WO2012020714A1 - モータ制御装置およびモータ制御方法、制御システムおよびこの制御システムに用いる位置推定方法 - Google Patents
モータ制御装置およびモータ制御方法、制御システムおよびこの制御システムに用いる位置推定方法 Download PDFInfo
- Publication number
- WO2012020714A1 WO2012020714A1 PCT/JP2011/067994 JP2011067994W WO2012020714A1 WO 2012020714 A1 WO2012020714 A1 WO 2012020714A1 JP 2011067994 W JP2011067994 W JP 2011067994W WO 2012020714 A1 WO2012020714 A1 WO 2012020714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- command
- speed
- voltage
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/026—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power fluctuation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/17—Circuit arrangements for detecting position and for generating speed information
Definitions
- the present invention relates to a motor control device that controls a motor that operates a robot.
- the present invention also relates to a motor control method for controlling a motor that operates a robot.
- the present invention relates to a control system applicable to a drive system and a rotation system such as a robot and a numerical controller, and a position estimation method used in the control system.
- a motor control device that controls a DC motor (including a DC motor and a DC brushless motor) that operates a robot is known (see, for example, Patent Document 1).
- the rotational position of the motor is detected by the position detector, and the rotational speed of the motor is detected by the speed detector.
- the position deviation is calculated by subtracting the position detector output from the position command by the subtractor, the position controller converts the position deviation into the speed command, and the adder / subtracter outputs the speed command and the feedforward controller.
- the output is added and the output of the speed detector is subtracted, and the output of the adder / subtracter is converted into a torque command by the PI controller.
- the motor driver drives the motor based on the torque command.
- control systems for driving them are applied.
- the control system issues an operation command (position command) to a servo controller that servo-controls a motor that rotates the joint of the robot.
- the robot joint has an encoder that measures the rotation angle of the motor, and the host controller sends position data (rotation angle measurement) fed back from this encoder via the servo controller.
- the servo control is performed by recognizing the deviation between the target value and the actual measurement value while sampling with reference to the value).
- the position data fed back is sampled at a predetermined sampling period, the position at a time other than the sampling period cannot be known, and the sampling period becomes the limit of the position resolution.
- the height of position resolution is an important factor, and therefore it is necessary to estimate the position in order to increase the limit of position resolution.
- the robot control apparatus disclosed in Patent Document 2 first samples the feedback position X. Then, the sampling time interval is calculated in relation to the latest sampling time, the difference in the feedback position is calculated, the difference in the feedback position is divided by the sampling time interval, and the change rate of the feedback position (change rate A) is calculated. Ask. On the other hand, the time difference (time difference B) from the sampling time to the servo command time is calculated. Finally, the value obtained by multiplying the rate of change A by the time difference B is added to the feedback position X to estimate the position of the servo command time.
- a torque proportional to the current flowing through the drive coil can be obtained. Since the current flowing through the driving coil is statically proportional to the voltage applied to the motor driver, it is possible to control the motor torque by controlling the voltage applied to the motor driver.
- the original voltage applied to the motor driver decreases, it is possible to prevent the torque from decreasing by increasing the torque command.
- the torque command cannot be increased beyond a certain value due to physical restrictions such as a motor driver. Therefore, if the original voltage applied to the motor driver is greatly reduced, not only can the robot not be able to perform a desired operation, but also the so-called wind-up phenomenon occurs due to the integration function of the PI controller or the like.
- the robot may show unstable behavior such as oscillation behavior.
- an object of the present invention is to provide a motor control capable of properly operating a robot without stopping the motor that operates the robot even when a voltage drop occurs due to an instantaneous drop or the like.
- an object of the present invention is to provide a motor that can properly operate a robot without stopping the motor that operates the robot even when a voltage drop occurs due to an instantaneous drop or the like. It is to provide a control method.
- the robot control apparatus described in Patent Document 2 obtains the rate of change A by dividing the feedback position difference by the sampling time interval, and performs position estimation only by simple extrapolation. There is a problem of being weak. In this case, the position estimation system can be improved by making the measurement period of the encoder fine, but there is a problem that the cost increases because it is necessary to increase the communication period and the processing speed of the CPU. *
- the present invention has been made in view of such a point, and the problem is that a control system capable of accurately responding to speed fluctuations of the motor and the like without reducing the sampling period and the control are provided. It is to provide a position estimation method used in a system.
- a motor control device is a motor control device that controls a motor that operates a robot, a position command output unit that outputs a position command for controlling the motor, and a motor having a predetermined angle.
- a first subtracting means for calculating and outputting a position deviation based on a rotational position and a position command calculated based on an output from a rotation detecting means for generating a pulse signal each time it rotates;
- a position control means for converting the output to the output, a second subtracting means for calculating and outputting a speed deviation based on the rotational speed and speed command calculated based on the output from the rotation detecting means, and a speed deviation.
- Speed control means for converting to torque command and outputting it, and when torque command value is less than or equal to a predetermined limit value, torque command is output as it is and torque command value is the limit value
- a limiter that outputs a torque command that uses the limit value as the limit value, a motor drive unit that drives the motor based on the torque command from the limiter, and a voltage fluctuation of a power source that applies a voltage to the motor drive unit is detected.
- Voltage fluctuation detecting means and when the voltage fluctuation detecting means detects that the voltage of the power supply is below a predetermined reference value, the position command output means fluctuates the position command so that the motor speed decreases. And / or the position control means limits the output speed command.
- the position command output means issues a position command so that the rotational speed of the motor decreases.
- the position control means limits the output speed command as well as the fluctuation.
- the position command output means changes the position command so that the rotational speed of the motor is reduced, Alternatively, the position control means limits the output speed command.
- the present invention when an instantaneous drop or the like occurs and the voltage of the power supply becomes equal to or lower than the reference value, it is possible to suppress an increase in speed command value and an increase in speed deviation. . Therefore, in the present invention, even if a voltage sag or the like occurs and the voltage of the power supply becomes below the reference value, the motor is appropriately controlled by reducing the rotation speed of the motor, and the robot performs a desired operation. It is possible to prevent the robot from exhibiting an unstable behavior by preventing the occurrence of a windup phenomenon. As a result, in the present invention, the robot can be appropriately operated without stopping the motor even when a voltage sag or the like occurs and the voltage of the power supply decreases.
- the position command output means fluctuates the position command so that the rotation speed of the motor decreases
- the position control means preferably limits the output speed command.
- the position command output means is arranged so that the positional deviation output from the first subtracting means becomes small.
- the position command output means After delaying the position command, at least one of the position command output means returns the position command to the original state at the delayed position and the position control means releases the restriction on the output speed command.
- the value of the speed command increases rapidly when the position command is restored to the original state after the power supply voltage exceeds the reference value or when the restriction on the speed command is released. Can be prevented. Therefore, it is possible to prevent sudden acceleration of the motor when the position command is returned to the original state after the power supply voltage exceeds the reference value or when the restriction on the speed command is released, and as a result This makes it possible to prevent a rapid movement of the robot.
- the position command output means when it is detected by the voltage variation detection means that the voltage of the power supply is below the reference value, the position command output means varies the position command so that the rotation speed of the motor decreases.
- the position command output means delays the position command so that the positional deviation output from the first subtracting means becomes small. Then, it is preferable that the position command output means returns the position command to the original state at the delayed position.
- the position control means limits the output speed command when the voltage fluctuation detection means detects that the voltage of the power supply is below the reference value
- the voltage fluctuation detection means detects that the voltage of the power supply has recovered until it exceeds the reference value
- the position command output means delays the position command so that the position deviation output from the first subtracting means becomes small. It is preferable that the position control means cancels the limit of the output speed command.
- the motor control method of the present invention is a motor control method for controlling a motor that operates a robot.
- the motor control method includes a position command for controlling the motor and a rotational position measured by the motor. Position deviation is calculated based on the speed deviation, the position deviation is converted into a speed command, the speed deviation is calculated based on the speed command and the measured rotational speed of the motor, the speed deviation is converted into a torque command, and the torque command.
- the motor is driven based on the torque command as it is, and when the value of the torque command exceeds the limit value, based on the torque command having the limit value as the value.
- While driving the motor when it is detected that the voltage of the power source of the motor has become equal to or lower than a predetermined reference value, the position command is changed so that the rotational speed of the motor is reduced, and Limiting the speed command, and performing at least one of.
- the position command when it is detected that the voltage of the power supply of the motor is equal to or lower than a predetermined reference value, the position command is changed so that the rotation speed of the motor is lowered, and the speed command is limited.
- the position command when it is detected that the voltage of the motor power supply is lower than the reference value, the position command is changed or the speed command is limited so that the rotation speed of the motor decreases. To do. For this reason, in the present invention, when an instantaneous drop or the like occurs and the voltage of the power supply becomes equal to or lower than the reference value, it is possible to suppress an increase in speed command value and an increase in speed deviation. .
- the motor is appropriately controlled by reducing the rotation speed of the motor, and the robot performs a desired operation. It is possible to prevent the robot from exhibiting an unstable behavior by preventing the occurrence of a windup phenomenon. As a result, if the motor is controlled by the motor control method of the present invention, the robot can be appropriately operated without stopping the motor even when a voltage sag occurs and the voltage of the power supply decreases. It becomes possible.
