WO2012014932A1 - Method for welding austenitic stainless steel - Google Patents

Method for welding austenitic stainless steel Download PDF

Info

Publication number
WO2012014932A1
WO2012014932A1 PCT/JP2011/067080 JP2011067080W WO2012014932A1 WO 2012014932 A1 WO2012014932 A1 WO 2012014932A1 JP 2011067080 W JP2011067080 W JP 2011067080W WO 2012014932 A1 WO2012014932 A1 WO 2012014932A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
stainless steel
austenitic stainless
weight
filler rod
Prior art date
Application number
PCT/JP2011/067080
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 志賀
和裕 津野
孝直 千年
忍 古川
Original Assignee
新興プランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新興プランテック株式会社 filed Critical 新興プランテック株式会社
Publication of WO2012014932A1 publication Critical patent/WO2012014932A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Definitions

  • the present invention relates to reverse wave welding of austenitic stainless steel. More specifically, regarding back wave welding, complete penetration welding is possible by TIG one-side welding of austenitic stainless steel piping that does not require back shield gas, and can obtain welds with excellent back wave performance without using back shield gas. Regarding the method. More specifically, the present invention relates to the provision of a welding method that can ensure two or more types of quality according to the standard of “radiation transmission test method for stainless steel welded joint” defined in JIS Z 3106.
  • back wave welding by TIG welding is generally employed as a method of forming a weld bead from one side of the object to be welded to the back surface.
  • a back shield gas such as an inert gas
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-20397
  • Patent Document 1 proposes a method in which a metal shell is filled with a flux, the upper surface of the bead is covered with an inert gas, and the lower surface is covered with a molten flux so that the welded portion is completely shielded from the atmosphere.
  • Patent Document 1 ensures the ability to form a back wave, but in the case of welding a pipe or the like, a large amount of slag remains therein. May be a problem.
  • Patent Document 2 discloses a method in which a bag that expands in a pipe is installed on both sides of a groove and inflated, and a back shield gas is passed between them to make a local back shield. Has proposed.
  • Patent Document 2 Japanese Patent Laid-Open No. 60-40671
  • Patent Document 2 a special jig or device for that purpose is required, and appropriate welding is performed depending on the arrangement and shape of the target structure. May not be applicable or may be difficult to adopt.
  • Patent Document 3 relates to a technique for welding two types of steel materials to form a steel pipe, although austenitic stainless steel is used. It is not a welding technique for the purpose of shielding effect to ensure performance.
  • Patent Document 4 discloses that C: 0.15% or less, Cr: 0 to 12.5%, Mo: 0.3 to 1.2%, Ni: 0 to 1 by weight%. .3%, Al: 0.01% or less, Si satisfying the following formula, and Mn satisfying the following formula, respectively, and the balance Fe and impurities, P and S in the impurities are P: 0.03% or less, respectively. And S: 0.005% or less, and O (oxygen) is made of steel satisfying the following formula, and a welding material for steel that can omit the use of a back shield gas is proposed.
  • O oxygen
  • Patent Document 4 prescribes up to ferritic stainless steel, and austenitic stainless steel with a larger amount of Cr and easily oxidized in the back is omitted from the construction object. ing.
  • Patent Document 5 provides a stainless steel pipe for non-back shield welding. This (Patent Document 5) provides the concept of non-back shield, but this method is suitable for special applications such as butt welding of water-related pipes, with various welding conditions. It can not meet a wide range of demand.
  • the present invention has been made in view of the above-described problems of the prior art, and uses a back shield gas by forming a Si oxide film on the surface of a back bead when performing back wave welding of austenitic stainless steel. It aims at providing the welding method which can construct the welding part which has the outstanding back wave performance, without.
  • an unhealthy back bead with severe irregularities is formed.
  • the cause of this is that the molten pool that becomes the back bead directly touches the atmosphere, and an oxide film such as Cr oxide having a melting point much higher than that of stainless steel molten metal is formed on the surface of the molten metal by oxygen in the atmosphere.
  • unhealthy backside bead with severe irregularities is formed.
  • the wettability refers to whether or not the molten metal is easily distributed to the base material. This is governed by the difference between the surface tension of the base metal, the surface tension of the molten metal, the surface tension of the molten metal and the surface tension of the base metal surface.
  • the present invention is characterized by taking the following means in order to solve the above-described problems.
  • First by using an austenitic stainless steel filler rod containing Si: 0.65-1.50% by weight, the use of back shield gas can be omitted by forming an Si oxide film. It is providing the welding construction method of austenitic stainless steel characterized by being.
  • the first layer is welded by the first or second method, and fourth, multi-layer welding is performed by the first or second method, respectively. Is to provide.
  • welding is performed using a TIG filler rod of austenitic stainless steel containing Si: 0.65-1.50% by weight.
  • a welding method for austenitic stainless steel characterized by forming a Si oxide film on the backside bead surface by welding using a filler rod and shielding the backside bead surface of the weld metal from the atmosphere. Is to provide.
  • the effect is not sufficient if the content is less than 0.65%, while if the content exceeds 1.50%, the ductility of the ferrite phase of the weld metal decreases. Along with this, the toughness of the welded portion is greatly reduced, and melt penetration during welding is also reduced, which becomes a problem in practical welding.
  • Si is a ferrite-forming element. If its content is excessive, it deteriorates toughness and hot workability, and increases the hot cracking susceptibility during welding, so the upper limit of Si content is 1.50%. It was.
  • a high melting point oxide such as Cr oxide that inhibits the formation of sound backside bead without using a back shield gas by forming a molten pool with a high Si content. It is possible to obtain a smooth back bead.
  • the sound back bead of the first layer (the layer generated by the first welding in the welding) can be secured.
  • the above mechanism or reason is considered as follows.
  • Si has a strong affinity for oxygen compared to the constituent elements of the main stainless steel weld metals such as Cr. Oxides are formed preferentially over elements. Further, SiO 2 this is an oxide, because good wettability with the surface tension is small molten metal, the oxygen penetration of forming a dense oxide layer (film) on the surface of the molten metal to subsequent melt metal In addition to preventing, the melting point is lower than Cr oxide (Cr 2 O 3 : 2200 ° C. or higher, SiO 2 : 1723 ° C.), which is close to the solidification temperature of the molten metal. A sound back bead having an excellent surface property with few irregularities can be secured.
  • Cr oxide Cr 2 O 3 : 2200 ° C. or higher, SiO 2 : 1723 ° C.
  • stainless steel and its filler rod contain about 0.5% or less of Si, but this amount is insufficient to secure a back bead having excellent surface properties. It is. This is apparent from the fact that in the back welding with these general stainless steel filler metals, a back-bead shape with severe irregularities is formed when the back shield gas is not used. The back and forth bead shape with severe irregularities does not satisfy the two categories according to the standard of “Radiation Transmission Test Method for Stainless Steel Welded Joint” defined in JIS Z 3106, and is not acceptable in quality as a back welded joint. Therefore, conventionally, an inert gas such as Ar has been used as the back shield gas in order to ensure a sound backside weld bead.
  • an inert gas such as Ar has been used as the back shield gas in order to ensure a sound backside weld bead.
  • a sound welded bead shape can be obtained as a result of the welded joint. Therefore, 2 according to the criteria of “radiation transmission test method for stainless steel welded joint” defined in JIS Z 3106. It is possible to secure a quality that is equal to or better than that. Furthermore, according to the present invention, since the back shield gas is not used, complicated work such as storage, transport, management, filling, and release of the back shield gas is omitted, and at the same time, the procedure burden of the welding work process is reduced, Shorten welding construction period and reduce costs.
