WO2012015140A1 - 기판 서셉터 및 그것을 갖는 증착 장치 - Google Patents

기판 서셉터 및 그것을 갖는 증착 장치 Download PDF

Info

Publication number
WO2012015140A1
WO2012015140A1 PCT/KR2011/001819 KR2011001819W WO2012015140A1 WO 2012015140 A1 WO2012015140 A1 WO 2012015140A1 KR 2011001819 W KR2011001819 W KR 2011001819W WO 2012015140 A1 WO2012015140 A1 WO 2012015140A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
substrate
stages
shielding
heating element
Prior art date
Application number
PCT/KR2011/001819
Other languages
English (en)
French (fr)
Inventor
박용성
이성광
김동렬
Original Assignee
국제엘렉트릭코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국제엘렉트릭코리아 주식회사 filed Critical 국제엘렉트릭코리아 주식회사
Priority to JP2013521673A priority Critical patent/JP5639712B2/ja
Priority to US13/811,989 priority patent/US9567673B2/en
Priority to CN201180036834.2A priority patent/CN103026465B/zh
Publication of WO2012015140A1 publication Critical patent/WO2012015140A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate

Definitions

  • the present invention relates to an apparatus used for manufacturing a semiconductor device, and more particularly, to a susceptor for supporting a substrate and an apparatus for performing a deposition process with the same.
  • an atomic layer deposition method is introduced in the deposition process for manufacturing a semiconductor device.
  • the atomic layer deposition method is a method of forming a deposition layer with a desired thickness by repeating a unit reaction cycle for depositing at an atomic layer thickness.
  • the atomic layer deposition method has a very slow deposition rate compared with chemical vapor deposition (CVD) or sputter method, and therefore, it takes a lot of time to grow a film to a desired thickness, thereby reducing productivity.
  • the temperature uniformity of the susceptor on which the substrate is placed is one of the important factors that determine the uniformity of the thickness of the thin film deposited on the substrate.
  • the susceptor thermally affects the substrate depending on the arrangement of the heating elements, resulting in an unbalanced film quality. Therefore, the thickness of the plate provided with the heating element in the susceptor in order to reduce the effect due to the arrangement of the heating element to ensure temperature uniformity.
  • An object of the present invention is to provide a substrate susceptor and a deposition apparatus having the same that can improve thermal efficiency.
  • an object of the present invention is to provide a substrate susceptor and a deposition apparatus having the same that can increase the temperature uniformity.
  • the deposition apparatus comprises a process chamber; A substrate susceptor installed in the process chamber and having a plurality of substrates disposed on the same plane; A spraying member for injecting gas to the entire processing surface of the substrate at a position corresponding to each of the plurality of substrates placed on the substrate susceptor;
  • the substrate susceptor includes an upper susceptor having stages on which upper substrates are placed;
  • a lower susceptor coupled to a lower surface of the upper susceptor and provided with a heating element configured to provide a heat source for heating a substrate in a region corresponding to each of the stages;
  • a shielding member disposed on a bottom surface of the lower susceptor and configured to suppress thermal energy radiation to the bottom surface of the lower susceptor.
  • the substrate susceptor has a radiation space for heat transfer between the lower susceptor and the shield member.
  • the shielding member includes a plate-shaped shielding plate having a reflective coating film formed on an upper surface in contact with the radiation space, and the shielding plate is disposed to correspond to the stage.
  • the shielding plate has a curved upper surface or an inclined upper surface.
  • the shielding plate has patterns on the top surface in the form of concave and convex concave or convex in order to concentrate the radiation angle of thermal energy in a specific section.
  • the substrate susceptor has a gap for radiating the heat source of the heating element between the upper susceptor and the lower susceptor positioned below the stage.
  • the voids are filled with a silicon carbide-based material mixed with carbon nanotubes having a high heat capacity and a low thermal conductivity.
  • the substrate susceptor for achieving the above object is an upper susceptor having a plurality of stages on which the substrate is placed on a concentric circle; A lower susceptor coupled to a lower surface of the upper susceptor and provided with a heating element providing a heat source for heating the substrate; And a shielding plate installed on the bottom of the lower susceptor to correspond to each of the stages, and re-supplying heat energy radiated to the bottom of the lower susceptor to the lower susceptor to increase thermal efficiency.
  • the substrate susceptor is formed between the upper susceptor and the lower susceptor positioned below the stage to form a first gap for uniformly transferring the thermal energy of the heating element, the lower stand A second gap is formed between the acceptor and the shield plate to transfer heat energy reflected from the shield plate to the lower susceptor.
  • the shielding plate has a reflective coating on the upper surface in contact with the second gap, the upper surface of the shielding plate in the form of intaglio or embossed concave and convex shape that can concentrate the radiation angle of thermal energy in a specific section. Patterns are formed.
  • FIG. 1 is a view for explaining an atomic layer deposition apparatus according to the present invention.
  • FIG. 2 and 3 are a perspective view and a cross-sectional view of the injection member shown in FIG.
  • FIG. 4 is a perspective view of the substrate susceptor shown in FIG. 1.
  • 5 is a sectional view of principal parts of the substrate susceptor.
  • 6 to 9 are views showing various modifications of the shielding member.
  • FIG. 10 is a view for explaining a shield member according to another embodiment of the present invention.
  • FIG. 11 is a view showing a modification of the shielding member shown in FIG. 10.
  • FIG. 12 is a view showing another embodiment of the shielding member.
  • FIG. 13 is a view showing another embodiment of the shielding member.
  • FIG. 1 is a schematic view showing an atomic layer deposition apparatus according to the present invention.
  • 2 is a perspective view of the injection member of FIG. 1
  • FIG. 3 is a cross-sectional view of the injection member of FIG. 1.
  • 4 is a perspective view of the substrate susceptor of FIG. 1.