- the present invention provides the following. *
- a motor that drives the controlled body, a sensor that detects position data of the controlled body based on a rotation angle of the motor at a predetermined period, a servo control section that servo-controls the motor, and the servo control section
- a position control unit that issues an operation command (position command), wherein the position control unit generates a command for generating an operation command for the servo control unit, and the position acquired from the sensor.
- Position data storage means for storing data together with the acquisition time; and position estimation means for estimating the position of the controlled body at an arbitrary time based on the position data of a predetermined cycle, the position estimation means
- the position f (t) of the controlled object at t is expressed by a polynomial based on the position data, and the position of the controlled object at an arbitrary time is estimated by polynomial interpolation.
- the position estimation means represents the position f (t) of the controlled object at time t by a polynomial based on the position data, and estimates the position at an arbitrary time by polynomial interpolation. It is possible to accurately cope with load fluctuations, speed fluctuations, and the like of the motor without having to do so.
- the position estimating means represents the position f (t) of the controlled object at time t by a polynomial expression based on the position data stored together with the time in the position data storage means, the position estimation means can be operated even when the motor speed fluctuates. Can be expressed faithfully as a function of t, and the position at an arbitrary time can be accurately estimated without reducing the sampling period.
- the position estimating means estimates the position of the controlled object using the fed back position data, it is hardly affected by the load fluctuation of the motor and can accurately estimate the position at an arbitrary time.
- the position estimating means represents the position f (t) of the controlled body at time t by a polynomial of the following formula 1, and the position data y i stored in the position data storage means is a coefficient a i of the polynomial.
- robot control system characterized in that on the basis of the acquisition time t i and determined by the following equation (2) equation to estimate the position of the controlled object at any time
- the position f (t) of the controlled body at an arbitrary time t can be expressed by a polynomial.
- the position of the controlled object can be estimated with high accuracy even when the speed changes.
- the robot control system characterized in that the position estimation means estimates the position of the controlled object at an arbitrary time using a cubic polynomial.
- the position of the controlled object is represented using a cubic polynomial
- the position of the controlled object can be accurately determined as a function of t even when the speed of the motor is accelerated or decelerated. Since it can be expressed, the position of the controlled object can be estimated with high accuracy. Further, the calculation for obtaining the third-order polynomial is not a large calculation load, and the calculation load for position estimation can be reduced.
- the position estimation means estimates the position of the controlled object at the time based on the position data in the vicinity of an arbitrary time for estimating the position of the controlled object.
- position data appropriate for position estimation is selected from position data stored in the position data storage means.
- the position of the controlled object can be expressed by a cubic polynomial, and the position of the controlled object can be estimated with high accuracy even when the motor speed fluctuates, and the calculation load can be reduced.
- a mark sensor for detecting an alignment mark provided on the controlled object is provided, and the position estimating means estimates the position of the controlled object at a time when the mark sensor detects the alignment mark. Control system. *
- the position of the controlled object at the time when the sensor detects the alignment mark can be estimated, the position of the controlled object can be accurately aligned.
- a motor that drives the controlled body, a sensor that detects position data of the controlled body based on a rotation angle of the motor at a predetermined period, a servo control section that servo-controls the motor, and the servo control section A position control unit that issues an operation command, and the position control unit generates an operation command for the servo control unit and stores the position data acquired from the sensor together with an acquisition time.
- a position estimation method characterized in that a position f (t) of the controlled object at t is expressed by a polynomial based on the position data, and the position of the controlled object at an arbitrary time is estimated by polynomial interpolation.
- the position control unit generates an operation command for the servo control unit, stores the position data acquired from the sensor together with the acquisition time, and determines the position f (t of the controlled body at the time t. ) Is expressed as a polynomial based on the position data, and the position of the controlled object at an arbitrary time is estimated by polynomial interpolation, so that it is possible to accurately handle load fluctuations and speed fluctuations of the motor without reducing the sampling period. be able to.
- the position control unit represents the position f (t) of the controlled body at time t by a polynomial based on the position data stored together with the time, the position is a function of t even when the motor speed fluctuates.
- the position can be accurately expressed, and the position at an arbitrary time can be accurately estimated without reducing the sampling period.
- the position control unit estimates the position of the controlled object using the fed back position data, the position control unit is hardly affected by the load fluctuation of the motor and can accurately estimate the position at an arbitrary time.
- the robot can be operated properly without stopping the motor that operates the robot. Is possible.
- the motor that operates the robot is controlled by the motor control method of the present invention, the robot can be operated properly without stopping the motor even if a voltage drop occurs due to an instantaneous drop or the like. It becomes possible to make it.
- control system according to the present invention and the position estimation method applied to the control system reduce the speed of the motor by accurately dealing with the speed fluctuation of the motor without reducing the sampling period. It is possible to perform position estimation with high accuracy without any problem.
- a change in position deviation, a change in rotational speed of the motor, and a change in torque when a voltage drop occurs when a motor is controlled by a motor control device according to another embodiment of the present invention will be described.
- a change in position deviation, a change in rotational speed of the motor, and a change in torque when a voltage drop occurs when a motor is controlled by a motor control device according to another embodiment of the present invention will be described. It is a graph for doing.
- a change in position deviation, a change in rotational speed of the motor, and a change in torque when a voltage drop occurs when a motor is controlled by a motor control device according to another embodiment of the present invention will be described.
- a change in position deviation, a change in rotational speed of the motor, and a change in torque when a voltage drop occurs when a motor is controlled by a motor control device according to another embodiment of the present invention will be described. It is a graph for doing.
- a change in position deviation, a change in rotational speed of the motor, and a change in torque when a voltage drop occurs when a motor is controlled by a motor control device according to another embodiment of the present invention will be described. It is a graph for doing.
- a change in position deviation, a change in rotational speed of the motor, and a change in torque when a voltage drop occurs when a motor is controlled by a motor control device according to another embodiment of the present invention will be described. It is a graph for doing. It is a block diagram which shows the system configuration
- FIG. 1 is a block diagram illustrating a motor control device 101 and a configuration related to the motor control device 101 according to the first embodiment of the present invention.
- FIG. 2 is a graph showing an example of a position command output from the position command output unit 108 shown in FIG.
- FIG. 3 is a graph showing an example of a speed command output from the position control unit 110 shown in FIG.
- FIG. 4 is a graph showing an example of the position deviation output from the subtraction unit 109 shown in FIG. 1 and an example of the rotation speed and torque of the motor 102 shown in FIG.
- the motor control device 101 of this embodiment is a device for controlling the motor 102 that operates the industrial robot.
- the motor 102 is a DC servo motor and operates, for example, an arm of an industrial robot.
- the motor control device 101 is connected to a power source 103 of the motor 102.
- An encoder 104 is arranged between the motor control device 101 and the motor 102.
- the encoder 104 includes, for example, a disc-shaped slit plate fixed to the rotating shaft of the motor 102, and an optical sensor having a light emitting element and a light receiving element arranged so as to sandwich the slit plate.
- the type sensor is connected to the motor control device 101.
- the motor control device 101 is configured by calculation means such as an MPU, storage means such as ROM, RAM, and nonvolatile memory, input / output means such as an I / O port, and the like.
- the motor control device 101 functionally includes a position detection unit 106, a speed detection unit 107, a position command output unit 108 as a position command output unit, a subtraction unit 109 as a first subtraction unit, Position controller 110 as position controller, subtractor 111 as second subtractor, speed controller 112 as speed controller, limiter 113, driver 114 as motor driver, and voltage fluctuation detection And a voltage fluctuation detector 115 as means.
- the position detection unit 106 calculates the rotational position of the motor 102 based on the output from the encoder 104.
- the speed detection unit 107 calculates the rotation speed of the motor 102 based on the output from the encoder 104.
- the position command output unit 108 outputs a position command for controlling the rotation speed and rotation position of the motor 102. Specifically, the position command output unit 108 outputs a target rotational position corresponding to the elapsed time after the start of the motor 102 as a position command.
- the position command output from the position command output unit 108 is, for example, as shown in the graph of FIG.
- the subtractor 109 calculates and outputs a position deviation obtained by subtracting the actual rotational position output from the position detector 106 from the position command output from the position command output unit 108.
- the position deviation output from the subtracting unit 109 is, for example, as shown in the graph shown in FIG.
- the position control unit 110 normally converts the position deviation output from the subtraction unit 109 into a speed command and outputs it. Specifically, the position control unit 110 outputs a target rotation speed corresponding to the elapsed time after the start of the motor 102 as a speed command. When the elapsed time after the start of the motor 102 is taken on the horizontal axis and the target rotational speed is taken on the vertical axis, the speed command output from the position control unit 110 is, for example, as shown in the graph shown in FIG. In the position controller 110, proportional control is performed.
- the subtraction unit 111 calculates and outputs a speed deviation obtained by subtracting the actual rotation speed output from the speed detection unit 107 from the speed command output from the position control unit 110.
- the speed control unit 112 converts the speed deviation output from the subtraction unit 111 into a torque command and outputs the torque command.
- PI control that combines proportional control and integral control is performed.
- the limiter 113 outputs the torque command output from the speed control unit 112 as it is as the torque command when the value of the torque command output from the speed control unit 112 is equal to or less than a predetermined limit value.