  • a high melting point oxide such as Cr oxide that inhibits the formation of sound backside bead without using a back shield gas by forming a molten pool with a high Si content. It is possible to obtain a smooth back bead. That is, according to the welding construction method of the present invention, first, the improvement of the shape of the back bead, the second, the quality of the back bead, the third, various cost merits, etc. Effects can be achieved.
  • each claim of the present invention is as follows. According to the welding construction method described in claims 1 to 4 of the present application, the welding surface is shielded from the outside air by forming a Si oxide film on the backside bead surface, and the weld metal is shielded from the atmosphere by the back shield gas. There is no need to do so, and a healthy backside bead can be obtained.
  • welding is performed using a filler rod having a high Si content, or a flux having a high Si content is mixed with a solvent. After applying this product to the groove surface, it is welded using a filler rod with a high Si content to form an Si oxide film, and the backside bead surface of the weld metal is formed without using a back shield gas. It will be shielded from the atmosphere and a healthy backside bead will be obtained.
  • test materials were produced under the following welding conditions, and five types of tests were performed after each welding to obtain respective test results.
  • the five types of tests are ⁇ Test Example 1> Backside bead appearance ([0036] is the same hereinafter)
  • Example 1 shows the chemical composition of the filler rod used in each of the inventive examples and comparative examples.
  • Example 1 Base material: Austenitic stainless steel SUS316L Filler rod: first layer W2 (Si content: 0.90%) Remaining layer W4 (commercially available filler rod equivalent to JIS standard Y316L (Si content: 0.39%)) (Remaining layer: remaining layers other than the first layer among all layers in multilayer welding) An austenitic stainless steel filler rod containing Si: 0.65 to 1.50% by weight was used for the first layer.
  • Back shield gas None
  • Example 2 Base material: Austenitic stainless steel SUS304 Filler rod: first layer W1 (Si content: 0.77%) Remaining layer W3 (commercially available filler rod equivalent to JIS standard Y308 (Si content: 0.39%)) As the flux, as shown in FIG. 4, a flux containing Si containing 60% or more of Si by weight is mixed from the groove front side of the welded part, and the first layer is weight%. An austenitic stainless steel filler rod containing Si: 0.65-1.50% was used. Back shield gas: None
  • Example 3 Base material: Austenitic stainless steel SUS316L Filler rod: first layer W2 (Si content: 0.90%) Remaining layer W4 (commercially available filler rod equivalent to JIS standard Y316L (Si content: 0.39%)) As the flux, as shown in FIG. 4, a flux containing Si containing 60% or more of Si by weight is mixed from the groove front side of the welded part, and the first layer is weight%. An austenitic stainless steel filler rod containing Si: 0.65-1.50% was used. Back shield gas: None
  • Table 1 Chemical composition of filler rod Unit wt% A W2 filler rod was used for the first layer of Example 1 and Example 3, and a W1 filler rod was used for the first layer of Example 2. In addition, a W4 filler rod was used for the remaining layers of Example 1 and Example 3, and a W3 filler rod was used for the remaining layer of Example 2, respectively. For Comparative Example 1 and Comparative Example 2, a W3 filler rod was used for all layers, and for Comparative Example 3, a W4 filler rod was used for all layers.
  • FIG. 6 shows an oxide film on the surface in Example 2 and Comparative Example 1 by a welding method using a commercially available filler rod and not using a back shield gas. It compares the element concentration distribution of the cross section of the back bead including.
  • This analysis data is a cross section of a butt weld joint manufactured by TIG welding, and is a data obtained by performing line analysis of Si, Cr, Fe, Ni and O (oxygen) from the weld metal side of the first layer toward the back surface. is there.
  • SiK, CrK, FeK, NiK and OK on the vertical axis of the diagram showing the concentration distribution indicates the characteristic X-ray K-rays emitted from each element constituting the sample when the sample to be analyzed is irradiated with an electron beam. Show.
  • the oxide film formed on the surface of the backside bead has high concentrations of Si and Cr, and the concentrations of Fe and Ni are rapidly decreased. This indicates that the main component of the oxide film is an oxide of Si and Cr, and almost no oxide of Fe and Ni is generated.
  • the oxide film formed on the surface of the back bead is characterized by the formation of oxides containing Si, and the low melting point oxide containing Si fills the gaps between the high-melting point Cr oxides produced in granular form and melts. It covers the surface of the molten metal without hindering the flow of metal and shields the weld metal from the atmosphere, thereby forming a healthy backside bead.
  • Comparative Example 1 The bead surface of Comparative Example 1 generates an oxide containing Cr, Fe, and Ni. However, since the Si concentration does not change between the weld metal and the oxide film, the amount of oxide containing Si is It turns out that there are not many.
  • a high melting point oxide such as a composite oxide of Cr, Fe and Ni is formed on the surface of the molten metal, and the high melting point oxide inhibits the fluidity of the molten metal, thereby causing unhealthy bead with severe irregularities. Is formed.
  • Table 3 shows the results of the joint tensile test and the back bending test performed on Examples 1 to 3 in accordance with JIS B 8285 “Confirmation Test Method for Pressure Vessel Welding Method”. The determination was made in accordance with JIS B 8285 “Confirmation Test Method for Pressure Vessel Welding Method Appendix 1 (Regulation) Evaluation Criteria for Confirmation Test of Welding Method”. From the mechanical test results shown in Table 3, it is recognized that the welded joint constructed by the welding method according to the present invention has good mechanical performance in both the tensile test and the back bending test.
  • FIG. 1 is a cross-sectional view of a unit length (eg, 100 cm) of a filler rod 1 used for welding according to an embodiment of the present invention.
  • the groove size is 0 to 2 mm for the root face thickness
  • the appropriate range of the groove angle is 45 to 80 degrees, preferably 60 degrees
  • the root interval 6 is 0 to 5 mm, preferably Set to 5 mm. That is, if the groove angle exceeds 80 degrees, the required amount of deposited metal increases and the efficiency is inferior.
  • the appropriate range of the angle of the groove 4 is set to 45 to 80 degrees, preferably 60 degrees.
  • a flux 2 containing 60% or more by weight of Si mixed with solvent 3 is applied to the groove front side of the welded portion as shown in FIG. And may be welded.
  • a stainless steel pipe 5, its groove 4, and a route interval 6 are shown.
  • the groove surface 5 is coated with a flux containing 60% or more of Si and a solvent mixed with a solvent.
  • first layer welding is performed using an austenitic stainless steel filler rod containing 0.65 to 1.50% of Si after coating.
  • the method of the present invention or the conventional welding method may be used.
  • a bead smoothing agent a blow hole during TIG welding, a welding auxiliary material for the purpose of eliminating poor flow of hot water
  • the present invention eliminates the need for backshield gas, which can provide a welded portion having excellent backside performance without using backshield gas when back-welding austenitic stainless steel piping. It is related to the method of complete penetration welding by one-sided welding of stainless steel. By appropriately managing the amount of Si in the molten metal during welding at a high rate, the difference in the type and situation of the welding object and welding environment can be determined. It is industrially useful as a new technology that can be applied to a wide range of welding and can be applied to all-position welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Disclosed is a method for penetration welding of austenitic stainless steel. By using a welding rod with a high silicon content, said method can produce a weld with excellent penetration performance without using a back-shielding gas. In said method, either: TIG welding is performed using an austenitic stainless steel welding rod containing 0.65-1.50% silicon by weight; or TIG welding is performed using an austenitic stainless steel welding rod containing 0.65-1.50% silicon by weight, with the groove face coated with a solvent mixed with a flux that contains at least 60% silicon by weight.

