WO2012020648A1 - 遠隔操作型アクチュエータ - Google Patents

遠隔操作型アクチュエータ Download PDF

Info

Publication number
WO2012020648A1
WO2012020648A1 PCT/JP2011/067238 JP2011067238W WO2012020648A1 WO 2012020648 A1 WO2012020648 A1 WO 2012020648A1 JP 2011067238 W JP2011067238 W JP 2011067238W WO 2012020648 A1 WO2012020648 A1 WO 2012020648A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
tip member
tip
attitude
drive source
Prior art date
Application number
PCT/JP2011/067238
Other languages
English (en)
French (fr)
Inventor
西尾幸宏
磯部浩
永野佳孝
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2012020648A1 publication Critical patent/WO2012020648A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1626Control means; Display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1631Special drive shafts, e.g. flexible shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1642Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for producing a curved bore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • B23B39/14General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines with special provision to enable the machine or the drilling or boring head to be moved into any desired position, e.g. with respect to immovable work
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length

Definitions

  • the present invention relates to a remote operation type actuator that can change the posture of a tool by remote operation and is used for medical use, machining, and the like.
  • the remote operation type actuator remotely controls a tool provided at the end of a long and narrow pipe portion having a linear shape or a curved shape.
  • the conventional remote control type actuator only controls the rotation of the tool by remote control, it has been difficult to process complicated shapes and parts that are difficult to see from the outside.
  • drilling it is required that not only a straight line but also a curved shape can be processed.
  • cutting process it is required that a deep part inside the groove can be processed.
  • an artificial joint insertion hole is formed in the medullary cavity at the center of the femur bone.
  • a medical actuator used for such a bone cutting process a tool is rotatably provided at the distal end of an elongated pipe portion, and by driving a rotational drive source such as a motor provided on the proximal end side of the pipe portion,
  • a rotational drive source such as a motor provided on the proximal end side of the pipe portion
  • the adhesion time after the operation becomes longer, so the gap is as narrow as possible. desirable. It is also important that the contact surface between the living bone and the artificial joint is smooth, and high accuracy is required for processing the hole for inserting the artificial joint.
  • the operating range of the tool is limited by the shape of the pipe part. It is difficult to process the artificial joint insertion hole so that the gap is narrow and the contact surface of both is smooth.
  • the bones of patients undergoing artificial joint replacement are often weakened due to aging or the like, and the bones themselves may be deformed. Therefore, it is more difficult to process the artificial joint insertion hole than is normally conceivable.
  • the present applicant tried to make it possible to remotely change the posture of the tool provided at the tip for the purpose of relatively easily and accurately processing the hole for inserting the artificial joint. .
  • the direction of the frictional resistance generated in the operating member changes depending on the operating direction of the operating member for remote operation, or the operating member is elastically deformed due to the frictional resistance, so that the operating member is repeated. It has been found that an error may occur in the operation amount of the operating member when operating.
  • a remote operation type actuator includes an elongated spindle guide portion, a tip member that is attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and rotatably supports a tool, A tool rotation drive source for rotating the tool; and a posture change drive source for operating the posture of the tip member.
  • the tip member rotatably supports a spindle holding the tool, and the spindle guide
  • the portion has a rotation shaft for transmitting the rotation of the tool rotation drive source to the spindle and guide holes penetrating both ends, and the tip is in contact with the tip member so that the tip member moves forward and backward.
  • a flexible posture operation member for changing the posture is inserted into the guide hole so as to freely advance and retract, and the posture operation member is advanced and retracted by the posture change drive source. Further, the attitude control means for controlling the attitude changing drive source, and when performing the control to move the attitude operating member from the reference position which is the operation start position to the target position, temporarily according to a predetermined rule. Posture control means for moving the posture operation member away from the target position is provided.
  • the rotation of the driving source for rotating the tool is transmitted to the spindle of the tip member via the rotating shaft, and the tool held on the spindle is rotated to cut bone or the like.
  • the posture of the tip member at this time is determined by the position of the tip of the posture operation member.
  • the posture change drive source When the posture operation member is moved back and forth by the posture change drive source, the position of the tip of the posture operation member changes, and the tip member changes its posture.
  • the posture changing drive source is provided at a position away from the tip member, and the posture change of the tip member is performed by remote control.
  • the posture operation member Since the posture operation member is inserted into the guide hole, the posture operation member does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member, and the posture change operation of the tip member Is done accurately. In addition, since the posture operation member is flexible, the posture changing operation is reliably performed even when the spindle guide portion is curved.
  • the posture operation member is inserted into the guide hole that penetrates both ends of the elongated spindle guide part, and is thin and long and has low rigidity. Therefore, the length in the advancing / retreating direction changes under the influence of external force. That is, the posture operation member can be regarded as a spring system.
  • the direction of the friction generated between the posture operation member and the inner peripheral surface of the guide hole is different depending on the movement of the posture operation member, that is, the movement toward the side where the acting force on the tip member increases and the movement toward the decrease side.
  • the attitude control means When the attitude control means performs control to move the attitude operation member from the reference position to the target position, if the attitude operation member is temporarily moved beyond the target position and then moved back to the target position, the attitude A factor that changes the length of the operation member can be eliminated. Thereby, the posture change control of the tip member can always be performed with a certain accuracy.
  • the posture operation member includes a rigid distal force transmission member disposed on the distal member side, a rigid proximal force transmission member disposed on the posture change drive source side, and these distal force transmission members. It may consist of a flexible and long intermediate force transmission member that transmits force between the member and the proximal force transmission member.
  • the distal force transmission member and the proximal force transmission member rigid, the acting force of the posture operation member can be reliably transmitted to the distal member, and the driving force of the posture change drive source can be reliably transmitted to the posture operation member. Can be communicated to.
  • the posture control member as a whole can be made flexible by making the intermediate force transmission member flexible and long.
  • the posture control member moves the posture operation member from the reference position to the target position on the side where the acting force on the tip member is reduced, the posture control member moves the target position beyond the target position and then returns to the target position.
  • the tip member changes its posture along the cylindrical or spherical guide surface of the tip member connecting portion, and the guide hole and the posture operation member inserted into the guide hole are Provided at a plurality of locations around the center of curvature of the guide surface, the posture changing drive source is provided individually for each posture operation member, and the tip by the balance of the acting force of the plurality of posture operation members on the tip member It is good also as what changes and maintains the attitude
  • the acting force is applied to the tip member by the plurality of posture operation members and the posture of the tip member is changed and maintained, the posture stability of the tip member can be improved.
  • position control means can be comprised as follows.
  • the posture control means is configured to move the posture operation members so that the posture operation members move in the same direction and complete the operation when moving the plurality of posture operation members from the reference position to the target positions. It is good to control. If each posture operation member moves in the same direction and completes the operation, the frictional relationship with other members becomes the same in each posture operation member. Can be almost the same.
  • the posture control means moves each posture operation member to a position beyond the target position and then returns to the target position.
  • the posture changing drive source may be controlled.
  • the posture control means controls the posture changing drive source so as to drive each posture operation member in synchronization. If each posture operation member is driven synchronously, the posture change of the tip member can be smoothly performed in a short time.
  • the attitude control means may be configured by combining the ideas of the attitude control means. For example, when the posture control means according to the first method moves the plurality of posture operation members from the reference position to the respective target positions, the posture control means moves to the side where the acting force on the tip member increases in the first step. The posture operation member is moved to a position before the target position, and the posture operation member for moving the posture operation member to the side where the acting force on the tip member decreases is moved to a position beyond the target position. The posture changing drive source is controlled so that the posture operation member to be moved to the side where the acting force on the member is increased and the posture control member to be decreased are moved to the respective target positions.
  • the posture control means when the plurality of posture operation members are moved from the reference position to the respective target positions, moves the force control force to the tip member in the first step.
  • the posture operation member is moved to a target position, and the posture operation member is moved to a position beyond the target position, and the action force on the tip member is moved in a second process.
  • the posture changing drive source is controlled so that the posture control member to be moved to the decreasing side is moved to the target position.
  • the posture control means moves the plurality of posture operation members to the side where the acting force on the tip member increases in the first step when moving the plurality of posture operation members from the reference position to the respective target positions.
  • the posture operation member is moved to a position before the target position, and the posture operation member is moved to a position where the acting force on the tip member is reduced.
  • the posture control member is moved to the second front position closer to the target position than the first front position and moved to the side where the acting force on the tip member decreases in the third process. Until controls the attitude altering drive source to move.
  • the posture control means when the plurality of posture operation members are moved from the reference position to the respective target positions, moves the force control force to the tip member in the first step.
  • the posture operation member is moved to a position beyond the target position, and the posture operation member for moving the posture operation member to the side where the acting force on the tip member decreases is moved to a position beyond the target position.
  • the posture changing drive source is controlled so that the posture operation member that moves to the side where the acting force on the head increases and the posture control member that moves to the side where the force acts on the posture are moved to their target positions.
  • FIG. D) is a view of the housing of the tip member as seen from the base end side. It is a longitudinal cross-sectional view of the front-end
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1. It is the schematic diagram which represented typically two different states of an attitude
  • (A), (B), (C), (D) is a figure which shows the change of the position of the attitude
  • (A), (B), (C) is a figure which shows the change of the position of the attitude
  • the remote control type actuator includes a tip member 2 for holding a rotary tool 1, an elongated spindle guide portion 3 having the tip member 2 attached to the tip so that the posture can be freely changed, and the spindle guide.
  • a drive unit housing 4a to which the base end of the unit 3 is coupled, and a controller 5 for controlling the tool rotation drive mechanism 4b and the attitude change drive mechanism 4c in the drive unit housing 4a are provided.
  • the drive unit housing 4a constitutes the drive unit 4 together with the built-in tool rotation drive mechanism 4b and posture changing drive mechanism 4c.
  • the tip member 2 has a spindle 13 rotatably supported by a pair of bearings 12 inside a substantially cylindrical housing 11.
  • the spindle 13 has a cylindrical shape with an open end, and the shank 1a of the tool 1 is non-rotatably fitted to a spline portion 13a having an inner diameter.
  • the retaining pin 14 prevents the shank 1a from coming off.
  • the tip member 2 is attached to the tip of the spindle guide portion 3 via the tip member connecting portion 15.
  • the tip member connecting portion 15 is a means for supporting the tip member 2 so that the posture thereof can be freely changed, and includes a spherical bearing.