- a torque command having this limit value as its value is output. That is, the upper limit value of the torque command output toward the driver 114 is set by the limiter 113.
- a power source 103 is connected to the driver 114, and the driver 114 drives the motor 102 by applying a voltage to the motor 102 based on a torque command output from the limiter 113.
- the rotational speed and torque of the motor 102 driven by the driver 114 are as shown in the graph in FIG. 4, where the elapsed time after the start of the motor 102 is taken on the horizontal axis and the rotational speed and torque are taken on the vertical axis.
- the voltage fluctuation detection unit 115 is connected to the power supply 103 and detects voltage fluctuation of the power supply 103. In this embodiment, the voltage fluctuation detection unit 115 detects that an instantaneous drop has occurred in which the voltage of the power supply 103 instantaneously falls below a predetermined reference value. The voltage fluctuation detection unit 115 is connected to the position command output unit 108 and the position control unit 110.
- FIG. 5 shows a change in position deviation converted into a speed command when a voltage drop occurs when the motor 102 is controlled by the motor control apparatus 101 according to the embodiment of the present invention, the rotational speed of the motor 102, and the like. It is a graph for demonstrating the change of a torque.
- FIG. 6 is a diagram for explaining a change in position deviation converted to a speed command and a change in rotational speed and torque of the motor 102 when an instantaneous drop occurs when the motor 102 is controlled by the conventional motor control device. It is a graph of.
- the motor control device 101 operates as follows to control the motor 102. First, whether or not a voltage sag has occurred is determined by the voltage fluctuation detection unit 115. When the voltage fluctuation detection unit 115 detects that the voltage of the power supply 103 has become equal to or lower than the reference value (that is, when the voltage fluctuation detection unit 115 detects the occurrence of an instantaneous drop), the voltage fluctuation detection unit 115 Based on this detection result, the position command output unit 108 changes the position command so that the rotation speed of the motor 102 decreases.
- the position command output unit 108 when the occurrence of an instantaneous drop is detected by the voltage fluctuation detection unit 115, the position command output unit 108 varies the position command as indicated by a two-dot chain line in FIG. At this time, it is preferable that the position command output unit 108 changes the position command so that the rotation speed of the motor 102 decreases as fast as possible within a range in which the workpiece or robot mounted on the robot is not damaged. For example, the position command output unit 108 changes the position command so that the rotational speed of the motor 102 decreases at the same deceleration as the deceleration of the motor 102 during normal deceleration.
- the position control unit 110 limits the position deviation converted into the speed command based on the detection result of the voltage fluctuation detection unit 115. For example, the position control unit 110 fixes (clamps) the position deviation at the time of occurrence of a sag as a position deviation converted into a speed command, and converts the fixed position deviation into a speed command. Alternatively, for example, the position control unit 110 varies the upper limit value of the position deviation converted into the speed command according to the rotation speed of the motor 102 detected by the speed detection unit 107, and the position deviation from the subtraction unit 109 is changed.
- the position deviation is set as a position deviation converted into a speed command. If the position deviation from the subtracting unit 109 exceeds the upper limit value, the position deviation of the upper limit value is converted into a speed command. Position deviation. As described above, since the position control unit 110 performs proportional control, when the position deviation converted into the speed command is limited, the speed command output from the position control unit 110 is also limited. That is, when the occurrence of an instantaneous drop is detected by the voltage fluctuation detection unit 115, the position control unit 110 limits the output speed command.
- the position control unit 110 releases the restriction on the position deviation. That is, the position control unit 110 releases the restriction on the speed command. Further, the position command output unit 108 returns the position command to the original state. For example, the position command output unit 108 returns the position command that has been changed so that the rotation speed of the motor 102 decreases to the position command indicated by the solid line in FIG.
- the motor control device 101 performs the operation as described above when a voltage sag occurs. Therefore, when the motor control device 101 controls the motor 102, the motor control device 101 converts it to a speed command when a voltage sag occurs.
- the positional deviation, the rotation speed of the motor 102, and the torque of the motor 102 change as shown in the graph shown in FIG. 5, for example. Note that when a voltage drop occurs, the positional deviation converted into the speed command is limited, but the actual positional deviation output from the subtracting unit 109 is increased, so that as shown in FIG. When the voltage recovers and the position control unit 110 releases the restriction on the position deviation, the position deviation increases discontinuously.
- the position deviation, the rotation speed of the motor 102, and the torque of the motor 102 when a sag occurs are as shown in the graph of FIG. Change.
- the graphs shown in FIG. 5 and FIG. 6 show an outline of the positional deviation converted into the speed command, the rotational speed of the motor 102, and the change tendency of the torque of the motor 102, and are converted into the speed command.
- the actual changes in the positional deviation, the rotational speed of the motor 102, and the torque of the motor 102 do not completely match the graphs shown in FIGS.
- the position deviation converted into the speed command, the rotational speed of the motor 102, and the torque change of the motor 102 vary depending on the control parameters and the operating environment of the motor control device 101. The same applies to FIGS. 7, 8, and 10 to 13 described later.
- the position control unit 110 limits the output speed command. Therefore, in this embodiment, it is possible to suppress an increase in the speed deviation output from the subtraction unit 111 when an instantaneous drop occurs, and to suppress an increase in the value of the torque command output from the speed control unit 112. It becomes possible to do. Therefore, in this embodiment, even if a voltage sag occurs, it is possible to appropriately control the motor 102 to cause the robot to perform a desired operation, and to prevent the windup phenomenon from occurring. It is possible to prevent unstable behavior.
- the robot can be appropriately operated without stopping the motor 102. Further, in this embodiment, when a voltage sag occurs, the speed command output by the position control unit 110 is limited. Therefore, an increase in speed deviation can be suppressed in a short time after the voltage sag occurs.
- the position command output unit 108 varies the position command so that the rotation speed of the motor 102 decreases. For this reason, in this embodiment, it is possible to suppress an increase in the actual position deviation output from the subtraction unit 109 when an instantaneous drop occurs. Therefore, in this embodiment, it is possible to suppress a rapid increase in the value of the speed command when the voltage of the power supply 103 recovers and the position control unit 110 releases the speed command limit. As a result, in the present embodiment, it is possible to suppress the rapid acceleration of the motor 102 and prevent the robot from operating rapidly.
- the motor 102 When the motor 102 is controlled by the conventional motor control device, if a voltage sag occurs, the position deviation converted into the speed command increases as shown in FIG. As a result, the speed deviation increases, and as a result, the value of the torque command increases, and the value of the torque command may exceed the limit value. Further, when the voltage drop of the power source 103 is recovered after the voltage sag is finished, the increased positional deviation is eliminated, so that the rotation speed of the motor 102 increases rapidly as shown in FIG.
- the position command output unit 108 delays the position command so that the position deviation output from the subtraction unit 109 becomes small when the voltage of the power supply 103 recovers to exceed the reference value ( That is, after the position command output unit 108 outputs a command position obtained by returning the target rotational position of the motor 102 by a predetermined amount), the position control unit 110 releases the speed command restriction, and the position command output unit 108 is delayed.
- the position command may be returned to the original state at the position.
- the position command is issued at the delayed position.
- the original state may be restored, and the position control unit 110 may release the restriction on the speed command.
- the positional deviation converted into the speed command, the rotational speed of the motor 102, and the torque of the motor 102 change as shown in the graph shown in FIG. 10, for example.
- the broken line in FIG. 9 shows the change in the position command when no instantaneous drop occurs.
- the position command is returned to the original state at the delayed position.
- the solid line indicating the change in the position command after the lapse of time and the broken line indicating the change in the position command when no instantaneous drop occurs are parallel to each other.
- the speed command value is rapidly increased when the restriction of the speed command is canceled and the position command is returned to the original state. Can be suppressed. Therefore, for example, as can be seen from a comparison between FIG. 5 and FIG. 10, in this case, after the voltage of the power source 103 is recovered until it exceeds the reference value, the speed command restriction is canceled and the position command is changed. It becomes possible to greatly suppress fluctuations in the rotational speed of the motor 102 when returning to the original state.
- the position command output unit 108 delays the position command after returning the position command to the original state, and then the position control unit 110 receives the speed command.
- the restriction may be lifted.
- the position command output unit 108 delays the position command after the position control unit 110 releases the speed command restriction, and then The position command output unit 108 may return the position command to the original state.
- the output from the subtracting unit 109 is performed when the voltage of the power supply 103 recovers until it exceeds the reference value.
- the position command output unit 108 may return the position command to the original state at the delayed position after the position command output unit 108 delays the position command so that the position deviation is reduced. In this case, the positional deviation converted into the speed command, the rotational speed of the motor 102, and the torque of the motor 102 change as shown in the graph shown in FIG. 11, for example.
- the speed command value can be prevented from rapidly increasing when the position command is returned to the original state. . Therefore, for example, as can be seen by comparing FIG. 7 and FIG. 11, in this case, after the voltage of the power supply 103 recovers until it exceeds the reference value, the motor 102 when the position command is returned to the original state. It is possible to greatly suppress fluctuations in the rotation speed.
- the position control unit 110 may release the restriction on the speed command after the position command output unit 108 delays the position command so that the position deviation becomes smaller.