  • the atomic layer deposition apparatus 10 includes a process chamber 100, a substrate susceptor 200 that is a substrate support member, an injection member 300, and a supply.
  • the member 400 is included.
  • One side of the process chamber 100 is provided with an entrance 112. During the process, the substrates W enter and exit the process chamber 100 through the inlet 112.
  • an exhaust duct 120 and an exhaust pipe 114 for exhausting the reaction gas and the purge gas and the reaction dispersion generated during the atomic layer deposition process are provided at the upper edge of the process chamber 100. Can be provided.
  • the exhaust duct 120 is located outside the injection member 300 and is provided in a ring shape.
  • the exhaust pipe 114 may be provided with a vacuum pump, a pressure control valve, an on-off valve, a flow control valve.
  • the injection member 300 injects gas into each of four substrates placed on the substrate susceptor 200.
  • the injection member 300 receives the first and second reaction gases and the purge gas from the supply member 400.
  • the injection member 300 is provided to inject the gas provided from the supply member 400 to the entire processing surface of the substrate at a position corresponding to each of the substrates.
  • the injection member 300 has a head 310 and a shaft 330.
  • the head 310 has first to fourth baffles 320a-320d.
  • the shaft 330 is installed at the upper center of the process chamber 100 and supports the head 310.
  • the head 310 has a disk shape, and the first to fourth baffles 320a to 320d have an independent space for accommodating gas in the head 310.
  • the first to fourth baffles 320a to 320d have a fan shape partitioned at intervals of 90 degrees sequentially based on the center of the head 310.
  • Gas injection holes 312 are formed at the bottoms of the first to fourth baffles 320a to 320d. Gases provided from the supply member 400 are supplied to the independent spaces of each of the first to fourth baffles 320a to 320d, which are sprayed through the gas ejection ports 312 to be provided to the substrate.
  • Some of each of the baffles 320a-320d may supply different kinds of gases.
  • some of the baffles 320a-320d may supply the same kind of gas to each other.
  • a first reaction gas is provided to the first baffle 320a
  • a second reaction gas is provided to the third baffle 320c facing the first baffle 320a
  • a second baffle 320b is provided.
  • the fourth baffle 320d may be provided with a purge gas to prevent mixing of the first reaction gas and the second reaction gas and to purge the unreacted gas.
  • the head 310 is formed in a fan shape with the first to fourth baffles 320a to 320d spaced at 90 degree intervals.
  • the present invention is not limited thereto, and the number of baffles may be provided in a number less than four or more than four depending on the process purpose or characteristics.
  • eight baffles may be provided and arranged at 45 degree intervals.
  • two baffles may be provided and arranged at 180 degree intervals.
  • all of the baffles or some of the baffles may be provided differently in size.
  • the supply member 400 includes a first gas supply member 410a, a second gas supply member 410b, and a purge gas supply member 420.
  • the first gas supply member 410a supplies the first reaction gas for forming a predetermined thin film on the substrate w to the first baffle 320a.
  • the second gas supply member 410b supplies the second reaction gas to the third baffle 320c.
  • the purge gas supply member 420 supplies the purge gas to the second and fourth baffles 320b and 320d.
  • the purge gas supply member 420 continuously supplies the purge gas at a constant flow rate, but the first gas supply member 410a and the second gas supply member 410b are operated at high pressure by using high pressure charging tanks (not shown).
  • the filled reaction gas can be released in a short time (flash supply method) to diffuse onto the substrate.
  • two gas supply members are used to supply two different reaction gases, but a plurality of gas supply members may be applied to supply three or more different reaction gases according to process characteristics.
  • the substrate susceptor 200 is installed in an internal space of the process chamber 100.
  • the substrate susceptor 200 is of a batch type in which four substrates are placed.
  • the substrate susceptor 200 is rotated by the driver 290.
  • the driving unit 290 for rotating the substrate susceptor 200 may use a stepping motor provided with an encoder capable of controlling the rotation speed and the rotation speed of the driving motor.
  • the encoder controls the cycle time of the injection member 300 (first reaction gas-purge gas-second reaction gas-purge gas).
  • substrate susceptors 200 may be applied instead of four.
  • the substrate susceptor 200 may include a plurality of lift pins (not shown) that raise and lower the substrate W at each stage.
  • the lift pins lift and lower the substrate W to space the substrate W away from the stage of the substrate susceptor 200 or to rest on the stage.
  • the substrate susceptor 200 includes an upper susceptor 210, a lower susceptor 220, a heating element 230, a shielding member 240, and a support pillar 280.
  • the upper susceptor 210 is coupled to be superimposed on the upper portion of the lower susceptor 220 in the shape of a disc formed with first to fourth stages 212a-212d on which substrates are placed.
  • the first to fourth stages 212a-212d provided in the upper susceptor 210 may be provided in a circle similar to the shape of the substrate.
  • the first to fourth stages 212a-212d are disposed at intervals of 90 degrees on the concentric circles about the center of the substrate susceptor 200.
  • the lower susceptor 220 has a heating element 230 that heats the substrate W seated on each stage 212a-212d of the upper susceptor 210.
  • the heating wire may be used as the heating element 230.
  • the heating element 230 is positioned in the insertion groove 228 formed on the upper surface of the lower susceptor 220 while being supported by the holder 232.
  • the holder 232 may be installed in the entire heating element 230.
  • the holder 232 may be installed at a predetermined length or at a predetermined angle (for example, 90 degrees or 45 degrees) to fix the heating element 230.
  • the heating element 230 heats the upper susceptor 210 and the lower susceptor 220 to raise the temperature of the substrate W to a predetermined temperature (process temperature).