  • the distal end member connecting portion 15 includes a guided portion 11 a that is a reduced inner diameter portion of the proximal end of the housing 11 and a hook-shaped portion of a retaining member 21 that is fixed to the distal end of the spindle guide portion 3. It is comprised with the guide part 21a.
  • the guide surfaces F1 and F2 that are in contact with each other 11a and 21a are spherical surfaces having a center of curvature O located on the center line CL1 of the spindle 13 and having a smaller diameter toward the proximal end side.
  • FIG. 2A shows a state in which the center line CL1 of the spindle 13 and the center line CL2 of the spindle guide 3 are the same line, and FIG. 3 shows that the center lines CL1 and CL2 intersect each other and have an angle ⁇ . Indicates the state.
  • the spindle guide portion 3 has a rotating shaft 22 that transmits the rotational force of the tool rotation drive source 41 (FIG. 1) in the drive portion housing 4a to the spindle 13.
  • the rotating shaft 22 is a wire and can be elastically deformed to some extent.
  • the material of the wire for example, metal, resin, glass fiber or the like is used.
  • the wire may be a single wire or a stranded wire.
  • the spindle 13 and the rotary shaft 22 are connected to each other via a joint 23 such as a universal joint so as to be able to transmit rotation.
  • the joint 23 includes a groove 13 a provided at the closed base end of the spindle 13 and a protrusion 22 a provided at the distal end of the rotating shaft 22 and engaged with the groove 13 a.
  • the center of the connecting portion between the groove 13a and the protrusion 22a is at the same position as the center of curvature O of the guide surfaces F1 and F2. You may comprise the rotating shaft 22 and the permite
  • the spindle guide portion 3 has an outer pipe 25 that is an outer shell of the spindle guide portion 3, and the rotating shaft 22 is located at the center of the outer pipe 25.
  • the rotating shaft 22 is rotatably supported by a plurality of rolling bearings 26 that are arranged apart from each other in the axial direction.
  • the rolling bearing 26 is a rotation support member that rotatably supports the rotation shaft 22 in the spindle guide 3.
  • spring elements 27A and 27B for generating a preload on the rolling bearing 26 are provided.
  • the spring elements 27A and 27B are, for example, compression coil springs.
  • the retaining member 21 is fixed to the pipe end portion 25a of the outer pipe 25 by a fixing pin 28, and rotatably supports the distal end portion of the rotary shaft 22 via a rolling bearing 29 at the distal end inner peripheral portion thereof.
  • the pipe end portion 25a may be a separate member from the outer pipe 25 and may be joined by welding or the like.
  • the posture operation member 31 is composed of a wire and a flexible and long intermediate force transmission member 31a, and tip force composed of a columnar rigid body respectively disposed at both ends thereof. It is comprised with the transmission member 31b and the base end force transmission member 31c.
  • the distal end of the distal force transmitting member 31b is spherical, and the spherical distal end is in contact with the bottom surface of the radial groove 11b formed on the proximal end surface 11 of the housing 11.
  • the groove 11b and the tip force transmission member 31b constitute an anti-rotation mechanism 37, and the tip of the tip force transmission member 31b inserted into the groove 11b hits the side surface of the groove 11b, so that the tip member 2 is against the spindle guide portion 3. This prevents the spindle 13 from rotating about the center line CL1.
  • the proximal end of the proximal force transmission member 31c is also spherical, and the spherical proximal end is in contact with a side surface of a lever 43b described later.
  • a plurality of lines are provided on the same pitch circle C as the guide pipe 30, separately from the guide pipe 30.
  • a reinforcing shaft 34 is arranged. These reinforcing shafts 34 are for ensuring the rigidity of the spindle guide portion 3. The intervals between the guide pipe 30 and the reinforcing shaft 34 are equal.
  • the guide pipe 30 and the reinforcing shaft 34 are in contact with the inner diameter surface of the outer pipe 25 and the outer diameter surface of the rolling bearing 26. Thereby, the outer diameter surface of the rolling bearing 26 is supported.
  • the tool rotation drive mechanism 4 b includes a tool rotation drive source 41.
  • the tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22.
  • the attitude control drive mechanism 4c includes three attitude control drive sources 42 (42U, 42L, 42R) respectively corresponding to the attitude changing members 31 (31U, 31L, 31R) (FIG. 2B).
  • the attitude control drive source 42 is, for example, an electric linear actuator, and converts the rotary motion of a built-in rotary motor (not shown) into a linear motion via a rotation / linear motion conversion mechanism 45 that also serves as a reverse input prevention mechanism. Converted and transmitted to the output rod 42a.
  • the output rod 42a moves in the left-right direction in FIG. 1, and the movement amount of the output rod 42a, that is, the movement amount of the attitude control drive source 42 is detected by the movement amount detector 46.
  • the rotation / linear motion conversion mechanism 45 a sliding screw type feed screw mechanism such as a triangular screw or a trapezoidal screw can be adopted.
  • the posture control drive source 42 has a reverse input preventing function for preventing the posture control driving source 31 from operating with the force from the posture operation member 31.
  • a ball screw, a rack / pinion mechanism, or the like may be used in addition to the sliding screw type. In that case, it is desirable to provide a reverse input prevention mechanism separately. In this case, a worm gear or the like can be employed as the reverse input prevention mechanism.
  • a reduction mechanism with a large reduction ratio can be employed.
  • the reverse input prevention mechanism is not necessarily provided in the posture control drive source 42, and is provided in any position of the posture control drive mechanism 4 c, that is, between the posture control drive source 42 and the posture operation member 31. Just do it.
  • the linear motion of the output rod 42a is transmitted to the posture operation member 31 through the force transmission mechanism 43.
  • the boost transmission mechanism 43 has a lever 43b that is rotatable around a support shaft 43a.
  • the force of the output rod 42a acts on an action point P1 of the lever 43b that is long from the support shaft 43a.
  • the force is applied to the posture operation member 31 at the force point P ⁇ b> 2 having a short distance, and the output of the posture control drive source 42 is increased and transmitted to the posture operation member 31.
  • a thin strain-generating portion 43ba is provided at an intermediate portion of the lever 43b, and strain sensors 47 for detecting strain generated in the strain-generating portion 43ba are attached to both sides of the strain-generating portion 43ba.
  • the rotary shaft 22 passes through an opening 44 formed in the lever 43b.
  • the controller 5 includes a control device 5A composed of a computer and a program executed thereon, and manually operated rotational speed setting means 50 and posture setting means 51 that are input to the computer.
  • the rotation speed setting means 50 sets the rotation speed of the spindle 13.
  • the posture setting means 51 sets a target posture of the tip member 2 with respect to the spindle guide portion 3.
  • the controller 5A in the controller 5 includes a tool rotation control means 52 for controlling the tool rotation drive source 41, a posture control means 53 for controlling each posture control drive source 42, and a tip by the computer and the program.
  • An external force estimating means 54 for estimating an external force acting on the member 2 is configured.
  • the tool rotation control means 52 outputs to the motor driver 55 according to the input from the rotation speed setting means 50, and drives the tool rotation drive source 41.
  • the posture control means 53 includes an initial posture holding control unit 53a and a posture change control unit 53b.
  • the initial posture holding control unit 53a and the posture change control unit 53b output the motor driver 56 in response to an input from the posture setting means 51 and drive the posture control drive source 42.
  • the initial posture holding control unit 53a controls each posture control drive source 42 so as to give each posture operating member 31 an initial posture holding force that enables the tip member 2 to be held in a predetermined initial posture.
  • the initial posture is, for example, a posture in which the center line CL1 of the spindle 13 and the center line CL2 of the spindle guide portion 3 are the same line.
  • the posture of the tip member 2 is determined by the balance between the external force acting on the tip member 2 and the thrust of each posture control drive source 42. Therefore, the tip member 2 is held in the initial posture by controlling each posture control drive source 42 so as to apply the initial posture holding force to the posture operation member 31.
  • the posture of the tip member 2 is maintained, that is, the rigidity of the tip member 2 is secured by the thrust of the posture control drive source 42.
  • the posture change control unit 53b controls each posture control drive source 42 so that the posture operation members 31 advance and retreat in cooperation with each other to change the posture of the tip member 2. For example, when one upper posture operation member 31U in FIG. 2B is advanced to the distal end side and the other two posture operation members 31L and 31R are moved backward, the upper posture operation member 31U causes the distal end member 2 to move. When the housing 11 is pushed, the distal end member 2 changes its posture along the guide surfaces F1 and F2 to the side where the distal end side faces downward in FIG. When each posture operation member 31 is moved back and forth, the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R, so that the tip member 2 moves to the side where the tip side is upward in FIG. The posture is changed along the guide surfaces F1 and F2.
  • the distal end member 2 is moved by the left posture operation member 31L.
  • the tip member 2 changes its posture along the guide surfaces F1 and F2 to the right, that is, the side facing the back side of the paper surface in FIG.
  • the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, so that the tip member 2 moves along the guide surfaces F1 and F2 toward the left side. Change the posture.
  • the posture of the tip member 2 is set to the amount of advancement / retraction of the posture operation member 31 with respect to the origin position with the position of the posture operation member 31 when the tip member 2 is in the initial posture as the origin position. Will be decided accordingly.
  • the posture change control unit 53b converts the target posture of the tip member 2 set by the posture setting means 51 into the advance / retreat amount of the posture operation member 31 corresponding thereto, and the posture is changed according to the converted advance / retreat amount.
  • the operation amount of the control drive source 42 is changed. As described above, if the operation amount of the attitude control drive source 42 is changed in accordance with the advance / retreat amount of the attitude operation member 31, the attitude change control of the tip member 2 is simplified and easy.
  • the intermediate force transmission member 31a of the posture operation member 31 is thin and long and flexible, the intermediate force transmission member 31a expands and contracts in the forward / backward direction by an external force. That is, the posture operation member 31 can be regarded as a spring system as shown in FIG.
  • the intermediate force transmission member 31a is represented by a rigid body 31aa and a pair of springs 31ab and 31ac.
  • Part A of FIG. 5 shows a state where the posture operation member 31 is stationary after moving to the base end side (right side). 5 shows a state where the posture operation member 31 is stationary after moving to the distal end side (left side).
  • the magnitudes of the driving forces for driving the posture operation member 31 are the same.
  • f1 is a friction force generated between the tip force transmission member 31b and the inner peripheral surface of the guide hole 30a
  • f2 is a friction force generated between the intermediate force transmission member 31a and the inner peripheral surface of the guide hole 30a
  • f3 is a frictional force generated between the proximal force transmission member 31c and the inner peripheral surface of the guide hole 30a
  • K is a spring constant of the springs 31ab and 31ac.
  • the posture of the tip member 2 is determined by the relative position of the tip of each posture operation member 31. As described above, if there is a difference ⁇ L in the amount of movement of the tip of the posture operation member 31 depending on the state of advancement / retraction of the posture operation member 31, the accuracy of the posture change control of the tip member 2 is affected. Therefore, in the posture change control unit 53b, as described later, when the posture operation member 31 is moved from the reference position to the target position for changing the posture of the tip member 2, the posture is temporarily changed according to the predetermined rule R. The operation member 31 is moved away from the target position.
  • the reference position is the operation start position, that is, the current position immediately before the operation start, and is not necessarily the origin position.
  • attitude change control of the tip member 2 can always be performed with constant accuracy.
  • the tip member 2 is bent upward about the X axis (FIG. 2B) to change from the initial posture state of FIG. 2A to the state of FIG. .
  • the predetermined rule R is controlled by any of the following methods.
  • FIG. 6A shows a state before the bending operation.
  • the posture of the distal end member 2 is the initial posture, and the base ends of the posture operation members 31U, 31L, 31R are at the reference position P0.
  • the posture operation member 31U is moved backward to the side where the acting force on the tip member 2 decreases, and the posture operation members 31L and 31R are moved forward to the side where the force acting on the tip member 2 is increased.
  • FIG. 6A shows a state before the bending operation.
  • the posture of the distal end member 2 is the initial posture
  • the base ends of the posture operation members 31U, 31L, 31R are at the reference position P0.
  • the posture operation member 31U is moved backward to the side where the acting force on the tip member 2 decreases, and the posture operation members 31L and 31R are moved forward to the side where the force acting on the tip member 2 is increased.
  • the posture operation member 31U is retracted to the position P1a beyond the target position P1, and the posture operation members 31L and 31R are set to the position P2a before the target position P2.