- the positional deviation converted into the speed command, the rotation speed of the motor 102, and the torque of the motor 102 change as shown in the graph shown in FIG. 12, for example.
- the speed command value can be prevented from rapidly increasing when the position command is returned to the original state. . Therefore, for example, as can be seen by comparing FIG. 8 and FIG. 12, in this case, after the voltage of the power source 103 is recovered until it exceeds the reference value, the motor 102 when the position command is returned to the original state. It is possible to greatly suppress fluctuations in the rotation speed.
- the voltage of the power supply 103 is set to the reference value in the case where the position command does not change so that the rotation speed of the motor 102 decreases when the instantaneous drop occurs and the speed command output from the position control unit 110 is not limited.
- the position command output unit 108 delays the position command so that the position deviation output from the subtracting unit 109 becomes smaller after the recovery to exceed, the position deviation converted into the speed command, the rotational speed of the motor 102 and The torque of the motor 102 changes as shown in the graph shown in FIG.
- the position command output from the position command output unit 108 is completed until the position command output from the position command output unit 108 enters the deceleration region where the motor 102 is decelerated, or the position command output unit 108 completes the position command.
- the position control unit 110 releases the limit of the speed command each time, and the position command output unit 108 May return the position command to the original state.
- the position deviation output from the subtraction unit 109 (that is, the position command and the position detection unit 106 outputs the position command).
- the difference between the actually measured rotational position becomes smaller and approaches the position deviation converted into the speed command by the position control unit 110.
- the position command output unit 108 when the voltage fluctuation detection unit 115 detects the occurrence of a sag, the position command output unit 108 varies the position command so that the rotation speed of the motor 102 decreases, and the position control unit 110 outputs The speed command to be used is limited.
- the position command output unit 108 may change the position command so that the rotation speed of the motor 102 decreases, and the speed command output by the position control unit 110 may be limited.
- the motor 102 when adjusting operation parameters of the motor 102 such as speed and acceleration / deceleration, the motor 102 is operated at a voltage lower than the actual voltage of the power source 103.
- the actual voltage of the power supply 103 is 200 (V)
- a voltage lower than 200 (V) is applied to the driver 114 when adjusting the operation parameter of the motor 102.
- the operation parameter of the motor 102 has a value with a margin with respect to the actual voltage of the power source 103.
- the position command output unit 108 varies the position command so that the rotation speed of the motor 102 decreases.
- the control unit 110 is configured to limit the output speed command, the motor 102 can be appropriately controlled by following the fluctuation of the voltage of the power supply 103, and therefore adjusted with the actual voltage. Even with the set operation parameters, the motor 102 can be operated and stopped safely. Therefore, in this case, the motor 102 can be operated at a higher speed and higher acceleration than before, and the robot can be operated at a higher speed. As a result, the tact time of the process in which the robot is used can be shortened.
- FIG. 14 is a block diagram showing a system configuration of the robot control system according to the embodiment of the present invention.
- FIG. 15 is a diagram illustrating a robot applicable to the robot control system according to the embodiment of the present invention.
- FIG. 16 is a plan view showing a wafer held by an aligner and a chuck according to an embodiment of the present invention.
- the robot 6 shown in FIG. 15 is, for example, a transfer robot (hereinafter referred to as “robot”) that moves a workpiece such as a semiconductor wafer (hereinafter referred to as “wafer”) placed in a cassette into the film forming apparatus.
- the wafer 9 is a controlled body.
- the robot 6 connects a plurality of base side arms 64, hand side arms 65, and hands 66 that are rotatably connected by joint portions 61, 62, 63, and is provided on a base (not shown).
- the rotational force generated by the first motor 41 is transmitted to the base side arm 64 and the hand side arm 65 to perform a desired operation.
- the robot 6 having such a structure moves on a straight line while always directing the hand 66 on which the wafer 9 is placed in a certain direction. Since the structure and operation of the robot 6 are well known, detailed description thereof is omitted here.
- the robot 6 is a first motor 41 that drives the base side arm 64, the hand side arm 65, and the hand 66, and a sensor that detects arm position data based on the rotation angle of the first motor 41 at a predetermined cycle.
- the first encoder 42 is provided. The first encoder is fixed to the rotating shaft of the first motor 41. *
- the wafer 9 When the wafer 9 is stored in the transferred cassette 8, the wafer 9 is randomly arranged. Therefore, when the wafer 9 is taken out from the cassette 8 by the robot 6 and various processes are performed on the wafer 9, the notch is notched. It must be performed with the position 91 positioned at the regular position. Therefore, there is a method in which the wafer 9 taken out from the cassette 8 is carried into the aligner 7 of the wafer 9, the position of the notch is matched with the normal position by the aligner 7 of the wafer 9, and the wafer 9 is set on the processing stage. Has been taken.
- a notch 91 for detecting the position is generally formed at one position on the edge portion of the wafer 9.
- the wafer 9 is stored in the transferred cassette 8, the wafer 9 is randomly arranged. Therefore, when the wafer 9 is subjected to various types of processing, the position of the notch 91 is positioned at a normal position. It must be done in the state.
- the apparatus for aligning the wafer 9, that is, the angle of the wafer 9, is generally called an aligner 7. After the wafer 9 is held by the holding shaft, the position of the notch 91 is detected by rotating it half or once.
- the aligner 7 is a device that detects the notch 91 of the wafer 9 and aligns the orientation of the wafer 9.
- the aligner 7 that rotates and adjusts the wafer 9 to face a predetermined direction is installed within a range in which the robot 6 can carry the wafer 9.
- the aligner 7 rotates the mounted wafer 9 and detects notches 91 provided at the edge thereof, thereby matching the orientation and holding angle of all the mounted wafers 9 (notches 91).
- the aligner 7 has a turntable 71 on which the wafer 9 is placed and rotates integrally, a second motor 43 that drives the turntable 71 on which the wafer 9 is placed, and the rotation of the second motor 43.
- It has the 2nd encoder 44 as a sensor which detects the position data based on angle data, and the notch sensor 73 which detects the notch 91.
- FIG. In this embodiment, as shown in FIGS. 15 and 16, the turntable 71 has a plurality of chucks 72 (in six places in FIGS. 15 and 16), and clamps the periphery of the wafer 9. There is no eccentricity with the turntable 71, and it is placed on the turntable 71 concentrically. *
- the wafer 9 has a notch 91 cut out in a V-shape or U-shape as a mark indicating a normal position in the circumferential direction of the wafer 9 and a positioning portion. Is formed.
- the notch sensor 73 for detecting the notch 91 formed on the wafer 9 is provided at the left position of the turntable 71 in FIG. 15 (upper left in FIG. 16).
- the notch sensor 73 is a photosensor including a light emitting element and a light receiving element.
- the LED irradiates detection light, a photodiode that detects reflected light of the irradiation light, and the LED and photodiode. And an optical path tube for guiding the light beam entering and exiting the wafer 9 with respect to the wafer 9. For this reason, when the detection light of LED irradiates the edge part of the wafer 9 held by the hand 66 and is reflected by the edge part, the reflected light is incident on the photodiode, and when not reflected through the notch 91, the photo No incident on the diode. Thereby, the position of the notch 91 is detected.
- the robot control system 1 controls the operation of a robot that takes a (semiconductor) wafer or the like from a cassette and transports it to a film forming apparatus in a semiconductor manufacturing process.
- FIG. 14 is a block diagram showing a system configuration of the robot control system according to the embodiment of the present invention.
- the robot control system 1 controls the driving of the robot 6 (the arm) for transporting the wafer 9 and the driving of the aligner 7 for aligning the orientation of the wafer 9.
- the robot control system 1 mainly includes a position control unit 2, a servo control unit 3, and a drive unit 4 (first motor 41, first encoder) that drives a controlled body. 42, a second motor 43, a second encoder 44), and a communication line 5.
- the robot control system 1 issues an operation command (position command) to servo controllers 31 and 32 that servo-control a first motor 41 that rotates the joint of the robot and a second motor 43 that rotates the aligner 7.
- the joint and aligner 7 of the robot have first and second encoders 42 and 44 that measure the rotation angles of the first and second motors 41 and 43
- the position control unit 2 is a servo control unit. 3 while sampling with reference to position data (rotation angle measurement value) fed back from the first and second encoders 42 and 44 via the servo controllers 31 and 32, the target value is obtained.
- Servo control is performed by recognizing the deviation between the measured value and the measured value. *
- the position control unit 2 generates an operation command to the first and second servo controllers 31 and 32 and transmits a command to the servo controllers 31 and 32, and each servo controller 31.
- Position data storage means 22 that receives the fed back position data (feedback data) sent from the above in a predetermined cycle and stores the received position data (feedback data) together with the acquisition time.
- the position control unit 2 includes a position estimation unit 23 that estimates the position of the drive unit 4 at an arbitrary time based on the position data (feedback data) of the predetermined period received and stored by the position data recording unit 22. Yes.
- the position estimating means 23 includes a position data extracting means 24, a polynomial calculating means 25, and an estimated position calculating means 26, as shown in FIG.
- the position data extracting unit 24 extracts position data at a time near the time tk at which the position of the driving unit 4 is estimated.
- the number of position data to be extracted corresponds to the degree n of the polynomial to be interpolated, and at least the number of position data is (n + 1) for the degree n of the polynomial.