  • the heating element 230 increases the temperature of the stage region in which the substrate is placed by varying the arrangement of the heating lines in the stage region where the substrate is placed (closely arranged hot wire) and the other region (distribute the heating wire), while the other region is low. It is possible to maintain the thin film deposition only on the substrate.
  • the first air gap 250 of several millimeters (mm) is provided between the upper susceptor 210 and the lower susceptor 220, and between the lower susceptor 220 and the shielding member 240.
  • the second air gap 260 of several millimeters (mm) is provided.
  • the first gap 250 is formed between the upper susceptor 210 and the lower susceptor 220 positioned below the stage.
  • the thermal energy of the heating element 230 is transmitted to the upper susceptor 210 by the first pore 250 in a radiation transfer manner rather than a conduction manner, thereby improving the temperature uniformity of the upper susceptor 210.
  • the heat transfer rate may be increased by mounting a heat transfer sheet made of a silicon carbide-based material having a high heat capacity and low heat conductivity in the first pore 250.
  • a mixture of carbon nanotubes that transmit heat in one direction to silicon carbide is used as a single layer or a double layer. It is possible to control the heat transfer rate of each zone.
  • the shielding member 240 blocks a portion of thermal energy generated by the heating element 230 mounted on the upper surface of the lower susceptor 220 from being radiated to the bottom surface of the lower susceptor 220 to be lost. do.
  • the shielding member 240 is installed on the bottom of the lower susceptor 220. Between the shielding member 240 and the lower susceptor 220, a second gap 260, which is a radiation space for heat transfer, is formed.
  • the shielding member 240 is disposed on the bottom surface of the lower susceptor 220 corresponding to the stage at intervals of 90 degrees on a concentric circle about the center of the substrate susceptor 200 in the same manner as the stage.
  • the shielding member 240 is a circular plate-shaped shielding plate 241 coated with a reflective coating film 244 to re-supply heat energy radiated to the bottom of the lower susceptor 220 to the lower susceptor 220 to increase thermal efficiency.
  • the shielding plate 241 is made of a material having a low heat capacity such as quarts, and a thin film (reflective coating film) 244 of thermally and chemically stable platinum, molybdenum, etc. may be coated on the surface thereof to increase reflection efficiency.
  • the shielding plate 241 may be formed in various shapes in addition to the flat plate shape as shown in FIG.
  • 6 to 9 are views showing various modifications of the shielding member.
  • the shielding plate 241 may be formed concave or convex.
  • the rereflection angle of the radiant energy may be concentrated in the center.
  • the rereflection angle of the radiant energy may be concentrated at the edge.
  • the shape of the shield plate 241 may be variously changed so that the reflection angle of the radiant energy may be concentrated in a specific zone to further increase the temperature of the specific zone.
  • patterns of concave-convex shapes may be formed on the upper surface of the shielding plate 241 of the shielding member 240c.
  • the patterns improve the re-reflection efficiency of radiant energy radiated from the bottom of the lower susceptor 220 and adjust the re-reflection angle.
  • the shielding member 240c may increase the temperature and reflectance of a specific zone by using patterns.
  • the pattern may be intaglio or embossed.
  • the pattern may have various shapes such as a dot, a polygon, a V, and a cone.
  • the shielding member 240d of FIG. 9 may be configured to focus the reflection angle of the radiant energy to a specific area by varying the shape of the pattern on the upper surface of the shielding plate 241 near the center and the edge.
  • the shielding member 240e is installed on the upper surface of the lower susceptor 220.
  • the shielding member 240e reflects the radiant energy emitted from the bottom surface of the upper susceptor 210 and the lower radiant energy of the heating element.
  • the heating element 230 is positioned higher than the upper surface of the lower susceptor 220 so as to be exposed to the first gap.
  • the radiant energy emitted from the heating element 230 toward the upper surface of the lower susceptor 220 may be reflected toward the upper susceptor 210. It can increase the thermal efficiency.
  • FIG. 11 is a view showing a modification of FIG. 10, in which a heating element 230 is directly installed on an upper surface of the shielding member 240f and positioned on an upper surface of the lower susceptor.
  • the heating element 230 is formed by holders 232.
  • the upper surface of the shielding member 240f is fixed, and the holders 232 may be installed on the heating element 230 at predetermined intervals or at predetermined angles.
  • the shielding members 240g and 240h seal the circular plate-shaped shielding plate 241 coated with the reflective coating film 244, and the shielding plate 241 to seal and heat transfer thereon.
  • the case 249 is made of a transparent quartz material, and the case 249 prevents invasion of process gas (reaction gas) to prevent contamination of the shielding plate 241 and the reflective coating film 244, abnormal reactions, reduction of reflectance due to impurities, and the like. Can be prevented.
  • the shielding member 240g having such a structure may be installed on the upper surface of the lower susceptor 220 as shown in FIG. 8, and in this case, the heating element 230 is installed on the upper surface of the case 249 of the shielding member.
  • the shielding member 240h having the above-described structure may be installed on the bottom surface of the lower susceptor 220, and the shielding member 240h may be shielded because it has a radiation space for heat transfer on its own.
  • the member 240h and the lower susceptor 220 are closely installed without providing a separate space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명은 반도체 소자 제조에 사용되는 증착 장치에 관한 것으로, 본 발명에 따르면, 공정 챔버; 상기 공정 챔버에 설치되고 동심원상에 기판이 놓여지는 복수개의 스테이지를 갖는 기판 서셉터; 반응가스를 공급하는 복수개의 가스공급부재; 퍼지가스를 공급하는 퍼지가스 공급부재; 상기 복수개의 가스 공급부와 상기 퍼지가스 공급부재로부터 제공받은 반응가스 및 퍼지가스를 상기 스테이지들 각각에 놓여진 기판과 대응하는 위치에서 기판의 처리면 전체에 독립적으로 분사할 수 있도록 복수개의 독립된 배플들을 갖는 분사부재; 및 상기 분사부재의 배플들이 상기 스테이지에 놓여진 복수개의 기판들 각각으로 순차 선회하도록 상기 기판 서셉터 또는 상기 분사부재를 회전시키는 구동부를 포함한다. 상기 기판 서셉터는 상기 스테이지들이 형성된 상부 서셉터; 상기 상부 서셉터 저면에 결합되고 기판을 가열하기 위한 열원을 제공하는 발열체가 설치된 하부 서셉터; 및 상기 하부 서셉터의 저면에 상기 스테이지들 각각에 대응되게 설치되고, 상기 하부 서셉터 저면으로 방사되는 열에너지를 상기 하부 서셉터 측으로 재공급하여 열효율을 높이기 위한 차폐판를 포함한다.

