hの積(掛け算)として表現できる。
 本発明においては、前述する全エネルギー消散率:εtを導き出す本発明が提案する計算式に含まれる、ローター・ステーターの寸法と運転時の動力・流量を測定することにより得られる各ミキサーに固有の数値であるステーターにおける形状依存項:C[-]の値の多寡を評価することにより、ミキサーの性能を評価している。
 前述する全エネルギー消散率:εt を導き出す本発明が提案する計算式に明らかなように、ステーターにおける形状依存項:C[-]は、ステーターの開口率:A [-]、ローターブレードの枚数:nr [-]、ローターの直径:D [m]、ローターとステーターの隙間:δ [m] 、ステーターの高さ:h [m]、ステーターの孔径:d [m]、ステーターの厚み:l [m]、流量数:Nqd [-]、動力数:Np [-]に基づく各ミキサーに固有の数値である。
 そこで、この値の大きさを比較(評価)することで、多種多様なミキサーの性能を評価できる。
 そこで、全エネルギー消散率:εtを導き出す本発明が提案する計算式中のステーターにおける形状依存項:Ch [-]の値の大きさを比較(評価)することで、多種多様なミキサーの性能を評価できる。
 すなわち、全エネルギー消散率:εtを導き出す本発明提案の計算式に含まれる、各ミキサーに固有の数値である、ステーターにおける形状依存項:Ch [-]の値の大きさを比較(評価)することで、多種多様なミキサーの性能を評価できると共に、高性能のミキサーを設計(開発、作製)できる。
 また、ローター・ステータータイプのミキサーの実験機規模及び/又はパイロットプラント規模における全エネルギー消散率:εtの値と、スケールアップあるいはスケールダウンする実製造機におけるεtの値の計算値とを一致させることでスケールアップあるいはスケールダウンを行うことができる。
 更に、ローター・ステータータイプのミキサーを利用して被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品(乳製品・飲料などを含む)、医薬品(医薬部外品などを含む)あるいは化学品(化粧品などを含む)を製造する際に、全エネルギー消散率:εtを導き出す本発明が提案する計算式を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、食品、医薬品あるいは化学品を製造することができる。
 なお、実施例で実証された通り、本発明に基づいて、栄養組成物(流動食、乳幼児用調製粉乳などの組成に相当する)を製造すると、風味、食感、物性、品質などが良好であり、衛生面や作業性などにも優れていたことから、本発明は、食品や医薬品へ適用することが好ましく、食品へ適用することがより好ましく、栄養組成物や乳製品へ適用することが更に好ましく、高濃度で配合された栄養組成物や乳製品へ適用することが特に好ましい。
<全エネルギー消散率:εt と液滴径の変化(液滴の微粒化傾向)>
 微粒子化の評価を行う対象として、乳製品を想定した模擬液を準備した。この乳化製品疑似液は、ミルクタンパク質濃縮物(MPC、TMP(トータルミルクプロテイン))、ナタネ油、水から構成されている。その配合や比率などを表1に示した。
Figure JPOXMLDOC01-appb-T000012

 ミキサーの性能は、液滴径の微粒化傾向を実験的に検討して評価した。図3に示すように、外部循環式のユニットを準備し、流路の途中で液滴径を、レーザー回折式粒度分布計(島津製作所:SALD-2000)により計測した。
 なお、本発明において、液滴径の微粒化傾向を実験的に検討して、ミキサーの性能を評価するにあたり、内部循環式ミキサーに関しては、液滴径の微粒化傾向を把握することが難しい。しかし、内部循環式ミキサーも、外部循環式ミキサーも、図1に示すように、複数個の開口部1を備えているステーター2と、ステーター2の内側に所定の隙間δを空けて配置されるローター3とからなるミキサーユニット4を備えている点で共通している。そこで、内部循環式ミキサーについて評価する場合には、図4に示すように、外部循環式ミキサーに備えられているミキサーユニットと同一の寸法(サイズ)、形状、構造を有するローター、ステーターからなるミキサーユニットが内部循環式ミキサーに配備されていると考えて、当該外部循環式ミキサーを評価した試験の結果を内部循環式ミキサーの評価に用いた。
 ここでは、3種類のミキサーに関して、その性能を比較した。なお、ここで使用したミキサーの概要を表2に示した。
Figure JPOXMLDOC01-appb-T000013