- the drive unit 4 is a second motor 43 and a second encoder 44 that rotate the turntable 71 of the aligner 7. *
- the polynomial calculation means 25 expresses the position f (t) of the notch 91 (second motor 43 of the aligner 7) of the wafer 9 at time t as an nth order polynomial as shown in Equation 3.
- the polynomial calculation means 25 is based on n + 1 pieces of position data y i obtained by extracting the coefficient a i of the polynomial shown in Equation 3 by the position data extraction means 24 and the acquisition time t i corresponding to each position data y i.
- a polynomial that represents the position f (t) of the notch 91 (second motor 43) is calculated by Equation 4.
- the estimated position calculating means 26 calculates the position f (tk) of the notch 91 (second motor 43) at the time tk at which position estimation is performed based on the polynomial calculated by the polynomial calculating means 25.
- the time tk at which the position of the notch 91 (second motor 43) is estimated can be set to an arbitrary time before the estimation is performed.
- the servo control unit 3 drives and controls the drive unit 4 based on the operation command from the command generation unit 21.
- the servo control unit 3 includes a first servo controller 31 that drives and controls a first motor 41 that drives an arm of the robot 6, and a second motor that drives a turntable 71 provided in the aligner 7. And a second servo controller 32 that controls the drive of 43.
- the drive unit 4 drives a predetermined operation based on a control signal from the servo control unit 3.
- the drive unit 4 is a first motor 41 and a first encoder 42, a second motor 43 and a second encoder 44, as shown in FIG.
- the first motor 41 is connected to the joint portion 61 of the base side arm 64 of the robot 6. Further, the first motor 41 is provided with a first encoder 42 on its rotating shaft, and detects position data based on rotation angle data of the first motor 41.
- the second motor 43 is connected to a turntable 71 provided on the aligner 7. The second motor 43 is provided with a second encoder 44 on its rotating shaft, and detects position data based on rotation angle data of the second motor 43.
- Reference numeral 5 denotes a communication line.
- various commands from the position control unit 2 to the serve control unit 3, the drive unit 4, and the like are sent by serial transmission. That is, in the present embodiment, the servo controller 31 constituted by the position controller 2 and the servo controller 3 is electrically connected (by wire or wirelessly). Next, the servo controller 31 is electrically connected to the servo controller 32 (by wire or wirelessly). Thereby, a command from the position controller 2 to the servo controller 32 is sent via the servo controller 31.
- the communication cycle 5 of the communication line 5 is 4 (msec).
- the first and second encoders 42 and 44 are electrically connected to the first and second motors 41 and 43 (by wire or wirelessly), respectively. Position data (rotation angle measurement values, etc.) measured by the first and second encoders 42 and 44 are transmitted via the servo controller 3 (servo controllers 31 and 32) connected via the communication line 5 to the position controller 2. Sent to. *
- the hand 9 of the robot 6 is inserted into the cassette 8 and the wafer 9 is pulled out.
- the base side arm 64 and the hand side arm 65 of the robot 6 are rotated to place the center of the wafer 9 on the turntable 71 of the aligner 7.
- the aligner 7 is in the state of the origin position (reference position) when the wafer 9 is placed.
- the origin position (reference position) is set to 0 ° when the second encoder 44 that detects the position of the second motor 43 is at this position (angle).
- the turntable 71 holds the outer periphery of the wafer 9 using a chuck 72, and rotates as it is after the holding is completed.
- the notch sensor 73 of the aligner 7 detects the notch 91 formed on the edge of the wafer 9 by the notch sensor 73 (photo sensor).
- the position where the notch 91 of the wafer 9 passes through the notch sensor 73 is stored in the position data storage means 22 and used for alignment of the wafer 3.
- the wafer 9 is supported with respect to the aligner 7 in a predetermined direction.
- the chuck 72 is separated, and the hand 66 lifts the wafer 9 of the aligner 7 and places it on the process apparatus.
- the wafer 9 is placed in a predetermined direction with respect to the process apparatus.
- the aligner 7 returns to the origin position (reference position) and stands by.
- FIG. 17 is a flowchart showing a flow of aligner drive control according to the embodiment of the present invention.
- FIG. 18 is a diagram for explaining an estimation calculation by polynomial interpolation obtained by the position estimation unit according to the embodiment of the present invention.
- the vertical axis represents the position (angle) of the second encoder 44
- 0 represents the origin position (reference position)
- the horizontal axis represents time.
- the start is a state in which the hand 66 of the robot 6 places the wafer 9 on the turntable 71 and the chuck 72 of the aligner 7 holds the outer periphery of the wafer 9.
- the second motor 43 and the second encoder 44 are stopped at the origin position (reference position).
- the second motor 43 is rotated by the control signal of the second servo controller 32 based on the operation command of the command generation means 21 of the position controller 2.
- the wafer 9 placed on the turntable 71 rotates.
- the notch sensor 73 installed in the aligner 7 detects the notch 91 of the wafer 9 (see FIG. 16)
- the detected time tk (see FIG. 18) is transmitted to the position control unit 2, and the time tk is stored as position data.
- the rotational position of the second motor 43 is detected by the second encoder 44, but is sampled at a cycle of 4 ms. For this reason, the position at the time tk detected by the notch sensor 73 does not coincide with the sampling cycle, so that the accurate position is not detected.
- the output signal of the second encoder 44 is transmitted to the position controller 2 as the rotational position, and the position data storage means 22 stores the time and position data. After about one rotation, the second motor 43 is stopped.
- the polynomial calculation means 25 represents the position f (t) of the wafer 9 at time t as an n-th order polynomial as shown in the above equation (3).
- the position of the second motor 43 is interpolated with a cubic polynomial so as to correspond to the acceleration or deceleration of the second motor 43.
- the position data extraction unit 24 extracts four pieces of position data so that the calculation load of the polynomial calculation unit 25 is reduced and the speed fluctuation of the second motor 43 can be accurately handled. Further, as the position data to be extracted, position data is extracted every two cycles before and after time tk. Note that the position data to be extracted may be any data near the time tk at which position estimation is performed, and the position data extraction unit 24 may extract arbitrary position data.
- the polynomial calculation means 25 is based on the four pieces of position data y i obtained by extracting the coefficient a i of the polynomial shown in Equation 3 by the position data extraction means 24 and the acquisition time t i corresponding to each position data y i.
- a cubic polynomial representing the rotational position f (t) of the second motor 43 is calculated (S3).
- a line passing through four positions (y0, y1, y2, y3) is a cubic polynomial.
- the estimated position calculation means 26 calculates the position f (tk) of the second motor 43 (wafer 9) at the time tk when the notch sensor 73 detects the notch 91 based on the cubic polynomial calculated by the polynomial calculation means 25. (S4). That is, the calculated position f (tk) is estimated as the position of the notch 91 of the wafer 9 placed on the turntable 71. *
- the robot control system 1 interpolates the relationship between the rotational position and the time with a third-order polynomial in order to cope with the acceleration or deceleration of the second motor 43 that drives the aligner 7, and thereby the notch sensor 73. Since the position of the wafer 9 (notch 91) at the time tk detected in (2) is estimated, the wafer 9 can be accurately aligned. In addition, in order to obtain a third-order polynomial, position data is extracted every two cycles before and after time tk, and the position is estimated using these position data. Yes.
- the position estimating means 23 can accurately estimate the position of the notch 91 of the wafer 9 even when the second motor 43 is accelerated or decelerated or when the load changes, and the turntable 71 on which the wafer 9 is placed is controlled at high speed. can do. That is, the robot control system 1 can improve the alignment accuracy and speed while keeping the cost low, even in the robot 6 that requires both position accuracy and high speed.
- the robot control system 1 has decided to obtain the position information at the communication cycle 4 (msec) of the communication line 5, so that the higher the speed of the second motor 43, the more accurate the position. Gets worse.
- the notch sensor 73 is input at a certain position in this way, the position becomes the same as the position acquired immediately before. Therefore, in order to know this sensor input position accurately, the sampling of the second encoder 44 is performed. It was necessary to make the cycle finer than before and estimate the position from the input time of the notch sensor 73. *
- the position of the second motor 43 (wafer 9) is regarded as a time polynomial so that the polynomial coefficient can be derived from the position data acquired at a period of 4 (msec) and the time.
- the position at an arbitrary time can be estimated.
- This estimation calculation by polynomial interpolation leads to an improvement in position resolution, and positioning can be performed with high accuracy even when the second motor 43 moves at high speed.
- the aligner 7 aligns the wafer 9.
- the aligner 7 is required to have an alignment accuracy of 0.02 degrees in a positioning time of only 3 seconds.
- the aligner 7 needs to rotate the wafer 9 at 100 (rpm).
- the maximum error exceeds 0.02 degrees.
- the aligner 7 uses a communication line 5 having a communication cycle of 4 (msec).
- the second motor 43 (wafer 9) was rotated at 100 (rpm), and an image processing camera was installed on the aligner 7, and repeated tests were performed.
- the aligner 7 can perform high-speed and high-speed operation by performing position estimation control using polynomial interpolation even in the configuration using the inexpensive communication line 5 having a communication cycle of 4 (msec). It can be determined that accurate positioning is possible, which can contribute to a reduction in throughput.