Description

オーステナイト系ステンレス鋼の溶接施工方法Welding method for austenitic stainless steel
 本発明は、オーステナイト系ステンレス鋼の裏波溶接に関する。より詳しくは裏波溶接に関して、バックシールドガスを使用せずに優れた裏波性能を有する溶接部を得ることができるバックシールドガス不要のオーステナイト系ステンレス鋼配管のティグ片側溶接による完全溶込み溶接施工方法に関する。
 より具体的には、本発明はJIS Z 3106 に規定する「ステンレス鋼溶接継手の放射線透過試験方法」の基準による2類以上の品質が確保できる溶接施工方法の提供に係る。
The present invention relates to reverse wave welding of austenitic stainless steel. More specifically, regarding back wave welding, complete penetration welding is possible by TIG one-side welding of austenitic stainless steel piping that does not require back shield gas, and can obtain welds with excellent back wave performance without using back shield gas. Regarding the method.
More specifically, the present invention relates to the provision of a welding method that can ensure two or more types of quality according to the standard of “radiation transmission test method for stainless steel welded joint” defined in JIS Z 3106.
 ステンレス鋼の、主としてパイプ等の被溶接物の片側溶接において、被溶接物の片側から裏面に溶接ビードを形成する方法として、一般にティグ溶接による裏波溶接が採用されている。この溶接工法においては、被溶接物の裏面に形成される溶融金属をバックシールドガス(不活性ガスなど)で保護しないと裏波ビードが酸化し健全な溶接金属が得られない。 In one-sided welding of stainless steel, mainly welded objects such as pipes, back wave welding by TIG welding is generally employed as a method of forming a weld bead from one side of the object to be welded to the back surface. In this welding method, if the molten metal formed on the back surface of the workpiece is not protected with a back shield gas (such as an inert gas), the back bead is oxidized and a sound weld metal cannot be obtained.
 しかしながら、バックシールドガスとしては、通常高価なAr等の不活性ガスを使用するためこれを大量に使用する場合は、特に施工コストの上昇を招き、シールドするための準備などで施工数を増やすなどの問題がある。そのため、従来、バックシールドガスの節約や、初層(溶接において最初に溶接した層)の裏波性能確保のためにいくつかの方法が提案されている。 However, as the back shield gas, an expensive inert gas such as Ar is normally used. When this is used in large quantities, the construction cost is increased, and the number of constructions is increased by preparations for shielding. There is a problem. For this reason, several methods have been proposed in the past to save back shield gas and ensure the back wave performance of the first layer (the layer welded first in welding).
 例えば、溶加材の化学組成の観点から裏波形成能の改善を図ったものとしては、特開昭60-203397号公報(特許文献1)が提案されている。これは、金属製外皮の内側にフラックスを充填させ、ビードの上面をイナートガスで、下面を溶融したフラックスで覆い、溶接部分を大気と完全に遮断する方法を提案している。 For example, Japanese Patent Application Laid-Open No. 60-20397 (Patent Document 1) has been proposed as an improvement of the back-wall forming ability from the viewpoint of the chemical composition of the filler metal. This proposes a method in which a metal shell is filled with a flux, the upper surface of the bead is covered with an inert gas, and the lower surface is covered with a molten flux so that the welded portion is completely shielded from the atmosphere.
 しかし、上記特開昭60-203397号公報(特許文献1)の方法は、裏波形成能は確保されるものの、パイプなどの溶接の場合、中に多くのスラグが残ってしまうため、その処理が問題となる場合がある。 However, the method disclosed in Japanese Patent Application Laid-Open No. 60-20397 (Patent Document 1) ensures the ability to form a back wave, but in the case of welding a pipe or the like, a large amount of slag remains therein. May be a problem.
 また、特開昭60-40671号公報(特許文献2)は、パイプの中に膨脹するバッグを開先の両側に設置して膨らませ、その間にバックシールドガスを流し局部的なバックシールドとする方法を提案している。 Japanese Patent Application Laid-Open No. 60-40671 (Patent Document 2) discloses a method in which a bag that expands in a pipe is installed on both sides of a groove and inflated, and a back shield gas is passed between them to make a local back shield. Has proposed.
 しかしながら、上記特開昭60-40671号公報(特許文献2)の方法によれば、そのための特別な治具や装置を必要とし、また、対象とする構造物の配置や形状によっては適切な溶接に適用できない場合や採用が困難な場合がある。 However, according to the method disclosed in Japanese Patent Laid-Open No. 60-40671 (Patent Document 2), a special jig or device for that purpose is required, and appropriate welding is performed depending on the arrangement and shape of the target structure. May not be applicable or may be difficult to adopt.
 更に、特開平7-314174号公報(特許文献3)は、オーステナイト系ステンレス鋼を使用してはいるが、二種類の鋼材を溶接して鋼管を造るための技術に関するものであって、裏波性能確保のためのシールド効果を目的とした溶接技術ではない。 Further, Japanese Patent Application Laid-Open No. 7-314174 (Patent Document 3) relates to a technique for welding two types of steel materials to form a steel pipe, although austenitic stainless steel is used. It is not a welding technique for the purpose of shielding effect to ensure performance.
 特開平10-24388号公報(特許文献4)は、重量%でC:0.15%以下、Cr:0~12.5%、Mo:0.3~1.2%、Ni:0~1.3%、Al:0.01%以下、下記式を満足するSi、下記式を満足するMnをそれぞれ含み、残部Feおよび不純物で、不純物中のPおよびSがそれぞれP:0.03%以下およびS:0.005%以下で且つO(酸素)が下記式を満足する鋼からなることを特徴とするバックシールドガスの使用が省略可能な鋼用溶接材料を提案している。
  0.045[Cr(%)+Mn(%)]+0.1≦Si(%)≦-0.020[Cr(%)+Mn(%)]+1.0 …(1)
  0.0925-12.5S(%)≦Mn(%)≦1.2                            …(2)
  Al(%)+O(%)≦0.02                                       …(3)
Japanese Patent Application Laid-Open No. 10-24388 (Patent Document 4) discloses that C: 0.15% or less, Cr: 0 to 12.5%, Mo: 0.3 to 1.2%, Ni: 0 to 1 by weight%. .3%, Al: 0.01% or less, Si satisfying the following formula, and Mn satisfying the following formula, respectively, and the balance Fe and impurities, P and S in the impurities are P: 0.03% or less, respectively. And S: 0.005% or less, and O (oxygen) is made of steel satisfying the following formula, and a welding material for steel that can omit the use of a back shield gas is proposed.
0.045 [Cr (%) + Mn (%)] + 0.1 ≦ Si (%) ≦ −0.020 [Cr (%) + Mn (%)] + 1.0… (1)
0.0925-12.5S (%) ≦ Mn (%) ≦ 1.2… (2)
Al (%) + O (%) ≦ 0.02 (3)
 しかしながら、上記特開平10-24388号公報(特許文献4)は、フェライト系ステンレス鋼までを規定しており、よりCr量が多く、裏波の酸化されやすいオーステナイト系ステンレス鋼は施工対象から省かれている。 However, Japanese Patent Laid-Open No. 10-24388 (Patent Document 4) prescribes up to ferritic stainless steel, and austenitic stainless steel with a larger amount of Cr and easily oxidized in the back is omitted from the construction object. ing.
 特開平10-317107号公報(特許文献5)は、ノンバックシールド溶接用ステンレス鋼管を提供する。この(特許文献5)は、ノンバックシールドの考え方を提供するが、この方法は、水関連配管の突合せ溶接などの特殊用途に対応するものであり、溶接条件も様々で多様な溶接施工現場の需要にまで幅広く対応し得るものではない。 JP-A-10-317107 (Patent Document 5) provides a stainless steel pipe for non-back shield welding. This (Patent Document 5) provides the concept of non-back shield, but this method is suitable for special applications such as butt welding of water-related pipes, with various welding conditions. It can not meet a wide range of demand.
特開昭60-203397号公報JP-A-60-20397 特開昭60-40671号公報JP-A-60-40671 特開平7-314174号公報JP-A-7-314174 特開平10-24388号公報Japanese Patent Laid-Open No. 10-24388 特開平10-317107号公報JP-A-10-317107
 本発明は、上述した従来技術の問題点に鑑みてなされたもので、オーステナイト系ステンレス鋼の裏波溶接に際し、裏波ビード表面にSiの酸化被膜を形成することにより、バックシールドガスを使用することなく、優れた裏波性能を有する溶接部を施工し得る溶接方法を提供することを目的としている。 The present invention has been made in view of the above-described problems of the prior art, and uses a back shield gas by forming a Si oxide film on the surface of a back bead when performing back wave welding of austenitic stainless steel. It aims at providing the welding method which can construct the welding part which has the outstanding back wave performance, without.
 一般に、Ar等の不活性なバックシールドガスを用いずに裏波溶接した場合には、凹凸の激しい不健全な裏波ビードが形成される。この原因は、裏波ビードとなる溶融池が直接大気に触れて、大気中の酸素により溶融金属表面にステンレス鋼溶融金属よりはるかに高融点のCr酸化物等の酸化被膜が形成されることにより、溶融金属の流動性や母材との濡れ性を極端に悪くして安定な裏波ビード形成を阻害するため、凹凸の激しい不健全な裏波ビードが形成されることによる。
 なお、濡れ性とは、溶融金属の母材への行き渡りやすさの良否を言う。これは、母材の表面張力、溶融金属の表面張力、溶融金属の表面張力及び母材面の表面張力の差によって支配される。
In general, when back wave welding is performed without using an inert back shield gas such as Ar, an unhealthy back bead with severe irregularities is formed. The cause of this is that the molten pool that becomes the back bead directly touches the atmosphere, and an oxide film such as Cr oxide having a melting point much higher than that of stainless steel molten metal is formed on the surface of the molten metal by oxygen in the atmosphere. In order to inhibit the flowability of the molten metal and the wettability with the base material to deteriorate the formation of stable backside bead, unhealthy backside bead with severe irregularities is formed.
The wettability refers to whether or not the molten metal is easily distributed to the base material. This is governed by the difference between the surface tension of the base metal, the surface tension of the molten metal, the surface tension of the molten metal and the surface tension of the base metal surface.