 ミキサーAは、収容量:100リットル、ミキサーBは、収容量:500リットル、ミキサーCは、収容量:10キロリットルで、同一のメーカー品であり、、市場に提供されているものである。なお、ミキサーAに関しては、表2の通り、隙間(ギャップ)δの寸法(大きさ)、開口部1の数が相違する5種類のミキサー(ステーターNo.1~ステーターNo.5)について検討した。
 ミキサーAにおける実験条件と全エネルギー消散率の計算値は、表3の通りであった。
Figure JPOXMLDOC01-appb-T000014

 ここで、ミキサーAにおける表3の運転条件での処理(混合)時間と、液滴径の関係(微粒化傾向)を図5に示した。 
 そして、ミキサーAにおける本発明で提案している全エネルギー消散率と、液滴径の関係(微粒化傾向)を図6に示した。
 また、ミキサーAのステーター番号1、2、3における表3の運転条件での処理(混合)時間と、液滴径の関係(微粒化傾向)(実測値)と、表3のステーター番号2に基づく、ステーター番号1、3の推定値(理論値)との関係を図7に示した。
 さらに、ミキサーAのステーター番号4、5における表3の運転条件での処理(混合)時間と、液滴径の関係(微粒化傾向)(実測値)と、表3のステーター番号4に基づく、ステーター番号5の推定値(理論値)との関係を図8に示した。
 表3において、ステーター番号4の形状依存項:Ch で正規化した Ch / Ch_stdを計算し、図5~図8の結果と比較したところ、それぞれの推定値(理論値)と測定値(実測値)とは同様な傾向を示し、あらゆるステーター番号において、Ch / Ch_stdの値が大きいほどに、微粒化効果(微粒化の性能)が高くなることが分かった。
 また、同程度のCh / Ch_stdの値であるステーター番号3と4では、ほぼ同等の微粒化傾向を示していることから、Ch / Ch_stdと全エネルギー消散率:εt により、ミキサーの性能を予測すると、定性的な傾向を捉えるだけでなく、定量的な傾向を説明(評価)できることが分かった。
 なお、処理(混合)時間を横軸にして、実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できないことが分かった。
 一方、本発明で提案している全エネルギー消散率:εt を横軸にして、実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できることが分かった。
 具体的には、運転条件(回転数、混合時間)と、ミキサーの形状(隙間、ステーターの孔径、ステーターの開口面積比)が異なっても、液滴径は同じように減少する傾向を辿ることが分かった。
 すなわち、本発明で提案している計算式で求められる全エネルギー消散率:εt は、ローター・ステータータイプのミキサーにおいて、運転条件や形状の違いを包括的に考慮して、その性能を評価できる指標であると言える。
 また、中型のミキサーであるミキサーB、大型のミキサーであるミキサーCについて、本発明で提案している全エネルギー消散率:εt と、液滴径の関係(微粒化傾向)を図9に示した。 ミキサーの規模(寸法)が容量で200~700リットルと異なっても、液滴径は全エネルギー消散率:εt の値(大きさ)に依存していることが分かった。そして、ミキサーの規模が異なっても、同様の微粒化傾向を示すことが分かった。
 以上より、ローター・ステータータイプのミキサーでは、本発明で提案している全エネルギー消散率: et の値(大きさ)を一致させることで、運転条件や形状の違いを包括的に考慮して、スケールアップできると言える。
 本発明では、開口部依存のミキサーについて、その微粒化効果や乳化効果を包括的に考慮しながら、その性能評価やスケールアップできるようになった。つまり、本発明では、これまで限定的にしか使用できなかった性能評価方法とスケールアップ方法に基づいて、 より広範囲のミキサーに適用できる理論を開発することができた。
(高性能ミキサーの形状と設計)
 本発明の計算式に基づいて導き出される全エネルギー消散率:εt を指標としたミキサーの性能評価と、その検証結果を参考にして、高性能のミキサーの形状を定義した。そして、その定義に基づいて、高性能のミキサーを設計し、そのミキサーの概要を図10~図12に示した。
(ムービングステーター(可動式の固定子))
 ローター・ステータータイプのミキサーを使用し、粉体原料や液体原料を溶解(調合)して、乳化状製品を製造する場合、粉体原料と共に持ち込まれた気体(空気)を分離しないままで、ミキサーにより処理すると、調合液に微細な気泡が混入(発生)した状態となる。この微細な気泡が混入した調合液をそのまま乳化処理した場合、気泡が混入していない調合液を乳化処理した場合と比較して、微粒化や乳化の性能(効果)が劣ってしまうことが以前から知られている。