  • the positions P1a and P2a are obtained by testing or calculation.
  • the posture operation member 31U is advanced and stopped at the target position P1, and the posture operation members 31L and 31R are advanced and stopped at the target position P2. This completes the posture change.
  • 6A, 6B, and 6C are simplified views of the VI-CL2-VI cross section of FIG. 2B. The same applies to FIGS. 9A to 9C, FIGS. 12A to 12D, and FIGS. 15A to 15C.
  • FIG. 7 is a time chart showing changes in the base end positions of the posture operation members 31U, 31L, 31R.
  • FIG. 8 is a time chart showing the amount of displacement of the tip of the tip member 2.
  • h is a target displacement amount of the tip member 2.
  • t1 is the first process end time
  • t2 is the second process end time.
  • the displacement difference between the posture operation member 31U and the posture operation members 31L and 31R is temporarily increased by retracting the posture operation member 31U to the position P1a beyond the target position P1 in the first process. To do. Thereafter, in the second process, the posture operation members 31U, 31L, 31R move in the same direction to complete the operation.
  • the direction of the friction force acting on each posture operation member 31U, 31L, 31R becomes constant, and the friction force
  • the amount of expansion / contraction of each posture operation member 31U, 31L, 31R is also constant. Therefore, the posture change control of the tip member 2 can always be performed with constant accuracy.
  • the position P1a for retracting the posture operation member 31U is set in consideration of the decrease in the preload.
  • FIG. 9A shows a state before the bending operation.
  • the posture of the distal end member 2 is the initial posture, and the base ends of the posture operation members 31U, 31L, 31R are at the reference position P0.
  • the posture operation member 31U is moved backward to the side where the acting force on the tip member 2 decreases, and the posture operation members 31L and 31R are moved forward to the side where the force acting on the tip member 2 is increased.
  • the posture operation member 31U is retracted to the position P1a beyond the target position P1, and the posture operation members 31L and 31R are advanced to the target position P2.
  • the position P1a is obtained by a test or calculation.
  • FIG. 9C the posture operation member 31U is advanced and stopped at the target position P1 by the second process. This completes the posture change.
  • FIG. 10 is a time chart showing changes in the base end positions of the posture operation members 31U, 31L, 31R.
  • FIG. 11 is a time chart showing the amount of displacement of the tip of the tip member 2.
  • h is a target displacement amount of the tip member 2.
  • t1 is the first process end time
  • t2 is the second process end time.
  • This method is different from the first method in that the posture operation members 31L and 31R are moved to the target position P2 in the first process. Therefore, compared with the first method, it is possible to increase the displacement difference between the posture operation member 31U and the posture operation members 31L and 31R while alleviating the decrease in the preload of the tip member 2. Further, as in the first method, the direction of the frictional force acting on each posture operation member 31U, 31L, 31R can be made constant. Therefore, also by the second method, the posture change control of the tip member 2 can always be performed with a certain accuracy.
  • FIG. 12A shows a state before the bending operation.
  • the posture of the distal end member 2 is the initial posture, and the base ends of the posture operation members 31U, 31L, 31R are at the reference position P0.
  • the posture operation member 31U is moved backward to the side where the acting force on the tip member 2 decreases, and the posture operation members 31L and 31R are moved forward to the side where the force acting on the tip member 2 is increased.
  • the posture operation member 31U is retracted to the position P1a beyond the target position P1, and the posture operation members 31L and 31R are set to the position P2a before the target position P2.
  • the posture operation member 31U is advanced to the position P1b before the target position P1, and the posture operation members 31L and 31R are advanced to the target position. Stop at P2.
  • the positions P1a, P1b, and P2a are obtained by testing or calculation.
  • FIG. 12D only the posture operation member 31U is advanced and stopped at the target position P1 by the third process. This completes the posture change.
  • FIG. 13 is a time chart showing changes in the base end positions of the posture operation members 31U, 31L, 31R.
  • FIG. 14 is a time chart showing the amount of displacement of the tip of the tip member 2.
  • h is a target displacement amount of the tip member 2.
  • t1 is the first process end time
  • t2 is the second process end time
  • t3 is the third process end time.
  • This third technique is an intermediate control technique between the first technique and the second technique, and its actions and effects are also intermediate. Also in this case, since the direction of the frictional force acting on each posture operation member 31U, 31L, 31R can be made constant, the posture change control of the tip member 2 can always be performed with constant accuracy.
  • FIG. 15A shows a state before the bending operation.
  • the posture of the distal end member 2 is the initial posture, and the base ends of the posture operation members 31U, 31L, 31R are at the reference position P0.
  • the posture operation member 31U is moved backward to the side where the acting force on the tip member 2 decreases, and the posture operation members 31L and 31R are moved forward to the side where the force acting on the tip member 2 is increased.
  • the posture operation member 31U is retracted to the position P1a beyond the target position P1, and the posture operation members 31L and 31R are advanced at the position P2b beyond the target position P2.
  • the positions P1a and P2b are obtained by testing or calculation.
  • the posture operation member 31U is advanced and stopped at the target position P1, and the posture operation members 31L and 31R are moved backward and stopped at the target position P2. This completes the posture change.
  • FIG. 16 is a time chart showing changes in the base end positions of the posture operation members 31U, 31L, and 31R.
  • FIG. 17 is a time chart showing the amount of displacement of the tip of the tip member 2.
  • h is a target displacement amount of the tip member 2.
  • t1 is the first process end time
  • t2 is the second process end time.
  • the displacement amount of the tip position remains unchanged from t1 to t2, but remains unchanged, but if the settings of P1a and P2b are not appropriate, the displacement amount may increase or increase with time. is there.
  • This method differs from the second method in that the posture operation members 31L and 31R are advanced to a position P2b beyond the target position P2 in the first process. Therefore, compared with the second method, the displacement difference between the posture operation member 31U and the posture operation members 31L and 31R can be increased while suppressing the amount of attenuation of the preload of the tip member 2, and the angle of the tip member 2 can be increased. The amount of bending can be increased. Also in this case, since the direction of the frictional force acting on each posture operation member 31U, 31L, 31R can be made constant, the posture change control of the tip member 2 can always be performed with constant accuracy.
  • the position P2b for moving the posture operation members 31L and 31R forward is set in consideration of the temporary increase of the tip member 2.
  • the angle ⁇ is the angle of the tip member 2 when the amount of displacement of the tip of the tip member 2 is h.
  • the movement amount of the posture control drive source 42 detected by the movement amount detector 46 is fed back to the posture change control unit 53b to perform control.
  • the motion amount detector 46 is provided, the motion amount of the posture control drive source 42 can be accurately detected, and the posture change control is accurately performed by feeding back the output to the posture change control unit 53b. It can be carried out.
  • the external force estimating means 54 has relation setting means (not shown) in which the relation between the external force acting on the tip member 2 and the output signal of the strain sensor 47 is set by an arithmetic expression or a table. The external force acting on the tip member 2 is estimated from the signal obtained using the relationship setting means.
  • each posture control drive source 42 is controlled by the initial posture holding control unit 53a, and an initial posture holding force is applied to each posture operating member 31. Thereby, the balance of the force acting on the tip member 2 is maintained, and the posture of the tip member 2 is maintained.
  • the posture change control unit 53b controls the posture change drive source 42 to change the posture of the tip member 2. Any one of the first to fourth methods is applied to the posture change control of the tip member 2, but any method causes a difference in the amount of movement of the tip of each posture operation member 31. Therefore, the posture change control of the tip member 2 can always be performed with a certain accuracy.
  • the posture of the tip member 2 is detected by the posture detection means 46 from the detection value of the movement amount detector 45. Therefore, the posture of the tip member 2 can be appropriately controlled by remote operation.
  • the force is transmitted to the lever 43b of the force increase transmission mechanism 43 via the posture operation member 31, and distortion is generated in the strain generating portion 43ba which is a weak portion of the lever 43b. Arise.
  • This distortion is detected by the distortion sensor 47, and the output signal is transmitted to the external force estimation means 54.
  • the external force estimating means 54 estimates the external force acting on the tip member 2 from the output signal of the strain sensor 47.
  • a rotation preventing mechanism 37 is provided to prevent the tip member 2 from rotating around the center line CL1 of the tip member 2 with respect to the spindle guide portion 3. Even when the tip member 2 holding the tool 1 becomes uncontrollable due to a failure of the posture operation drive mechanism 4c for controlling the advance / retreat of the posture operation member 31 or the posture control means 53, the tip member 2 moves around the center line CL1. It is possible to prevent the periphery of the processing portion from being rotated and the tip member 2 itself from being damaged.
  • the posture operation member 31 Since the posture operation member 31 is inserted through the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2, and the tip member 2 posture change operation is performed accurately. Further, since the posture operation wire 31a (FIG. 2A) constituting the posture operation member 31 is flexible, the posture changing operation of the tip member 2 is reliably performed even when the spindle guide portion 3 has a curved portion. Is called. Further, since the center of the connecting portion between the spindle 13 and the rotary shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2 (FIG. 2A), the position of the tip member 2 is changed with respect to the rotary shaft 22. Thus, no force to push and pull is applied, and the posture of the tip member 2 can be changed smoothly.
  • the posture operation wire 31a (FIG. 2A) constituting the posture operation member 31 is flexible, the posture changing operation of the tip member 2 is reliably performed even when the spind
  • This remote control type actuator is used for, for example, cutting a bone marrow cavity portion in an artificial joint replacement operation, and all or a part of the distal end member 2 is inserted into a patient's body at the time of surgery. For this reason, if the posture of the tip member 2 can be changed by remote control as described above, the bone can be processed while the tool 1 is always held in an appropriate posture, and the artificial joint insertion hole is finished with high accuracy. Can do.
  • the elongated spindle guide portion 3 needs to be provided with the rotating shaft 22 and the posture operation member 31 in a protected state.
  • the rotating shaft 22 is provided at the center of the outer pipe 25, and the outer pipe 25, the rotating shaft 22, Since the guide pipe 30 accommodating the posture operation member 31 and the reinforcing shaft 34 are arranged side by side in the circumferential direction, the rotary shaft 22 and the posture operation member 31 are protected and the inside is hollowed out. It is possible to secure rigidity while reducing the weight. Also, the overall balance is good.
  • the outer diameter surface of the rolling bearing 26 that supports the rotating shaft 22 is supported by the guide pipe 30 and the reinforcing shaft 34, the outer diameter surface of the rolling bearing 26 can be supported without using extra members. Moreover, since the preload is applied to the rolling bearing 26 by the spring elements 27A and 27B, the rotating shaft 22 made of a wire can be rotated at a high speed. Therefore, machining can be performed by rotating the spindle 13 at a high speed, the machining finish is good, and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are provided between the adjacent rolling bearings 26, the spring elements 27A and 27B can be provided without increasing the diameter of the spindle guide portion 3.
  • the guide pipe 30 and the posture operation member 31 are provided at three locations in the circumferential direction.
  • the guide pipe 30 and the posture operation member are provided at two locations in the outer pipe 25 that are 180 degrees in phase with each other. It is good also as a structure which provided 31 (not shown). In that case, the posture of the tip member 2 can be changed only around one axis.
  • the spindle guide portion 3 has a linear shape.
  • the posture operation member 31 is flexible, and the posture of the tip member 2 can be changed even when the spindle guide portion 3 is curved. Since the operation is reliably performed, the spindle guide portion 3 may be curved in the initial state. Alternatively, only a part of the spindle guide portion 3 may be curved. If the spindle guide portion 3 is curved, it may be possible to insert the distal end member 2 to the back of the bone, which is difficult to reach in the straight shape, so that the hole for artificial joint insertion can be accurately processed in artificial joint replacement surgery. It becomes possible to finish.
  • the outer pipe 25, the guide pipe 30, and the reinforcing shaft 34 need to have a curved shape.
  • the rotating shaft 22 is preferably made of a material that is easily elastically deformed. For example, a shape memory alloy is suitable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Drilling And Boring (AREA)
  • Surgical Instruments (AREA)