- the robot control system 1 can be configured by using inexpensive communication means and a CPU, which are general-purpose products, and can perform accurate position estimation by an inexpensive control system.
- the requirements for the robot control system 1 are low price and high speed and high accuracy.
- high speed and high accuracy are important performances.
- an inexpensive hardware configuration is used to reduce the price of the system, its performance (high speed and high accuracy) is limited.
- the robot control system 1 used in a liquid crystal or semiconductor manufacturing process uses a communication line 5 that is not very fast. For this reason, the robot control system 1 using the communication line 5 has a problem that the position resolution is limited due to the limitation of the communication cycle. *
- the relationship between the position of the notch 91 and the time is interpolated with a third-order polynomial, thereby reducing the performance limit due to inexpensive hardware used for system control. Performance (high speed and high accuracy) is improved by performing position estimation in software. *
- the first motor 41 and the second motor 43 are described for convenience of description, but the present invention is not limited to this.
- the position of the notch 91 of the wafer 9 mounted on the turntable 71 is estimated by estimating the position of the second motor 43 of the aligner 7, but the present invention is not limited to this.
- the position of the first motor 41 that drives the arm is estimated based on the position where the arm of the robot 6 shown in the present embodiment mounts the wafer 9 and mounts it on the turntable 71 or the position where it is mounted or taken out from the cassette 8. Also good.
- the time tk at which the position is estimated is set to an arbitrary time before the time when the estimation is performed, but the present invention is not limited to this.
- the position estimation unit 23 may include an extrapolation calculation unit that performs extrapolation calculation based on position data (feedback data), and the current or future position of the motor is estimated by the extrapolation calculation unit. May be. Accordingly, it is possible to accurately cope with load fluctuations and speed fluctuations of the motor, and it is also possible to estimate the current or future position of the controlled body by extrapolation calculation. *
- the first motor and the first encoder or the second motor and the second encoder constituting the drive unit do not require that they are physically one unit.
- an encoder is used as a “sensor” that detects position data based on the rotation angle of the motor.
- any other device / apparatus can be used as long as it can detect position data. Good. *
- a notch or the like notched in a V shape or U shape is formed on the outer peripheral portion of the wafer 9 as a mark indicating a normal position in the circumferential direction of the wafer 9. .
- an orientation flat cut out in a string shape may be used.
- the control system according to the present invention and the position estimation method used in the control system can reduce the calculation load of the estimator that estimates the position at an arbitrary time from the sampling position data, and reduce the load fluctuation and speed fluctuation of the motor. Is also useful as a device that can accurately handle this.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
以下、図面を参照しながら、本発明の第1の実施の形態を説明する。
図1は、本発明の第1の実施の形態にかかるモータ制御装置101およびモータ制御装置101に関連する構成を示すブロック図である。図2は、図1に示す位置指令出力部108から出力される位置指令の一例を示すグラフである。図3は、図1に示す位置制御部110から出力される速度指令の一例を示すグラフである。図4は、図1に示す減算部109から出力される位置偏差の一例、および、図1に示すモータ102の回転速度およびトルクの一例を示すグラフである。
図5は、本発明の実施の形態にかかるモータ制御装置101でモータ102を制御しているときに瞬低が発生した場合の速度指令に変換される位置偏差の変化、モータ102の回転速度およびトルクの変化を説明するためのグラフである。図6は、従来のモータ制御装置でモータ102を制御しているときに瞬低が発生した場合の速度指令に変換される位置偏差の変化、モータ102の回転速度およびトルクの変化を説明するためのグラフである。
以上説明したように、本形態では、電圧変動検出部115で瞬低の発生が検出されると、位置制御部110は、出力される速度指令を制限している。そのため、本形態では、瞬低が発生したときに、減算部111から出力される速度偏差の増加を抑制することが可能になり、速度制御部112から出力されるトルク指令の値の増加を抑制することが可能になる。したがって、本形態では、瞬低が発生しても、モータ102を適切に制御して、ロボットに所望の動作を行わせることが可能になるとともに、ワインドアップ現象の発生を防止して、ロボットが不安定な挙動を示すのを防止することが可能になる。その結果、本形態では、瞬低が発生しても、モータ102を停止させることなく、ロボットを適切に動作させることが可能になる。また、本形態では、瞬低が発生すると、位置制御部110が出力される速度指令を制限するため、瞬低発生後、短時間で速度偏差の増加を抑制することが可能になる。
上述した形態では、瞬低が発生すると、位置指令出力部108は、モータ102の回転速度が下がるように位置指令を変動させ、かつ、位置制御部110は、出力される速度指令を制限している。この他にもたとえば、瞬低が発生したときに、モータ102の回転速度が下がるような位置指令の変動のみを行っても良い。この場合には、瞬低が発生した場合の速度指令に変換される位置偏差、モータ102の回転速度およびモータ102のトルクは、たとえば、図7に示すグラフのように変化する。
上述した形態では、瞬低が発生すると、位置指令出力部108は、モータ102の回転速度が下がるように位置指令を変動させ、かつ、位置制御部110は、出力される速度指令を制限している。この他にもたとえば、瞬低が発生したときに、位置制御部110から出力される速度指令の制限のみを行っても良い。この場合には、瞬低が発生した場合の速度指令に変換される位置偏差、モータ102の回転速度およびモータ102のトルクは、たとえば、図8に示すグラフのように変化する。
上述した形態では、瞬低が終わって、電源103の電圧が基準値を超えるまで回復すると、位置制御部110は、速度指令の制限を解除し、位置指令出力部108は、位置指令を元の状態へ戻している。この他にもたとえば、電源103の電圧が基準値を超えるまで回復したときに、減算部109から出力される位置偏差が小さくなるように、位置指令出力部108が位置指令を遅延させた後に(すなわち、位置指令出力部108がモータ102の目標回転位置を所定量戻した指令位置を出力した後に)、位置制御部110が速度指令の制限を解除し、かつ、位置指令出力部108が遅延後の位置で位置指令を元の状態へ戻しても良い。
上述した形態では、瞬低が終わって、電源103の電圧が回復すると、位置制御部110は、速度指令の制限を解除し、位置指令出力部108は、位置指令を元の状態へ戻している。この他にもたとえば、電源103の電圧が回復した後も、速度指令の制限、および、モータ102の回転速度が下がるような位置指令の変動を継続するとともに、減算部109から出力される位置偏差がある程度小さくなったところで、位置制御部110が速度指令の制限を解除し、位置指令出力部108が位置指令を元の状態へ戻しても良い。すなわち、電源103の電圧が回復した後の所定時間経過後に、位置制御部110が速度指令の制限を解除し、位置指令出力部108が位置指令を元の状態へ戻しても良い。
上述した形態では、瞬低が終わって、電源103の電圧が回復すると、位置制御部110は、速度指令の制限を解除し、位置指令出力部108は、位置指令を元の状態へ戻している。この他にもたとえば、瞬低が終わって、電源103の電圧が回復したときに、まず、位置制御部110が速度指令の制限を解除し、その後、位置指令出力部108が位置指令を元の状態へ戻しても良い。
上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