 そこで、粉体原料を溶解する初期段階において、微細な気泡の発生を抑制するためには、ミキサーにムービング・ステーターの機構を持たせることが望ましい。特に、泡立ちしやすい乳化状製品を処理する場合、ムービング・ステーターの機構を持たせることが望ましい。粉体原料を溶解する初期段階では、ステーターをローターから離すことで、高いエネルギーを消散させることなく、粉体原料を調合液へ素早く分散させる。そして、その後にステーターをローターの近傍まで移動させ、本格的に溶解・微粒化・乳化する手順が良い。
(マルチ・ステージ・ホモゲナイザー(多段階式の乳化機構))
 上述したように、本発明の計算式に基づいて導き出される全エネルギー消散率:εt [m2/s3] の値が大きい程、微粒化や乳化の性能(効果)が優れていることを確認できている。
 そこで、ローターとステーターとの間の隙間部に形成される混合部を複数個備えているミキサーにすることが望ましい。
 例えば、一段目のローターとステーターとの間の隙間部で予備の微粒化を行い、次に、二段目のローターとステーターとの間の隙間部で本格的な微粒化を行うものである。
(ダイレクト・インジェクション(直接注入式の添加機構))
 本発明の計算式に基づいて導き出される全エネルギー消散率:εt を指標としたミキサーの性能評価と、その検証結果により、本発明の計算式に基づいて導き出される全エネルギー消散率:εt の値が大きい程、微粒化や乳化の性能(効果)が優れていることを確認できている。
 そこで、油脂、不溶成分、微量成分などを混合部分(ミキサー部)へ直接で投入(添加)することで、より効果的に乳化や分散される。特に一段目のステーター(径方向で内側のステーター)部分へ直接で投入(注入)すれば、一段目のステーターで予備乳化してから、さらに二段目のステーター(径方向で外側のステーター)で本格的に乳化・分散できる。
(高性能のステーターの形状)
 本発明の計算式に基づいて導き出される全エネルギー消散率:εtの値が大きい程、微粒化や乳化の性能(効果)が優れていることを確認できている
 ステーターに形成されている開口部(孔)の形状は、くし歯状ではなく、円形状が望ましい。
 なお、ステーターの孔径が2mm以下になると、粉体原料などが閉塞するリスクがある。したがって、粉体原料の溶解と乳化処理を同時に達成しようとする場合、ステーターの孔径として2~4mm程度が良い。
 また、ステーターが備えている開口部は、ステーターの円周状の周壁に全体の開口面積比率として20%以上で穿設されていることが望ましい。
 ステーターの孔数(開口面積比)が多い程、剪断頻度が高くなる。一方、ステーターの開口部の強度の問題がある。従来では一般的には、開口面積比として18~36%を採用している場合が多いが、開口面積比として30%以上が望ましく、40~50%がより望ましい。
 更に、ローターは、回転中心から放射状に延びる複数枚の攪拌翼を供えていることが望ましい。攪拌翼は6枚以上、望ましくは8枚である。
 以下では、添付図面を参照して、本発明の好ましい実施形態について幾つかの実施例を説明するが、本発明は、これらの実施形態、実施例に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の形態に変更可能である。
 本発明が提案する計算式に基づいて導き出される全エネルギー消散率:εt を指標としたミキサーの性能評価と、その検証結果を参考にして定義した高性能のミキサーの形状および、その定義に基づいて設計した高性能のミキサーの概要を図10~図12を用いて説明する。
 本発明の提案するローター・ステータータイプのミキサーは、複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなるミキサーユニット14の部分に特徴を有するものであり、その他の構造は従来のローター・ステータータイプのミキサーと同一である。そこで、本発明のミキサーにおいてその特徴的構造、機構になっているミキサーユニット14のみについてその一例を図示して説明する。
 本発明のローター・ステータータイプのミキサーにおけるミキサーユニット14は、図12、図13に図示した構造のローター13と、ステーター12、22とからで構成される。
 ステーター12、22は図1に例示した従来のミキサーユニット4におけるステーター2と同じく、円形状の複数個の開口部11a、11bをそれぞれ備えている。
