WO2012022099A1 - 处理高浓度氮磷废水的连续流反应器及方法 - Google Patents

处理高浓度氮磷废水的连续流反应器及方法 Download PDF

Info

Publication number
WO2012022099A1
WO2012022099A1 PCT/CN2010/080292 CN2010080292W WO2012022099A1 WO 2012022099 A1 WO2012022099 A1 WO 2012022099A1 CN 2010080292 W CN2010080292 W CN 2010080292W WO 2012022099 A1 WO2012022099 A1 WO 2012022099A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
crystallizer
phosphorus
coagulation crystallizer
nitrogen
Prior art date
Application number
PCT/CN2010/080292
Other languages
English (en)
French (fr)
Inventor
任洪强
李秋成
张涛
丁丽丽
许柯
任鑫坤
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to EP10856097.0A priority Critical patent/EP2540676B1/en
Publication of WO2012022099A1 publication Critical patent/WO2012022099A1/zh
Priority to US13/459,341 priority patent/US8702992B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5254Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using magnesium compounds and phosphoric acid for removing ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0042Baffles or guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/245Discharge mechanisms for the sediments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/305Control of chemical properties of a component, e.g. control of pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the invention relates to a treatment device and a treatment method for nitrogen and phosphorus wastewater, in particular to a continuous flow reaction device for recovering nitrogen and phosphorus in wastewater based on the principle of magnesium ammonium phosphate crystallization and a method for treating same.
  • MAP magnesium ammonium phosphate
  • the detection means are different, and the pH value of the obtained MAP is not completely the same, but it is generally considered that the pH value is about 9.0.
  • the ratio of the theoretical substance of each component generated by MAP is n(Mg 2+ ): n( H 4 + ):n(P0 4 3 _) should be 1: 1: 1, but a large number of experimental studies have shown that each of MAP is generated.
  • the present invention provides a continuous flow reactor for high concentration nitrogen and phosphorus wastewater.
  • the method for treating wastewater can stably treat high-concentration nitrogen and phosphorus wastewater.
  • a continuous flow reactor for high-concentration nitrogen-phosphorus wastewater comprising a cylindrical coagulation crystallizer, a funnel-type static subsidence baffle, a conical crystallizer, a lower end surface of a cylindrical coagulation crystallizer and a cone
  • the upper end surface of the crystallizer is connected, and the funnel-type static protection baffle is connected to the inner wall of the cylindrical coagulation crystallizer.
  • the lower part of the cylindrical sawtooth inlet water inlet is connected to the upper part of the cylindrical coagulation crystallizer, and the lower end surface of the cylindrical coagulation crystallizer is connected with the upper end surface of the conical crystallizer, the funnel type static protection baffle and
  • the inner wall of the cylindrical coagulation crystallizer is connected, the side of the attached sloping plate precipitator is connected to the outer side of the cylindrical coagulation crystallizer, and the lower part of the cylindrical coagulation crystallizer is opened with a small rectangular opening and an adherent sloping plate.
  • the device is connected to each other, and the side surface of the wall-mounted serrated groove water outlet is connected to the outer side surface of the cylindrical coagulation crystallizer, and the upper part of the adhering swash plate precipitator is connected with the lower portion of the wall-mounted serrated groove water outlet.
  • the inlet of the cylindrical coagulation crystallizer can be protected, and the accidental situation such as excessive inlet flow rate and blockage of the lower outlet of the cylindrical coagulation crystallizer can be effectively prevented. The resulting overflow accident occurred.
  • the reactor of the invention can effectively retain the crystal of magnesium ammonium phosphate, reduce the turbidity of the effluent, improve the sedimentation separation effect of the adherent sloping plate precipitator, and increase the removal rate of nitrogen and phosphorus.
  • the coagulation crystallizer in the reactor of the invention is designed as a cylindrical shape, the overall performance is obviously superior to other shape reactors such as a cube, a rectangular parallelepiped, etc., which is beneficial to improve the coagulation and agitation effect, and effectively prevent the turbulent flow inside the reactor and the dead angle to the reaction process.
  • the various interferences caused by the reaction mixture are fully mixed and the nitrogen and phosphorus recovery rate is greatly increased.
  • the cylindrical coagulation crystallizer of the invention is provided with an inlet pipe, a magnesium source feed pipe, a mechanical agitator or an aeration gas pipe, a dynamic pH monitor, and a pH adjustment liquid pipe.
  • the bottom of the conical crystallizer is a sedimentary crystal discharge port, which has a circular cross section and is controlled by a valve.
  • the cylindrical coagulation crystallizer of the reactor of the present invention has an aspect ratio of 4:1 to 2:1; the distance between the funnel-type static sedimentation protection baffle and the cylindrical coagulation crystallizer to the bottom of the cylindrical coagulation crystallizer is The height of the cylindrical coagulation crystallizer is 1/4 ⁇ 1/3; the height of the sloping plate precipitator is 3/4 ⁇ 4/5 of the height of the cylindrical coagulation crystallizer, and the sloping plate of the sloping plate precipitator
  • the acute angle formed by the wall of the cylindrical coagulation crystallizer is 20° to 40°; the acute angle formed by the funnel-type static protection baffle and the cylindrical coagulation crystallizer wall is 60° to 80°.
  • a method for treating wastewater by a continuous flow reactor of high concentration nitrogen and phosphorus wastewater the main steps of which include: 1Reactor start-up phase: The wastewater containing H 4 + -N and P0 4 3 _-P is adjusted to have a molar ratio of H 4 + -N to P0 4 3 _-P of 1 to 20: 1 and then into a cylindrical mixture.
  • the coagulation crystallizer After adding the sewage of the cylindrical coagulation crystallizer volume 4/6 ⁇ 5/6 at a time, adjust the influent peristaltic pump to make the influent flow rate 0.5 ⁇ 3L/h, and simultaneously turn on the mechanical agitator or The aeration cloth is supplied with air (when mechanical agitation is selected, the mechanical agitator rotates at 30 ⁇ 150r/min; when aeration is selected, the volume ratio of intake air to liquid volume is 5 ⁇ 20: 1), then Adding a magnesium source to the cylindrical coagulation crystallizer, adjusting the concentration of the Mg 2+ -containing solution and the feed pipe flow rate, so that the molar ratio of the influent Mg 2+ to NH 4 + in the reactor is 1 to 5: 1, and the pH is turned on.
  • the liquid administration tube was adjusted to maintain the pH of the reaction solution at 7 to 10.
  • Reactor stabilization stage The initial effluent of the reactor needs to be recirculated for secondary treatment. When the removal rate of nitrogen and phosphorus in the effluent of the reactor reaches above 95% and remains stable, the effluent can be passed to the next treatment unit for further treatment.
  • the bottom valve of the conical crystallizer is turned on regularly, and the MAP crystal obtained by coagulation and crystallization is discharged.
  • the above pH adjusting solution is an HC1 solution (acid solution) or a NaOH solution (alkaline solution).
  • the magnesium source is one or more of MgS0 4 , MgCl or MgO.
  • the wastewater adopts a U-flow treatment method of "upper-in, upper-out", that is, water is introduced into the upper portion of the reactor, and water is discharged from the upper portion.
  • This increases the contact time of the reactants, making the reaction more thorough, strengthening the process of precipitation of nitrogen, phosphorus and magnesium crystals in the reaction solution, and improving the efficiency of recovery of nitrogen and phosphorus by MAP crystallization.