Abstract

 細長いパイプ部の先端に設けられた工具の姿勢を、遠隔操作で精度良く変更することができる遠隔操作型アクチュエータを提供する。細長形状のスピンドルガイド部(3)と、その先端に姿勢変更自在に取付けられて工具(1)を回転自在に支持する先端部材(2)とを備える。スピンドルガイド部(3)は、スピンドル(13)に回転を伝達する回転軸(22)と、両端に貫通したガイド孔(30a)とを内部に有する。ガイド孔(30a)内に進退自在に挿通した姿勢操作部材(31)を姿勢変更用駆動源(42)で進退動作させて、先端部材(2)を姿勢変更させる。姿勢変更用駆動源(42)を制御する姿勢制御手段(53)は、姿勢操作部材(31)を動作開始位置である基準位置(P0)から目標位置(P1,P2)へ移動させる制御を行うとき、一時的に姿勢操作部材(31)を目標位置(P1,P2)から遠ざかる側に移動させる過程を含む。

Description

遠隔操作型アクチュエータ 関連出願
 本出願は、2010年8月9日出願の特願2010-178406の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、工具の姿勢を遠隔操作で変更可能で、医療用、機械加工等の用途で用いられる遠隔操作型アクチュエータに関する。
 医療用として骨の加工に用いられたり、機械加工用としてドリル加工や切削加工に用いられたりする遠隔操作型アクチュエータがある。遠隔操作型アクチュエータは、直線形状や湾曲形状をした細長いパイプ部の先端に設けた工具を遠隔操作で制御する。ただし、従来の遠隔操作型アクチュエータは、工具の回転のみを遠隔操作で制御するだけであったため、複雑な形状の加工や外からは見えにくい箇所の加工が難しかった。また、ドリル加工では、直線だけではなく、湾曲状の加工が可能なことが求められる。さらに、切削加工では、溝内部の奥まった箇所の加工が可能なことが求められる。以下、医療用を例にとって、遠隔操作型アクチュエータの従来技術と課題について説明する。
 整形外科分野において、骨の老化等によって擦り減って使えなくなった関節を新しく人工のものに取り替える人工関節置換手術がある。この手術では、患者の生体骨を人工関節が挿入できるように加工する必要があるが、その加工には、術後の生体骨と人工関節との接着強度を高めるために、人工関節の形状に合わせて精度良く加工することが要求される。
 例えば、股関節の人工関節置換手術では、大腿骨の骨の中心にある髄腔部に人工関節挿入用の穴を形成する。人工関節と骨との接触強度を保つには両者の接触面積を大きくとる必要があり、人工関節挿入用の穴は、骨の奥まで延びた細長い形状に加工される。このような骨の切削加工に用いられる医療用アクチュエータとして、細長いパイプ部の先端に工具を回転自在に設け、パイプ部の基端側に設けたモータ等の回転駆動源の駆動により、パイプ部の内部に配した回転軸を介して工具を回転させる構成のものがある(例えば特許文献1)。この種の医療用アクチュエータは、外部に露出した回転部分は先端の工具のみであるため、工具を骨の奥まで挿入することができる。
 人工関節置換手術では、皮膚切開や筋肉の切断を伴う。すなわち、人体に傷を付けなければならない。その傷を最小限に抑えるためには、前記パイプ部は真っ直ぐでなく、適度に湾曲している方が良い場合がある。このような状況に対応するためのものとして、次のような従来技術がある。例えば、特許文献2は、パイプ部の中間部を2重に湾曲させて、パイプ部の先端側の軸心位置と基端側の軸心位置とをずらせたものである。このようにパイプ部の軸心位置が先端側と軸心側とでずれているものは、他にも知られている。また、特許文献3は、パイプ部を180度回転させたものである。
特開2007-301149号公報 米国特許第4,466,429号明細書 米国特許第4,265,231号明細書 特開2001-17446号公報
 生体骨の人工関節挿入用穴に人工関節を嵌め込んだ状態で、生体骨と人工関節との間に広い隙間があると、術後の接着時間が長くなるため、前記隙間はなるべく狭いのが望ましい。また、生体骨と人工関節の接触面が平滑であることも重要であり、人工関節挿入用穴の加工には高い精度が要求される。しかし、パイプ部がどのような形状であろうとも、工具の動作範囲はパイプ部の形状の制約を受けるため、皮膚切開や筋肉の切断をできるだけ小さくしながら、生体骨と人工関節との間の隙間を狭くかつ両者の接触面が平滑になるように人工関節挿入用穴を加工するのは難しい。
 一般に、人工関節置換手術が行われる患者の骨は、老化等により強度が弱くなっていることが多く、骨そのものが変形している場合もある。したがって、通常考えられる以上に、人工関節挿入用穴の加工は難しい。
 そこで、本出願人は、人工関節挿入用穴の加工を比較的容易にかつ精度良く行えるようにすることを目的として、先端に設けた工具の姿勢を遠隔操作で変更可能とすることを試みた。工具の姿勢が変更可能であれば、パイプ部の形状に関係なく、工具を適正な姿勢に保持することができるからである。しかし、試作品で試験を行った結果、遠隔操作用の操作部材の動作方向によって操作部材に生じる摩擦抵抗の向きが変わることや、摩擦抵抗で操作部材が弾性変形することにより、操作部材を繰り返し動作する場合に操作部材の動作量に誤差が生じる場合のあることが分かった。
 なお、細長いパイプ部を有しない遠隔操作型アクチュエータでは、手で握る部分に対して工具が設けられた部分が姿勢変更可能なものがある(例えば特許文献4)が、遠隔操作で工具の姿勢を変更させるものは提案されていない。
 この発明の目的は、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で精度良く変更することができ、特に遠隔操作用の操作部材を繰り返し動作させたときに摩擦抵抗の方向の違いに起因する誤差を低減できる遠隔操作型アクチュエータを提供することである。
 この発明にかかる遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられて工具を回転自在に支持する先端部材と、前記工具を回転させる工具回転用駆動源と、前記先端部材の姿勢を操作する姿勢変更用駆動源とを備え、前記先端部材は、前記工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる可撓性の姿勢操作部材を前記ガイド孔内に進退自在に挿通し、この姿勢操作部材を前記姿勢変更用駆動源で進退動作させる。さらに、前記姿勢変更用駆動源を制御する姿勢制御手段であって、前記姿勢操作部材を動作開始位置である基準位置から目標位置へ移動させる制御を行うとき、定められた規則に従い、一時的に姿勢操作部材を目標位置から遠ざかる側に移動させる姿勢制御手段を備えている。
 この構成によれば、工具回転用駆動源の回転が回転軸を介して先端部材のスピンドルに伝達され、このスピンドルに保持された工具が回転することにより、骨等の切削が行われる。このときの先端部材の姿勢は、姿勢操作部材の先端の位置によって決定される。姿勢変更用駆動源により姿勢操作部材を進退させると、この姿勢操作部材の先端の位置が変わり、先端部材が姿勢変更する。姿勢変更用駆動源は、先端部材から離れた位置に設けられており、上記先端部材の姿勢変更は遠隔操作で行われる。姿勢操作部材はガイド孔に挿通されているため、姿勢操作部材が長手方向と交差する方向に位置ずれすることがなく、常に先端部材に対し適正に作用することができ、先端部材の姿勢変更動作が正確に行われる。また、姿勢操作部材は可撓性であるため、スピンドルガイド部が湾曲した状態でも姿勢変更動作が確実に行われる。
 姿勢操作部材は、細長形状のスピンドルガイド部の両端に貫通したガイド孔に挿通されており、細くて長く剛性が低いため、外力の影響を受けて進退方向の長さが変わる。つまり、姿勢操作部材はばね系であると見なせる。姿勢操作部材の進退、すなわち先端部材に対する作用力が増大する側への移動と減少する側への移動とで、姿勢操作部材とガイド孔の内周面との間で生じる摩擦の向きが異なる。また、姿勢操作部材を先端部材に対する作用力が増大する側へ移動させる場合は、姿勢操作部材と先端部材との接触部の摩擦が大きいが、作用力が減少する側へ移動させる場合は、姿勢操作部材と先端部材との接触部の摩擦はほとんど生じない。これらのことから、先端部材の姿勢変更時、姿勢変更用駆動源により姿勢操作部材に付与する駆動力が一定であっても、姿勢操作部材の進退の状況が異なれば、姿勢操作部材の長さが変わり、姿勢操作部材の先端の位置が一定しない。これは、先端部材の姿勢変更制御の精度に影響する。姿勢制御手段が、姿勢操作部材を基準位置から目標位置へ移動させる制御を行うとき、一時的に姿勢操作部材を目標位置を越えて移動させ、その後戻るように目標位置へ移動させると、上記姿勢操作部材の長さが変わる要因を排除することができる。それにより、常に一定の精度で先端部材の姿勢変更制御を行える。
 この発明において、前記姿勢操作部材は、前記先端部材側に配置された剛体の先端力伝達部材と、前記姿勢変更用駆動源側に配置された剛体の基端力伝達部材と、これら先端力伝達部材と基端力伝達部材間で力を伝達する可撓性で長尺な中間力伝達部材とでなっていても良い。先端力伝達部材および基端力伝達部材を剛体とすることで、姿勢操作部材の作用力を先端部材に確実に伝達することができ、かつ姿勢変更用駆動源の駆動力を姿勢操作部材に確実に伝達することができる。また、中間力伝達部材を可撓性で長尺とすることで、姿勢操作部材全体を可撓性とすることができる。
 この発明において、前記姿勢制御手段は、前記姿勢操作部材を基準位置から前記先端部材に対する作用力が減少する側の目標位置へ移動させるとき、目標位置を越えて移動させた後、目標位置まで戻すように前記姿勢変更用駆動源を制御するのが良い。姿勢操作部材を先端部材に対する作用力が増大する側へ移動させる場合と減少する側へ移動させる場合とを比較すると、他の部材との摩擦の関係で、減少する側へ移動させる場合の方が、姿勢操作部材の先端の移動量が大きい。すなわち、作用力が増大する側へ移動させる場合と減少する側へ移動させる場合とで、姿勢操作部材の先端の移動量に差が生じる。姿勢操作部材を基準位置から先端部材に対する作用力が減少する側の目標位置へ移動させるとき、目標位置を越えて移動させた後、目標位置まで戻すようにすれば、上記移動量の差を解消して、姿勢操作部材に付与する駆動力が一定である場合には姿勢操作部材の先端の移動量を一定にできる。それにより、先端部材の姿勢変更制御の精度が向上する。
 この発明において、前記先端部材は前記先端部材連結部の円筒状または球面状の案内面に沿って姿勢変更するものであり、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を、前記案内面の曲率中心の周りの複数箇所に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記複数の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させるものとしても良い。この構成であると、複数の姿勢操作部材で先端部材に作用力を付与して、先端部材の姿勢を変更、維持させるため、先端部材の姿勢安定性を高めることができる。このように複数の姿勢操作部材で先端部材を姿勢変更させる場合、前記姿勢制御手段を以下のように構成することができる。