 ステーター12、22は、ステーター22の周径の方が、ステーター12の周径より大きく、図12(a)図示のように、ミキサーユニット14に同心円状に配置される。
 ステーター12、22の内側に所定の隙間を空けて配置されるローター13は、回転中心になる回転軸17から放射状に延びる複数枚の攪拌翼を備えている。図示の実施形態では、8枚の攪拌翼13a、13b、13c、13d、13e、13f、13g、13hを備えている。
 各攪拌翼13a~13hの径方向中心と、径方向外端16との間の同一径の位置に縦溝15がそれぞれ形成されている。
 図12(a)、(b)図示のようにミキサーユニット14が形成されたときには、各攪拌翼13a~13hに形成されている縦溝15にステーター12が装入される。そして、各攪拌翼13a~13hの径方向外端16の壁面16aと、ステーター22の内周壁面22aとの間に隙間δ2が形成される。また、各攪拌翼13a~13hの縦溝15における外周面15aと、ステーター12の内周壁面12aとの間及び、各攪拌翼13a~13hの縦溝15における内周面15bと、ステーター12の外周壁面12bとの間に隙間が形成される。
 このように、本発明のローター・ステータータイプのミキサーのミキサーユニット14においては、周径の異なる複数のステーター12、22の内側にそれぞれローターが所定の隙間を空けて配置される構造になる。
 ローター13が回転軸17を回転中心にして矢印20で示すように回転すると、径方向内側の混合部分と、径方向外側の混合部分という二段階の混合部が形成されることになる。このような多段式(マルチステージ)での混合により高性能を実現することが可能になる。
 図示の実施形態では、径方向内側の混合部分は、各攪拌翼13a~13hの縦溝15における外周面15aと、ステーター12の内周壁面12aとの間及び、各攪拌翼13a~13hの縦溝15における内周面15bと、ステーター12の外周壁面12bとの間に形成される。また、径方向外側の混合部分は、各攪拌翼13a~13hの径方向外端16の壁面16aと、ステーター22の内周壁面22aとの間に形成される。
 本発明のミキサーでは、ステーター12、22と、ローター13とは、ローター13の回転軸17が延びている方向で相互に接近する、又、離れることができるようになっている。図示の実施形態では、ローター13において回転軸17が延びている方向で、図12(b)の矢印22、23で示すように移動可能になっている。
 そこで、本発明のミキサーでは、ローター13が図12(b)の矢印22方向に移動して、前述したように、各攪拌翼13a~13hに形成されている縦溝15にステーター12が装入されてミキサーユニット14が形成されている状態と、ローター13が図12(b)に仮想線で示すようにステーター12、22から離れている状態とを採れるようになっている。
 ミキサーによって粉体原料を溶解する初期段階では、ローター13を図12(b)の矢印23で示すようにしてステーター12、22から離すことで、高いエネルギーを消散させることなく、粉体原料を調合液へ素早く分散させることができる。
 そして、その後にローター13を図12(b)の矢印22で示すように移動させて、上述した径方向内側と、径方向外側の混合部分という二段階の混合部を形成し、ローター13を図12(b)の矢印20方向に回転させて、本格的に溶解・微粒化・乳化する手順が良い。
 本発明のミキサーでは、図12(a)のように、ミキサーユニット14を構成するステーター12、22の上端に沿って、ノズル18が径方向で中心側に向かって延びており、処理される流体は、ノズル18を介してノズル開口19から図14(b)の矢印21で示すように混合部分(ミキサー部)へ直接で投入される。
 すなわち、処理される流体は内側の混合部分である、各攪拌翼13a~13hの縦溝15における外周面15aと、ステーター12の内周壁面12aとの間に、ノズル開口19から矢印21のように、直接で、投入され、そこで第一段目の混合(予備混合)が行われる。引き続いて、外側の混合部分である、各攪拌翼13a~13hの径方向外端16の壁面16aと、ステーター22の内周壁面22aとの間で本格的な混合が行われるようになっている。
 このように、処理すべき流体を混合部分(ミキサー部)へ直接で投入(添加)することによって、より効果的に乳化や分散を行うことが可能になる。
 明治乳業(株)の栄養調製食品(メイバランス 1.0 HP(商標))を用いて、微粒化試験を行った。
 このメイバランス 1.0 HP(商標))の組成や物性は表4の通りである。
Figure JPOXMLDOC01-appb-T000015