  • the present invention passes the conventional "coagulation-precipitation" series process by establishing three relatively independent reaction devices of a cylindrical coagulation crystallizer, a conical crystallizer and an adherent sloping plate precipitator. Separating and adding a funnel-type static protection baffle, such a reactor structure can greatly reduce the negative effects of liquid turbulence in the reactor, so that the coagulation and precipitation processes do not interfere with each other, MAP crystal precipitation The effect is good, the residual MAP crystal carried in the effluent is less, and the water quality is more ideal.
  • the present invention is ideal for treating high-concentration wastewater. Under the same operating conditions, when the concentration of H 4 + -N is greater than 500 mg / L, and the concentration of P0 4 3 "-P is greater than 1000 mg / L, the recovery of nitrogen and phosphorus is above 95%, reducing the nitrogen of the final effluent. The phosphorus concentration effectively increases the recovery rate.
  • the reaction process maintains the pH value in the reaction solution by adding a pH adjusting solution, which promotes MAP to achieve the most
  • the crystallization process improves the precipitation of MAP significantly and ensures the purity of the product.
  • Figure 1 is a schematic view showing the structure of a continuous flow reactor of the present invention, and the names of the various parts are as follows: 1-cylindrical coagulation crystallizer, 2-conical crystal static sinker, 3-adhesive inclined plate precipitator, 4-funnel static Shen protection baffle, 5-mechanical stirrer, 6-pH meter, 7-inlet pipe, 8-magnesium source feed pipe, 9-pH adjusting liquid pipe, 10-MAP crystal discharge valve;
  • Fig. 2 is a schematic view showing the structure of a continuous flow reactor which is further improved according to the present invention, and the names of the parts are as follows: 1- Cylindrical coagulation crystallizer, 2-conical crystallizer, 3-attached inclined plate precipitator, 4- Funnel type static protection baffle, 5-mechanical stirrer, 6-pH meter, 7-inlet pipe, 8-magnesium source feed pipe, 9-pH adjusting liquid dosing tube, 10-MAP crystallization discharge valve, 11- Cylindrical serrated grooved water inlet ⁇ , 12-attached serrated groove ⁇ .
  • the ammonium phosphate magnesium crystallization technology recovers the continuous flow reaction device containing high concentration of nitrogen and phosphorus wastewater, including cylindrical coagulation crystallizer 1, conical crystal static damper 2, attached sloping plate precipitator 3, funnel type static protection baffle 4, mechanical stirrer 5, pH meter 6, inlet pipe 7, magnesium source feed pipe 8, pH regulating liquid dosing pipe 9, MAP crystal discharge valve 10, cylindrical serrated groove Water protection ⁇ 11, wall-mounted serrated groove ⁇ 12.
  • the lower portion of the cylindrical sawtooth inlet water protection port 11 is connected to the upper portion of the cylindrical coagulation crystallizer 1, and the lower end surface of the cylindrical coagulation crystallizer 1 is connected to the upper end surface of the conical crystallizer 2, the funnel type
  • the protective baffle 4 is connected to the inner wall of the cylindrical coagulation crystallizer 1, the side of the adherent sloping plate precipitator 3 is connected to the outer side of the cylindrical coagulation crystallizer 1, and the lower part of the cylindrical coagulation crystallizer 1 is opened to a rectangular surface.
  • the small opening is connected with the sloping plate precipitator 3, and the side of the sloping sipe 12 is connected to the outer side of the cylindrical coagulation crystallizer 1, the upper part of the sloping plate precipitator 3 and the appendix serrated groove
  • the lower part of the water outlet 12 is connected.
  • the cylindrical coagulation crystallizer 1 is provided with an inlet pipe 7, a magnesium source feed pipe 8, a mechanical agitator 5 or an aeration air pipe, a dynamic pH monitor 6, and a pH adjusting liquid dosing pipe 9.
  • the bottom of the conical crystallizer 2 is a sedimentary crystal discharge port having a circular cross section and is mounted with a valve 10 for control.
  • the reactor has an overall volume of 2.0 L, and the cylindrical coagulation crystallizer 1 has an aspect ratio of 2:1; the funnel-type static subsidence baffle 4 is connected to the cylindrical coagulation crystallizer 1 to the cylindrical coagulation crystallizer 1
  • the distance at the bottom is a cylindrical coagulation crystallizer 1 1/4 of the height; the height of the sloping plate precipitator 3 is 4/5 of the height of the cylindrical coagulation crystallizer 1, the sloping plate of the sloping plate precipitator 3 and the wall of the cylindrical coagulation crystallizer 1
  • the acute angle is 25 °; the angle of the funnel-type static protection baffle 4 and the wall of the cylindrical coagulation crystallizer 1 is 60°.
  • the present embodiment differs from Embodiment 1 in that the overall volume of the reactor is 2.5 L, and the height ratio of the cylindrical coagulation crystallizer 1 is 3:1; the funnel-type static subsidence protection baffle 4 and the cylinder
  • the distance from the junction of the coagulation crystallizer 1 to the bottom of the cylindrical coagulation crystallizer 1 is 1/3 of the height of the cylindrical coagulation crystallizer 1;
  • the height of the adherent sloping plate precipitator 3 is a cylindrical coagulation crystallizer 1
  • the height of 3/4, the sloping plate of the sloping plate precipitator 3 and the wall of the cylindrical coagulation crystallizer 1 form an acute angle of 30°;
  • the funnel-type static protection baffle 4 and the wall of the cylindrical coagulation crystallizer 1 The acute angle formed is 70°.
  • Others are the same as in the first embodiment.
  • Example 3 Example 3:
  • the steps of the method for removing and recovering nitrogen and phosphorus in the magnesium ammonium phosphate crystal of the present invention are as follows: 1 Reactor start-up stage: adjusting wastewater containing H 4 + -N and ⁇ 0 4 3 ⁇ - ⁇ 3 ⁇ 4 + - ⁇ and ⁇ 0 4 3 ⁇ - ⁇ molar ratio is 1.25: 1 and then into the cylindrical coagulation crystallizer 1, when the cylindrical coagulation crystallizer 1 volume 5/6 of sewage is added at one time, the influent peristaltic pump is adjusted to make the influent flow For lL/h, simultaneously open the mechanical stirrer 5, adjust the rotation speed to 60r/min, and then add the magnesium source to the cylindrical coagulation crystallizer 1, adjust the concentration of the Mg 2+ containing solution and the flow rate of the feed tube to make the reactor
  • the molar ratio of Mg 2+ to H 4 + was 1:1, and the pH adjusting liquid dosing tube 9 was turned on to maintain the pH of the reaction liquid at 8.5.
  • Reactor stabilization stage The initial effluent of the reactor needs to be recirculated for secondary treatment. When the removal rate of nitrogen and phosphorus in the effluent of the reactor reaches above 95% and remains stable, the effluent can be passed to the next treatment unit for further treatment.
  • the valve 10 at the bottom of the conical crystallizer 2 is periodically opened to discharge the MAP crystal obtained by coagulation and crystallization.
  • the reactor is started at the start stage: the air is supplied to the cylindrical coagulation crystallizer by using an aeration air pipe instead of the mechanical agitator, and the volume ratio of the intake air volume to the liquid volume is adjusted to be 10:1. .
  • Others are the same as in the third embodiment.
  • the invention has an ideal effect on high-concentration wastewater treatment. Under the same operating conditions, when the H 4 + -N concentration is greater than 500 mg/L and the P0 4 3 "-P concentration is greater than 1000 mg/L, the removal recovery of nitrogen and phosphorus is above 95%.
  • the pH is The conditioning liquid is an HC1 solution (acid solution) or a NaOH solution (alkali solution).
  • the magnesium source is one or more of MgS0 4 and MgCK MgO.
  • the product MAP or an inert substance having a large specific surface area of 0.1 mm to 0.5 mm may be directly added to the cylindrical coagulation crystallizer 1 as a crystal nucleus.
  • This experiment is an experiment in which MAP crystallization is used to manually simulate high-concentration nitrogen and phosphorus wastewater.
  • the experiment proves that the continuous flow device for treating high-concentration nitrogen and phosphorus wastewater provided by the present invention can improve the recovery efficiency of H 4 + -N and P0 4 3 -P in high-concentration nitrogen and phosphorus wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