 本発明は、上述した課題を解決するために以下のような手段をとることを特徴とする。
 第1には、重量%で、Si:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用しSiの酸化被膜を形成することにより、バックシールドガスの使用を省略可能であることを特徴とするオーステナイト系ステンレス鋼の溶接施工方法を提供することである。
 第2には、重量%で、Si:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用し、重量%で60%以上のSiを含むフラックスを溶剤と混合して開先面に塗布して溶接しSiの酸化被膜を形成することにより、バックシールドガスの使用を省略可能であることを特徴とするオーステナイト系ステンレス鋼の溶接施工方法を提供することである。
 第3には、第1又は第2の方法で初層を溶接すること、第4には、第1又は第2の方法で多層溶接することをそれぞれ特徴とするオーステナイト系ステンレス鋼の溶接施工方法を提供することである。
 第5には、オーステナイト系ステンレス鋼のティグ溶接施工方法による片側溶接工法において、重量%でSi:0.65~1.50%を含むオーステナイト系ステンレス鋼のティグ溶加棒を使用して溶接するか、又は、重量%で60%以上のSiを含むフラックスを溶剤と混合したものを開先面に塗布した後に重量%でSi:0.65~1.50%を含むオーステナイト系ステンレス鋼のティグ溶加棒を使用して溶接することにより裏波ビード表面にSiの酸化被膜を形成し、溶接金属の裏波ビード表面を大気から遮断することを特徴とするオーステナイト系ステンレス鋼の溶接施工方法を提供することである。
The present invention is characterized by taking the following means in order to solve the above-described problems.
First, by using an austenitic stainless steel filler rod containing Si: 0.65-1.50% by weight, the use of back shield gas can be omitted by forming an Si oxide film. It is providing the welding construction method of austenitic stainless steel characterized by being.
Second, an austenitic stainless steel filler bar containing Si: 0.65-1.50% by weight is used, and a flux containing 60% or more by weight of Si is mixed with a solvent. It is an object to provide a method for welding austenitic stainless steel, characterized in that the use of a back shield gas can be omitted by applying and welding to a groove surface to form a Si oxide film.
Thirdly, the first layer is welded by the first or second method, and fourth, multi-layer welding is performed by the first or second method, respectively. Is to provide.
Fifthly, in the one-side welding method by the TIG welding method of austenitic stainless steel, welding is performed using a TIG filler rod of austenitic stainless steel containing Si: 0.65-1.50% by weight. Or a TIG of austenitic stainless steel containing Si: 0.65-1.50% by weight after applying a mixture of a flux containing Si of 60% or more by weight with a solvent to the groove surface A welding method for austenitic stainless steel, characterized by forming a Si oxide film on the backside bead surface by welding using a filler rod and shielding the backside bead surface of the weld metal from the atmosphere. Is to provide.
 本発明において使用する溶加棒におけるSiの含有量については、0.65%未満ではその効果が十分でなく、一方、その含有量が1.50%超では溶接金属のフェライト相の延性低下に伴い、溶接部の靭性が大きく低下すると共に、溶接時の溶融溶込みも減少し、実用溶接上の問題点となる。Siは、フェライト生成元素であり、その含有量が過剰であると、靭性や熱間加工性を劣化させるとともに、溶接時の高温割れ感受性を増大させるため、Si含有量の上限を1.50%とした。 With respect to the Si content in the filler rod used in the present invention, the effect is not sufficient if the content is less than 0.65%, while if the content exceeds 1.50%, the ductility of the ferrite phase of the weld metal decreases. Along with this, the toughness of the welded portion is greatly reduced, and melt penetration during welding is also reduced, which becomes a problem in practical welding. Si is a ferrite-forming element. If its content is excessive, it deteriorates toughness and hot workability, and increases the hot cracking susceptibility during welding, so the upper limit of Si content is 1.50%. It was.
 本発明の溶接施工方法によれば、Si含有量の多い溶融池を形成することにより、バックシールドガスを使用することなく、健全な裏波ビード形成を阻害するCr酸化物等の高融点酸化物の生成を阻止し、平滑な裏波ビードを得ることが可能となる。
 本発明の溶接施工方法では、溶接施工中の溶融金属中のSiの量を適切に管理することが重要な要件となる。即ち、オーステナイト系ステンレス鋼の溶加棒に重量%でSiを0.65~1.50%添加することである。又は、重量%で60%以上のSiを含むフラックスを溶剤と混合して開先面から塗布した後に重量%でSiを0.65~1.50%含むオーステナイト系ステンレス鋼の溶加棒を使用して溶接してもよい。上記により初層(溶接において最初の溶接により生成した層)の健全な裏波ビードが確保できる。
 上記のメカニズム又は理由としては以下のように考えられる。
According to the welding construction method of the present invention, a high melting point oxide such as Cr oxide that inhibits the formation of sound backside bead without using a back shield gas by forming a molten pool with a high Si content. It is possible to obtain a smooth back bead.
In the welding construction method of the present invention, it is an important requirement to appropriately manage the amount of Si in the molten metal during welding construction. In other words, 0.65 to 1.50% Si is added to the austenitic stainless steel filler rod by weight. Or, use austenitic stainless steel filler rod containing 0.65-1.50% Si by weight after applying a flux containing 60% or more Si by weight and applying it from the groove surface. And may be welded. By the above, the sound back bead of the first layer (the layer generated by the first welding in the welding) can be secured.
The above mechanism or reason is considered as follows.
 各種金属酸化物の生成自由エネルギー-温度-酸素分圧図(エリンガム線図)よりCrなど主たるステンレス鋼溶接金属の構成元素に比べ、Siは酸素との親和力が強く、このため大気中ではこれらの元素より優先的に酸化物を形成する。更に、この酸化物であるSiOは、表面張力も小さく溶融金属との濡れ性もよいため、溶融金属表面に緻密な酸化物層(被膜)を形成してその後の溶融金属への酸素侵入を防ぐとともに、Cr酸化物に比べ融点が低く(Cr:2200℃以上、SiO:1723℃)溶融金属の凝固温度に近いため、溶融金属が凝固して裏波を形成する際に表面凹凸が少ない優れた表面性状を有する健全な裏波ビードが確保できる。 From the free energy of formation of various metal oxides-temperature-oxygen partial pressure diagram (Ellingham diagram), Si has a strong affinity for oxygen compared to the constituent elements of the main stainless steel weld metals such as Cr. Oxides are formed preferentially over elements. Further, SiO 2 this is an oxide, because good wettability with the surface tension is small molten metal, the oxygen penetration of forming a dense oxide layer (film) on the surface of the molten metal to subsequent melt metal In addition to preventing, the melting point is lower than Cr oxide (Cr 2 O 3 : 2200 ° C. or higher, SiO 2 : 1723 ° C.), which is close to the solidification temperature of the molten metal. A sound back bead having an excellent surface property with few irregularities can be secured.
 一般に、ステンレス鋼及びその溶加棒には0.5%以下程度のSiが含まれているが、この程度の量では、優れた表面性状を有する裏波ビードを確保するには不十分な量である。このことは、これら一般のステンレス鋼溶加材による裏波溶接において、バックシールドガスを用いない場合には、凹凸の激しい裏波ビード形状となることからみても明らかである。凹凸の激しい裏波ビード形状は、JIS Z 3106に規定する「ステンレス鋼溶接継手の放射線透過試験方法」の基準による2類を満たさず、裏波溶接継手として品質的に許容されない。
 このため従来、健全な裏波溶接ビードを確保するために、Ar等の不活性ガスをバックシールドガスとして使用してきた。
Generally, stainless steel and its filler rod contain about 0.5% or less of Si, but this amount is insufficient to secure a back bead having excellent surface properties. It is. This is apparent from the fact that in the back welding with these general stainless steel filler metals, a back-bead shape with severe irregularities is formed when the back shield gas is not used. The back and forth bead shape with severe irregularities does not satisfy the two categories according to the standard of “Radiation Transmission Test Method for Stainless Steel Welded Joint” defined in JIS Z 3106, and is not acceptable in quality as a back welded joint.
Therefore, conventionally, an inert gas such as Ar has been used as the back shield gas in order to ensure a sound backside weld bead.
 本発明の溶接施工方法によれば、その結果としての溶接継手は、健全な裏波ビード形状が得られるため、JIS Z 3106に規定する「ステンレス鋼溶接継手の放射線透過試験方法」の基準による2類以上の品質が確保できる。
 更に、本発明によれば、バックシールドガスを使用することが無いからバックシールドガスの貯蔵、搬送、管理、充填、放出等の煩雑な作業を省き、同時に溶接作業工程の手順負担を軽減し、溶接施工工期の短縮や経費節減等が図れる。
According to the welding construction method of the present invention, a sound welded bead shape can be obtained as a result of the welded joint. Therefore, 2 according to the criteria of “radiation transmission test method for stainless steel welded joint” defined in JIS Z 3106. It is possible to secure a quality that is equal to or better than that.
Furthermore, according to the present invention, since the back shield gas is not used, complicated work such as storage, transport, management, filling, and release of the back shield gas is omitted, and at the same time, the procedure burden of the welding work process is reduced, Shorten welding construction period and reduce costs.
 本発明の溶接施工方法によれば、Si含有量の多い溶融池を形成することにより、バックシールドガスを使用することなく、健全な裏波ビード形成を阻害するCr酸化物等の高融点酸化物の生成を阻止し、平滑な裏波ビードを得ることが可能となる。
 すなわち、本発明の溶接施工方法によれば、第1に裏波ビードの形状の改善、第2に裏波ビードの品質の確保、第3に各種のコストメリットといったように裏波ビードに関する複合的な効果を達成することが出来る。
According to the welding construction method of the present invention, a high melting point oxide such as Cr oxide that inhibits the formation of sound backside bead without using a back shield gas by forming a molten pool with a high Si content. It is possible to obtain a smooth back bead.