Description

기판 서셉터 및 그것을 갖는 증착 장치
본 발명은 반도체 소자 제조에 사용되는 장치에 관한 것으로, 더 상세하게는 기판을 지지하는 서셉터 및 이를 가지고 증착 공정을 수행하는 장치에 관한 것이다.
반도체 소자를 제조하는 증착 과정에 증착 막질의 형성도(conformability)를 개선하기 위해서 원자층 증착 방식이 도입되고 있다. 원자층 증착 방식은 원자층 정도 두께로 증착하는 단위 반응 사이클(cycle)을 반복하여 원하는 두께로 증착층을 형성하는 방식이다. 그러나 원자층 증착 방식은 화학 기상 증착(CVD, chemical vapor deposition) 방식이나 스퍼터(sputter) 방식에 비해 증착 속도가 매우 느리며, 이로 인해 원하는 두께로 막을 성장시키기 위해 많은 시간이 소요되어 생산성이 떨어진다.
특히, 기판이 놓여지는 서셉터의 온도 균일도는 기판에 증착되는 박막의 두께에 대한 균일도를 좌우하는 중요한 요인 중 하나이다. 서셉터는 발열체의 배치 모양에 따라 기판에 열영향을 주어 막질의 불균형을 초래한다. 따라서 발열체의 배치로 인한 영향을 줄이기 위해 서셉터에서 발열체가 제공된 플레이트의 두께를 두껍게 하여 온도 균일성을 확보하고 있다.
본 발명은 열효율을 높일 수 있는 기판 서셉터 및 이를 갖는 증착 장치를 제공하는 것을 일 목적으로 한다.
또한, 본 발명은 발열체로부터 발생된 열이 기판 가열에 사용되지 않고 손실되는 것을 최소화할 수 있는 기판 서셉터 및 이를 갖는 증착 장치를 제공하는 것을 일 목적으로 한다.
또한, 본 발명은 온도 균일성을 높일 수 있는 기판 서셉터 및 이를 갖는 증착 장치를 제공하는 것을 일 목적으로 한다.
본 발명의 목적은 여기에 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위하여, 본 발명에 따른 증착 장치는 공정 챔버; 상기 공정 챔버에 설치되고 동일 평면상에 복수의 기판이 놓여지는 기판 서셉터; 상기 기판 서셉터에 놓여진 복수의 기판들 각각에 대응하는 위치에서 기판의 처리면 전체에 가스를 분사하는 분사부재를 포함하되; 상기 기판 서셉터는 상부면에 기판들이 놓여지는 스테이지들이 형성된 상부 서셉터; 상기 상부 서셉터 저면에 결합되고 상기 스테이지들 각각에 대응되는 영역에 기판을 가열하기 위한 열원을 제공하는 발열체가 설치된 하부 서셉터; 및 상기 하부 서셉터의 저면에 설치되고, 상기 하부 서셉터 저면으로의 열 에너지 방사를 억제하기 위한 차폐부재를 포함한다.
본 발명의 실시예에 따르면, 상기 기판 서셉터는 상기 하부 서셉터와 상기 차폐 부재 사이에 열전달을 위한 복사공간을 갖는다.
본 발명의 실시예에 따르면, 상기 차폐부재는 상기 복사공간과 접하는 상면에 반사 코팅막이 형성된 플레이트 형상의 차폐판을 포함하며, 상기 차폐판은 상기 스테이지와 대응되게 배치된다.
본 발명의 실시예에 따르면, 상기 차폐판은 만곡진 상면 또는 경사진 상면을 갖는다.
본 발명의 실시예에 따르면, 상기 차폐판은 상면에 열에너지의 방사각도를 특정구간에 집중할 수 있는 음각 또는 양각의 요철형태로 이루어지는 패턴들을 갖는다.
본 발명의 실시예에 따르면, 상기 기판 서셉터는 상기 스테이지 아래에 위치되는 상기 상부 서셉터와 상기 하부 서셉터 사이에 상기 발열체의 열원을 복사방식으로 전달하기 위한 공극을 갖는다.
본 발명의 실시예에 따르면, 상기 공극에는 열용량이 크고 열전도도 낮은 카본나노튜브가 혼합된 탄화규소계 물질이 충전된다.
상기한 과제를 달성하기 위한 기판 서셉터는 동심원상에 기판이 놓여지는 복수개의 스테이지를 갖는 상부 서셉터; 상기 상부 서셉터 저면에 결합되고 기판을 가열하기 위한 열원을 제공하는 발열체가 설치된 하부 서셉터; 및 상기 하부 서셉터의 저면에 상기 스테이지들 각각에 대응되게 설치되고, 상기 하부 서셉터 저면으로 방사되는 열에너지를 상기 하부 서셉터 측으로 재공급하여 열효율을 높이기 위한 차폐판을 포함한다.
본 발명의 실시예에 따르면, 상기 기판 서셉터는 상기 스테이지 아래에 위치되는 상기 상부 서셉터와 상기 하부 서셉터 사이에 상기 발열체의 열에너지를 균일하게 전달하기 위한 제1공극이 형성되며, 상기 하부 서셉터와 상기 차폐판 사이에 상기 차폐판으로부터 반사되는 열에너지를 상기 하부 서셉터로 전달하기 위한 제2공극이 형성된다.
본 발명의 실시예에 따르면, 상기 차폐판은 상기 제2공극과 접하는 상면에 반사 코팅막을 갖으며, 상기 차폐판의 상면에는 열에너지의 방사각도를 특정구간에 집중할 수 있는 음각 또는 양각의 요철형태로 이루어지는 패턴들이 형성된다.
본 발명에 의하면, 서셉터에 놓여진 기판의 온도 분포 편차를 최소화할 수 있다.
또한, 본 발명에 의하면, 기판 가열시 열효율을 높일 수 있다.
도 1은 본 발명에 따른 원자층 증착 장치를 설명하기 위한 도면이다.
도 2 및 도 3은 도 1에 도시된 분사부재의 사시도 및 단면도이다.
도 4는 도 1에 도시된 기판 서셉터의 사시도이다.
도 5는 기판 서셉터의 요부 단면도이다.
도 6 내지 도 9는 차폐부재의 다양한 변형예를 보여주는 도면들이다.
도 10은 본 발명의 다른 실시예에 따른 차폐부재를 설명하기 위한 도면이다.
도 11은 도 10에 도시된 차폐부재의 변형예를 보여주는 도면이다.
도 12는 차폐부재의 또 다른 실시예를 보여주는 도면이다.
도 13은 차폐부재의 또 다른 실시예를 보여주는 도면이다.
이하에서는 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명한다. 상술한 본 발명이 해결하고자 하는 과제, 과제 해결 수단, 및 효과는 첨부된 도면과 관련된 실시 예들을 통해서 용이하게 이해될 것이다. 각 도면은 명확한 설명을 위해 일부가 간략하거나 과장되게 표현되었다. 각 도면의 구성 요소들에 참조 번호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 동일한 부호를 가지도록 도시되었음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
( 실시 예 )
도 1은 본 발명에 따른 원자층 증착 장치를 개략적으로 개략적으로 보여주는 도면이다. 도 2는 도 1의 분사부재의 사시도이고, 도 3은 도 1의 분사부재의 단면도이다. 또한, 도 4는 도 1의 기판 서셉터의 사시도이다.
도 1 내지 도 4를 참조하면, 원자층 증착 장치(10)는 공정 챔버(process chamber)(100), 기판 지지부재(support member)인 기판 서셉터(200), 분사부재(300), 그리고 공급부재(400)를 포함한다.