 この実施例では、2種類のミキサー(収容量:9キロリットルと、400リットル)を用いて、ローターの回転速度、積算時間を変化させて実験を行った。これら2種類のミキサーは、実施の形態の欄で実証したミキサーA、B、Cと同じメーカー品である。
 実験条件と全エネルギー消散率:εtの計算値などを表5に示した。
Figure JPOXMLDOC01-appb-T000016

 全エネルギー消散率:εtと、液滴径の関係(微粒化傾向)を図13に示した。
 本発明で提案している全エネルギー消散率:εt [m2/s3]を横軸にして実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できることが分かった。
 本発明は、以下に述べる優れた効果・機能を発揮できることから、乳化、分散、微粒子化工程が行われる種々の産業分野、例えば、食品、医薬品、化学品などの製造分野で利用することが可能である。
(1)市場に存在する既存のローター・ステータータイプのミキサーに対して、実際の処理液を使用せず、水を使用して運転(水運転)するだけで、それらミキサーの性能を評価できる。水運転という簡便な検討により、各ユーザーの用途に合った最適なローター・ステータータイプのミキサーを選定できる。これによって、ミキサーの選定のための検討のコストを削減でき、その検討の期間を短縮できる。
(2)全エネルギー消散率:εt のステーターにおける形状依存項を最大化するように、幾何学的な寸法を採用することで、新規のローター・ステータータイプのミキサーでは、その性能を向上して(高めて)設計・製造でき、既存のミキサーでは、その性能を改善できる。
(3)小型から大型まで多種多様なローター・ステータータイプのミキサーに対して、その処理(製造)時間を考慮した上で、スケールアップやスケールダウンできる。
(4)各ユーザーの目的に合った微粒化効果(液滴径)を得るために、その必要な処理(撹拌)時間を推定でき、その必要な最低時間で運転(処理)すれば良いこととなる。ローター・ステータータイプのキミサーの運転時間を短縮でき、省エネルギーを達成できる。
(5)従来の典型的な高性能(高剪断式)のローター・ステータータイプのミキサーよりも、微粒化効果や乳化効果が高く、高品質な製品を製造できるローター・ステータータイプのミキサーを提供することができる。
(6)本発明によるローター・ステータータイプのミキサーは、微粒化効果や乳化効果が高く、従来の同等以上の品質の製品を従来よりも短時間で製造できる。
(7)小型から大型まで多種多様なローター・ステータータイプのミキサーに対して、その処理(製造)時間を考慮した上で、スケールアップやスケールダウンできる。
1 開口部(ホール)
2 ステーター
3 ローター
4 ミキサーユニット
11a、11b 開口部
12、22 ステーター
13 ローター
13a、13b、13c、13d、13e、13f、13g、13h 攪拌翼
14 ミキサーユニット
15 縦溝
17 回転軸
18 ノズル
19 ノズル開口