That is, according to the welding construction method of the present invention, first, the improvement of the shape of the back bead, the second, the quality of the back bead, the third, various cost merits, etc. Effects can be achieved.
 本発明の各請求項毎の効果は以下の通りとなる。
 本願請求項1ないし本願請求項4に記載の溶接施工方法によれば、裏波ビード表面にSi酸化被膜を形成することにより溶接面を外気から遮断し、溶接金属をバックシールドガスで大気から遮断する必要が無く、健全な裏波ビードが得られることとなる。
The effect of each claim of the present invention is as follows.
According to the welding construction method described in claims 1 to 4 of the present application, the welding surface is shielded from the outside air by forming a Si oxide film on the backside bead surface, and the weld metal is shielded from the atmosphere by the back shield gas. There is no need to do so, and a healthy backside bead can be obtained.
 本願請求項5に記載の溶接施工方法によれば、ティグ溶接による片側溶接工法において、Si含有量の多い溶加棒を使用して溶接するか、又は、Si含有量の多いフラックスを溶剤と混合したものを開先面に塗布した後にSi含有量の多い溶加棒を使用して溶接することによりSiの酸化被膜を形成し、バックシールドガスを使用すること無く溶接金属の裏波ビード表面を大気から遮断し、健全な裏波ビードが得られることとなる。 According to the welding construction method of claim 5 of the present application, in the one-side welding method by TIG welding, welding is performed using a filler rod having a high Si content, or a flux having a high Si content is mixed with a solvent. After applying this product to the groove surface, it is welded using a filler rod with a high Si content to form an Si oxide film, and the backside bead surface of the weld metal is formed without using a back shield gas. It will be shielded from the atmosphere and a healthy backside bead will be obtained.
本発明一実施例の溶接に供される溶加棒の単位長さ(例、100cm)の断面図である。It is sectional drawing of the unit length (for example, 100 cm) of the filler rod with which welding of one Example of this invention is provided. 本発明一実施例の溶接に供されるフラックスと溶剤(例、炭化水素系溶剤)の混合物を示す模式図である。It is a schematic diagram which shows the mixture of the flux and solvent (for example, hydrocarbon solvent) with which the welding of one Example of this invention is provided. 本発明一実施例の溶接施工部を示す説明図である。It is explanatory drawing which shows the welding construction part of one Example of this invention. 本発明一実施例の溶接施工部に溶接を施す過程を示す説明図である。It is explanatory drawing which shows the process of welding to the welding construction part of one Example of this invention. 本発明の各実施例1,2,3と比較例1,2との裏波ビード外観状況を示す比較図(参考写真)である。It is a comparison figure (reference photograph) which shows the back bead appearance situation of each Example 1, 2, 3 and comparative examples 1 and 2 of the present invention. 本発明一実施例における溶接金属の裏波ビード断面の元素濃度分布図(参考写真)である。It is an element concentration distribution figure (reference photograph) of a back bead section of a weld metal in one example of the present invention.
 本発明の実施例1ないし3について以下の溶接条件にて試験材の製作を行い、各溶接後に5種の試験を実施し、それぞれの試験結果を得た。
5種の試験とは、
 <試験例1> 裏波ビード外観状況(〔0036〕以下同様とする)、
 <試験例2> 裏波ビード断面の元素濃度分布(〔0037〕)、
 <試験例3> 放射線透過試験結果(〔0041〕)、
 <試験例4> 機械試験結果(継手引張試験及び裏曲げ試験結果)(〔0043〕)、
 <試験例5> 耐食性試験結果(〔0045〕)、
の各試験のことである。
For Examples 1 to 3 of the present invention, test materials were produced under the following welding conditions, and five types of tests were performed after each welding to obtain respective test results.
The five types of tests are
<Test Example 1> Backside bead appearance ([0036] is the same hereinafter)
<Test Example 2> Element concentration distribution ([0037]) in the cross section of the back bead,
<Test Example 3> Radiation transmission test result ([0041]),
<Test Example 4> Mechanical test results (joint tensile test and reverse bending test results) ([0043]),
<Test Example 5> Corrosion resistance test result ([0045]),
Each of these tests.
 1.実施例 (試験材の製作)
 以下、本発明実施例の溶接条件にて、本発明実施例と従来技術の溶接方法による比較例をそれぞれ作成し、試験材として評価した。表1は、それぞれの本発明実施例と比較例とに用いた溶加棒の化学組成を示す。
1. Example (Production of test material)
Hereinafter, the comparative example by the welding method of this invention example and a prior art was each created on the welding conditions of this invention Example, and it evaluated as a test material. Table 1 shows the chemical composition of the filler rod used in each of the inventive examples and comparative examples.
<溶接条件>
溶接方法:ティグ溶接
溶接電流:90~160A
溶接電圧:8~16V
シールドガス:Ar 25L/min
溶接姿勢:全姿勢
層数:多層
層間温度:150℃以下
<Welding conditions>
Welding method: TIG welding current: 90-160A
Welding voltage: 8-16V
Shielding gas: Ar 25L / min
Welding posture: Total posture Layer number: Multilayer interlayer temperature: 150 ° C or less
<実施例1>
母材:オーステナイト系ステンレス鋼SUS316L
溶加棒:初層W2(Si量:0.90%)
    残層W4(JIS規格 Y316L相当の市販溶加棒(Si量:0.39%))
    (残層:多層溶接における全ての層のうち、初層以外の残りの層)
    初層には、重量%で、Si:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用した。
バックシールドガス:無し
<Example 1>
Base material: Austenitic stainless steel SUS316L
Filler rod: first layer W2 (Si content: 0.90%)
Remaining layer W4 (commercially available filler rod equivalent to JIS standard Y316L (Si content: 0.39%))
(Remaining layer: remaining layers other than the first layer among all layers in multilayer welding)
An austenitic stainless steel filler rod containing Si: 0.65 to 1.50% by weight was used for the first layer.
Back shield gas: None
<実施例2>
母材:オーステナイト系ステンレス鋼SUS304
溶加棒:初層W1(Si量:0.77%)
    残層W3(JIS規格 Y308相当の市販溶加棒(Si量:0.39%))
    フラックスとしては、重量%で60%以上のSiを含むフラックスを溶剤と混合したものを、図4に示すように、溶接施工部の開先表側から塗布し、初層には、重量%で、Si:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用した。
バックシールドガス:無し
<Example 2>
Base material: Austenitic stainless steel SUS304
Filler rod: first layer W1 (Si content: 0.77%)
Remaining layer W3 (commercially available filler rod equivalent to JIS standard Y308 (Si content: 0.39%))
As the flux, as shown in FIG. 4, a flux containing Si containing 60% or more of Si by weight is mixed from the groove front side of the welded part, and the first layer is weight%. An austenitic stainless steel filler rod containing Si: 0.65-1.50% was used.
Back shield gas: None
<実施例3>
母材:オーステナイト系ステンレス鋼SUS316L
溶加棒:初層W2(Si量:0.90%)
    残層W4(JIS規格 Y316L相当の市販溶加棒(Si量:0.39%))
    フラックスとしては、重量%で60%以上のSiを含むフラックスを溶剤と混合したものを、図4に示すように、溶接施工部の開先表側から塗布し、初層には、重量%で、Si:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用した。
バックシールドガス:無し
<Example 3>
Base material: Austenitic stainless steel SUS316L
Filler rod: first layer W2 (Si content: 0.90%)
Remaining layer W4 (commercially available filler rod equivalent to JIS standard Y316L (Si content: 0.39%))
As the flux, as shown in FIG. 4, a flux containing Si containing 60% or more of Si by weight is mixed from the groove front side of the welded part, and the first layer is weight%. An austenitic stainless steel filler rod containing Si: 0.65-1.50% was used.
Back shield gas: None
<比較例1>
母材:オーステナイト系ステンレス鋼SUS304
溶加棒:全層W3(JIS規格 Y308相当の市販溶加棒(Si量:0.39%))
バックシールドガス:無し
<Comparative Example 1>
Base material: Austenitic stainless steel SUS304
Filler bar: all layers W3 (commercially available filler bar equivalent to JIS standard Y308 (Si content: 0.39%))
Back shield gas: None
<比較例2>
母材:オーステナイト系ステンレス鋼SUS304
溶加棒:全層W3(JIS規格 Y308相当の市販溶加棒(Si量:0.39%))
バックシールドガス:Ar 30L/min
<Comparative Example 2>
Base material: Austenitic stainless steel SUS304
Filler bar: all layers W3 (commercially available filler bar equivalent to JIS standard Y308 (Si content: 0.39%))
Back shield gas: Ar 30L / min
<比較例3>
母材:オーステナイト系ステンレス鋼SUS316L
溶加棒:全層W4(JIS規格 Y316L相当の市販溶加棒(Si量:0.39%))
バックシールドガス:Ar 30L/min
<Comparative Example 3>
Base material: Austenitic stainless steel SUS316L
Filler rod: all layers W4 (commercially available melt rod equivalent to JIS standard Y316L (Si amount: 0.39%))
Back shield gas: Ar 30L / min
  表1 溶加棒の化学成分                   単位  wt%
Figure JPOXMLDOC01-appb-I000001
 実施例1及び実施例3の初層にはW2の溶加棒を、実施例2の初層にはW1の溶加棒を使用した。また、実施例1及び実施例3の残層にはW4の溶加棒を、実施例2の残層にはW3の溶加棒をそれぞれ使用した。比較例1及び比較例2にはW3の溶加棒を、比較例3には、W4の溶加棒をそれぞれ全層にわたり使用した。
Table 1 Chemical composition of filler rod Unit wt%
Figure JPOXMLDOC01-appb-I000001
A W2 filler rod was used for the first layer of Example 1 and Example 3, and a W1 filler rod was used for the first layer of Example 2. In addition, a W4 filler rod was used for the remaining layers of Example 1 and Example 3, and a W3 filler rod was used for the remaining layer of Example 2, respectively. For Comparative Example 1 and Comparative Example 2, a W3 filler rod was used for all layers, and for Comparative Example 3, a W4 filler rod was used for all layers.
 以下、本発明の実施例における効果を確認するため、以下の各試験例によって特性の確認試験を行った。