 すなわち、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、各姿勢操作部材が同じ方向に移動して動作を完了するように前記姿勢変更用駆動源を制御するのが良い。各姿勢操作部材が同じ方向に移動して動作を完了すれば、他の部材との摩擦の関係が各姿勢操作部材で同じになるため、動作完了時点における各姿勢操作部材の先端の移動量をほぼ同じにできる。
 また、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、各姿勢操作部材につき、目標位置を越えた位置まで移動させた後、目標位置まで戻すように前記姿勢変更用駆動源を制御しても良い。目標位置を越えた位置を適正に設定することにより、互いに異なる方向に移動する複数の姿勢操作部材について、動作完了時点における各姿勢操作部材の先端の移動量をほぼ同じにできる。
 また、前記姿勢制御手段は、各姿勢操作部材を同期して駆動させるように前記姿勢変更用駆動源を制御するのが良い。各姿勢操作部材を同期して駆動すれば、先端部材の姿勢変更を短時間で円滑に行える。
 上記各姿勢制御手段の思想を組み合わせて、姿勢制御手段を構成しても良い。例えば、第1の手法に係る姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置の手前の位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を、目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材および減少する姿勢制御部材を、それぞれの目標位置まで移動させるように前記姿勢変更用駆動源を制御する。
 また、第2の手法に係る姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が減少する側に移動させる姿勢制御部材を目標位置まで移動させるように前記姿勢変更用駆動源を制御する。
 また、第3の手法に係る姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置の手前の第1の手前位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢制御部材を、目標位置の手前で前記第1の手前位置よりも目標位置に近い第2の手前位置まで移動させ、第3過程で、前記先端部材に対する作用力が減少する側に移動させる姿勢制御部材を目標位置まで移動させるように前記姿勢変更用駆動源を制御する。
 また、第4の手法に係る姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材および減少する側に移動させる姿勢制御部材を、それぞれの目標位置まで移動させるように前記姿勢変更用駆動源を制御する。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態にかかる遠隔操作型アクチュエータの全体構成を示す図である。 (A)は同遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の縦断面図、(B)はそのIIB-IIB断面図、(C)は先端部材と回転軸との連結構造を示す図、(D)は先端部材のハウジングを基端側から見た図である。 図2(A)とは異なる状態を示す先端部材およびスピンドルガイド部の縦断面図である。 図1のIV-IV断面図である。 姿勢操作部材の異なる2つ状態を模式化して表した模式図である。 (A),(B),(C)は姿勢変更制御の第1の手法による先端部材の姿勢変更における姿勢操作部材の位置の変化を段階的に示す図である。 姿勢変更制御の第1の手法による先端部材の姿勢変更時における各姿勢操作部材の基端位置の変化を示すタイムチャートである。 姿勢変更制御の第1の手法による先端部材の姿勢変更時における先端部材の変位量の変化を示すタイムチャートである。 (A),(B),(C)は姿勢変更制御の第2の手法による先端部材の姿勢変更における姿勢操作部材の位置の変化を段階的に示す図である。 姿勢変更制御の第2の手法による先端部材の姿勢変更時における各姿勢操作部材の基端位置の変化を示すタイムチャートである。 姿勢変更制御の第2の手法による先端部材の姿勢変更時における先端部材の変位量の変化を示すタイムチャートである。 (A),(B),(C),(D)は姿勢変更制御の第3の手法による先端部材の姿勢変更における姿勢操作部材の位置の変化を段階的に示す図である。 姿勢変更制御の第3の手法による先端部材の姿勢変更時における各姿勢操作部材の基端位置の変化を示すタイムチャートである。 姿勢変更制御の第3の手法による先端部材の姿勢変更時における先端部材の変位量の変化を示すタイムチャートである。 (A),(B),(C)は姿勢変更制御の第4の手法による先端部材の姿勢変更における姿勢操作部材の位置の変化を段階的に示す図である。 姿勢変更制御の第4の手法による先端部材の姿勢変更時における各姿勢操作部材の基端位置の変化を示すタイムチャートである。 姿勢変更制御の第4の手法による先端部材の姿勢変更時における先端部材の変位量の変化を示すタイムチャートである。
 この発明の一実施形態を図1~図4と共に説明する。図1において、この遠隔操作型アクチュエータは、回転式の工具1を保持する先端部材2と、この先端部材2が先端に姿勢変更自在に取付けられた細長形状のスピンドルガイド部3と、このスピンドルガイド部3の基端が結合された駆動部ハウジング4aと、この駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを制御するコントローラ5とを備える。駆動部ハウジング4aは、内蔵の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cと共に駆動部4を構成する。
 図2(A)~(D)および図3に示すように、先端部材2は、略円筒状のハウジング11の内部に、一対の軸受12によりスピンドル13が回転自在に支持されている。スピンドル13は、先端側が開口した筒状で、内径のスプライン部13aに工具1のシャンク1aが回転不能の嵌合し、抜け止めピン14によりシャンク1aの抜け止めがなされている。この先端部材2は、先端部材連結部15を介してスピンドルガイド部3の先端に取付けられる。先端部材連結部15は、先端部材2を姿勢変更自在に支持する手段であり、球面軸受からなる。
 具体的には、先端部材連結部15は、ハウジング11の基端の内径縮径部からなる被案内部11aと、スピンドルガイド部3の先端に固定された抜け止め部材21の鍔状部からなる案内部21aとで構成される。両者11a,21aの互いに接する各案内面F1,F2は、スピンドル13の中心線CL1上に曲率中心Oが位置し、基端側ほど径が小さい球面とされている。これにより、スピンドルガイド部3に対して先端部材2が抜け止めされるとともに、姿勢変更自在に支持される。図2(A)は、スピンドル13の中心線CL1とスピンドルガイド部3の中心線CL2が同一線である状態を示し、図3は両中心線CL1,CL2が互いに交差して角度θを持った状態を示す。
 スピンドルガイド部3は、駆動部ハウジング4a内の工具回転用駆動源41(図1)の回転力を前記スピンドル13へ伝達する回転軸22を有する。この例では、回転軸22はワイヤとされ、ある程度の弾性変形が可能である。ワイヤの材質としては、例えば金属、樹脂、グラスファイバー等が用いられる。ワイヤは単線であっても、撚り線であってもよい。
 図2(C)に示すように、スピンドル13と回転軸22とは、自在継手等の継手23を介して、互いに回転伝達可能に連結されている。継手23は、スピンドル13の閉塞した基端に設けられた溝13aと、回転軸22の先端に設けられ前記溝13aに係合する突起22aとで構成される。上記溝13aと突起22aとの連結箇所の中心は、前記案内面F1,F2の曲率中心Oと同位置である。回転軸22と突起22aとは別部材で構成してもよい。
 図2(A)に示すように、スピンドルガイド部3は、このスピンドルガイド部3の外郭となる外郭パイプ25を有し、この外郭パイプ25の中心に前記回転軸22が位置する。回転軸22は、それぞれ軸方向に離れて配置された複数の転がり軸受26によって回転自在に支持されている。転がり軸受26は、スピンドルガイド3内の回転軸22を回転自在に支持する回転支持部材である。各転がり軸受26間には、これら転がり軸受26に予圧を発生させるためのばね要素27A,27Bが設けられている。ばね要素27A,27Bは、例えば圧縮コイルばねである。転がり軸受26の内輪に予圧を発生させる内輪用ばね要素27Aと、外輪に予圧を発生させる外輪用ばね要素27Bとがあり、これらが交互に配置されている。前記抜け止め部材21は、固定ピン28により外郭パイプ25のパイプエンド部25aに固定され、その先端内周部で転がり軸受29を介して回転軸22の先端部を回転自在に支持している。パイプエンド部25aは、外郭パイプ25と別部材とし、溶接等により結合してもよい。
 図2(B)に示すように、外郭パイプ25の内径面と回転軸22の間には、互いに120度の位相にある周方向位置に、両端に貫通する3本のガイドパイプ30が設けられている。そして、各ガイドパイプ30の内径孔であるガイド孔30a内に、姿勢操作部材31(31U,31L,31R)が進退自在に挿通されている。この例では、図2(A)に示すように、姿勢操作部材31は、ワイヤからなり可撓性で長尺な中間力伝達部材31aと、その両端にそれぞれ配置され柱状の剛体からなる先端力伝達部材31bおよび基端力伝達部材31cとで構成される。
 先端力伝達部材31bの先端は球面状で、その球面状の先端が、ハウジング11の基端面11に形成された径方向の溝部11bの底面に当接している。溝部11bおよび先端力伝達部材31bは回転防止機構37を構成し、溝部11bに挿入された先端力伝達部材31bの先端部が溝部11bの側面に当たることで、先端部材2がスピンドルガイド部3に対してスピンドル13の中心線CL1回りに回転するのを防止している。基端力伝達部材31cの基端も球面状で、その球面状の基端が、後で説明するレバー43bの側面に当接している。
 また、外郭パイプ25の内径面と回転軸22の間には、図2(B)に示すように、前記ガイドパイプ30とは別に、このガイドパイプ30と同一ピッチ円C上に、複数本の補強シャフト34が配置されている。これらの補強シャフト34は、スピンドルガイド部3の剛性を確保するためのものである。ガイドパイプ30と補強シャフト34の配列間隔は等間隔とされている。ガイドパイプ30および補強シャフト34は、外郭パイプ25の内径面におよび前記転がり軸受26の外径面に接している。これにより、転がり軸受26の外径面を支持している。
 図1および図4に示すように、工具回転用駆動機構4bは、工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aが前記回転軸22の基端に結合させてある。また、姿勢制御用駆動機構4cは、各姿勢変更部材31(31U,31L,31R)(図2(B))にそれぞれ対応する3個の姿勢制御用駆動源42(42U,42L,42R)を備える。姿勢制御用駆動源42は、例えば電動リニアアクチュエータであり、内蔵されている回転モータ(図示せず)の回転運動を、逆入力防止機構を兼ねる回転・直線運動変換機構45を介して直線運動に変換し、出力ロッド42aに伝達する。出力ロッド42aは図1の左右方向に移動し、その出力ロッド42aの移動量すなわち姿勢制御用駆動源42の動作量が、動作量検出器46によって検出される。