공정 챔버(100)의 일측에는 출입구(112)가 제공된다. 공정 진행시 기판(W)들은 출입구(112)를 통해 공정 챔버(100)로 출입한다. 또한, 공정 챔버(100)의 상부 가장자리에는 공정 챔버(100)로 공급된 반응가스와 퍼지 가스 및 원자층 증착 공정 중에 발생된 반응 분산물을 배기하기 위한 배기덕트(120)와 배기관(114)이 제공될 수 있다. 배기덕트(120)는 분사부재(300)의 외측에 위치하며, 링 형상으로 제공된다. 도시되지 않았으나 배기관(114)에는 진공펌프, 압력 제어 밸브, 개폐 밸브, 유량 제어 밸브가 설치될 수 있다.
도 1 내지 도 3에 도시된 바와 같이, 분사부재(300)는 기판 서셉터(200)에 놓여진 4장의 기판 각각으로 가스를 분사한다. 분사부재(300)는 제1,2반응가스 및 퍼지가스를 공급부재(400)로부터 공급받는다. 분사부재(300)는 공급부재(400)로부터 제공받은 가스들을 기판들 각각에 대응하는 위치에서 기판의 처리면 전체에 분사할 수 있도록 제공된다. 분사부재(300)는 헤드(310)와 샤프트(330)을 가진다. 헤드(310)는 제1 내지 제4배플(320a-320d)을 가진다. 샤프트(330)는 공정챔버(100)의 상부 중앙에 설치되며, 헤드(310)를 지지한다. 헤드(310)는 원반 형상을 가지며, 제1 내지 제4배플(320a-320d)은 헤드(310)의 내부에 가스를 수용하는 독립된 공간을 가진다. 제1 내지 제4배플(320a-320d)은 헤드(310)의 중심을 기준으로 순차적으로 90도 간격으로 구획된 부채꼴 형상을 가진다. 제1 내지 제4배플(320a-320d)의 저면에는 가스 분출구(312)들이 형성된다. 제1 내지 제4배플(320a-320d) 각각의 독립공간에는 공급부재(400)로부터 제공되는 가스들이 공급되며, 이들은 가스 분출구(312)들을 통해 분사되어 기판으로 제공된다. 각각의 배플(320a-320d)들 중 일부는 서로 상이한 종류의 가스를 공급할 수 있다. 또한, 배플(320a-320d)들 중 일부는 서로 동일한 종류의 가스를 공급할 수 있다. 일 예에 의하면, 제1배플(320a)에는 제1반응가스가 제공되고, 제1배플(320a)와 마주보는 제3배플(320c)에는 제2반응가스가 제공되며, 제2배플(320b)과 제4배플(320d)은 제1반응가스와 제2반응가스의 혼합을 막고 미반응 가스를 퍼지하기 위한 퍼지가스가 제공된다.
예컨대, 헤드(310)는 제1내지 제4배플(320a-320d)을 90도 간격으로 하여 부채꼴로 형성하였다. 그러나 본 발명은 이에 국한되는 것이 아니며 공정 목적이나 특성에 따라 배플의 수는 4개보다 적거나 4개보다 많은 수로 제공될 수 있다. 예컨대 배플은 8개가 제공되어 45도 간격으로 배치될 수 있다. 선택적으로 배플은 2개가 제공되어 180도 간격으로 배치될 수 있다. 또한, 배플들 전체 또는 배플들 중 일부는 그 크기가 상이하게 제공될 수 있다.
다시 도 1을 참조하면, 공급부재(400)는 제1가스 공급부재(410a), 제2가스 공급부재(410b) 그리고 퍼지가스 공급부재(420)를 포함한다. 제1가스 공급부재(410a)는 기판(w) 상에 소정의 박막을 형성하기 위한 제1반응 가스를 제1배플(320a)로 공급한다. 제2가스 공급부재(410b)는 제2반응 가스를 제3배플(320c)로 공급한다. 퍼지가스 공급부재(420)는 퍼지가스를 제2 및 제4배플(320b,320d)로 공급한다. 퍼지가스 공급부재(420)는 일정한 유량으로 퍼지가스를 지속적으로 공급하지만, 제1가스 공급부재(410a)와 제2가스 공급부재(410b)는 고압충전탱크(미도시됨)들을 이용하여 고압으로 충전되어 있는 반응가스를 짧은 시간에 방출(플래시 공급방식)하여 기판 상에 확산시킬 수 있다.
본 실시예에서는 2개의 서로 다른 반응가스를 공급하기 위해 2개의 가스공급부재가 사용되었으나, 공정 특성에 따라 3개 이상의 서로 다른 반응가스를 공급할 수 있도록 복수개의 가스공급부재가 적용될 수 있다.
도 1 및 도 4에서와 같이, 기판 서셉터(200)는 공정 챔버(100)의 내부 공간에 설치된다. 기판 서셉터(200)는 4장의 기판들이 놓여지는 배치 타입으로 이루어진다. 기판 서셉터(200)는 구동부(290)에 의해 회전된다. 기판 서셉터(200)를 회전시키는 구동부(290)는 구동모터의 회전수와 회전속도를 제어할 수 있는 엔코더가 설치된 스텝핑 모터를 사용될 수 있다. 엔코더에 의해 분사부재(300)의 1사이클 공정(제1반응가스-퍼지가스-제2반응가스-퍼지가스)시간을 제어하게 된다.
기판 서셉터(200)는 스테이지의 개수가 4개가 아닌 3개 또는 4개 이상이 적용될 수 있다.
도시하지 않았지만, 기판 서셉터(200)는 각각의 스테이지에서 기판(W)을 승강 및 하강시키는 복수의 리프트 핀(미도시됨)을 구비할 수 있다. 리프트 핀은 기판(W)을 승하강함으로써, 기판(W)을 기판 서셉터(200)의 스테이지로부터 이격시키거나, 스테이지에 안착시킨다.
기판 서셉터(200)는 상부 서셉터(210), 하부 서셉터(220), 발열체(230), 차폐부재(240) 그리고 지지기둥(280)을 포함한다.
상부 서셉터(210)는 상부면에 기판들이 놓여지는 제1 내지 제4스테이지(212a-212d)들이 형성된 원판형상으로 하부 서셉터(220)의 상부에 포개지도록 결합된다. 상부 서셉터(210)에 구비된 제1 내지 제4스테이지(212a-212d)는 기판의 형상과 유사한 원형으로 제공될 수 있다. 제1 내지 제4스테이지(212a-212d)는 기판 서셉터(200)의 중앙을 중심으로 동심원상에 90도 간격으로 배치된다.
하부 서셉터(220)는 상면에 상부 서셉터(210)의 각 스테이지(212a-212d)에 안착된 기판(W)을 가열하는 발열체(230)를 가진다. 발열체(230)로는 열선이 사용될 수 있다. 발열체(230)는 홀더(232)에 의해 지지된 상태로 하부 서셉터(220)의 상면에 형성된 삽입홈(228)에 위치된다. 홀더(232)는 발열체(230) 전체에 설치될 수 있다. 선택적으로 홀더(232)는 일정한 길이마다 또는 일정한 각도(예를 들어 90도, 45도 각도)마다 설치되어 발열체(230)를 고정시킬 수 있다. 발열체(230)는 기판(W)의 온도를 기 설정된 온도(공정 온도)로 상승시키기 위해 상부 서셉터(210)와 하부 서셉터(220)를 가열시킨다. 발열체(230)는 기판이 놓여지는 스테이지 구역(열선을 밀집배치)과 그외 구역(열선을 분산배치)에서의 열선 배치를 다르게 하여 기판이 놓여지는 스테이지 구역의 온도를 높게 하고, 그 외 구역은 낮게 유지하도록 하여 기판 상에만 박막 증착이 이루어지도록 할 수 있다.