Claims (9)

  1.  複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーであって、当該ミキサーの構造が、
     当該ミキサーにより被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すときに、所定の運転時間で、被処理流体の所定の液滴径を得ることができるように、
     式1を用いて計算して、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定することにより設計されていることを特徴とするミキサー。
    Figure JPOXMLDOC01-appb-M000001

     ここで、式1中、
     εt:全エネルギー消散率 [m2/s3]
     εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
     fs_h:剪断頻度
     tm :混合時間 [s]
     A:ステーターの開口率 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     δ :ローターとステーターの隙間 [m]
     h :ステーターの高さ [m]
     l :ステーターの厚み [m]
     d :ステーターの孔径 [m]
     Np :動力数 [-]
     Nqd :流量数 [-]
     N :回転数 [1/s]
     V :液量 [m3]
     Ch:ステーターにおける形状依存項 [m5]
     である。
  2.  前記ステーターと、ローターとは、ローターの回転軸が延びている方向で相互に近付く、又は離れることができるように構成されていることを特徴とする請求項1記載のミキサー。
  3.  前記ミキサーは、周径の異なる複数のステーターを備えており、各ステーターの内側にそれぞれ前記ローターが所定の隙間を空けて配置されることを特徴とする請求項1又は2記載のミキサー。
  4.  前記被処理流体は、前記ステーターとその内側に所定の隙間を空けて配置される前記ローターとの間の隙間部に導入されることを特徴とする請求項1乃至3のいずれか一項記載のミキサー。
  5.  前記ローターは、回転中心から放射状に延びる複数枚の攪拌翼を供えていることを特徴とする請求項1乃至4のいずれか一項記載のミキサー。
  6.  複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーの性能を評価する方法であって、
     以下の式1により全エネルギー消散率:εを求め、この式1に含まれる、ローター・ステーターの寸法と運転時の動力・流量を測定することにより得られる各ミキサーに固有の数値であるステーターにおける形状依存項の値の多寡を評価することにより、ミキサーの性能を評価する方法。
    Figure JPOXMLDOC01-appb-M000002

     ここで、式1中、
     εt:全エネルギー消散率 [m2/s3]
     εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
     fs_h:剪断頻度
     tm :混合時間 [s]
     A:ステーターの開口率 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     δ :ローターとステーターの隙間 [m]
     h :ステーターの高さ [m]
     l :ステーターの厚み [m]
     d :ステーターの孔径 [m]
     Np :動力数 [-]
     Nqd :流量数 [-]
     N :回転数 [1/s]
     V :液量 [m3]
     Ch:ステーターにおける形状依存項 [m5]
     である。
  7.  複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーをスケールアップ、あるいはスケールダウンする方法であって、
     式1で求められる当該ミキサーの実験機規模及び/又はパイロットプラント規模における全エネルギー消散率:εの値と、スケールアップあるいはスケールダウンする当該ミキサーの実製造機における全エネルギー消散率:εの計算値とを一致させることにより、スケールアップあるいはスケールダウンすることを特徴とする方法。
    Figure JPOXMLDOC01-appb-M000003