 上記回転・直線運動変換機構45としては、三角ねじや台形ねじ等の滑りねじ型の送りねじ機構を採用できる。このような滑りねじ型の送りねじ機構を設けたことにより、姿勢制御用駆動源42は、姿勢操作部材31からの力で動作するのを防止する逆入力防止機能を有する。回転・直線運動変換機構45としては、滑りねじ型の他に、ボールねじやラック・ピニオン機構等を用いてもよい。その場合は、逆入力防止機構を別に設けるのが望ましい。この場合の逆入力防止機構としては、ウォームギア等が採用できる。その他、減速比の大きい減速機構も採用できる。なお、逆入力防止機構は、必ずしも姿勢制御用駆動源42に設ける必要はなく、姿勢制御用駆動機構4cのいずれかの位置、すなわち姿勢制御用駆動源42と姿勢操作部材31との間に設ければよい。
 出力ロッド42aの直線運動は、増力伝達機構43を介して姿勢操作部材31に伝達される。増力伝達機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢制御用駆動源42の出力が増力して姿勢操作部材31に伝達される。レバー43bの中間部には肉厚の薄い起歪部43baが設けられ、この起歪部43baの両側に起歪部43baに発生する歪みを検出する歪みセンサ47が取付けられている。なお、回転軸22は、レバー43bに形成された開口44を貫通させてある。
 コントローラ5は、コンピュータおよびこれに実行されるプログラムからなる制御装置5Aと、上記コンピュータに対して入力する手動操作式の回転速度設定手段50および姿勢設定手段51とを備える。回転速度設定手段50は、スピンドル13の回転速度を設定するものである。姿勢設定手段51は、先端部材2のスピンドルガイド部3に対する目標姿勢を設定するものである。また、コントローラ5における制御装置5Aは、上記コンピュータとプログラムとで、工具回転用駆動源41を制御する工具回転制御手段52と、各姿勢制御用駆動源42を制御する姿勢制御手段53と、先端部材2に作用する外力を推定する外力推定手段54とが構成されている。
 工具回転制御手段52は、前記回転速度設定手段50からの入力に応じてモータドライバ55に出力し、工具回転用駆動源41を駆動させる。
 姿勢制御手段53は、初期姿勢保持制御部53aと姿勢変更制御部53bとを備える。これら初期姿勢保持制御部53aおよび姿勢変更制御部53bは、前記姿勢設定手段51からの入力等に応じてモータドライバ56に出力し、姿勢制御用駆動源42を駆動させる。
 初期姿勢保持制御部53aは、先端部材2を定められた初期姿勢で姿勢保持可能とする初期姿勢保持力を各姿勢操作部材31に与えるように各姿勢制御用駆動源42を制御する。初期姿勢は、例えばスピンドル13の中心線CL1とスピンドルガイド部3の中心線CL2とが同一線となる姿勢である。先端部材2の姿勢は、先端部材2に作用する外力と各姿勢制御用駆動源42の推力とのバランスによって決定される。そこで、初期姿勢保持力を姿勢操作部材31に与えるように各姿勢制御用駆動源42を制御することで、先端部材2を初期姿勢に保持する。姿勢制御用駆動源42の推力によって、先端部材2の姿勢の維持、すなわち先端部材2の剛性確保を行うのである。
 姿勢変更制御部53bは、各姿勢操作部材31が互いに連係して進退して先端部材2を姿勢変更させるように各姿勢制御用駆動源42を制御する。例えば、図2(B)における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図2(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図2(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
 また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図2(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
 上記先端部材2の姿勢変更制御において、先端部材2の姿勢は、先端部材2が初期姿勢にあるときの姿勢操作部材31の位置を原点位置として、この原点位置に対する姿勢操作部材31の進退量に応じて決定される。具体的には、姿勢変更制御部53bは、姿勢設定手段51で設定された先端部材2の目標姿勢をそれに相当する姿勢操作部材31の進退量に変換し、その変換した進退量に応じて姿勢制御用駆動源42の動作量を変化させる。このように、姿勢操作部材31の進退量に応じて姿勢制御用駆動源42の動作量を変化させれば、先端部材2の姿勢変更制御が単純化されて容易である。
 ところで、姿勢操作部材31の中間力伝達部材31aは、細くて長く可撓性であるため、外力によって進退方向に伸縮する。つまり、姿勢操作部材31は、図5に示すようなばね系であると見なせる。同図において、中間力伝達部材31aは、剛体31aaおよび一対のばね31ab,31acで表してある。図5のA部は、姿勢操作部材31が基端側(右側)へ移動後、静止した状態を示す。また、図5のB部は、姿勢操作部材31が先端側(左側)へ移動後、静止した状態を示す。姿勢操作部材31を駆動する駆動力の大きさはどちらも同じである。図中のf1は先端力伝達部材31bとガイド孔30aの内周面との間に生じる摩擦力、f2は中間力伝達部材31aとガイド孔30aの内周面との間に生じる摩擦力、f3は基端力伝達部材31cとガイド孔30aの内周面との間に生じる摩擦力、Kはばね31ab,31acのばね定数である。
 姿勢操作部材31を駆動する駆動力の大きさが同じであっても、図示のように、姿勢操作部材31が基端側へ移動する場合の方が、先端側へ移動する場合よりも、姿勢操作部材31の先端の移動量が大きくなる。これは、姿勢操作部材31の進退の方向によって前記摩擦力f1,f2,f3の向きが変わることによるもので、移動量の差ΔLは、ΔL={2(f2+2・f1)}/Kで表される。
 また、姿勢操作部材31が基端側へ移動する場合は、先端部材2に対する作用力が減少するため、姿勢操作部材31と先端部材2との接触部の摩擦がほとんど無いが、姿勢操作部材31が先端側へ移動する場合は、先端部材2に対する作用力が増大するため、姿勢操作部材31と先端部材2との接触部の摩擦が大きい。このことも、姿勢操作部材31の先端の移動量に差ΔLが生じる要因になる。
 先端部材2の姿勢は、各姿勢操作部材31の先端の相対位置によって決定される。上記のように、姿勢操作部材31の進退状況によって姿勢操作部材31の先端の移動量に差ΔLがあると、先端部材2の姿勢変更制御の精度に影響する。そこで、姿勢変更制御部53bでは、後段で説明するように、先端部材2の姿勢変更のため姿勢操作部材31を基準位置から目標位置へ移動させるとき、定められた規則Rに従い、一時的に姿勢操作部材31を目標位置から遠ざかる側に移動させるようにしている。基準位置は、動作開始位置つまり動作開始直前の現在位置のことであり、原点位置とは限らない。これにより、上記姿勢操作部材31の先端の移動量に差が生じる要因が排除され、常に一定の精度で先端部材2の姿勢変更制御を行える。この姿勢変更制御には幾通りかの手法がある。以下に説明する各手法では、先端部材2をX軸(図2(B))回りに上向きに屈曲させて、図2(A)の初期姿勢状態から図3の状態にする場合を例にする。前記定められた規則Rは、以下の何れかの手法で制御するものとされる。
 図6(A)~(C)、図7および図8と共に、姿勢変更制御の第1の手法を説明する。図6(A)は、屈曲動作前の状態を示す。このときの先端部材2の姿勢は初期姿勢であり、各姿勢操作部材31U,31L,31Rの基端は基準位置P0にある。この状態から、第1過程により、姿勢操作部材31Uを先端部材2に対する作用力が減少する側に後退させ、姿勢操作部材31L,31Rを先端部材2に対する作用力が増大する側に前進させる。図6(B)のように、姿勢操作部材31Uについては、目標位置P1を越えた位置P1aまで後退させ、姿勢操作部材31L,31Rについては、目標位置P2の手前の位置P2aまでとする。上記位置P1a,P2aは、試験または計算により求められる。次に、図6(C)のように、第2過程により、姿勢操作部材31Uを前進させて目標位置P1に停止させ、かつ姿勢操作部材31L,31Rを前進させて目標位置P2に停止させる。これで、姿勢変更が完了する。なお、図6(A),(B),(C)は、図2(B)のVI-CL2-VI断面を簡略化して表した図である。図9(A)~(C)、図12(A)~(D)、図15(A)~(C)についても同様である。
 図7は、各姿勢操作部材31U,31L,31Rの基端位置の変化を示すタイムチャートである。また、図8は、先端部材2の先端の変位量を示すタイムチャートである。hは目標とする先端部材2の変位量である。これらの図におけるt1は第1過程終了時刻であり、t2は第2過程終了時刻である。
 この手法によれば、第1の過程で姿勢操作部材31Uを目標位置P1を越えた位置P1aまで後退させることで、姿勢操作部材31Uと姿勢操作部材31L,31Rとの変位差を一時的に大きくする。その後、第2の過程により、各姿勢操作部材31U,31L,31Rが同じ方向に移動して動作を完了する。このように、各姿勢操作部材31U,31L,31Rを同じ方向に移動して動作を完了させれば、各姿勢操作部材31U,31L,31Rに作用する摩擦力の方向が一定になり、摩擦力による各姿勢操作部材31U,31L,31Rの伸縮量も一定になる。そのため、常に一定の精度で先端部材2の姿勢変更制御を行える。
 なお、姿勢操作部材31Uの後退量が大きくなると、姿勢操作部材31Uの先端が先端部材2に付与する予圧が低下し、先端部材2の姿勢保持力が低下する。そのため、姿勢操作部材31Uを後退させる位置P1aは、上記予圧の低下を考慮して設定する。
 図9(A)~(C)、図10および図11と共に、姿勢変更制御の第2の手法を説明する。図9(A)は、屈曲動作前の状態を示す。このときの先端部材2の姿勢は初期姿勢であり、各姿勢操作部材31U,31L,31Rの基端は基準位置P0にある。この状態から、第1過程により、姿勢操作部材31Uを先端部材2に対する作用力が減少する側に後退させ、姿勢操作部材31L,31Rを先端部材2に対する作用力が増大する側に前進させる。図9(B)のように、姿勢操作部材31Uについては、目標位置P1を越えた位置P1aまで後退させ、姿勢操作部材31L,31Rについては、目標位置P2まで前進させる。上記位置P1aは、試験または計算により求められる。次に、図9(C)のように、第2過程により、姿勢操作部材31Uを前進させて目標位置P1に停止させる。これで、姿勢変更が完了する。
 図10は、各姿勢操作部材31U,31L,31Rの基端位置の変化を示すタイムチャートである。また、図11は、先端部材2の先端の変位量を示すタイムチャートである。hは目標とする先端部材2の変位量である。これらの図におけるt1は第1過程終了時刻であり、t2は第2過程終了時刻である。