以下、本発明を第2の実施するための最良の形態について、図面を参照しながら説明する。
図14は、本発明の実施形態に係るロボット制御システムのシステム構成を示すブロック図である。図15は、本発明の実施形態に係るロボット制御システムに適用が可能なロボットを示す図である。図16は、本発明の実施形態に係るアライナとチャックで保持されているウェハを示す平面図である。
図15に示すロボット6は、例えば、カセットに載置された半導体ウェハ(以下、「ウェハ」という)等のワークを成膜装置内に移動させる搬送ロボット(以下、「ロボット」という)である。また、本実施形態では、ウェハ9は被制御体となっている。
ウェハ9は移載されたカセット8に収納されている状態では、ランダムに配置されていることから、ロボット6によってカセット8からウェハ9を取り出し、ウェハ9に各種の加工を施す際には、ノッチ91の位置が正規の位置で位置決めされた状態で行なわれなければならない。そのため、カセット8から取り出されたウェハ9をウェハ9のアライナ7に搬入し、このウェハ9のアライナ7によってノッチの位置を正規の位置に一致させた後、ウェハ9を処理ステージにセットする方法が取られている。
ウェハ9には、図15及び図16に示すように、ウェハ9の円周方向における正規な位置を表す目印、位置決め部位として、V字状またはU字状に切り欠かれたノッチ91が外周部に形成されている。本実施形態では、ウェハ9に形成されたノッチ91を検出するノッチセンサ73は、図15において、ターンテーブル71の左側の位置に設けられている(図16では左上側)。このノッチセンサ73は、発光素子と受光素子とからなるフォトセンサであり、具体的には、検出光を照射するLEDと、その照射光の反射光を検知するフォトダイオードと、これらLED及びフォトダイオードに出入りする光線をウェハ9に対して案内する光路筒とを備えている。このため、ハンド66が保持したウェハ9の縁部に対しLEDの検出光が照射し、縁部により反射した場合は反射光がフォトダイオードに入射し、ノッチ91を通過して反射しない場合はフォトダイオードでの入射がなされない。これにより、ノッチ91の位置を検出する。
本発明に係るロボット制御システム1は、半導体製造工程において(半導体)ウェハ等をカセットから取り出して成膜装置に搬送するロボットの動作を制御する。図14は、本発明の実施形態に係るロボット制御システムのシステム構成を示すブロック図である。
位置制御部2は、第1、第2サーボ制御器31、32への動作指令を生成するとともに、各サーボ制御器31、32に動作指令を送信する指令生成手段21と、各サーボ制御器31等から送られてくるフィードバックされた位置データ(フィードバックデータ)を所定周期で受信し、受信した位置データ(フィードバックデータ)を取得時刻と共に記憶する位置データ記憶手段22とを有している。 さらに、位置制御部2は、位置データ記録手段22が受信し、記憶した所定周期の位置データ(フィードバックデータ)に基づいて任意の時刻における駆動部4の位置を推定する位置推定手段23を備えている。
本実施形態では、位置推定手段23は、図14に示すように、位置データ抽出手段24と、多項式算出手段25と、推定位置算出手段26と、を有している。
サーボ制御部3は、指令生成手段21からの動作指令を基に駆動部4を駆動制御する。本実施形態では、サーボ制御部3は、ロボット6のアームなどを駆動させる第1モータ41を駆動制御する第1サーボ制御器31と、アライナ7に設けられたターンテーブル71を駆動させる第2モータ43を駆動制御する第2サーボ制御器32と、を有している。
駆動部4は、サーボ制御部3からの制御信号に基づいて、所定動作を駆動する。本実施形態では、駆動部4は、図15に示すように、第1モータ41及び第1エンコーダ42、第2モータ43及び第2エンコーダ44である。第1モータ41はロボット6の基台側アーム64の関節部61に連結している。また、第1モータ41には、その回転軸に第1エンコーダ42が配置され、第1モータ41の回転角度データに基づく位置データを検出している。 また、第2モータ43は、アライナ7に設けられたターンテーブル71に連結されている。この第2モータ43には、その回転軸に第2エンコーダ44が配置され、第2モータ43の回転角度データに基づく位置データを検出している。
符号5は、通信回線である。本実施形態では、図14に示すように、位置制御部2から、サーブ制御部3、駆動部4等への各種指令は、シリアル伝送によって送られる。すなわち、本実施形態では、位置制御部2とサーボ制御部3とが構成するサーボ制御器31とが(有線又は無線によって)電気的に接続されている。次に、サーボ制御器31はサーボ制御器32とが(有線又は無線によって)電気的に接続されている。これにより、位置制御部2からサーボ制御器32への指令は、サーボ制御器31を介して送られることになる。このようなシリアル伝送とすることで、ロボット制御システム1において、信号の入出力が1系統で足りることから、配線の複雑化を防ぐことができるようになっている。本実施形態では、通信回線5の通信周期4(msec)となっている。
次に、ロボット6によりウェハ9をカセット8から取り出してアライナ7でウェハ9の向き・保持角度を合わせるいわゆるオリエンテーション作業を行い、オリエンテーション作業後、第2の位置であるプロセス装置(図示せず)に載置する動作を説明する。
次に、本発明の実施形態に係るロボット制御システムを使用した位置推定方法について、図17及び図18に示すアライナ7の駆動制御を用いて説明する。図17は、本発明の実施形態に係るアライナ駆動制御の流れを示すフローチャートである。図18は、本発明の実施形態に係る位置推定手段により求めた多項式補間による推定演算を説明する図である。図18において、縦軸は第2エンコーダ44の位置(角度)であり、0は原点位置(基準位置)を示し、横軸は時刻を示す。
さらに、抽出する位置データは、時刻tkの前後2周期ずつの位置データを抽出している。なお、抽出する位置データは、位置推定を行う時刻tkの近傍時刻のものであればよく、位置データ抽出手段24は、任意の位置データを抽出してもよい。
本実施形態では、ロボット制御システム1は、アライナ7を駆動する第2モータ43の加速又は減速に対応するために、回転位置と時刻との関係を3次の多項式で補間して、ノッチセンサ73で検出した時刻tkにおけるウェハ9(ノッチ91)の位置を推定したので、ウェハ9の位置合わせを精度よく行うことができる。
また、3次の多項式を求めるために、時刻tkの前後2周期ずつの位置データを抽出し、これら位置データを用いて、位置を推定したので、第2モータ43の速度のブレにも精度よく対応できる。
図14に示すロボット制御システム1では、説明の便宜上、第1モータ41及び第2モータ43で説明したが、これに限定されるものではない。
また、本実施形態では、アライナ7の第2モータ43の位置を推定することで、ターンテーブル71に搭載されたウェハ9のノッチ91の位置を推定しているがこれに限定されるものではない。例えば、本実施形態に示すロボット6のアームがウェハ9を搭載してターンテーブル71に搭載する位置、またはカセット8に搭載または取り出す位置を、アームを駆動する第1モータ41の位置を推定してもよい。
102 モータ
103 電源
104 エンコーダ(回転検出手段)
108 位置指令出力部(位置指令出力手段)
109 減算部(第1の減算手段)
110 位置制御部(位置制御手段)
111 減算部(第2の減算手段)
112 速度制御部(速度制御手段)
113 リミッタ
114 ドライバ(モータ駆動手段)
115 電圧変動検出部(電圧変動検出手段)
1 制御システム
2 位置制御部
21 指令生成手段
22 位置データ記憶手段
23 位置推定手段
24 位置データ抽出手段
25 多項式算出手段
26 推定位置算出手段
3 サーブ制御部
31 第1サーボ制御器
32 第2サーボ制御器
4 駆動部
41 第1モータ
42 第1エンコーダ(センサ)
43 第2モータ
44 第2エンコーダ(センサ)
5 通信回線
6 ロボット
61、62、63 関節部
64 基台側アーム部
65 ハンド側アーム部
66 ハンド
7 アライナ
71 ターンテーブル
72 チャック
73 ノッチセンサ(位置決めマークを検出するセンサ)
8 カセット
9 (半導体)ウェハ(ワーク)
91 ノッチ(位置決めマーク)
Claims (12)
- ロボットを動作させるモータを制御するモータ制御装置において、
前記モータを制御するための位置指令を出力する位置指令出力手段と、前記モータが所定角度回転するごとにパルス信号を発生させる回転検出手段からの出力に基づいて算出される回転位置と前記位置指令とに基づいて位置偏差を算出して出力する第1の減算手段と、前記位置偏差を速度指令に変換して出力する位置制御手段と、前記回転検出手段からの出力に基づいて算出される回転速度と前記速度指令とに基づいて速度偏差を算出して出力する第2の減算手段と、前記速度偏差をトルク指令に変換して出力する速度制御手段と、
前記トルク指令の値が所定の制限値以下である場合に前記トルク指令をそのまま出力するとともに前記トルク指令の値が前記制限値を超える場合に前記制限値をその値とする前記トルク指令を出力するリミッタと、前記リミッタからの前記トルク指令に基づいて前記モータを駆動するモータ駆動手段と、前記モータ駆動手段に電圧を印加する電源の電圧変動を検出する電圧変動検出手段とを備え、
前記電圧変動検出手段で、前記電源の電圧が所定の基準値以下になったことが検出されると、
前記モータの回転速度が下がるように前記位置指令出力手段が前記位置指令を変動させること、および、出力される前記速度指令を前記位置制御手段が制限すること、の少なくともいずれか一方が行われることを特徴とするモータ制御装置。 - 前記電圧変動検出手段で、前記電源の電圧が前記基準値以下となったことが検出されると、前記位置指令出力手段は、前記モータの回転速度が下がるように前記位置指令を変動させ、かつ、前記位置制御手段は、出力される前記速度指令を制限することを特徴とする請求項1記載のモータ制御装置。
- 前記電圧変動検出手段で、前記電源の電圧が前記基準値を超えるまで回復したことが検出されると、
前記第1の減算手段から出力される前記位置偏差が小さくなるように、前記位置指令出力手段が前記位置指令を遅延させた後に、
前記位置指令出力手段が遅延後の位置で前記位置指令を元の状態へ戻すこと、および、出力される前記速度指令の制限を前記位置制御手段が解除すること、の少なくともいずれか一方が行われることを特徴とする請求項2記載のモータ制御装置。 - 前記電圧変動検出手段で、前記電源の電圧が前記基準値以下になったことが検出されると、
前記モータの回転速度が下がるように前記位置指令出力手段が前記位置指令を変動させ、
前記電圧変動検出手段で、前記電源の電圧が前記基準値を超えるまで回復したことが検出されると、
前記第1の減算手段から出力される前記位置偏差が小さくなるように、前記位置指令出力手段が前記位置指令を遅延させた後に、前記位置指令出力手段が遅延後の位置で前記位置指令を元の状態へ戻すことを特徴とする請求項1記載のモータ制御装置。 - 前記電圧変動検出手段で、前記電源の電圧が前記基準値以下になったことが検出されると、
出力される前記速度指令を前記位置制御手段が制限し、
前記電圧変動検出手段で、前記電源の電圧が前記基準値を超えるまで回復したことが検出されると、
前記第1の減算手段から出力される前記位置偏差が小さくなるように、前記位置指令出力手段が前記位置指令を遅延させた後に、出力される前記速度指令の制限を前記位置制御手段が解除することを特徴とする請求項1記載のモータ制御装置。 - ロボットを動作させるモータを制御するためのモータ制御方法において、
前記モータを制御するための位置指令と前記モータの実測した回転位置とに基づいて位置偏差を算出し、前記位置偏差を速度指令に変換し、前記速度指令と前記モータの実測した回転速度とに基づいて速度偏差を算出し、前記速度偏差をトルク指令に変換し、かつ、
前記トルク指令の値が所定の制限値以下である場合には、そのままの前記トルク指令に基づいて前記モータを駆動し、前記トルク指令の値が前記制限値を超える場合には、前記制限値をその値とする前記トルク指令に基づいて前記モータを駆動するとともに、
前記モータの電源の電圧が所定の基準値以下になったことが検出されると、前記モータの回転速度が下がるように前記位置指令を変動させること、および、前記速度指令を制限すること、の少なくともいずれか一方を行うことを特徴とするモータ制御方法。 - 被制御体を駆動するモータと、前記モータの回転角度に基づく前記被制御体の位置データを所定の周期で検出するセンサと、前記モータをサーボ制御するサーボ制御部と、前記サーボ制御部に対して動作指令(位置指令)を発する位置制御部と、を有する制御システムであって、