 2.実施例 (試験結果)(<試験例1ないし5>試験結果)
Hereinafter, in order to confirm the effect in the Example of this invention, the characteristic confirmation test was done by the following each test example.

2. Examples (Test Results) (<Test Examples 1 to 5> Test Results)
<試験例1> 裏波ビード外観状況
 図5に実施例1ないし実施例3と、市販の溶加棒を使用してバックシールドガスを使用しない溶接方法による比較例1、バックシールドガスを用いた従来技術の溶接方法による比較例2の裏波ビード外観状況をそれぞれ比較した結果を示し、その外観から、裏波ビード形状の良否を判断した。判断方法は以下の通りである。
  良好:裏波ビードの幅が揃っており、蛇行や凹凸がなく健全である。
  不良:裏波ビードの幅が不揃いであり、凹凸が激しく過剰酸化している。
 図5の結果から、本発明による溶接施工方法で施工した溶接継手(実施例1ないし実施例3)は、バックシールドガスを用いずに、良好な裏波ビードを形成できることがわかる。
<Test Example 1> Backside Bead Appearance Situation Example 1 to Example 3 in FIG. 5 and Comparative Example 1 using a commercially available filler rod and a welding method not using backshield gas, using backshield gas The result of having compared each back bead appearance situation of comparative example 2 by the welding method of a prior art was shown, and the quality of the back bead shape was judged from the appearance. The determination method is as follows.
Good: The width of the back bead is uniform, and there is no meandering or unevenness and it is healthy.
Defect: The width of the back bead is not uniform, and the unevenness is severely excessively oxidized.
From the results of FIG. 5, it can be seen that the welded joint (Example 1 to Example 3) constructed by the welding construction method according to the present invention can form a good back bead without using the back shield gas.
<試験例2> 裏波ビード断面の元素濃度分布
 図6は、実施例2と、市販の溶加棒を使用してバックシールドガスを使用しない溶接方法による比較例1とで表面の酸化被膜を含む裏波ビード断面の元素濃度分布を比較したものである。この分析データは、ティグ溶接で製作した突合せ溶接継手の断面で、初層の溶接金属側から裏波表面に向かってSi、Cr、Fe、NiおよびO(酸素)の線分析を行ったデータである。濃度分布を示す図の縦軸の“SiK、CrK、FeK、NiKおよびOK”は、分析対象試料に電子線を照射した際に試料を構成する各元素から放出される特性X線のK線を示している。
<Test Example 2> Element concentration distribution in cross section of back bead FIG. 6 shows an oxide film on the surface in Example 2 and Comparative Example 1 by a welding method using a commercially available filler rod and not using a back shield gas. It compares the element concentration distribution of the cross section of the back bead including. This analysis data is a cross section of a butt weld joint manufactured by TIG welding, and is a data obtained by performing line analysis of Si, Cr, Fe, Ni and O (oxygen) from the weld metal side of the first layer toward the back surface. is there. “SiK, CrK, FeK, NiK and OK” on the vertical axis of the diagram showing the concentration distribution indicates the characteristic X-ray K-rays emitted from each element constituting the sample when the sample to be analyzed is irradiated with an electron beam. Show.
 実施例2では、裏波ビード表面に形成される酸化被膜はSiとCrの濃度が高く、FeとNiの濃度は急激に低下している。これは酸化被膜の主成分が、SiとCrの酸化物であり、FeとNiの酸化物は殆ど生成していないことを示している。
 裏波ビード表面に形成される酸化被膜では、Siを含む酸化物の生成が特徴的であり、粒状に生成した高融点のCr酸化物の隙間を、Siを含む低融点酸化物が埋め、溶融金属の流れを阻害することなく溶融金属の表面を覆い、溶接金属を大気から遮断しているために健全な裏波ビードを形成する。
In Example 2, the oxide film formed on the surface of the backside bead has high concentrations of Si and Cr, and the concentrations of Fe and Ni are rapidly decreased. This indicates that the main component of the oxide film is an oxide of Si and Cr, and almost no oxide of Fe and Ni is generated.
The oxide film formed on the surface of the back bead is characterized by the formation of oxides containing Si, and the low melting point oxide containing Si fills the gaps between the high-melting point Cr oxides produced in granular form and melts. It covers the surface of the molten metal without hindering the flow of metal and shields the weld metal from the atmosphere, thereby forming a healthy backside bead.
 比較例1のビード表面は、Cr、FeおよびNiを含む酸化物は生成しているが、Si濃度は、溶接金属と酸化被膜とで変化がないことから、Siを含む酸化物の生成量は多くないことがわかる。
 比較例1は、溶融金属表面にCr、FeおよびNiの複合酸化物等の高融点酸化物が形成され、その高融点酸化物が溶融金属の流動性を阻害することで凹凸の激しい不健全ビードが形成されている。
The bead surface of Comparative Example 1 generates an oxide containing Cr, Fe, and Ni. However, since the Si concentration does not change between the weld metal and the oxide film, the amount of oxide containing Si is It turns out that there are not many.
In Comparative Example 1, a high melting point oxide such as a composite oxide of Cr, Fe and Ni is formed on the surface of the molten metal, and the high melting point oxide inhibits the fluidity of the molten metal, thereby causing unhealthy bead with severe irregularities. Is formed.
 以上の結果より、Siの含有量の多少が裏波ビードの形成に大きく影響していることが看取される。 From the above results, it can be seen that the amount of Si greatly affects the formation of the back bead.
<試験例3> 放射線透過試験結果
 JIS Z 3106の「ステンレス鋼溶接継手の放射線透過試験方法」の規定に則り、本発明による実施例1ないし実施例3について、放射線透過試験を実施した結果を表2に示す。
 判定は、JIS Z 3106「ステンレス鋼溶接継手の放射線透過試験方法」規格2類以上の場合を合格、2類に満たない場合を不合格とした。
 表2に示す試験結果から、本発明による溶接方法で施工した溶接継手は、JIS Z 3106「ステンレス鋼溶接継手の放射線透過試験方法」の2類以上であることが確認された。
<Test Example 3> Results of Radiation Transmission Test Table 1 shows the results of the radiation transmission tests performed on Examples 1 to 3 according to the present invention in accordance with JIS Z 3106 “Radiation Transmission Test Method for Stainless Steel Welded Joints”. It is shown in 2.
In the judgment, the case of JIS Z 3106 “Method for radiation transmission test of stainless steel welded joint” standard 2 or higher was accepted, and the case of less than 2 class was rejected.
From the test results shown in Table 2, it was confirmed that the welded joints constructed by the welding method according to the present invention were two or more of JIS Z 3106 “Method of radiation transmission test for stainless steel welded joints”.
表2 放射線透過試験結果
Figure JPOXMLDOC01-appb-I000002
Table 2 Results of radiation transmission test
Figure JPOXMLDOC01-appb-I000002
<試験例4> 機械試験結果(継手引張試験及び裏曲げ試験結果)
 JIS B 8285の「圧力容器の溶接施工方法の確認試験方法」の規定に則り、実施例1ないし実施例3について、継手引張試験及び裏曲げ試験を実施した結果を表3に示す。
 判定は、JIS B 8285の「圧力容器の溶接施工方法の確認試験方法 付属書1(規定)溶接施工方法の確認試験の評価基準」により行なった。
 表3に示す機械試験結果から、本発明による溶接方法で施工した溶接継手は、引張試験、裏曲げ試験のいずれの機械的性能も良好であることが認められる。
<Test Example 4> Mechanical test results (joint tensile test and reverse bending test results)
Table 3 shows the results of the joint tensile test and the back bending test performed on Examples 1 to 3 in accordance with JIS B 8285 “Confirmation Test Method for Pressure Vessel Welding Method”.