 この手法が前記第1の手法と異なる点は、第1の過程で姿勢操作部材31L,31Rを目標位置P2まで移動させることである。そのため、第1の手法と比較して、先端部材2の予圧低下を緩和しつつ、姿勢操作部材31Uと姿勢操作部材31L,31Rとの変位差を大きくすることができる。また、第1の手法と同様に、各姿勢操作部材31U,31L,31Rに作用する摩擦力の方向が一定にできる。したがって、第2の手法によっても、常に一定の精度で先端部材2の姿勢変更制御を行える。
 図12(A)~(D)、図13および図14と共に、姿勢変更制御の第3の手法を説明する。図12(A)は、屈曲動作前の状態を示す。このときの先端部材2の姿勢は初期姿勢であり、各姿勢操作部材31U,31L,31Rの基端は基準位置P0にある。この状態から、第1過程により、姿勢操作部材31Uを先端部材2に対する作用力が減少する側に後退させ、姿勢操作部材31L,31Rを先端部材2に対する作用力が増大する側に前進させる。図12(B)のように、姿勢操作部材31Uについては、目標位置P1を越えた位置P1aまで後退させ、姿勢操作部材31L,31Rについては、目標位置P2の手前の位置P2aまでとする。次に、図12(C)のように、第2過程により、姿勢操作部材31Uを前進させて目標位置P1の手前の位置P1bまで前進させ、かつ姿勢操作部材31L,31Rを前進させて目標位置P2に停止させる。上記位置P1a,P1b,P2aは、試験または計算により求められる。さらに、図12(D)のように、第3の過程により、姿勢操作部材31Uだけを前進させて目標位置P1に停止させる。これで、姿勢変更が完了する。
 図13は、各姿勢操作部材31U,31L,31Rの基端位置の変化を示すタイムチャートである。また、図14は、先端部材2の先端の変位量を示すタイムチャートである。hは目標とする先端部材2の変位量である。これらの図におけるt1は第1過程終了時刻であり、t2は第2過程終了時刻、t3は第3過程終了時刻である。
 この第3の手法は、前記第1の手法と第2の手法の中間的な制御手法であり、作用・効果も中間的である。この場合も、各姿勢操作部材31U,31L,31Rに作用する摩擦力の方向が一定にできるため、常に一定の精度で先端部材2の姿勢変更制御を行える。
 図15(A)~(C)、図16および図17と共に、姿勢変更制御の第4の手法を説明する。図15(A)は、屈曲動作前の状態を示す。このときの先端部材2の姿勢は初期姿勢であり、各姿勢操作部材31U,31L,31Rの基端は基準位置P0にある。この状態から、第1過程により、姿勢操作部材31Uを先端部材2に対する作用力が減少する側に後退させ、姿勢操作部材31L,31Rを先端部材2に対する作用力が増大する側に前進させる。図15(B)のように、姿勢操作部材31Uについては、目標位置P1を越えた位置P1aまで後退させ、姿勢操作部材31L,31Rについては、目標位置P2を越えた位置P2bで前進させる。上記位置P1a,P2bは、試験または計算により求められる。次に、図15(C)のように、第2過程により、姿勢操作部材31Uを前進させて目標位置P1に停止させ、かつ姿勢操作部材31L,31Rを後退させて目標位置P2に停止させる。これで、姿勢変更が完了する。
 図16は、各姿勢操作部材31U,31L,31Rの基端位置の変化を示すタイムチャートである。また、図17は、先端部材2の先端の変位量を示すタイムチャートである。hは目標とする先端部材2の変位量である。これらの図におけるt1は第1過程終了時刻であり、t2は第2過程終了時刻である。ここで、図17では、先端位置の変位量がt1からt2までの間、hのまま変化していないが、P1a,P2bの設定が適切でない場合、時間とともに変位量が増加または増加することもある。
 この手法は、前記第2の手法と異なり、第1の過程で姿勢操作部材31L,31Rを目標位置P2を越えた位置P2bまで前進させる。そのため、第2の手法と比較して、先端部材2の予圧の減衰量を抑えつつ、姿勢操作部材31Uと姿勢操作部材31L,31Rとの変位差を大きくすることができ、先端部材2の角度屈曲量を大きくできる。この場合も、各姿勢操作部材31U,31L,31Rに作用する摩擦力の方向が一定にできるため、常に一定の精度で先端部材2の姿勢変更制御を行える。
 なお、第1の過程終了時における姿勢操作部材31L,31Rの前進量が大きすぎると、先端部材2が一時的に目標とする角度θを大きく越えて屈曲する可能性がある。そのため、姿勢操作部材31L,31Rを前進させる位置P2bは、上記先端部材2の一時的な変位の増大を考慮して設定する。なお、角度θは、先端部材2の先端の変位量がhであるときの、先端部材2の角度である。
 上記姿勢変更制御の際、動作量検出器46によって検出された姿勢制御用駆動源42の動作量を姿勢変更制御部53bにフィードバックして、制御を行う。動作量検出器46が設けられていると、姿勢制御用駆動源42の動作量を正確に検出することができ、その出力を姿勢変更制御部53bにフィードバックすることで、姿勢変更制御を精度良く行うことができる。
 外力推定手段54は、先端部材2に作用する外力と前記歪みセンサ47の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、歪みセンサ47から入力された信号から前記関係設定手段を用いて先端部材2に作用する外力を推定する。
 この遠隔操作型アクチュエータの動作を図1を参照して説明する。工具回転用駆動源41を駆動すると、その回転が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。この回転する工具1により、骨等を切削が行われる。先端部材2が静止状態の初期姿勢にあるときは、初期姿勢保持制御部53aにより各姿勢制御用駆動源42を制御し、各姿勢操作部材31に初期姿勢保持力を与える。それにより、先端部材2に作用する力のバランスが保たれて、先端部材2の姿勢が維持される。
 使用時には、姿勢変更制御部53bにより姿勢変更用駆動源42を制御して、先端部材2の姿勢変更を行う。この先端部材2の姿勢変更制御には前記第1~第4の手法のうちのいずれかが適用されるが、どの手法であっても、各姿勢操作部材31の先端の移動量に差が生じないため、常に一定の精度で先端部材2の姿勢変更制御を行える。先端部材2の姿勢は、動作量検出器45の検出値から、姿勢検出手段46によって検出される。そのため、遠隔操作で先端部材2の姿勢を適正に制御できる。
 切削加工中に工具1や先端部材2に外力が作用すると、その力が姿勢操作部材31を介して増力伝達機構43のレバー43bに伝わり、レバー43bの脆弱部である起歪部43baに歪みが生じる。この歪みが歪みセンサ47に検出され、その出力信号が外力推定手段54に送信される。外力推定手段54は、この歪みセンサ47の出力信号から先端部材2に作用する外力を推定する。このように推定される外力の大きさに応じて遠隔操作型アクチュエータ全体の送り量や先端部材2の姿勢変更を制御することにより、先端部材2に作用する外力を適正に保った状態で、安全かつ正確に骨の切削加工を行える。
 また、先端部材2がスピンドルガイド部3に対して、図2(A)に示すように、先端部材2の中心線CL1回りに回転するのを防止する回転防止機構37が設けられているため、姿勢操作部材31の進退を制御する姿勢操作用駆動機構4cや姿勢制御手段53の故障等により工具1を保持する先端部材2が制御不能となった場合でも、先端部材2が中心線CL1回りに回転して加工箇所の周りを傷つけたり、先端部材2自体が破損したりすることを防止できる。
 姿勢操作部材31はガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、姿勢操作部材31を構成する姿勢操作ワイヤ31a(図2(A))は可撓性を有するため、スピンドルガイド部3が湾曲部を有する場合でも先端部材2の姿勢変更動作が確実に行われる。さらに、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心O(図2(A))と同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。
 この遠隔操作型アクチュエータを、例えば人工関節置換手術にいて骨の髄腔部を削るのに使用されるものであり、施術時には、先端部材2の全部または一部が患者の体内に挿入される。このため、上記のように先端部材2の姿勢を遠隔操作で変更できれば、常に工具1を適正な姿勢に保持した状態で骨の加工をすることができ、人工関節挿入用穴を精度良く仕上げることができる。
 細長形状であるスピンドルガイド部3には、回転軸22および姿勢操作部材31を保護状態で設ける必要があるが、外郭パイプ25の中心部に回転軸22を設け、外郭パイプ25と回転軸22との間に、姿勢操作部材31を収容したガイドパイプ30と補強シャフト34とを円周方向に並べて配置した構成としたことにより、回転軸22および姿勢操作部材31を保護し、かつ内部を中空化して軽量化を図りつつ剛性を確保できる。また、全体のバランスも良い。
 回転軸22を支持する転がり軸受26の外径面を、ガイドパイプ30と補強シャフト34とで支持させたため、余分な部材を用いずに転がり軸受26の外径面を支持できる。また、ばね要素27A,27Bにより転がり軸受26に予圧がかけられているため、ワイヤからなる回転軸22を高速回転させることができる。そのため、スピンドル13を高速回転させて加工することができ、加工の仕上がりが良く、工具1に作用する切削抵抗を低減させられる。ばね要素27A,27Bは隣合う転がり軸受26間に設けられているので、スピンドルガイド部3の径を大きくせずにばね要素27A,27Bを設けることができる。
 上記実施形態は、ガイドパイプ30および姿勢操作部材31を円周方向の3箇所に設けた構成であるが、外郭パイプ25内の互いに180度の位相にある2箇所にガイドパイプ30および姿勢操作部材31を設けた構成としてもよい(図示せず)。その場合、先端部材2は、1軸回りにのみ姿勢変更可能である。
 上記実施形態はスピンドルガイド部3が直線形状であるが、この発明の遠隔操作型アクチュエータは、姿勢操作部材31が可撓性であり、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われるので、スピンドルガイド部3を初期状態で湾曲形状としてもよい。あるいは、スピンドルガイド部3の一部分のみを湾曲形状としてもよい。スピンドルガイド部3が湾曲形状であれば、直線形状では届きにくい骨の奥まで先端部材2を挿入することが可能となる場合があり、人工関節置換手術における人工関節挿入用穴の加工を精度良く仕上げることが可能になる。スピンドルガイド部3を湾曲形状とする場合、外郭パイプ25、ガイドパイプ30、および補強シャフト34を湾曲形状とする必要がある。また、回転軸22は弾性変形しやすい材質を用いるのが良く、例えば形状記憶合金が適する。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…工具
2…先端部材
3…スピンドルガイド部
5…コントローラ
13…スピンドル
15…先端部材連結部
22…回転軸
30a…ガイド孔
31…姿勢操作部材
31a…中間力伝達部材
31b…先端力伝達部材
31c…基端力伝達部材
41…工具回転用駆動源
42…姿勢変更用駆動源
53…姿勢制御手段
53b…姿勢変更制御部
CL1…スピンドルの中心線
CL2…回転軸の中心線
F1,F2…案内面
O…曲率中心
P0…基準位置
P1…目標位置
P2…目標位置