前記位置制御部は、前記サーボ制御部の動作指令を生成する指令生成手段と、前記センサから取得した前記位置データを取得時刻と共に記憶する位置データ記憶手段と、所定周期の前記位置データに基づいて任意の時刻における前記被制御体の位置を推定する位置推定手段と、を備え、
前記位置推定手段は、時刻tにおける前記被制御体の位置f(t)を前記位置データに基づいて多項式で表し、多項式補間により任意の時刻における前記被制御体の位置を推定することを特徴とする制御システム。 - 前記位置推定手段は、3次の多項式を用いて任意の時刻における前記被制御体の位置を推定することを特徴とする請求項7又は8記載の制御システム。
- 前記位置推定手段は、前記被制御体の位置を推定する任意の時刻の近傍の前記位置データに基づいて該時刻における前記被制御体の位置を推定することを特徴とする請求項9記載の制御システム。
- 前記被制御体に設けられる位置合わせマークを検出するマークセンサを備え、前記位置推定手段は、前記マークセンサが前記位置合わせマークを検出した時刻における前記被制御体の位置を推定することを特徴とする請求項7から10記載の制御システム。
- 被制御体を駆動するモータと、前記モータの回転角度に基づく前記被制御体の位置データを所定の周期で検出するセンサと、前記モータをサーボ制御するサーボ制御部と、前記サーボ制御部に対して動作指令を発する位置制御部と、を有する制御システムにおいて、
前記位置制御部は、前記サーボ制御部の動作指令を生成するとともに、前記センサから取得した前記位置データを取得時刻と共に記憶し、時刻tにおける前記被制御体の位置f(t)を前記位置データに基づいて多項式で表し、多項式補間により任意の時刻における前記被制御体の位置を推定することを特徴とする位置推定方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/814,576 US10345827B2 (en) | 2010-08-08 | 2011-08-06 | Motor control device and motor control method, control system and location estimation method used in control system |
KR1020137003052A KR101421906B1 (ko) | 2010-08-08 | 2011-08-06 | 모터 제어 장치 및 모터 제어 방법, 제어 시스템 및 이 제어 시스템에 이용하는 위치 추정 방법 |
KR1020147013950A KR101483405B1 (ko) | 2010-08-08 | 2011-08-06 | 제어 시스템 및 이 제어 시스템에 이용하는 위치 추정 방법 |
CN201180039104.8A CN103081351B (zh) | 2010-08-08 | 2011-08-06 | 电动机控制装置及电动机控制方法 |
US14/965,364 US10095244B2 (en) | 2010-08-08 | 2015-12-10 | Motor control apparatus, motor control method, control system, and position estimation method to be used in control system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37171310P | 2010-08-08 | 2010-08-08 | |
US61/371,713 | 2010-08-08 | ||
JP2011-019448 | 2011-02-01 | ||
JP2011019448A JP5689704B2 (ja) | 2010-08-08 | 2011-02-01 | モータ制御装置およびモータ制御方法 |
JP2011-171488 | 2011-08-05 | ||
JP2011171488A JP5895289B2 (ja) | 2010-08-08 | 2011-08-05 | 制御システム及びこの制御システムに用いる位置推定方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/814,576 A-371-Of-International US10345827B2 (en) | 2010-08-08 | 2011-08-06 | Motor control device and motor control method, control system and location estimation method used in control system |
US14/965,364 Division US10095244B2 (en) | 2010-08-08 | 2015-12-10 | Motor control apparatus, motor control method, control system, and position estimation method to be used in control system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012020714A1 true WO2012020714A1 (ja) | 2012-02-16 |
Family
ID=45567681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067994 WO2012020714A1 (ja) | 2010-08-08 | 2011-08-06 | モータ制御装置およびモータ制御方法、制御システムおよびこの制御システムに用いる位置推定方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012020714A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015226331A (ja) * | 2014-05-26 | 2015-12-14 | 日本電産サンキョー株式会社 | モータ制御装置およびモータ制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03125912A (ja) * | 1989-10-11 | 1991-05-29 | Mitsutoyo Corp | 位置検出装置の出力タイミング補間方法 |
JPH0530776A (ja) * | 1991-07-22 | 1993-02-05 | Yaskawa Electric Corp | ガラス製造設備のレヤー駆動電動機用インバータ制御装置の運転方法 |
JPH09179632A (ja) * | 1995-12-23 | 1997-07-11 | Yaskawa Electric Corp | ロボットの柔軟制御装置 |
JP2001056711A (ja) * | 1999-08-19 | 2001-02-27 | Toshiba Mach Co Ltd | 位置制御装置 |
JP2008067525A (ja) * | 2006-09-08 | 2008-03-21 | Fuji Electric Systems Co Ltd | 電気推進装置の推進制御方法および装置 |
-
2011
- 2011-08-06 WO PCT/JP2011/067994 patent/WO2012020714A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03125912A (ja) * | 1989-10-11 | 1991-05-29 | Mitsutoyo Corp | 位置検出装置の出力タイミング補間方法 |
JPH0530776A (ja) * | 1991-07-22 | 1993-02-05 | Yaskawa Electric Corp | ガラス製造設備のレヤー駆動電動機用インバータ制御装置の運転方法 |
JPH09179632A (ja) * | 1995-12-23 | 1997-07-11 | Yaskawa Electric Corp | ロボットの柔軟制御装置 |
JP2001056711A (ja) * | 1999-08-19 | 2001-02-27 | Toshiba Mach Co Ltd | 位置制御装置 |
JP2008067525A (ja) * | 2006-09-08 | 2008-03-21 | Fuji Electric Systems Co Ltd | 電気推進装置の推進制御方法および装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015226331A (ja) * | 2014-05-26 | 2015-12-14 | 日本電産サンキョー株式会社 | モータ制御装置およびモータ制御方法 |
CN105186965A (zh) * | 2014-05-26 | 2015-12-23 | 日本电产三协株式会社 | 马达控制装置以及马达控制方法 |
CN105186965B (zh) * | 2014-05-26 | 2018-01-09 | 日本电产三协株式会社 | 马达控制装置以及马达控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101421906B1 (ko) | 모터 제어 장치 및 모터 제어 방법, 제어 시스템 및 이 제어 시스템에 이용하는 위치 추정 방법 | |
KR101688360B1 (ko) | 서보 제어 장치 | |
US20110208356A1 (en) | Robot having learning control function | |
JP6592143B2 (ja) | 電動機の制御装置 | |
US9933616B2 (en) | Mirror angular-positioning apparatus and processing apparatus | |
JPH1170490A (ja) | 産業用ロボットの衝突検出方法 | |
KR102325282B1 (ko) | 반도체 장치 제조 설비를 위한 로봇 제어 시스템 및 방법, 이를 위한 컴퓨터 프로그램 | |
WO2012020714A1 (ja) | モータ制御装置およびモータ制御方法、制御システムおよびこの制御システムに用いる位置推定方法 | |
JP2006293624A (ja) | 多軸制御装置 | |
JP2005279872A (ja) | ロボットの制御方法 | |
JP2018192535A (ja) | 部品嵌合方法及び部品嵌合装置 | |
JP2019025600A (ja) | 締め付け装置及び締め付け方法 | |
EP2869121B1 (en) | Computer-readable storage medium, generating method, generating apparatus, driving apparatus, processing apparatus, lithography apparatus, and method of manufacturing article | |
JP6923273B2 (ja) | はんだ付け装置 | |
JP6711536B2 (ja) | 外力検出方法 | |
JP2008072846A (ja) | モータ制御装置とその制御方法 | |
JP6912149B2 (ja) | 接着装置 | |
JP2007025888A (ja) | 制御装置及び制御方法 | |
JP2008092659A (ja) | 電動機制御装置とそのトルク定数補正方法 | |
JP5500995B2 (ja) | 力検出装置 | |
JP2019188517A (ja) | 曲面トレース装置 | |
JP2013240857A (ja) | 部品組み立て装置 | |
JPH0561554A (ja) | 位置決め制御装置 | |
JP2019115951A (ja) | 組立装置 | |
JPH09247972A (ja) | 停止位置制御方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180039104.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11816379 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137003052 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11816379 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13814576 Country of ref document: US |