The determination was made in accordance with JIS B 8285 “Confirmation Test Method for Pressure Vessel Welding Method Appendix 1 (Regulation) Evaluation Criteria for Confirmation Test of Welding Method”.
From the mechanical test results shown in Table 3, it is recognized that the welded joint constructed by the welding method according to the present invention has good mechanical performance in both the tensile test and the back bending test.
表3 機械試験結果  (継手引張試験及び裏曲げ試験結果)
Figure JPOXMLDOC01-appb-I000003
Table 3 Mechanical test results (joint tensile test and reverse bending test results)
Figure JPOXMLDOC01-appb-I000003
<試験例5> 耐食性試験結果
 JIS G 0575「ステンレス鋼の硫酸・硫酸銅腐食試験方法」に準拠して実施例1ないし実施例3及びバックシールドガスを用いた従来技術の溶接方法による比較例2、比較例3について耐粒界腐食性試験を実施した結果を表4に示す。
 判定は、JIS G 0575「ステンレス鋼の硫酸・硫酸銅腐食試験方法」により行なった。
 表4に示す結果から、本発明による溶接方法で施工した溶接継手(実施例1ないし実施例3)は、バックシールドガスを用いることなく、従来技術の溶接方法で施工した溶接継手(比較例2および比較例3)と耐粒界腐食性が同等であることが分かる。
<Test Example 5> Corrosion resistance test results Examples 1 to 3 according to JIS G 0575 “Sulfuric acid / copper sulfate corrosion test method for stainless steel” and Comparative Example 2 using a conventional welding method using a back shield gas Table 4 shows the results of the intergranular corrosion resistance test performed on Comparative Example 3.
The determination was made according to JIS G 0575 “Sulfuric acid / copper sulfate corrosion test method for stainless steel”.
From the results shown in Table 4, the welded joints (Examples 1 to 3) constructed by the welding method according to the present invention were welded joints constructed by the conventional welding method (Comparative Example 2) without using backshield gas. It can also be seen that the intergranular corrosion resistance is equivalent to that of Comparative Example 3).
表4 硫酸・硫酸銅腐食試験結果  (耐粒界腐食性試験)
Figure JPOXMLDOC01-appb-I000004
 尚、比較例1は、裏波ビードの乱れが図5の参考写真からも明らかに認められたので裏波ビード外観状況及び裏波ビード断面の元素濃度分布試験のみ実施し、放射線透過試験、機械試験、耐食性試験については実施していない。
Table 4 Corrosion test results of sulfuric acid and copper sulfate (intergranular corrosion resistance test)
Figure JPOXMLDOC01-appb-I000004
In Comparative Example 1, since the disturbance of the back bead was clearly recognized from the reference photograph of FIG. 5, only the appearance situation of the back bead and the element concentration distribution test of the cross section of the back bead were performed. Tests and corrosion resistance tests are not conducted.
 以下、本発明に係る一実施例の内容を、図面を参照しながら詳細に説明する。
 図1は、本発明一実施例の溶接に供される溶加棒1の単位長さ(例、100cm)の断面図である。重量%で、Siを0.65~1.50%含むオーステナイト系ステンレス鋼の溶加棒1を用いる場合、図3の溶接施工部を示す説明図にある通り、溶接施工部の開先はV型開先とし、開先寸法は、ルート面の厚さを0~2mm、開先角度の適正な範囲は45度~80度、好ましくは60度、ルート間隔6は、0~5mm、好ましくは5mmとする。即ち、開先角度が80度を超えると必要溶着金属量が多くなり効率的に劣ること、また、開先角度を45度より狭くするとルート部に溶け込み不良が発生し易くなること、又開先4の角度の狭小により溶接作業効率が落ちること等から、開先4の角度の適正な範囲として45度~80度、好ましくは60度とした。
Hereinafter, the contents of an embodiment according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of a unit length (eg, 100 cm) of a filler rod 1 used for welding according to an embodiment of the present invention. When the austenitic stainless steel filler rod 1 containing 0.65 to 1.50% Si by weight% is used, as shown in the explanatory view showing the welded portion in FIG. The groove size is 0 to 2 mm for the root face thickness, the appropriate range of the groove angle is 45 to 80 degrees, preferably 60 degrees, and the root interval 6 is 0 to 5 mm, preferably Set to 5 mm. That is, if the groove angle exceeds 80 degrees, the required amount of deposited metal increases and the efficiency is inferior. If the groove angle is narrower than 45 degrees, the root portion is liable to be melted, and the groove is liable to occur. Since the welding work efficiency decreases due to the narrowness of the angle 4, the appropriate range of the angle of the groove 4 is set to 45 to 80 degrees, preferably 60 degrees.
 このとき、図2の模式図に示すように、重量%で60%以上のSiを含むフラックス2を溶剤3と混合したものを、図4に示すように、溶接施工部の開先表側に塗布して溶接しても良い。図3ではステンレス鋼管5、その開先4、ルート間隔6が示される。 At this time, as shown in the schematic diagram of FIG. 2, a flux 2 containing 60% or more by weight of Si mixed with solvent 3 is applied to the groove front side of the welded portion as shown in FIG. And may be welded. In FIG. 3, a stainless steel pipe 5, its groove 4, and a route interval 6 are shown.
 次に、図4の溶接施工部に溶接を施す過程を示す説明図に示すように、開先面5に、重量%で、60%以上のSiを含むフラックスを溶剤と混合したものを塗布する場合、塗布後にSiを0.65~1.50%含むオーステナイト系ステンレス鋼の溶加棒を用いて初層溶接する。残層については、本発明方法を用いても、従来溶接方法を用いても良い。 Next, as shown in the explanatory view showing the process of performing welding on the welded portion of FIG. 4, the groove surface 5 is coated with a flux containing 60% or more of Si and a solvent mixed with a solvent. In this case, first layer welding is performed using an austenitic stainless steel filler rod containing 0.65 to 1.50% of Si after coating. For the remaining layer, the method of the present invention or the conventional welding method may be used.
 上記フラックスを溶剤(例、炭化水素系溶剤)と混合したものとしては、ビード平滑剤(ティグ溶接時のブローホール、湯流れ不良の解消を目的とした溶接補助材料)を用いる。 As a mixture of the above flux with a solvent (eg, hydrocarbon solvent), a bead smoothing agent (a blow hole during TIG welding, a welding auxiliary material for the purpose of eliminating poor flow of hot water) is used.
 以上詳述したように、本発明は、オーステナイト系ステンレス鋼配管を裏波溶接するに際して、バックシールドガスを使用せずに優れた裏波性能を有する溶接部を得ることができるバックシールドガス不要のステンレス鋼の片側溶接による完全溶込み溶接施工方法に関するものであり、溶接施工中の溶融金属中のSi量を高い割合で適切に管理することを通じて溶接対象や溶接環境の種類、状況、の違いを超えて幅広く対応でき、全姿勢溶接にも適用可能とする新技術を提供するものとして産業上有用である。 As described in detail above, the present invention eliminates the need for backshield gas, which can provide a welded portion having excellent backside performance without using backshield gas when back-welding austenitic stainless steel piping. It is related to the method of complete penetration welding by one-sided welding of stainless steel. By appropriately managing the amount of Si in the molten metal during welding at a high rate, the difference in the type and situation of the welding object and welding environment can be determined. It is industrially useful as a new technology that can be applied to a wide range of welding and can be applied to all-position welding.
 図面の符号の説明
1...溶加棒
2...フラックス
3...溶剤
4...開先
5...ステンレス鋼管
6...ルート間隔
DESCRIPTION OF REFERENCE NUMERALS . . Filler bar2. . . Flux 3. . . Solvent 4. . . 4. Groove . . Stainless steel pipe6. . . Route interval