Claims (11)

  1.  細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられて工具を回転自在に支持する先端部材と、前記工具を回転させる工具回転用駆動源と、前記先端部材の姿勢を操作する姿勢変更用駆動源とを備え、
     前記先端部材は、前記工具を保持するスピンドルを回転自在に支持し、
     前記スピンドルガイド部は、前記工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、
     先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる可撓性の姿勢操作部材を前記ガイド孔内に進退自在に挿通し、この姿勢操作部材を前記姿勢変更用駆動源で進退動作させ、
    さらに、前記姿勢変更用駆動源を制御する姿勢制御手段であって、前記姿勢操作部材を動作開始位置である基準位置から目標位置へ移動させる制御を行うとき、定められた規則に従い、一時的に姿勢操作部材を目標位置から遠ざかる側に移動させる姿勢制御手段を備えた遠隔操作型アクチュエータ。
  2.  請求項1において、前記姿勢操作部材は、前記先端部材側に配置された剛体の先端力伝達部材と、前記姿勢変更用駆動源側に配置された剛体の基端力伝達部材と、これら先端力伝達部材と基端力伝達部材間で力を伝達する可撓性で長尺な中間力伝達部材とでなる遠隔操作型アクチュエータ。
  3.  請求項1において、前記姿勢制御手段は、前記姿勢操作部材を基準位置から前記先端部材に対する作用力が減少する側の目標位置へ移動させるとき、目標位置を越えて移動させた後、目標位置まで戻すように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  4.  請求項1において、前記先端部材は前記先端部材連結部の円筒状または球面状の案内面に沿って姿勢変更するものであり、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を、前記案内面の曲率中心の周りの複数箇所に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記複数の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させるものとした遠隔操作型アクチュエータ。
  5.  請求項4において、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、各姿勢操作部材が互いに同じ方向に移動して動作を完了するように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  6.  請求項4において、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、各姿勢操作部材につき、目標位置を越えた位置まで移動させた後、目標位置まで戻すように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  7.  請求項4において、前記姿勢制御手段は、各姿勢操作部材を同期して駆動させるように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  8.  請求項4において、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置の手前の位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材および減少する姿勢制御部材を、それぞれの目標位置まで移動させるように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  9.  請求項4において、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が減少する側に移動させる姿勢制御部材を目標位置まで移動させるように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  10.  請求項4において、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置の手前の第1の手前位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢制御部材を、目標位置の手前で前記第1の手前位置よりも目標位置に近い第2の手前位置まで移動させ、第3過程で、前記先端部材に対する作用力が減少する側に移動させる姿勢制御部材を目標位置まで移動させるように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
  11.  請求項4において、前記姿勢制御手段は、前記複数の姿勢操作部材を基準位置からそれぞれの目標位置へ移動させるとき、第1過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、かつ前記先端部材に対する作用力が減少する側に移動させる姿勢操作部材を目標位置を越えた位置まで移動させ、第2過程で、前記先端部材に対する作用力が増大する側に移動させる姿勢操作部材および減少する側に移動させる姿勢制御部材を、それぞれの目標位置まで移動させるように前記姿勢変更用駆動源を制御する遠隔操作型アクチュエータ。
PCT/JP2011/067238 2010-08-09 2011-07-28 遠隔操作型アクチュエータ WO2012020648A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010178406A JP2012034883A (ja) 2010-08-09 2010-08-09 遠隔操作型アクチュエータ
JP2010-178406 2010-08-09

Publications (1)

Publication Number Publication Date
WO2012020648A1 true WO2012020648A1 (ja) 2012-02-16

Family

ID=45567617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067238 WO2012020648A1 (ja) 2010-08-09 2011-07-28 遠隔操作型アクチュエータ

Country Status (2)

Country Link
JP (1) JP2012034883A (ja)
WO (1) WO2012020648A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3067299A1 (en) 2011-09-02 2013-03-07 Stryker Corporation Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing
AU2016365200B2 (en) 2015-11-30 2021-10-28 Stryker Corporation Surgical instrument with telescoping nose mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017446A (ja) * 1999-07-05 2001-01-23 Nakanishi:Kk 医療用のハンドピース
JP2002518067A (ja) * 1998-06-09 2002-06-25 ケイ.ミチェルソン ゲアリー 隣り合う椎体間に、インサートを受けるための空間を調製するための装置
JP2005528159A (ja) * 2002-06-04 2005-09-22 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ 被包化された体空間内から体組織を迅速に吸引及び採取するための装置及び方法
JP2010167123A (ja) * 2009-01-23 2010-08-05 Ntn Corp 遠隔操作型アクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518067A (ja) * 1998-06-09 2002-06-25 ケイ.ミチェルソン ゲアリー 隣り合う椎体間に、インサートを受けるための空間を調製するための装置
JP2001017446A (ja) * 1999-07-05 2001-01-23 Nakanishi:Kk 医療用のハンドピース
JP2005528159A (ja) * 2002-06-04 2005-09-22 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ 被包化された体空間内から体組織を迅速に吸引及び採取するための装置及び方法
JP2010167123A (ja) * 2009-01-23 2010-08-05 Ntn Corp 遠隔操作型アクチュエータ

Also Published As

Publication number Publication date
JP2012034883A (ja) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2011024696A1 (ja) 遠隔操作型アクチュエータの工具先端位置検出装置
WO2012043324A1 (ja) 遠隔操作型アクチュエータ
JP5202200B2 (ja) 遠隔操作型アクチュエータ
JP5289470B2 (ja) 可撓性ケーブル
JP5538795B2 (ja) 遠隔操作型アクチュエータ
WO2010029741A1 (ja) 遠隔操作型アクチュエータ
WO2012020648A1 (ja) 遠隔操作型アクチュエータ
WO2010137603A1 (ja) 遠隔操作型アクチュエータ
WO2011037131A1 (ja) 遠隔操作型アクチュエータおよび姿勢操作部材の塑性加工方法
WO2011078110A1 (ja) 遠隔操作型アクチュエータ
JP5258495B2 (ja) 遠隔操作型アクチュエータ
WO2010092820A1 (ja) 遠隔操作型アクチュエータ用ナビゲーションシステム
WO2011108623A1 (ja) 遠隔操作型アクチュエータ
JP5388702B2 (ja) 遠隔操作型アクチュエータ
JP5213735B2 (ja) 遠隔操作型アクチュエータ
WO2011148892A1 (ja) 遠隔操作型アクチュエータ
JP5500891B2 (ja) 遠隔操作型アクチュエータ
JP5388701B2 (ja) 遠隔操作型アクチュエータ
JP2010088812A (ja) 遠隔操作型アクチュエータ
JP2010051439A (ja) 遠隔操作型アクチュエータ
JP2010046764A (ja) 遠隔操作型アクチュエータ
JP5258594B2 (ja) 遠隔操作型アクチュエータ
JP2010046197A (ja) 遠隔操作型アクチュエータ
JP2012029841A (ja) 医療用アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816314

Country of ref document: EP

Kind code of ref document: A1