处理高浓度氮磷废水的连续流反应器及方法
技术领域
本发明涉及氮磷废水的处理装置及处理方法, 具体为一种基于磷酸铵镁结晶 原理回收废水中氮磷的连续流反应装置及其处理废水方法。
背景技术
近几年全世界人口的不断增长以及工业的迅猛发展使得环境污染问题越来越 严重, 大量含氮与磷工业及生活污水的排放促使水体富营养化情况日益加剧。 目 前, 国家已经制定出相应的法律法规以及污水排放标准严格控制氮、 磷的排放, 对于水体中氮磷的控制已经引起广泛的关注。而且, 目前世界上磷矿石的已知储 量是有限的, 有研究认为在未来 60-70年间, 世界上 50%的磷源将被采尽。 为了 解决目前日益严峻的环境问题以及实现自然资源和社会经济的可持续发展,对营 养元素氮、磷进行有效回收利用, 实现资源再生已经成为当今最有前景和开发空 间的技术拓展领域。
目前, 工业及生活污水中的氮、 磷元素多以 H4 +、 P04 3_形式存在, 这为氮、 磷以磷酸铵镁 (MAP) 结晶方式回收提供技术条件。 当向含高浓度氮、 磷的废 水中添加镁源,会发生如下反应: Mg2++ H4 ++P04 3"+6H20 Mg H4P04 ·6Η20。 MAP是一种难溶于水的晶体, 含有氮、 磷两种营养元素, 是良好的缓释化肥, 相较目前使用的尿素等化肥, MAP具有重金属含量低、 释放周期长、 植物吸收 效率高、 成本投入低、 对环境无二次污染等优点; 目前国外已将 MAP作为缓释 肥成功推向市场商业化运作, 产生良好的市场效益。 因此, MAP 结晶高效回收 氮、 磷已成为国内研究的热点方向。 利用 MAP结晶回收氮、 磷目前已在日本、 北美、 欧洲等地广泛应用, 并取得了良好的处理效果。 该工艺常用于污水净化的 预处理阶段和深度处理阶段,国外有学者研究利用流化床反应器或者球式反应器 结合 MAP结晶沉淀法处理牛奶厂废液厌氧消化出水、 焦化废水、 垃圾渗滤液、 畜禽废水等, 对氮、磷的回收率普遍在 80%以上(霍守亮,席北斗,刘鸿亮,宋永会, 何连生.磷酸铵镁沉淀法去除与回收废水中氮磷的应用研究进展.化工进 展, 2007,26(3):4191-419)。 大量研究表明, MAP 结晶沉淀回收氮、 磷的最佳 pH 值范围为 9.0〜10.7 (邹安华,孙体昌,邢奕,等. pH对 MAP沉淀法去除废水中氨氮 的影响.环境科学动态 ,2005(4):4-6); 尽管不同实验所采用的方法和检测手段各有 差异, 得到的 MAP最佳沉淀 pH值也不完全相同, 但一般认为 pH值为 9.0左右 为宜。 MAP生成的各组分理论物质的量比 n(Mg2+):n( H4 +):n(P04 3_)应为 1 : 1 : 1, 但大量实验研究表明, MAP 生成的各组分实际物质的量比控制在 n(Mg2+):n( H4 +):n(P04 3 1.2〜 1.4: 1 :0.8〜1时, 氮、 磷的去除率最理想; 因此, Mg盐的用量和种类是 MAP沉淀形成的关键因素, 沉淀剂的选择要紧密结合实 际工作中去除与回收氮或 (和) 磷的具体目的。
目前, 国内大量工业废水都面临污染物浓度高, 排放量大、 处理困难等技术难 题, 国内外研究 MAP结晶沉淀去除回收氮磷的反应器中试试验多以 "上进下出 " 或"下进上出"的序批式流化床形式, 这种设计方式具有很大的局限性, 存在工 艺过程复杂、废水处理量小、反应器紊流影响大、难以同时获得高的氮磷回收率、 渣水分离困难、 MAP 回收纯度低等缺点。 针对以上问题, 国内外开始有学者探 索利用连续式反应器回收氮磷,有文献报道了一种上端进水混凝,下端静沉排泥, 中间添加挡板, 并在挡板下沿开口出水的连续流反应器, 该反应器虽然提高了废 水处理量, 但是产生的 MAP结晶在反应器运行一段时间后易在出口处结垢, 影 响出水效果, 并且受阻于废水快流速、 多紊流等不利因素制约, 反应效果仍不理 想, 甚至逊色于序批式反应器 ( J.A. Wilsenach et al. Phosphate and potassium recovery from source separated urine through struvite precipitation, water research 41(2007)458-466)。 将反应器混凝区与沉淀区相对独立、 设计斜板沉淀区、 废水 流向改为 "上进上出"的 U型流向路线等改进方式目前国内外文献未见相关报 道。现绝大多数相关研究均着眼于处理低浓度氮、磷废水,鲜见浓度大于 200mg/L 的高浓度废水处理报道。 因此, 开发设计一种高效稳定回收处理高浓度氮、磷废 水的连续流反应器成为目前研究的重点。
发明内容
1. 发明要解决的技术问题
为了克服目前回收氮和磷工艺流程复杂、废水处理量小、 反应器紊流影响大、干 扰沉淀进行等问题, 提高 MAP结晶沉淀效果, 本发明提供一种高浓度氮磷废水 的连续流反应器及其处理废水的方法, 可以稳定处理高浓度氮、 磷废水。 2.本发明的技术方案
本发明的技术方案如下:
一种高浓度氮磷废水的连续流反应器, 其特征在于包括圆柱形混凝结晶器、漏斗 式静沉保护挡板、 圆锥形结晶静沉器, 圆柱形混凝结晶器的下端面与圆锥形结晶 静沉器的上端面连接, 漏斗式静沉保护挡板与圆柱形混凝结晶器内壁连接。 圆柱形锯齿槽进水保护堰的下部与圆柱形混凝结晶器的上部连接,圆柱形混凝 结晶器的下端面与圆锥形结晶静沉器的上端面连接,漏斗式静沉保护挡板与圆柱 形混凝结晶器内壁连接, 贴壁式斜板沉淀器侧面与圆柱形混凝结晶器外侧面连 接,圆柱形混凝结晶器下部开一映射面为长方形的小口与贴壁式斜板沉淀器相连 通, 贴壁式锯齿槽出水堰侧面与圆柱形混凝结晶器外侧面连接, 贴壁式斜板沉淀 器上部与贴壁式锯齿槽出水堰下部连接。
本发明反应器安装圆柱形锯齿槽进水保护堰后,可对圆柱形混凝结晶器进料口 进行保护, 有效防止由于进水流量过大、 圆柱形混凝结晶器下部出口堵塞等意外 情况发生所导致的溢流事故。
本发明反应器安装贴壁式锯齿槽出水堰后, 可有效截留磷酸铵镁结晶, 降低出 水浊度, 提高贴壁式斜板沉淀器沉淀分离效果, 增加氮、 磷的去除回收率。 本发明反应器中混凝结晶器设计为圆柱形后, 其整体性能明显优于正方体、长 方体等其他形状反应器, 有利于提高混凝搅拌效果, 有效阻止反应器内部紊流及 死角对反应过程造成的各种干扰, 使反应液得到充分混合反应, 大大增加氮磷回 收率。
本发明圆柱形混凝结晶器内设有进水管、镁源进料管、机械搅拌器或曝气布气 管、 动态 pH监测计、 pH调节液投加管。 圆锥形结晶静沉器底部为沉淀结晶排 出口, 其横截面为圆形, 安装阀门加以控制。
本发明反应器的圆柱形混凝结晶器高径比为 4: 1〜2: 1; 漏斗式静沉保护挡板与 圆柱形混凝结晶器连接处到圆柱形混凝结晶器底部的距离为圆柱形混凝结晶器 高度的 1/4〜1/3; 贴壁式斜板沉淀器高度为圆柱形混凝结晶器高度的 3/4〜4/5, 贴壁式斜板沉淀器斜板与圆柱形混凝结晶器壁面形成的锐角角度为 20° 〜40° ; 漏斗式静沉保护挡板与圆柱形混凝结晶器壁面形成的锐角角度为 60° 〜80° 。 一种高浓度氮磷废水的连续流反应器处理废水的方法, 其主要步骤包括: ①反应器启动阶段: 将含有 H4 +-N和 P04 3_-P的废水调节 H4 +-N与 P04 3_-P的 摩尔比为 1〜20: 1后通入圆柱形混凝结晶器内, 当一次性加入圆柱形混凝结晶器 容积 4/6〜5/6的污水后, 调节进水蠕动泵使进水流量为 0.5〜3L/h, 同时开启机 械搅拌器或向曝气布气管通入空气(当选择机械搅拌时,机械搅拌器转速为 30〜 150r/min; 当选择曝气搅拌时, 进气量与进液量体积比为 5〜20: 1 ), 再向圆柱形 混凝结晶器内加入镁源, 调节含 Mg2+溶液浓度及进料管流速, 使反应器中进水 Mg2+与 NH4 +的摩尔比为 1〜5: 1,开启 pH调节液投加管使反应液的 pH值维持在 7〜10。
②反应器稳定阶段:反应器初始出水需回流进行二次处理,当反应器出水中氮、 磷去除率达到 95%以上并保持稳定时, 即可将出水通入下一处理单元进一步处 理。 定时开启圆锥形结晶静沉器底部阀门, 排放混凝结晶得到的 MAP晶体。 上述 pH调节液为 HC1溶液 (酸液) 或 NaOH溶液 (碱液)。 镁源为 MgS04、 MgCl或 MgO中的一种或几种。
3.有益效果
相比于现有技术, 本发明的有益效果为:
( 1 ) 提供一种稳定处理含氮磷废水的连续流反应装置和操作方法。 该方法简化 了工艺流程, 提高了单位时间内废水的处理量, 缩短处理时间, 节约处理成本。
(2)本发明中废水采用 "上进上出"的 U型流向处理方式, 即反应器上部进水, 上部出水。这样增加了反应物的接触时间, 使得反应进行的更加彻底, 强化了反 应液中氮、 磷和镁结晶沉淀的过程, 提高了 MAP结晶回收氮、 磷的效率。
(3 ) 本发明将传统的 "混凝——沉淀"这一串联流程通过建立圆柱形混凝结晶 器、 圆锥形结晶静沉器与贴壁式斜板沉淀器 3 个相对独立的反应装置而分离开 来, 又增加了漏斗式静沉保护挡板, 这样的反应器结构能够极大的降低反应器内 液体紊动所产生的负面影响, 使混凝和沉淀过程互不干扰, MAP 结晶沉淀效果 好, 出水中携带的残留 MAP晶体少、 水质更理想。
(4) 本发明对于高浓度废水处理效果理想。 在同样的运行条件下, 当 H4 +-N 浓度大于 500mg/L, P04 3"-P浓度大于 1000 mg/L时,氮、磷的去除回收率在 95% 以上, 降低最终出水的氮、 磷浓度, 有效提高了回收率。
( 5 ) 反应过程通过添加 pH调节液维持反应液内 pH值稳定, 促使 MAP实现最 佳结晶过程, 显著提高 MAP的沉淀量, 保证产物纯度。
附图说明
图 1为本发明连续流反应器结构示意图, 各部分名称如下: 1-圆柱形混凝结晶 器, 2-圆锥形结晶静沉器, 3-贴壁式斜板沉淀器, 4-漏斗式静沉保护挡板, 5-机 械搅拌器, 6-pH计, 7-进水管, 8-镁源进料管, 9-pH调节液投加管, 10-MAP结 晶排出阀门;
图 2 为本发明进一步改进的连续流反应器结构示意图, 各部分名称如下: 1- 圆柱形混凝结晶器, 2-圆锥形结晶静沉器, 3-贴壁式斜板沉淀器, 4-漏斗式静沉 保护挡板, 5-机械搅拌器, 6-pH计, 7-进水管, 8-镁源进料管, 9-pH调节液投加 管, 10-MAP 结晶排出阀门, 11-圆柱形锯齿槽进水保护堰, 12-贴壁式锯齿槽出 水堰。
具体实施方式
以下结合附图和实施例进一步说明本发明
实施例 1 :