     ここで、式1中、
     εt:全エネルギー消散率 [m2/s3]
     εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
     fs_h:剪断頻度
     tm :混合時間 [s]
     A:ステーターの開口率 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     δ :ローターとステーターの隙間 [m]
     h :ステーターの高さ [m]
     l :ステーターの厚み [m]
     d :ステーターの孔径 [m]
     Np :動力数 [-]
     Nqd :流量数 [-]
     N :回転数 [1/s]
     V :液量 [m3]
     Ch:ステーターにおける形状依存項 [m5]
     である。
  8.  複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーを利用し、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより製造した食品、医薬品あるいは化学品であって、式1を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、前記ミキサーにより、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施して製造した食品、医薬品あるいは化学品。
    Figure JPOXMLDOC01-appb-M000004

     ここで、式1中、
     εt:全エネルギー消散率 [m2/s3]
     εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
     fs_h:剪断頻度
     tm :混合時間 [s]
     A:ステーターの開口率 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     δ :ローターとステーターの隙間 [m]
     h :ステーターの高さ [m]
     l :ステーターの厚み [m]
     d :ステーターの孔径 [m]
     Np :動力数 [-]
     Nqd :流量数 [-]
     N :回転数 [1/s]
     V :液量 [m3]
     Ch:ステーターにおける形状依存項 [m5]
     である。
  9.  複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーを利用し、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品、医薬品あるいは化学品を製造する方法であって、式1を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、食品、医薬品あるいは化学品を製造する方法。
    Figure JPOXMLDOC01-appb-M000005

     ここで、式1中、
     εt:全エネルギー消散率 [m2/s3]
     εl:ステーターの開口部の局所エネルギー消散率 [m2/s3]
     fs_h:剪断頻度
     tm :混合時間 [s]
     A:ステーターの開口率 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     δ :ローターとステーターの隙間 [m]
     h :ステーターの高さ [m]
     l :ステーターの厚み [m]
     d :ステーターの孔径 [m]
     Np :動力数 [-]
     Nqd :流量数 [-]
     N :回転数 [1/s]
     V :液量 [m3]
     Ch:ステーターにおける形状依存項 [m5]
     である。
PCT/JP2010/068262 2010-08-19 2010-10-18 微粒化装置及びその性能評価方法とスケールアップ方法 WO2012023218A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2808575A CA2808575C (en) 2010-08-19 2010-10-18 Particle size breakup device and its performance estimation method and scale up method
JP2012529473A JP5652794B2 (ja) 2010-08-19 2010-10-18 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法
SG2013011838A SG188231A1 (en) 2010-08-19 2010-10-18 Particle size breakup device and its performance estimation method and scale up method
US13/817,103 US9492800B2 (en) 2010-08-19 2010-10-18 Particle size breakup device and its performance estimation method and scale up method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010184465 2010-08-19
JP2010-184465 2010-08-19

Publications (1)

Publication Number Publication Date
WO2012023218A1 true WO2012023218A1 (ja) 2012-02-23

Family

ID=45604889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068262 WO2012023218A1 (ja) 2010-08-19 2010-10-18 微粒化装置及びその性能評価方法とスケールアップ方法

Country Status (5)

Country Link
US (1) US9492800B2 (ja)
JP (1) JP5652794B2 (ja)
CA (1) CA2808575C (ja)
SG (1) SG188231A1 (ja)
WO (1) WO2012023218A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096414A (zh) * 2017-06-15 2017-08-29 柳州市文宇科技服务有限公司 一种用于建筑粉料的搅拌装置
WO2017154736A1 (ja) * 2016-03-10 2017-09-14 日本ゼオン株式会社 合成ゴムのラテックスおよびその製造方法
CN110702365A (zh) * 2019-10-30 2020-01-17 北京农业智能装备技术研究中心 雾化效率评价系统及方法
CN111803993A (zh) * 2020-07-14 2020-10-23 韩智源 一种浓缩结晶釜
US11148107B2 (en) 2015-08-06 2021-10-19 Meiji Co., Ltd. Atomization device and method for manufacturing product with fluidity using said device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897466B2 (ja) * 2010-08-19 2016-03-30 株式会社明治 微粒化装置
TWI604885B (zh) * 2011-08-19 2017-11-11 明治股份有限公司 Microprocessing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226981A (ja) * 1997-02-17 1998-08-25 Nippon P M C Kk ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤
JP2000218153A (ja) * 1999-01-29 2000-08-08 Oji Paper Co Ltd マイクロカプセルの製造方法及び装置
JP2004002732A (ja) * 2002-03-28 2004-01-08 Dainippon Ink & Chem Inc ポリウレタンエマルジョンの製造法
JP2006008852A (ja) * 2004-06-25 2006-01-12 Atec Japan:Kk エマルション燃料の製造方法
JP2008229574A (ja) * 2007-03-23 2008-10-02 Q P Corp 高粘性液体用気泡分散乳化装置及びそれを用いた気泡入り水中油型乳化食品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050037477A (ko) 2001-10-17 2005-04-22 이 아이 듀폰 디 네모아 앤드 캄파니 로터-스테이터 장치와 입자 생성을 위한 방법
EP1489130B1 (en) 2002-03-28 2011-08-10 DIC Corporation Method for producing polyurethane emulsion
US20090169635A1 (en) * 2007-12-31 2009-07-02 Alpharx Inc. Pharmaceutical compositions and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226981A (ja) * 1997-02-17 1998-08-25 Nippon P M C Kk ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤
JP2000218153A (ja) * 1999-01-29 2000-08-08 Oji Paper Co Ltd マイクロカプセルの製造方法及び装置
JP2004002732A (ja) * 2002-03-28 2004-01-08 Dainippon Ink & Chem Inc ポリウレタンエマルジョンの製造法
JP2006008852A (ja) * 2004-06-25 2006-01-12 Atec Japan:Kk エマルション燃料の製造方法
JP2008229574A (ja) * 2007-03-23 2008-10-02 Q P Corp 高粘性液体用気泡分散乳化装置及びそれを用いた気泡入り水中油型乳化食品の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148107B2 (en) 2015-08-06 2021-10-19 Meiji Co., Ltd. Atomization device and method for manufacturing product with fluidity using said device
WO2017154736A1 (ja) * 2016-03-10 2017-09-14 日本ゼオン株式会社 合成ゴムのラテックスおよびその製造方法
JPWO2017154736A1 (ja) * 2016-03-10 2019-01-10 日本ゼオン株式会社 合成ゴムのラテックスおよびその製造方法
CN107096414A (zh) * 2017-06-15 2017-08-29 柳州市文宇科技服务有限公司 一种用于建筑粉料的搅拌装置
CN110702365A (zh) * 2019-10-30 2020-01-17 北京农业智能装备技术研究中心 雾化效率评价系统及方法
CN110702365B (zh) * 2019-10-30 2021-08-03 北京农业智能装备技术研究中心 雾化效率评价系统及方法
US11761836B2 (en) 2019-10-30 2023-09-19 Beijing Research Center Of Intelligent Equipment For Agriculture System and method for evaluating atomization efficiency of wind-driven atomizer
CN111803993A (zh) * 2020-07-14 2020-10-23 韩智源 一种浓缩结晶釜
CN111803993B (zh) * 2020-07-14 2021-12-24 兖矿科蓝凯美特化工有限公司 一种浓缩结晶釜

Also Published As

Publication number Publication date
CA2808575A1 (en) 2012-02-23
SG188231A1 (en) 2013-04-30
JPWO2012023218A1 (ja) 2013-10-28
US20150306553A1 (en) 2015-10-29
US9492800B2 (en) 2016-11-15
JP5652794B2 (ja) 2015-01-14
CA2808575C (en) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6258702B2 (ja) 微粒化装置
JP5897466B2 (ja) 微粒化装置
JP5652793B2 (ja) 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法
JP5913101B2 (ja) 微粒化装置の性能評価方法及びスケールアップ方法
JP5652794B2 (ja) 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法
WO2021205020A1 (en) Method for producing emulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2808575

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012529473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13817103

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10856174

Country of ref document: EP

Kind code of ref document: A1