도 5는 기판 서셉터의 요부 단면도이다. 도 5를 참조하면, 상부 서셉터(210)와 하부 서셉터(220) 사이에는 수 밀리미터(mm)의 제1공극(250)이 제공되고, 하부 서셉터(220)와 차폐부재(240) 사이에도 수 밀리미터(mm)의 제2공극(260)이 제공된다.
제1공극(250)은 스테이지 아래에 위치되는 상부 서셉터(210)와 하부 서셉터(220) 사이에 형성된다. 발열체(230)의 열에너지는 제1공극(250)에 의해 전도 방식이 아닌 복사 전달 방식으로 상부 서셉터(210)에 전달되며, 이로 인해 상부 서셉터(210)의 온도 균일성은 향상된다. 또 다른 예로는 도시하지 않았지만, 제1공극(250)에 열용량이 크고 열전도도 낮은 탄화규소계 물질로 이루어진 열전달시트를 장착하여 열전달 속도를 높일 수 있다. 열전달시트에는 탄화규소에 단방향으로 열전달을 하는 카본나노튜브가 혼합된 것을 단층 또는 복층으로 장착하여 사용하고, 열전달시트의 구역별(중앙부분과 가장자리 부분)로 카본나노튜브의 혼합율을 조절하여 열전달시트의 구역별 열 전달율을 조절할 수 있다.
다시 도 5를 참조하면, 차폐부재(240)는 하부 서셉터(220)의 상면에 장착된 발열체(230)에서 발생되는 열에너지의 일부가 하부 서셉터(220)의 저면으로 방사되어 손실되는 것을 차단한다. 차폐부재(240)는 하부 서셉터(220)의 저면에 설치된다. 차폐부재(240)와 하부 서셉터(220) 사이에는 열전달을 위한 복사공간인 제2공극(260)이 형성된다.
차폐부재(240)는 스테이지와 대응되는 하부 서셉터(220)의 저면에 스테이지와 동일하게 기판 서셉터(200)의 중앙을 중심으로 동심원상에 90도 간격으로 배치된다. 차폐부재(240)는 하부 서셉터(220) 저면으로 방사되는 열에너지를 하부 서셉터(220) 측으로 재공급하여 열효율을 높일 수 있도록 반사 코팅막(244)이 코팅된 원형 플레이트 형상의 차폐판(241)을 가진다. 차폐판(241)은 쿼트와 같이 열용량이 작은 소재로 이루어지며 그 표면에는 반사 효율을 증가시키기 위해 열적,화학적으로 안정적인 백금, 몰리브덴 등이 얇은 박막(반사 코팅막)(244)이 코팅될 수 있다.
차폐판(241)은 도 4에서와 같이 평평한 플레이트 형상 이외에도 다양한 형상으로 이루어질 수 있다.
도 6 내지 도 9는 차폐부재의 다양한 변형예를 보여주는 도면들이다.
도 6, 도 7에서와 같이, 차폐판(241)은 오목하게 또는 볼록하게 형성될 수 있다. 차폐판(241)이 가장자리로부터 중앙부분으로 오목한 형태로 형성된 경우에는 복사에너지의 재반사 각도가 중앙으로 집중될 수 있다. 차폐판(241)이 볼록하게 ㅎ형성된 경우에는 복사에너지의 재반사 각도가 가장자리로 집중될 수 있다. 복사 에너지의 반사각을 특정 구역에 집중하여 특정 구역의 온도를 좀 더 높일 수 있도록 차폐판(241)의 형상은 다양하게 변경될 수 있다.
도 8에서와 같이, 차폐부재(240c)의 차폐판(241) 상면에는 요철형태의 패턴들이 형성될 수 있다. 패턴들은 하부 서셉터(220)의 저면으로부터 방사되는 복사 에너지의 재반사 효율을 향상시키고, 재반사 각도를 조절한다. 차폐부재(240c)는 패턴들을 이용하여 특정 구역의 온도를 좀 더 높이고 반사율을 높일 수 있다. 패턴은 음각 또는 양각으로 형성될 수 있다. 또한 패턴은 도트형, 다각형, 브이형, 그리고 원뿔 등 다양한 형상을 가질 수 있다.
도 9의 차폐부재(240d)는 차폐판(241)의 상면에 패턴들의 패턴형상을 중앙부근과 가장자리부근의 형상을 달리하여 복사 에너지의 반사각을 특정 구역으로 집중할 수 있도록 구성할 수 있다.
도 10은 본 발명의 다른 실시예를 보여준다. 도 10에서 차폐부재(240e)는 하부 서셉터(220)의 상면에 설치된다. 이 경우, 차폐부재(240e)는 상부 서셉터(210)의 저면으로부터 방출되는 복사 에너지 및 발열체의 하부 방사 에너지를 재반사한다. 이때, 차폐부재(240e)의 반사효율을 높이기 위해서는 발열체(230)를 하부서셉터(220)의 상면보다 높게 위치시켜, 제1공극에 많이 노출되도록 한다. 발열체(230)가 하부 서셉터(220)의 상면으로 노출되게 설치되는 경우 발열체(230)로부터 하부 서셉터(220)의 상면방향으로 방출되는 복사 에너지를 상부 서셉터(210) 방향으로 반사시킬 수 있어 열효율을 높일 수 있다.
도 11은 도 10의 변형예를 보여주는 도면으로, 발열체(230)가 차폐부재(240f)의 상면에 직접 설치되어 하부 서셉터 상면에 위치되는 것으로, 발열체(230)는 홀더(232)들에 의해 차폐부재(240f)의 상면에 고정되며, 홀더(232)들은 발열체(230)에 일정간격 또는 일정각도마다 설치될 수 있다.
도 12 및 도 13은 차폐부재의 다른 실시예를 보여주는 도면들이다.
도 12,13에 도시된 바와 같이, 차폐부재(240g,240h)는 반사 코팅막(244)이 코팅된 원형 플레이트 형상의 차폐판(241)과, 차폐판(241)을 밀봉하고 상부에 열전달을 위한 복사 공간인 제2공극(260)을 형성한 케이스(249)를 포함한다. 케이스(249)는 투명한 석영 재질로 이루어지며, 케이스(249)는 공정가스(반응가스)의 침입을 막아 차폐판(241) 및 반사코팅막(244)의 오염, 이상 반응, 불순물에 의한 반사율 저하 등을 방지할 수 있다.
이러한 구조의 차폐부재(240g)는 도 8에서와 같이 하부 서셉터(220)의 상면에 설치될 수 있으며, 이 경우 발열체(230)는 차폐부재의 케이스(249) 상면에 설치된다.
또한, 도 13에서와 같이, 상술한 구조의 차폐부재(240h)는 하부 서셉터(220)의 저면에 설치될 수 있으며, 차폐부재(240h)는 자체에 열전달을 위한 복사 공간을 갖고 있기 때문에 차폐부재(240h)와 하부 서셉터(220) 사이에는 별도의 공간을 제공하지 않고 밀착 설치된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 증착 장치에 있어서:
    공정 챔버;
    상기 공정 챔버에 설치되고 동일 평면상에 복수의 기판이 놓여지는 기판 서셉터; 및
    상기 기판 서셉터에 놓여진 복수의 기판들 각각에 대응하는 위치에서 기판의 처리면 전체에 가스를 분사하는 분사부재를 포함하되;
    상기 기판 서셉터는
    상부면에 기판들이 놓여지는 스테이지들이 형성된 상부 서셉터;
    상기 상부 서셉터 저면에 결합되고 상기 스테이지들 각각에 대응되는 영역에 기판을 가열하기 위한 열원을 제공하는 발열체가 설치된 하부 서셉터; 및