如附图 2所示, 磷酸铵镁结晶技术回收处理含高浓度氮、磷废水的连续流反应 装置包括圆柱形混凝结晶器 1, 圆锥形结晶静沉器 2, 贴壁式斜板沉淀器 3, 漏 斗式静沉保护挡板 4, 机械搅拌器 5, pH计 6, 进水管 7, 镁源进料管 8, pH 调节液投加管 9, MAP结晶排出阀门 10, 圆柱形锯齿槽进水保护堰 11, 贴壁式 锯齿槽出水堰 12。 圆柱形锯齿槽进水保护堰 11的下部与圆柱形混凝结晶器 1的 上部连接, 圆柱形混凝结晶器 1的下端面与圆锥形结晶静沉器 2的上端面连接, 漏斗式静沉保护挡板 4与圆柱形混凝结晶器 1内壁连接,贴壁式斜板沉淀器 3侧 面与圆柱形混凝结晶器 1外侧面连接,圆柱形混凝结晶器 1下部开一映射面为长 方形的小口与贴壁式斜板沉淀器 3相连通, 贴壁式锯齿槽出水堰 12侧面与圆柱 形混凝结晶器 1外侧面连接, 贴壁式斜板沉淀器 3上部与贴壁式锯齿槽出水堰 12下部连接。 圆柱形混凝结晶器 1内设有进水管 7、 镁源进料管 8、 机械搅拌器 5或曝气布气管、 动态 pH监测计 6、 pH调节液投加管 9。 圆锥形结晶静沉器 2 底部为沉淀结晶排出口, 其横截面为圆形, 安装阀门 10加以控制。 该反应器整 体容积为 2.0L, 圆柱形混凝结晶器 1高径比为 2: 1 ; 漏斗式静沉保护挡板 4与圆 柱形混凝结晶器 1连接处到圆柱形混凝结晶器 1底部的距离为圆柱形混凝结晶器 1高度的 1/4; 贴壁式斜板沉淀器 3高度为圆柱形混凝结晶器 1高度的 4/5, 贴壁 式斜板沉淀器 3斜板与圆柱形混凝结晶器 1壁面形成的锐角角度为 25 ° ; 漏斗 式静沉保护挡板 4与圆柱形混凝结晶器 1壁面形成的锐角角度为 60° 。
实施例 2:
如附图 2所示,本实施方式与实施例 1不同的是反应器整体容积为 2.5L, 圆柱 形混凝结晶器 1高径比为 3: 1 ; 漏斗式静沉保护挡板 4与圆柱形混凝结晶器 1连 接处到圆柱形混凝结晶器 1底部的距离为圆柱形混凝结晶器 1高度的 1/3 ; 贴壁 式斜板沉淀器 3高度为圆柱形混凝结晶器 1高度的 3/4, 贴壁式斜板沉淀器 3斜 板与圆柱形混凝结晶器 1壁面形成的锐角角度为 30° ; 漏斗式静沉保护挡板 4 与圆柱形混凝结晶器 1壁面形成的锐角角度为 70° 。 其他与实施例 1相同。 实施例 3 :
本发明中磷酸铵镁结晶去除和回收氮、磷的操作方法步骤如下: ①反应器启动 阶段:将含有 H4 +-N和 Ρ04 3·-Ρ的废水调节 ¾+-Ν与 Ρ04 3·-Ρ的摩尔比为 1.25: 1 后通入圆柱形混凝结晶器 1内, 当一次性加入圆柱形混凝结晶器 1容积 5/6的污 水后, 调节进水蠕动泵使进水流量为 lL/h, 同时开启机械搅拌器 5, 调节转速为 60r/min, 再向圆柱形混凝结晶器 1内加入镁源, 调节含 Mg2+溶液浓度及进料管 流速, 使反应器中 Mg2+与 H4 +的摩尔比为 1 : 1, 开启 pH调节液投加管 9使反应 液的 pH值维持在 8.5。 ②反应器稳定阶段: 反应器初始出水需回流进行二次处 理, 当反应器出水中氮、磷去除率达到 95%以上并保持稳定时, 即可将出水通入 下一处理单元进一步处理。 定时开启圆锥形结晶静沉器 2底部阀门 10, 排放混 凝结晶得到的 MAP晶体。
实施例 4:
本实施方式与实施例 3不同的是①反应器启动阶段:利用曝气布气管向圆柱形 混凝结晶器通入空气代替机械搅拌器,调节进气量与进液量体积比为 10: 1。其他 与实施例 3相同。
本发明对于高浓度废水处理效果理想。在同样的运行条件下, 当 H4 +-N浓度 大于 500mg/L, P04 3"-P浓度大于 1000mg/L时,氮、磷的去除回收率在 95%以上。 本发明实施方式中 pH调节液为 HC1溶液 (酸液) 或 NaOH溶液 (碱液)。 本发明实施方式中镁源为 MgS04、 MgCK MgO中的一种或几种。 本发明实施方式中可将产物 MAP或者粒径为 0.1mm〜0.5mm比表面积大的惰 性物质(如不锈钢颗粒、沸石颗粒等)直接投加至圆柱形混凝结晶器 1内作为晶 核。
本发明采用下述实验验证本发明效果:
本实验是 MAP结晶回收人工模拟含高浓度氮、 磷废水的实验。 按照 MAP结 晶去除和回收氮、 磷的操作方法步骤, 通过蠕动泵, 进水管以 lL/h的流量向圆 柱形混凝结晶器 1 内泵入人工模拟废水, 人工模拟废水性质如下: c( H4 +-N)=670mg/L, c(PO4 3_-P)=2800mg/L, 初始 pH=6〜7。 开启机械搅拌器 5, 调节转速为 80r/min,通过镁源进料管 8向圆柱形混凝结晶器 1内加入镁源 MgCl, 调节 C(MgCl)=4200mg/L及进料管流速为 lL/h,, 开启 pH调节液投加管 9, 向圆 柱形混凝结晶器 1内泵入 10mol/L的 NaOH溶液使反应液的 pH值维持在 9左右。 初始阶段出水需回流进行二次处理, 反应大约进行 40min后, 出水中氮和磷的去 除回收率分别达到 95%以上并持续保持, 反应器进入稳定运行阶段; 如在同一运 行条件下向圆柱形混凝结晶器 1 内加入晶体接种可使 NH4 +-N和 P04 3_-P的回收 率提高约 2〜3%。
由此, 该实验证明本发明提供的处理高浓度氮、磷废水的连续流装置可以提高 高浓度氮、 磷废水中 H4 +-N和 P04 3— -P的回收效率。