Claims (5)

  1.  重量%で、Si:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用しSiの酸化被膜を形成することにより、バックシールドガスの使用を省略可能であることを特徴とするオーステナイト系ステンレス鋼の溶接施工方法。 By using an austenitic stainless steel filler rod containing Si: 0.65-1.50% by weight, the use of back shield gas can be omitted by forming an oxide film of Si. A welding method for austenitic stainless steel.
  2.  重量%でSi:0.65~1.50%を含むオーステナイト系ステンレス鋼の溶加棒を使用し、重量%で60%以上のSiを含むフラックスを溶剤と混合して開先面に塗布して溶接しSiの酸化被膜を形成することにより、バックシールドガスの使用を省略可能であることを特徴とするオーステナイト系ステンレス鋼の溶接施工方法。 Using an austenitic stainless steel filler rod containing Si: 0.65-1.50% by weight%, a flux containing 60% Si or more by weight is mixed with a solvent and applied to the groove surface. A method of welding austenitic stainless steel, characterized in that the use of a backshield gas can be omitted by forming a silicon oxide film by welding.
  3.  溶接施工対象を初層溶接とする請求項1又は2のいずれか1項に記載の溶接施工方法。 The welding construction method according to any one of claims 1 and 2, wherein the welding target is first layer welding.
  4.  溶接施工対象を多層溶接とする請求項1又は2のいずれか1項に記載の溶接施工方法。 The welding construction method according to claim 1 or 2, wherein the welding construction target is multilayer welding.
  5. オーステナイト系ステンレス鋼のティグ溶接施工方法による片側溶接工法において、重量%でSi:0.65~1.50%を含むオーステナイト系ステンレス鋼のティグ溶加棒を使用して溶接するか、又は、重量%で60%以上のSiを含むフラックスを溶剤と混合したものを開先面に塗布した後に、重量%でSi:0.65~1.50%を含むオーステナイト系ステンレス鋼のティグ溶加棒を使用して溶接することによりSiの酸化被膜を形成し、溶接金属の溶接部の裏波ビード表面を大気から遮断することを特徴とするオーステナイト系ステンレス鋼の溶接施工方法。 In the one-side welding method using the TIG welding method for austenitic stainless steel, welding is performed using a TIG filler rod of austenitic stainless steel containing Si: 0.65-1.50% by weight or weight. After applying a mixture of a flux containing 60% or more of Si with a solvent to the groove surface, an austenitic stainless steel TIG filler rod containing Si: 0.65 to 1.50% by weight A welding method for austenitic stainless steel, characterized in that an oxide film of Si is formed by welding and the surface of the weld bead of the weld metal is shielded from the atmosphere.
PCT/JP2011/067080 2010-07-30 2011-07-27 Method for welding austenitic stainless steel WO2012014932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-172139 2010-07-30
JP2010172139A JP5410382B2 (en) 2010-07-30 2010-07-30 Welding method for austenitic stainless steel

Publications (1)

Publication Number Publication Date
WO2012014932A1 true WO2012014932A1 (en) 2012-02-02

Family

ID=45530136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067080 WO2012014932A1 (en) 2010-07-30 2011-07-27 Method for welding austenitic stainless steel

Country Status (2)

Country Link
JP (1) JP5410382B2 (en)
WO (1) WO2012014932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179675A1 (en) * 2020-03-13 2021-09-16 中国电建集团山东电力建设第一工程有限公司 Welding process for molten salt pipeline in tower-type photothermal power generation in high-cold area
TWI740748B (en) * 2020-12-15 2021-09-21 國立屏東科技大學 Tig welding flux for dissimilar steels
WO2024095678A1 (en) * 2022-11-02 2024-05-10 株式会社神戸製鋼所 Solid wire and gas-shielded arc welding method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513949A (en) * 2016-11-14 2017-03-22 苏州热工研究院有限公司 Non-filling argon protective butt welding method suitable for inner walls of small and medium-diameter austenitic stainless steel pipes
CN108941959A (en) * 2018-08-14 2018-12-07 上海空间推进研究所 A kind of method of accurate control Φ 3mm stainless steel pipe argonaut welding forming quality
CN109702382B (en) * 2018-12-27 2021-04-02 中国原子能科学研究院 Welding material suitable for long-time service under high-temperature condition and welding method thereof
KR102146475B1 (en) * 2019-01-08 2020-08-21 주식회사조흥기계 Method For Manufacturing Mold For Ice Bar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109594A (en) * 1979-02-16 1980-08-23 Nippon Steel Corp Filler rod for tig welding
JPS55109595A (en) * 1979-02-16 1980-08-23 Nippon Steel Corp Filler rod for tig welding
JPS61154793A (en) * 1984-12-27 1986-07-14 Kobe Steel Ltd Filler metal for tig welding
JPH03258486A (en) * 1990-03-06 1991-11-18 Nkk Corp Flux combined wire for tig welding of austenitic stainless steel for ultra-high vacuum equipment
JP2001025865A (en) * 1999-07-09 2001-01-30 Ishikawajima Harima Heavy Ind Co Ltd Welding method of small diameter tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109594A (en) * 1979-02-16 1980-08-23 Nippon Steel Corp Filler rod for tig welding
JPS55109595A (en) * 1979-02-16 1980-08-23 Nippon Steel Corp Filler rod for tig welding
JPS61154793A (en) * 1984-12-27 1986-07-14 Kobe Steel Ltd Filler metal for tig welding
JPH03258486A (en) * 1990-03-06 1991-11-18 Nkk Corp Flux combined wire for tig welding of austenitic stainless steel for ultra-high vacuum equipment
JP2001025865A (en) * 1999-07-09 2001-01-30 Ishikawajima Harima Heavy Ind Co Ltd Welding method of small diameter tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179675A1 (en) * 2020-03-13 2021-09-16 中国电建集团山东电力建设第一工程有限公司 Welding process for molten salt pipeline in tower-type photothermal power generation in high-cold area
TWI740748B (en) * 2020-12-15 2021-09-21 國立屏東科技大學 Tig welding flux for dissimilar steels
WO2024095678A1 (en) * 2022-11-02 2024-05-10 株式会社神戸製鋼所 Solid wire and gas-shielded arc welding method

Also Published As

Publication number Publication date
JP2012030253A (en) 2012-02-16
JP5410382B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2012014932A1 (en) Method for welding austenitic stainless steel
TWI399445B (en) Stainless steel wire with flux core for welding zing coated steel sheets
CN108698175B (en) Flux-cored wire, method for manufacturing welded joint, and welded joint
JP2008161932A (en) Wire, flux and process of welding steel cotaining nickel in high content
EP3040153A1 (en) Flux-containing wire
JP4886440B2 (en) High strength weld metal with excellent low temperature toughness
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP2017013118A (en) Flux-cored wire for stainless steel welding, stainless steel welded joint, and method for manufacturing the same
KR101088212B1 (en) Flux-cored wire for stainless steel electro gas arc welding
JP2014133259A (en) Manufacturing method of arc welding structural member
JP5980779B2 (en) Method of arc welding metal parts coated with aluminum using an inert gas containing nitrogen
JP2014050882A (en) HIGH Ni FLUX-CORED WIRE FOR GAS SHIELD ARC WELD
JP2019048324A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
US20130112663A1 (en) Method For Arc-Welding Aluminum-Coated Metal Parts Using Oxidizing Gas
JP6029513B2 (en) Flux-cored wire for gas shielded arc welding
JP4980294B2 (en) Coated arc welding rod for galvanized steel sheet
JP5137412B2 (en) Gas shielded arc welding method for galvanized steel bar and stainless steel plate
Chattopadhyay et al. Hybrid electroslag cladding (H-ESC): an innovation in high speed electroslag strip cladding
JP4745900B2 (en) High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding
CN103476538A (en) Flux-cored wire for welding steel having a high nickel content
JP2019048323A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
JP2019042782A (en) Gas shield arc-welding flux-cored wire and manufacturing method of welding joint
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP6829111B2 (en) Filling material for TIG welding
JP6728806B2 (en) High Ni flux-cored wire for gas shield arc welding and method for manufacturing welded joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812521

Country of ref document: EP

Kind code of ref document: A1