    상기 하부 서셉터의 저면에 설치되고, 상기 하부 서셉터 저면으로의 열 에너지 방사를 억제하기 위한 차폐부재를 포함하는 것을 특징으로 하는 증착 장치.
  2. 제 1 항에 있어서,
    상기 기판 서셉터는
    상기 하부 서셉터와 상기 차폐 부재 사이에 열전달을 위한 복사공간을 갖는 것을 특징으로 하는 증착 장치.
  3. 제 2 항에 있어서,
    상기 차폐부재는
    상기 복사공간과 접하는 상면에 반사 코팅막이 형성된 플레이트 형상의 차폐판을 포함하며,
    상기 차폐판은 상기 스테이지와 대응되게 배치되는 것을 특징으로 하는 증착 장치.
  4. 제 3 항에 있어서,
    상기 차폐판은 만곡진 상면 또는 경사진 상면을 갖는 것을 특징으로 하는 증착 장치.
  5. 제 3 항에 있어서,
    상기 차폐판은 오목하거나 볼록한 상면을 갖는 것을 특징으로 하는 증착 장치.
  6. 제 3 항에 있어서,
    상기 차폐판은 상면에 열에너지의 방사각도를 특정구간에 집중할 수 있는 음각 또는 양각의 요철형태로 이루어지는 패턴들이 형성된 것을 특징으로 하는 증착 장치.
  7. 제 2 항에 있어서,
    상기 기판 서셉터는
    상기 스테이지 아래에 위치되는 상기 상부 서셉터와 상기 하부 서셉터 사이에 상기 발열체의 열원을 복사방식으로 전달하기 위한 공극이 형성되어 있는 것을 특징으로 하는 증착 장치.
  8. 제 7 항에 있어서,
    상기 공극에는 열용량이 크고 열전도도 낮은 탄화규소계 물질로 충전되어 있는 것을 특징으로 하는 증착 장치.
  9. 증착 장치에 있어서:
    공정 챔버;
    상기 공정 챔버에 설치되고 동심원상에 기판이 놓여지는 복수개의 스테이지를 갖는 기판 서셉터;
    반응가스를 공급하는 복수개의 가스공급부재;
    퍼지가스를 공급하는 퍼지가스 공급부재;
    상기 복수개의 가스 공급부와 상기 퍼지가스 공급부재로부터 제공받은 반응가스 및 퍼지가스를 상기 스테이지들 각각에 놓여진 기판과 대응하는 위치에서 기판의 처리면 전체에 독립적으로 분사할 수 있도록 복수개의 독립된 배플들을 갖는 분사부재; 및
    상기 분사부재의 배플들이 상기 스테이지에 놓여진 복수개의 기판들 각각으로 순차 선회하도록 상기 기판 서셉터 또는 상기 분사부재를 회전시키는 구동부를 포함하되;
    상기 기판 서셉터는
    상기 스테이지들이 형성된 상부 서셉터;
    상기 상부 서셉터 저면에 결합되고 기판을 가열하기 위한 열원을 제공하는 발열체가 설치된 하부 서셉터; 및
    상기 하부 서셉터의 저면에 상기 스테이지들 각각에 대응되게 설치되고, 상기 하부 서셉터 저면으로 방사되는 열에너지를 상기 하부 서셉터 측으로 재공급하여 열효율을 높이기 위한 차폐판를 포함하는 것을 특징으로 하는 증착 장치.
  10. 제 9 항에 있어서,
    상기 기판 서셉터는
    상기 스테이지 아래에 위치되는 상기 상부 서셉터와 상기 하부 서셉터 사이에 상기 발열체의 열에너지를 균일하게 전달하기 위한 제1공극이 형성되며,
    상기 하부 서셉터와 상기 차폐 부재 사이에 상기 차폐부재로부터 반사되는 열에너지를 상기 하부 서셉터로 전달하기 위한 제2공극이 형성되어 있는 것을 특징으로 하는 증착 장치.
  11. 제 10 항에 있어서,
    상기 차폐판은 반사코팅층이 형성된 오목하거나 볼록한 상면을 갖는 것을 특징으로 하는 증착 장치.
  12. 제 11 항에 있어서,
    상기 차폐판의 상면에는 음각 또는 양각의 요철형태로 이루어지는 패턴들이 형성된 것을 특징으로 하는 증착 장치.
  13. 기판 서셉터에 있어서:
    동심원상에 기판이 놓여지는 복수개의 스테이지를 갖는 상부 서셉터;
    상기 상부 서셉터 저면에 결합되는 하부 서셉터;
    상기 하부 서셉터와 상기 상부 서셉터 사이에 설치되고 기판을 가열하기 위한 열원을 제공하는 발열체; 및
    상기 하부 서셉터에 상기 스테이지들 각각에 대응되게 설치되고, 상면에 반사 코팅막을 갖으며, 상기 하부 서셉터로부터 방사되는 열에너지를 상기 상부 서셉터 측으로 재공급하여 열효율을 높이기 위한 차폐부재를 포함하는 것을 특징으로 하는 기판 서셉터.
  14. 제 13 항에 있어서,
    상기 기판 서셉터는
    상기 스테이지 아래에 위치되는 상기 상부 서셉터와 상기 하부 서셉터 사이에 상기 차폐부재가 설치되는 제1공극을 갖으며,
    상기 발열체는 상기 차폐부재 상면에 설치되는 것을 특징으로 하는 기판 서셉터.
  15. 제 13 항에 있어서,
    상기 차폐부재는
    상기 반사 코팅막이 상면에 형성된 플레이트 형상의 차폐판과, 상기 차폐판을 밀봉하는 투명한 케이스를 포함하며,
    상기 발열체는 상기 차폐부재의 케이스 상면에 설치되는 것을 특징으로 하는 기판 서셉터.
  16. 제 13 항에 있어서,
    상기 차폐부재는
    상기 반사 코팅막이 상면에 형성된 플레이트 형상의 차폐판과, 상기 차폐판을 밀봉하는 투명한 케이스를 포함하며,
    상기 차폐부재는 상기 하부 서셉터의 저면에 설치되는 것을 특징으로 하는 기판 서셉터.
  17. 제 15 항 또는 제 16 항에 있어서,
    상기 차폐부재는
    상기 차폐판의 반사 코팅막과 상기 케이스 사이에 제2공극이 형성되어 있는 것을 특징으로 하는 기판 서셉터.
  18. 제 13 항에 있어서,
    상기 차폐부재는 상기 반사 코팅막이 형성된 상면에 열에너지의 방사각도를 특정구간에 집중할 수 있는 음각 또는 양각의 요철형태로 이루어지는 패턴들이 형성된 것을 특징으로 하는 기판 서셉터.
PCT/KR2011/001819 2010-07-28 2011-03-16 기판 서셉터 및 그것을 갖는 증착 장치 WO2012015140A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013521673A JP5639712B2 (ja) 2010-07-28 2011-03-16 基板サセプタ及びそれを有する蒸着装置
US13/811,989 US9567673B2 (en) 2010-07-28 2011-03-16 Substrate susceptor and deposition apparatus having same
CN201180036834.2A CN103026465B (zh) 2010-07-28 2011-03-16 基板衬托器及具有其的沉积装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0072963 2010-07-28
KR1020100072963A KR101205433B1 (ko) 2010-07-28 2010-07-28 기판 서셉터 및 그것을 갖는 증착 장치