Claims

O 2012/022099 权 利 要 求 书 PCT/CN2010/080292
1. 一种高浓度氮磷废水的连续流反应器, 其特征在于包括圆柱形混凝结晶器、 漏斗式静沉保护挡板、 圆锥形结晶静沉器, 圆柱形混凝结晶器的下端面与圆锥形 结晶静沉器的上端面连接, 漏斗式静沉保护挡板与圆柱形混凝结晶器内壁连接。
2. 根据权利要求 1所述的一种高浓度氮磷废水的连续流反应器, 其特征在于斜 板沉淀区设计为贴壁式斜板沉淀器,贴壁式斜板沉淀器侧面与圆柱形混凝结晶器 外侧面连接,圆柱形混凝结晶器下部开一映射面为长方形的小口与贴壁式斜板沉 淀器相连通。
3. 根据权利要求 2所述的一种高浓度氮磷废水的连续流反应器, 其特征在于在 圆柱形混凝结晶器上部安装一个圆柱形锯齿槽进水保护堰,其特征在于圆柱形锯 齿槽进水保护堰的下部与圆柱形混凝结晶器的上部连接。
4. 根据权利要求 3所述的一种高浓度氮磷废水的连续流反应器, 其特征在于混 凝结晶器设计为圆柱形, 内部设有进水管、镁源进料管、机械搅拌器或曝气布气 管、 动态 pH监测计和 pH调节液投加管。
5. 根据权利要求 1~4中任一项所述的高浓度氮磷废水的连续流反应器, 其特征 在于圆柱形混凝结晶器高径比为 4: 1〜2: 1; 漏斗式静沉保护挡板与圆柱形混凝结 晶器连接处到圆柱形混凝结晶器底部的距离为圆柱形混凝结晶器高度的 1/4〜 1/3; 漏斗式静沉保护挡板与圆柱形混凝结晶器壁面形成的锐角角度为 60° 〜80
6. 根据权利要求 2〜4中任一项所述的一种高浓度氮磷废水的连续流反应器,其 特征在于在贴壁式斜板沉淀器上部安装一个贴壁式锯齿槽出水堰,贴壁式锯齿槽 出水堰侧面与圆柱形混凝结晶器外侧面连接,贴壁式斜板沉淀器上部与贴壁式锯 齿槽出水堰下部连接。
7. 根据权利要求 2〜4中任一项所述的一种高浓度氮磷的连续流反应器,其特征 在于贴壁式斜板沉淀器高度为圆柱形混凝结晶器高度的 3/4〜4/5, 贴壁式斜板沉 淀器斜板与圆柱形混凝结晶器壁面形成的锐角角度为 20° 〜40° 。
8. —种高浓度氮磷废水的连续流反应器处理废水的方法, 其步骤为:
( 1 )反应器启动阶段:将废水调节 H4 +与 P04 3_的摩尔比为 1〜20: 1后通入圆柱 形混凝结晶器内, 进水流量调节为 0.5〜3L/h, 同时开启搅拌装置搅拌, 加入可 溶性镁源, 控制反应器中进水 Mg2+与 H4 +的摩尔比为 1〜5: 1, 开启 pH调节液 投加管使反应液的 pH值维持在 7〜10;
(2) 反应器稳定阶段: 反应器初始出水需回流进行二次处理, 当反应器出水中 氮、 磷去除率达到 95%以上时, 即可将出水通入下一处理单元进一步处理。
9. 根据权利要求 8所述的连续流反应器处理废水的方法, 其特征在于当 H4 +-N 浓度大于 500mg/L, P04 3— -P浓度大于 1000mg/L时, 氮、磷的去除回收率在 95% 以上。
10. 根据权利要求 8或 9中所述的连续流反应器处理废水的方法, 其特征在于圆 柱形混凝结晶器内混凝搅拌方式可选用机械搅拌器或曝气布气管;当选择机械搅 拌时, 机械搅拌器转速为 30〜150r/min; 当选择曝气搅拌时, 进气量与进液量体 积比为 5〜20: 1。
PCT/CN2010/080292 2010-08-17 2010-12-27 处理高浓度氮磷废水的连续流反应器及方法 WO2012022099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10856097.0A EP2540676B1 (en) 2010-08-17 2010-12-27 Continuous flow reactor and method for treating wastewater having high-concentration nitrogen and phosphorus
US13/459,341 US8702992B2 (en) 2010-08-17 2012-04-30 Continuous flow reactor and method of using the same for treating nitrogen and phosphorus-containing wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102548671A CN101935093B (zh) 2010-08-17 2010-08-17 一种高浓度氮磷废水的连续流反应器及其处理废水的方法
CN201010254867.1 2010-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/459,341 Continuation-In-Part US8702992B2 (en) 2010-08-17 2012-04-30 Continuous flow reactor and method of using the same for treating nitrogen and phosphorus-containing wastewater