Publications (1)

Publication Number Publication Date
WO2012015140A1 true WO2012015140A1 (ko) 2012-02-02

Family

ID=45530311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001819 WO2012015140A1 (ko) 2010-07-28 2011-03-16 기판 서셉터 및 그것을 갖는 증착 장치

Country Status (6)

Country Link
US (1) US9567673B2 (ko)
JP (1) JP5639712B2 (ko)
KR (1) KR101205433B1 (ko)
CN (1) CN103026465B (ko)
TW (1) TWI500811B (ko)
WO (1) WO2012015140A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211521A (ja) * 2012-03-02 2013-10-10 Stanley Electric Co Ltd 気相成長装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423529B2 (ja) * 2010-03-29 2014-02-19 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
KR102113734B1 (ko) * 2012-12-12 2020-05-21 엘지이노텍 주식회사 화학 기상 증착 장치용 서셉터 및 이를 구비한 화학 기상 증착 장치
KR102164707B1 (ko) * 2013-08-14 2020-10-13 삼성디스플레이 주식회사 원자층 증착 방법 및 원자층 증착 장치
US11549181B2 (en) 2013-11-22 2023-01-10 Applied Materials, Inc. Methods for atomic layer deposition of SiCO(N) using halogenated silylamides
KR102297567B1 (ko) * 2014-09-01 2021-09-02 삼성전자주식회사 가스 주입 장치 및 이를 포함하는 박막 증착 장비
US10954597B2 (en) * 2015-03-17 2021-03-23 Asm Ip Holding B.V. Atomic layer deposition apparatus
US10161041B2 (en) 2015-10-14 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Thermal chemical vapor deposition system and operating method thereof
US10428425B2 (en) * 2016-01-26 2019-10-01 Tokyo Electron Limited Film deposition apparatus, method of depositing film, and non-transitory computer-readable recording medium
JP6521475B2 (ja) * 2016-03-25 2019-05-29 株式会社Kokusai Electric 基板支持台、基板処理装置および半導体装置の製造方法
KR102411077B1 (ko) 2016-06-07 2022-06-17 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 균일성을 위한 윤곽 포켓 및 하이브리드 서셉터
TWI671429B (zh) 2016-07-02 2019-09-11 美商應用材料股份有限公司 在空間ald處理腔室中用以增加沉積均勻性的裝置
US11621180B2 (en) 2016-10-31 2023-04-04 Nissin Ion Equipment Co., Ltd. Heating device
JP6296189B1 (ja) 2016-10-31 2018-03-20 日新イオン機器株式会社 加熱装置、半導体製造装置
CN107507793B (zh) * 2017-08-18 2020-02-04 深圳市华星光电技术有限公司 蚀刻设备
TWI768849B (zh) * 2017-10-27 2022-06-21 美商應用材料股份有限公司 具有空間分離的單個晶圓處理環境
US10755955B2 (en) * 2018-02-12 2020-08-25 Applied Materials, Inc. Substrate transfer mechanism to reduce back-side substrate contact
US11447865B2 (en) 2020-11-17 2022-09-20 Applied Materials, Inc. Deposition of low-κ films
CN113539893A (zh) * 2021-05-11 2021-10-22 北京北方华创微电子装备有限公司 一种用于半导体工艺腔室的加热装置和半导体设备
US20230130756A1 (en) * 2021-10-22 2023-04-27 Applied Materials, Inc. Bottom cover plate to reduce wafer planar nonuniformity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100244954B1 (ko) * 1995-04-28 2000-02-15 니시히라 순지 씨브이디(cvd) 장치의 가열장치
KR100260119B1 (ko) * 1993-06-24 2000-07-01 히가시 데쓰로 반도체 처리장치
KR100687378B1 (ko) * 1998-03-26 2007-02-26 어플라이드 머티어리얼스, 인코포레이티드 고온 다층 합금 히터 어셈블리 및 관련 방법
KR20100077695A (ko) * 2008-12-29 2010-07-08 주식회사 케이씨텍 원자층 증착장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579080A (en) * 1983-12-09 1986-04-01 Applied Materials, Inc. Induction heated reactor system for chemical vapor deposition
JPH06310438A (ja) * 1993-04-22 1994-11-04 Mitsubishi Electric Corp 化合物半導体気相成長用基板ホルダおよび化合物半導体気相成長装置
JPH08139046A (ja) 1994-11-09 1996-05-31 Hitachi Ltd 熱処理装置
JP2975885B2 (ja) * 1996-02-01 1999-11-10 キヤノン販売株式会社 ガス分散器及びプラズマ処理装置
JP4059990B2 (ja) 1998-09-30 2008-03-12 大陽日酸株式会社 気相成長装置
KR100319494B1 (ko) 1999-07-15 2002-01-09 김용일 원자층 에피택시 공정을 위한 반도체 박막 증착장치
JP4817210B2 (ja) 2000-01-06 2011-11-16 東京エレクトロン株式会社 成膜装置および成膜方法
US6436796B1 (en) * 2000-01-31 2002-08-20 Mattson Technology, Inc. Systems and methods for epitaxial processing of a semiconductor substrate
JP4083512B2 (ja) * 2002-08-30 2008-04-30 東京エレクトロン株式会社 基板処理装置
JP4640938B2 (ja) * 2002-11-22 2011-03-02 アプライド マテリアルズ インコーポレイテッド 裏側加熱チャンバ
US20090194024A1 (en) * 2008-01-31 2009-08-06 Applied Materials, Inc. Cvd apparatus
JP5031013B2 (ja) * 2008-11-19 2012-09-19 東京エレクトロン株式会社 成膜装置、成膜装置のクリーニング方法、プログラム、プログラムを記憶するコンピュータ可読記憶媒体
TWI465599B (zh) 2008-12-29 2014-12-21 K C Tech Co Ltd 原子層沉積裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100260119B1 (ko) * 1993-06-24 2000-07-01 히가시 데쓰로 반도체 처리장치
KR100244954B1 (ko) * 1995-04-28 2000-02-15 니시히라 순지 씨브이디(cvd) 장치의 가열장치
KR100687378B1 (ko) * 1998-03-26 2007-02-26 어플라이드 머티어리얼스, 인코포레이티드 고온 다층 합금 히터 어셈블리 및 관련 방법
KR20100077695A (ko) * 2008-12-29 2010-07-08 주식회사 케이씨텍 원자층 증착장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211521A (ja) * 2012-03-02 2013-10-10 Stanley Electric Co Ltd 気相成長装置

Also Published As

Publication number Publication date
JP2013535833A (ja) 2013-09-12
TWI500811B (zh) 2015-09-21
KR20120011232A (ko) 2012-02-07
JP5639712B2 (ja) 2014-12-10
KR101205433B1 (ko) 2012-11-28
US20130118407A1 (en) 2013-05-16
CN103026465B (zh) 2015-08-19
TW201204867A (en) 2012-02-01
CN103026465A (zh) 2013-04-03
US9567673B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
WO2012015140A1 (ko) 기판 서셉터 및 그것을 갖는 증착 장치
JP7136945B2 (ja) エピタキシャル成長装置用のチャンバ構成要素
US6007633A (en) Single-substrate-processing apparatus in semiconductor processing system
CN111211074B (zh) 具有空间分布的气体通道的气流控制衬垫
CN1956145B (zh) 半导体处理室
KR102202406B1 (ko) 반도체 처리 챔버를 위한 코팅된 라이너 어셈블리
US20140116340A1 (en) Epitaxial growth device
KR20080081823A (ko) 복사 가열을 이용한 마이크로배치 증착 챔버
KR20140084308A (ko) 가스 분산 장치
KR20170054447A (ko) 기판들의 열적 프로세싱을 위한 서셉터 및 예열 링
WO2004015742A3 (en) High rate deposition in a batch reactor
TW201801153A (zh) 承載盤支座
WO1999025909A1 (fr) Four pour croissance epitaxiale
KR20080024820A (ko) 기판 안치 수단 및 이를 구비하는 기판 처리 장치
EP0669640A1 (en) Susceptor for deposition apparatus
WO2015041392A1 (ko) 히터 부재 및 그것을 갖는 기판 처리 장치
WO2014042488A2 (ko) 기판처리장치
TW201929050A (zh) 磊晶成長裝置及使用此裝置的半導體磊晶晶圓的製造方法
KR20120107806A (ko) 박막 균일도 개선을 위한 수직형 박막증착장치
CN214991841U (zh) 加热装置和真空镀膜设备
KR102260972B1 (ko) 기판 처리 장치
KR20120110823A (ko) 박막 균일도 개선을 위한 복층형 박막증착장치
KR101282157B1 (ko) 기판 처리 장치
WO2012177064A2 (en) Deposition apparatus
KR20150015714A (ko) 서셉터 및 이를 포함하는 막 증착장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036834.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521673

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13811989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812671

Country of ref document: EP

Kind code of ref document: A1