Publications (1)

Publication Number Publication Date
WO2012022099A1 true WO2012022099A1 (zh) 2012-02-23

Family

ID=43388700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080292 WO2012022099A1 (zh) 2010-08-17 2010-12-27 处理高浓度氮磷废水的连续流反应器及方法

Country Status (4)

Country Link
US (1) US8702992B2 (zh)
EP (1) EP2540676B1 (zh)
CN (1) CN101935093B (zh)
WO (1) WO2012022099A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701388A (zh) * 2012-05-25 2012-10-03 南京佳业检测工程有限公司 结晶法处理工业废水的设备
WO2015003265A1 (en) 2013-07-12 2015-01-15 Ostara Nutrient Recovery Technologies Inc. Reactor apparatus and methods for fines control
CN111039377A (zh) * 2020-01-09 2020-04-21 苏州晟德水处理有限公司 搅拌混凝装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167375A (zh) * 2011-03-08 2011-08-31 贵州省新材料研究开发基地 多级集料的氢氧化铝平底种分槽
CN102838206B (zh) * 2012-06-25 2013-11-27 杭州师范大学 一种斜板式同步脱氮除硫厌氧生物膜反应器
CN103521155B (zh) * 2013-10-08 2014-12-31 中国农业大学 一种畜禽废水磷素结晶成肥反应器及其应用
ES2455740B2 (es) * 2014-02-26 2014-07-17 Universidade De Santiago De Compostela Procedimiento y sistema de cristalización de estruvita para la recuperación de fosfatos en aguas residuales
US9328006B2 (en) 2014-05-22 2016-05-03 Dennis A. Burke Removal and recovery of phosphate from liquid streams
CN104129771B (zh) * 2014-08-14 2015-12-09 广东石油化工学院 一种对鸟粪石结晶沉淀物进行分离回收的方法
JP6367085B2 (ja) * 2014-11-04 2018-08-01 水ing株式会社 有機性排水処理におけるリン回収及びスケール発生防止方法及び装置
CN105107828B (zh) * 2015-09-17 2017-04-19 中国农业大学 一种养殖废弃物中磷素资源化回收的方法
CN107413822B (zh) * 2017-08-16 2019-11-22 孙芳 一种医疗焚烧飞灰处理装置
CN108715477B (zh) * 2018-08-22 2023-06-02 山东太平洋环保股份有限公司 一种去除污水中氮磷元素的反应装置及方法
CN110606535A (zh) * 2019-07-10 2019-12-24 南京博约环境科技有限公司 一种高浓度氨氮废水处理用药剂投加装置
CN110407358A (zh) * 2019-07-25 2019-11-05 刘辉 一种资源化处理源分离黄水的方法及装置
CN112057912B (zh) * 2020-09-18 2021-06-29 金驰能源材料有限公司 双排管旋涡沉降装置
CN114409048A (zh) * 2022-01-11 2022-04-29 巨星农牧有限公司 一种鸟粪石结晶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824875A (ja) * 1994-07-12 1996-01-30 Unitika Ltd 造粒脱リン装置
JP2000288556A (ja) * 1999-04-07 2000-10-17 Isao Somiya 廃水処理装置
CN1850591A (zh) * 2006-05-24 2006-10-25 湖南大学 从污水中同时回收氮磷的方法
CN101298324A (zh) * 2008-04-11 2008-11-05 浙江大学 磷酸铵镁结晶法回收污水氮磷的装置及其方法
CN101602535A (zh) * 2009-07-17 2009-12-16 北京市环境保护科学研究院 磷回收结晶反应器及磷回收方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086765A (en) * 1996-08-29 2000-07-11 Atara Environmental, Inc. Multi-stage facultative wastewater treatment system and method hydrolyzing biosolids
US6250473B1 (en) * 1998-11-17 2001-06-26 Firstenergy Ventures Corp. Method and apparatus for separating fast settling particles from slow settling particles
AU777426B2 (en) * 1999-08-06 2004-10-14 Qed Occtech Limited Treatment of contaminated liquids
KR20020005521A (ko) * 2001-09-13 2002-01-17 서정원 스트루바이트 침전을 이용한 고농도 질소폐수 처리방법 및이를 이용한 폐수 처리장치
US20040187770A1 (en) * 2001-10-17 2004-09-30 Calabrese Richard V. Rotor-stator apparatus and process for the formation of particles
KR100446984B1 (ko) * 2001-10-22 2004-09-04 충북대학교 산학협력단 연속식 스트루바이트 결정화 장치
CA2382813C (en) * 2002-04-22 2008-09-02 Kenneth Haggerty Process for recovery of nutrients from wastewater effluent
JP2003334584A (ja) * 2002-05-16 2003-11-25 Ebara Corp 廃水処理方法及び装置
JP3970163B2 (ja) * 2002-11-12 2007-09-05 株式会社荏原製作所 有機性廃棄物の処理方法及び装置
US20070000841A1 (en) * 2003-09-11 2007-01-04 R3 Pump Technologies, Llc Directing fluid flow in remediation and other applications
US7622047B2 (en) * 2004-02-13 2009-11-24 The University Of British Columbia Fluidized bed wastewater treatment
CA2630237A1 (en) * 2005-11-18 2007-05-24 Universidade Do Minho Novel anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater
CN100445217C (zh) * 2006-07-10 2008-12-24 同济大学 用磷酸铵镁沉淀污泥处理垃圾焚烧飞灰的方法
CN100548906C (zh) * 2007-08-21 2009-10-14 南京大学 一种焦化废水中氨氮的去除方法
CN101555076B (zh) * 2008-04-11 2011-02-09 中国科学院广州地球化学研究所 一种用于处理高浓度氨氮废水的氨氮脱除剂及处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824875A (ja) * 1994-07-12 1996-01-30 Unitika Ltd 造粒脱リン装置
JP2000288556A (ja) * 1999-04-07 2000-10-17 Isao Somiya 廃水処理装置
CN1850591A (zh) * 2006-05-24 2006-10-25 湖南大学 从污水中同时回收氮磷的方法
CN101298324A (zh) * 2008-04-11 2008-11-05 浙江大学 磷酸铵镁结晶法回收污水氮磷的装置及其方法
CN101602535A (zh) * 2009-07-17 2009-12-16 北京市环境保护科学研究院 磷回收结晶反应器及磷回收方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUO SHOULIANG; XI BEIDOU; LIU HONGLIANG: "Romoval and recovery of nitrogen and phosphorus from wastewater by struvite crystallization", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 26.3, 2007, pages 4191 - 419
J.A. WILSENACH: "Phosphate and potassium recovery from source separated urine through struvite precipitation", WATER RESEARCH, vol. 41, 2007, pages 458 - 466, XP005809858, DOI: doi:10.1016/j.watres.2006.10.014
ZOU ANHUA; SUN TICHANG; XING YI: "Effect of pH on the Removal of Ammonia-Nitrogen from Wastewater", ENVIRONMENTAL SCIENCES TRENDS, 2005, pages 4 - 6

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701388A (zh) * 2012-05-25 2012-10-03 南京佳业检测工程有限公司 结晶法处理工业废水的设备
WO2015003265A1 (en) 2013-07-12 2015-01-15 Ostara Nutrient Recovery Technologies Inc. Reactor apparatus and methods for fines control
US8999007B2 (en) 2013-07-12 2015-04-07 Ostara Nutrient Recovery Technologies Inc. Method for fines control
CN111039377A (zh) * 2020-01-09 2020-04-21 苏州晟德水处理有限公司 搅拌混凝装置

Also Published As

Publication number Publication date
CN101935093B (zh) 2012-05-23
CN101935093A (zh) 2011-01-05
US20120211433A1 (en) 2012-08-23
US8702992B2 (en) 2014-04-22
EP2540676B1 (en) 2018-11-14
EP2540676A1 (en) 2013-01-02
EP2540676A4 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2012022099A1 (zh) 处理高浓度氮磷废水的连续流反应器及方法
CN106630084B (zh) 两级两相流化床自结晶处理高氟、高硬度废水方法及系统
Korchef et al. Phosphate recovery through struvite precipitation by CO2 removal: Effect of magnesium, phosphate and ammonium concentrations
CN201506739U (zh) 一种填料床map氮磷回收反应器
CN102963970A (zh) 将污水中氮磷制备成鸟粪石晶体的装置和工艺
KR101462033B1 (ko) 인 결정화 장치를 갖는 하·폐수처리시설
CN106673299A (zh) 一种污水分步除磷净化工艺
CN106517591A (zh) 一种反渗透浓水处理系统以及处理方法
CN110482801B (zh) 一体化废水生物同步脱氮除钙装置及其方法
CN103193370A (zh) 一种剩余污泥的磷回收装置
JP5610198B2 (ja) 廃液処理装置
CN218893548U (zh) 一种污水预处理装置及含磷污水处理系统
KR101864178B1 (ko) 이단 공기부상 방식의 결정형성조와 입경 분리가 가능한 결정회수장치가 도입된 인과 질소의 회수 시스템 및 이를 이용한 인과 질소의 회수 방법
CN203112675U (zh) 一种剩余污泥的磷回收装置
KR20130043745A (ko) 선회류식 무기슬러지 분리배출장치와 생물반응조를 결합한 슬러지처리장치
CN206308090U (zh) 两级两相流化床自结晶处理高氟、高硬度废水的系统
CN210825858U (zh) 一种一体化废水生物同步脱氮除钙装置
CN103523908A (zh) 一种活性污泥工艺同步实现高效生物除磷及磷回收系统及方法
CN208545218U (zh) 一种提溴废液的净化装置
Zhao et al. Phosphorous recovery technology in conjunction with dairy anaerobic digestion
CN217627886U (zh) 一种垃圾中转站渗滤液快速处理装置
CN205076808U (zh) 一种废水磷肥生产组合装置
CN210974183U (zh) 一种疏浚余水处理装置
CN217578545U (zh) 高氨氮废水处理系统
TWI534094B (zh) 以流體化床結晶技術從含磷廢水中將磷移除之處理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010856097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE