JP6029513B2 - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP6029513B2
JP6029513B2 JP2013070135A JP2013070135A JP6029513B2 JP 6029513 B2 JP6029513 B2 JP 6029513B2 JP 2013070135 A JP2013070135 A JP 2013070135A JP 2013070135 A JP2013070135 A JP 2013070135A JP 6029513 B2 JP6029513 B2 JP 6029513B2
Authority
JP
Japan
Prior art keywords
mass
flux
compound
welding
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013070135A
Other languages
Japanese (ja)
Other versions
JP2014193472A (en
Inventor
尚英 古川
尚英 古川
石▲崎▼ 圭人
圭人 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013070135A priority Critical patent/JP6029513B2/en
Priority to CN201410064805.2A priority patent/CN104070298B/en
Priority to KR1020140035986A priority patent/KR101600174B1/en
Publication of JP2014193472A publication Critical patent/JP2014193472A/en
Application granted granted Critical
Publication of JP6029513B2 publication Critical patent/JP6029513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3026Mn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、主に造船や橋梁などの鋼構造物の溶接に用いられるフラックス入りワイヤ、特に横向溶接に適した高能率なフラックス入りワイヤに関するものである。   The present invention relates to a flux cored wire mainly used for welding steel structures such as shipbuilding and bridges, and more particularly to a highly efficient flux cored wire suitable for lateral welding.

従来から、溶接作業を高能率に行うために、フラックス入りワイヤを用いたガスシールドアーク溶接が様々な分野で行われている。例えば、すみ肉溶接を能率よく実施することができるフラックス入りワイヤのうち、特にプライマ塗布鋼板の高速溶接時に良好な溶接作業性を得ることができると共に、優れた耐気孔性を得ることができるガスシールド溶接用フラックス入りワイヤが開示されている(例えば、特許文献1参照)。
造船や橋梁といった分野においては製造期間中の発錆を防止する目的で、溶接母材とする鋼材の表面に一次防錆塗料が塗布されている場合が多い。特許文献1はこの一次防錆剤塗布鋼板を用いて溶接する際に、塗料を剥離することなしに、すみ肉溶接において高能率かつ良好な耐気孔性を有するフラックス入りワイヤを提供するものである。
Conventionally, gas shield arc welding using a flux-cored wire has been performed in various fields in order to perform the welding operation with high efficiency. For example, among the flux-cored wires that can efficiently perform fillet welding, a gas that can obtain good welding workability especially at the time of high-speed welding of a primer coated steel sheet and can obtain excellent pore resistance A flux-cored wire for shield welding is disclosed (for example, see Patent Document 1).
In fields such as shipbuilding and bridges, a primary rust preventive paint is often applied to the surface of a steel material used as a welding base material in order to prevent rusting during the manufacturing period. Patent Document 1 provides a flux-cored wire having high efficiency and good porosity resistance in fillet welding without peeling off the paint when welding using this primary anticorrosive agent coated steel sheet. .

特開2000−42787号公報JP 2000-42787 A

現状、横向溶接用ワイヤとしてはチタニア系全姿勢用フラックス入りワイヤ(以下、適宜、全姿勢用FCWという)が広く適用されている。全姿勢用FCWを用いて横向溶接を行う場合、(1)作業能率向上を狙い溶接電流を増加、溶接速度を低下させると、溶接ビード垂れが生じビード外観および形状を損ねる、(2)スラグ量が多いために狭開先内でのスラグ剥離性が極めて悪く、完全に剥離しきれなかったスラグが溶接金属中に取り込まれ、溶接欠陥を誘発する、という課題があった。   At present, as a transverse welding wire, a titania-based all-position flux-cored wire (hereinafter, appropriately referred to as an all-position FCW) is widely used. When performing transverse welding using FCW for all positions, (1) If welding current is increased and welding speed is lowered with the aim of improving work efficiency, welding bead droops and the bead appearance and shape are impaired. (2) Slag amount Therefore, there is a problem that the slag peelability in the narrow groove is extremely poor, and the slag that cannot be completely peeled off is taken into the weld metal and induces a welding defect.

ここで、特許文献1のフラックス入りワイヤで規定する成分系のスラグがチタニア系のスラグよりも融点が高いことから、横向溶接における課題(ビード垂れ、スラグ剥離難等)を解決できるものとも考えられる。しかし、特許文献1に記載の成分系のみでは、横向溶接においては、スラグ巻き込みに起因する融合不良や、溶接金属の機械性能の改善に余地があった。   Here, since the slag of the component system prescribed | regulated with the flux-cored wire of patent document 1 has melting | fusing point higher than a titania-type slag, it is thought that the problem (bead dripping, slag peeling difficulty, etc.) in transverse welding can be solved. . However, only the component system described in Patent Document 1 has room for poor fusion due to slag entrainment and improvement in the mechanical performance of the weld metal in the lateral welding.

また、従来のフラックス入りワイヤにおいては、高融点を呈するスラグ形成剤を積極添加した場合に、溶滴移行が乱れスパッタ発生量が増加する傾向と溶接金属の機械的性質が劣化する傾向が見られる。
そのため、フラックス入りワイヤに要求される、スパッタ発生量の低減やアークの安定性などの溶接作業性を損なわず、また、溶接金属の機械的性質を損なわずに、溶接ビード垂れを抑制し、かつスラグ巻込みといった溶接欠陥を抑制することができるフラックス入りワイヤの開発が望まれている。
In addition, in conventional flux-cored wires, when a slag forming agent exhibiting a high melting point is positively added, droplet transfer tends to be disturbed and the amount of spatter generated tends to increase, and the mechanical properties of the weld metal tend to deteriorate. .
Therefore, welding bead sag is suppressed without impairing welding workability such as reduction of spatter generation and arc stability required for flux-cored wires, and without impairing the mechanical properties of the weld metal, and Development of a flux-cored wire that can suppress welding defects such as slag entrainment is desired.

本発明はかかる問題点に鑑みてなされたものであって、スパッタ発生量を低減し、アークの安定性、および溶接金属の機械的性質を損なわずに、溶接ビード垂れを抑制し、かつスラグ巻込みといった溶接欠陥を抑制することができるガスシールドアーク溶接用フラックス入りワイヤを提供することを課題とする。   The present invention has been made in view of such problems, and reduces spatter generation, suppresses weld bead droop without impairing arc stability and weld metal mechanical properties, and slag winding. It is an object of the present invention to provide a flux-cored wire for gas shielded arc welding that can suppress welding defects such as welding.

本発明者らは鋭意検討した結果、以下の事項を見出した。
フラックス入りワイヤにおいては、スラグの成分系をTiO系ではなくZrO系にすることでスラグの融点が高くなる。フラックス入りワイヤは、スラグの融点を高くすることにより、溶接入熱を過大にした場合でも溶融金属が固まる過程で生じる溶接ビード垂れを抑制することができるだけでなく、剥離性を向上させることができる。さらにスラグ量を増加させて溶接ビード垂れを抑制していた従来ワイヤと比べて、スラグ量を低減することが可能となり、スラグ巻込みといった溶接欠陥を極めて少なくすることができる。
As a result of intensive studies, the present inventors have found the following matters.
In the flux-cored wire, the melting point of the slag is increased by changing the slag component system to a ZrO 2 system rather than a TiO 2 system. By increasing the melting point of the slag, the flux-cored wire can not only suppress dripping of the weld bead that occurs in the process of melting the molten metal even when the welding heat input is excessive, but can also improve the peelability. . Furthermore, compared with the conventional wire which suppressed the welding bead drooping by increasing the amount of slag, it becomes possible to reduce the amount of slag and extremely reduce welding defects such as slag entrainment.

しかし、高融点タイプのスラグの成分系は、アークの安定性が悪くスパッタ発生量の増加および機械的性質の劣化を招いていた。チタニア系フラックス入りワイヤはアークの安定性に優れスパッタ発生量が少なく良好な溶接作業性が得られる。それはスラグの主成分となるTiOがアークを安定化させる働きがあるためである。
本発明の骨子である高融点タイプのスラグの成分系にアークを安定させる目的でTiOのみを添加すると、スラグの主成分となるZrOとの融点の違いから溶接後のスラグ包被が不均一となり、特に横向溶接においてはスラグ巻込みを誘発し、課題を解決するには至らなかった。
そこで本発明で規定する成分のうち、TiOと、TiおよびZrOとのバランスを調整することで双方の長所を活かしたフラックス入りワイヤを開発することができた。
However, the high melting point type slag component system has poor arc stability, resulting in an increase in the amount of spatter generated and deterioration in mechanical properties. Titania-based flux-cored wire has excellent arc stability and generates a small amount of spatter, resulting in good welding workability. This is because TiO 2 which is the main component of slag has a function of stabilizing the arc.
If only TiO 2 is added to the high melting point type slag component system, which is the main point of the present invention, for the purpose of stabilizing the arc, slag covering after welding is not possible due to the difference in melting point from ZrO 2 which is the main component of slag. In particular, in horizontal welding, slag entrainment was induced, and the problem could not be solved.
Therefore, by adjusting the balance between TiO 2 and Ti and ZrO 2 among the components defined in the present invention, it was possible to develop a flux-cored wire taking advantage of both advantages.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤ(以下、適宜、フラックス入りワイヤあるいは、単にワイヤという)は、鋼製外皮内にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量当たり、
TiO:0.2〜0.9質量%、
Ti:0.005〜0.015質量%、
C:0.01〜0.05質量%、
Mn:1.5〜4.0質量%、
Zr化合物およびZr酸化物のZr換算値と金属Zrとの合計:0.5〜2.0質量%、
Si化合物およびSi酸化物のSi換算値と金属Siとの合計:0.5〜2.0質量%、
B化合物およびB酸化物のB換算値と金属Bとの合計:0.002〜0.010質量%、
0.74・[Ti]/([TiO]・[Zr]):0.005〜0.040(ただし、[Zr]はZr化合物およびZr酸化物のZr換算値と金属Zrとの合計)、
[B]/[Mn]:0.001〜0.005(ただし、[B]はB化合物およびB酸化物のB換算値と金属Bとの合計)、
であり、残部がFeおよび不可避的不純物であることを特徴とする。
A flux-cored wire for gas shielded arc welding according to the present invention (hereinafter, appropriately referred to as a flux-cored wire or simply a wire) is a flux-cored wire for gas shielded arc welding in which a flux is filled in a steel outer sheath,
Per total mass of wire,
TiO 2 : 0.2 to 0.9% by mass,
Ti: 0.005 to 0.015 mass%,
C: 0.01-0.05 mass%,
Mn: 1.5 to 4.0% by mass,
Total of Zr conversion value of Zr compound and Zr oxide and metal Zr: 0.5 to 2.0% by mass,
Sum of Si conversion value of Si compound and Si oxide and metal Si: 0.5 to 2.0% by mass,
Total of B conversion value of B compound and B oxide and metal B: 0.002 to 0.010% by mass,
0.74 · [Ti] / ([TiO 2 ] · [Zr]): 0.005 to 0.040 (where [Zr] is the sum of the Zr converted value of the Zr compound and the Zr oxide and the metal Zr) ,
[B] / [Mn]: 0.001 to 0.005 (where [B] is the sum of the B compound and the B value of the B compound and the metal B),
Der is, the balance being Fe and unavoidable impurities der Rukoto.

かかる構成によれば、フラックス入りワイヤは、スラグの成分系をチタニア系のスラグよりも高融点のスラグとなるZrO系とすることで、高電流時(もしくは低溶接速度時)における溶接ビード垂れが抑制され、かつスラグ巻込みといった溶接欠陥が限りなくゼロに近づく。また、フラックス入りワイヤは、所定の成分を所定量含有することで、アークの安定、ヒュームやスパッタの発生の抑制、機械的性質の向上、ビード表面の光沢が得られるなどの作用を奏する。 According to such a configuration, the flux-cored wire has a slag component system of ZrO 2 that has a melting point higher than that of titania-based slag, so that the weld bead sag at a high current (or at a low welding speed). Is suppressed, and welding defects such as slag entrainment approach to zero as much as possible. Further, the flux-cored wire contains a predetermined amount of a predetermined component, and thus has effects such as arc stability, suppression of generation of fume and spatter, improvement of mechanical properties, and gloss of the bead surface.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、さらに、ワイヤ全質量当たり、F化合物のF換算値とNa化合物およびNa酸化物のNa換算値とK化合物およびK酸化物のK換算値との合計が0.70質量%以下であることが好ましい。   The flux-cored wire for gas shielded arc welding according to the present invention further includes an F-converted value of the F compound, an Na-converted value of the Na compound and Na oxide, and a K-converted value of the K compound and K oxide, based on the total mass of the wire. Is preferably 0.70% by mass or less.

かかる構成によれば、フラックス入りワイヤは、F、Na、Kを所定量含有することで、スパッタ発生量を増加させずに、アークがさらに安定する。   According to such a configuration, the flux-cored wire contains a predetermined amount of F, Na, and K, so that the arc is further stabilized without increasing the amount of spatter generated.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、さらに、ワイヤ全質量当たり、NbおよびVのうちどちらか一方もしくは両方の合計が0.040質量%以下であることが好ましい。
かかる構成によれば、溶接継手の溶接金属において機械性能が劣化することがない。
In the flux shielded wire for gas shielded arc welding according to the present invention, it is preferable that the total of either one or both of Nb and V is 0.040% by mass or less per the total mass of the wire.
According to such a configuration, the mechanical performance is not deteriorated in the weld metal of the weld joint.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、前記Mnが2.0〜3.0質量%であることが好ましい。
かかる構成によれば、フラックス入りワイヤは、Mnによる脱酸剤としての作用がより向上する。
In the flux-cored wire for gas shielded arc welding according to the present invention, the Mn is preferably 2.0 to 3.0% by mass.
According to such a configuration, the flux-cored wire is further improved in action as a deoxidizer by Mn.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、フラックスの充填率が10〜30質量%であることが好ましい。
かかる構成によれば、フラックス入りワイヤは、フラックスの作用がより発揮されやすくなる。
The flux-cored wire for gas shielded arc welding according to the present invention preferably has a flux filling rate of 10 to 30% by mass.
According to such a configuration, the flux-cored wire is more likely to exert the flux effect.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、横向溶接に用いることが好ましい。
フラックス入りワイヤは、横向溶接において、スパッタ発生量の低減し、アークの安定性、および溶接金属の機械的性質を損なわずに、溶接ビード垂れを抑制し、かつスラグ巻込みといった溶接欠陥を抑制することができる。
本発明のフラックス入りイヤは、特に横向溶接用として適したものであるが、横向溶接に限定されるものではなく、水平すみ肉溶接や、下向溶接などに用いることもできる。
The flux-cored wire for gas shielded arc welding according to the present invention is preferably used for lateral welding.
Flux-cored wire reduces spatter generation in lateral welding, suppresses weld bead sag, and suppresses weld defects such as slag entrainment without impairing arc stability and the mechanical properties of the weld metal. be able to.
The flux-filled ear of the present invention is particularly suitable for lateral welding, but is not limited to lateral welding, and can also be used for horizontal fillet welding, downward welding, and the like.

本発明に係るフラックス入りワイヤによれば、溶接ビード垂れを抑制し、かつスラグ巻込みといった溶接欠陥を抑制することができる。また、スパッタ発生量を低減することができ、かつアークの安定性を損なうことがない。さらに、溶接金属の機械的性質を損なうことがなく、また、溶接金属の耐割れ性が向上する。   According to the flux cored wire according to the present invention, it is possible to suppress welding bead sag and to suppress welding defects such as slag entrainment. Further, the amount of spatter generated can be reduced and the arc stability is not impaired. Furthermore, the mechanical properties of the weld metal are not impaired, and the crack resistance of the weld metal is improved.

以下、本発明の実施の形態について詳細に説明する。
≪フラックス入りワイヤ≫
本発明のフラックス入りワイヤは、鋼製外皮内にフラックスを充填してなるものである。そして、ワイヤ全質量当たり、TiO、Ti、C、Mn、「Zr化合物およびZr酸化物のZr換算値と金属Zrとの合計」、「Si化合物およびSi酸化物のSi換算値と金属Siとの合計」、「B化合物およびB酸化物のB換算値と金属Bとの合計」、「0.74・[Ti]/([TiO]・[Zr])」(ただし、[Zr]はZr化合物およびZr酸化物のZr換算値と金属Zrとの合計)、「[B]/[Mn]」(ただし、[B]はB化合物およびB酸化物のB換算値と金属Bとの合計)を規定したものである。
Hereinafter, embodiments of the present invention will be described in detail.
≪Flux-cored wire≫
The flux cored wire of the present invention is formed by filling a steel outer shell with a flux. And, per the total mass of the wire, TiO 2 , Ti, C, Mn, “total of Zr converted value of Zr compound and Zr oxide and metal Zr”, “Si converted value of Si compound and Si oxide and metal Si and , “Total of B conversion value of B compound and B oxide and metal B”, “0.74 · [Ti] / ([TiO 2 ] · [Zr])” (where [Zr] is Zr conversion value of Zr compound and Zr oxide and sum of metal Zr), “[B] / [Mn]” (where [B] is the sum of B conversion value of B compound and B oxide and metal B) ).

フラックス入りワイヤは、さらに、ワイヤ全質量当たり、F化合物のF換算値とNa化合物およびNa酸化物のNa換算値とK化合物およびK酸化物のK換算値との合計を所定量含有してもよい。
また、フラックス入りワイヤは、さらに、ワイヤ全質量当たり、NbおよびVのどちらか一方もしくは両方の合計を所定量以下に抑えることが好ましい。
The flux-cored wire may further include a predetermined amount of the total of the F converted value of the F compound, the Na converted value of the Na compound and Na oxide, and the K converted value of the K compound and K oxide per the total mass of the wire. Good.
Further, in the flux-cored wire, it is preferable that the total of either one or both of Nb and V is suppressed to a predetermined amount or less per the total mass of the wire.

ここで、Ti,Mn,B,Nb,Vは金属としてのものである。すなわち、例えばTiであれば金属Tiであり、「金属Ti」とは、「純金属Ti」および「合金Ti」のうちの一種以上を意味する。他の元素も同様である。すなわち、金属としてのものとは、酸化物、化合物ではないということを意味する。
また、「酸化物」とは、「単一酸化物」および「複合酸化物」のうちの一種以上を意味する。「単一酸化物」とは、例えば、ZrならばZr単独の酸化物(ZrO)をいい、「複合酸化物」とは、これらの単一酸化物が複数種類集合したものと、例えば、Zr,Si,Bといった複数の金属成分を含む酸化物との双方をいう。なお、「化合物」についても同様である。
また、「Zr化合物およびZr酸化物のZr換算値」とは、「Zr化合物」および「Zr酸化物」の合計を「金属Zr」に換算した値である。他の元素についても同様である。
さらに、[Ti]、[TiO]、[Mn]は、それぞれ溶接金属中のTi、TiO、B、Mnの含有量(質量%)を示す。また、[Zr]は「Zr化合物およびZr酸化物のZr換算値と金属Zrとの合計」を示し、[B]は「B化合物およびB酸化物のB換算値と金属Bとの合計」を示す。
Here, Ti, Mn, B, Nb, and V are metals. That is, for example, Ti is metal Ti, and “metal Ti” means one or more of “pure metal Ti” and “alloy Ti”. The same applies to other elements. That is, the thing as a metal means that it is not an oxide and a compound.
“Oxide” means one or more of “single oxide” and “composite oxide”. “Single oxide” means, for example, an oxide of Zr alone (ZrO 2 ) in the case of Zr, and “composite oxide” means a combination of a plurality of these single oxides, for example, It refers to both oxides containing a plurality of metal components such as Zr, Si, and B. The same applies to the “compound”.
The “Zr converted value of Zr compound and Zr oxide” is a value obtained by converting the sum of “Zr compound” and “Zr oxide” into “metal Zr”. The same applies to other elements.
Furthermore, [Ti], [TiO 2 ], and [Mn] indicate the contents (mass%) of Ti, TiO 2 , B, and Mn in the weld metal, respectively. [Zr] represents “the sum of the Zr converted value of the Zr compound and the Zr oxide and the metal Zr”, and [B] represents “the total of the B converted value of the B compound and the B oxide and the metal B”. Show.

以下、ワイヤの成分限定理由について説明する。
<TiO:0.2〜0.9質量%>
TiOはアークを安定させると共に、ヒュームおよびスパッタの発生を低減することができる。TiO量が0.2質量%未満では、アーク安定化の効果が得られず、ヒューム発生量およびスパッタ発生量が増加する。一方、0.9質量%を超えると、スラグの凝固温度が低くなりスラグ包被に不均一が生じ、剥離性の劣化、スラグ巻込みといった溶接欠陥を生じ易くなる。したがって、TiO量は0.2〜0.9質量%とする。TiO量は、スラグ包被をより均一にする観点から、0.7質量%以下であることが好ましい。
Hereinafter, the reason for limiting the components of the wire will be described.
<TiO 2: 0.2~0.9 mass%>
TiO 2 can stabilize the arc and reduce the generation of fume and spatter. If the amount of TiO 2 is less than 0.2% by mass, the effect of arc stabilization cannot be obtained, and the amount of generated fumes and the amount of generated spatters increase. On the other hand, if it exceeds 0.9 mass%, the solidification temperature of the slag is lowered, the slag envelope is non-uniform, and welding defects such as deterioration of peelability and slag entrainment are likely to occur. Therefore, TiO 2 content is set to 0.2 to 0.9 mass%. The amount of TiO 2 is preferably 0.7% by mass or less from the viewpoint of making the slag envelope more uniform.

<Ti:0.005〜0.040質量%>
Tiはアークを安定にする働きがあり、その大部分が溶接金属中に歩留るため、スラグ包被を不均一にすることなく、溶滴移行をスムーズにする。Ti量が0.005質量%未満では、アーク安定の効果が明確ではない。一方、0.040質量%を超えると、一部の酸化されたTiがTiOとしてスラグに移行し、スラグ包被が不均一となる。したがって、Ti量は0.005〜0.040質量%とする。Ti量は、スラグ包被をより均一にする観点から、0.015質量%以下であることが好ましい。
<Ti: 0.005-0.040 mass%>
Ti has a function of stabilizing the arc, and most of it is retained in the weld metal, so that the droplet transfer is made smooth without making the slag covering uneven. When the amount of Ti is less than 0.005% by mass, the effect of arc stabilization is not clear. On the other hand, when it exceeds 0.040 mass%, a part of oxidized Ti moves to slag as TiO 2 and the slag covering becomes non-uniform. Therefore, the Ti amount is 0.005 to 0.040 mass%. The amount of Ti is preferably 0.015% by mass or less from the viewpoint of making the slag envelope more uniform.

<C:0.01〜0.05質量%>
Cは、酸化されてCO、COガスを発生することで溶滴の爆発を伴う。C量を0.05質量%以下とすることでスパッタの飛散やヒューム発生量を抑制する狙いがある。またCは良好な機械性能を得るために必要な元素であり下限を0.01質量%とする。したがって、C量は0.01〜0.05質量%とする。
<C: 0.01-0.05 mass%>
C is oxidized to generate CO and CO 2 gas, which is accompanied by explosion of droplets. There exists an aim which suppresses scattering of a spatter and a fume generation amount by making C amount into 0.05 mass% or less. C is an element necessary for obtaining good mechanical performance, and the lower limit is 0.01% by mass. Therefore, the C amount is 0.01 to 0.05 mass%.

<Mn:1.5〜4.0質量%>
Mnは脱酸剤として溶接金属中の酸素をスラグとして除去し機械的性質を向上させる働きがある。Mn量が1.5質量%未満ではその働きが小さい。一方、4.0質量%を超えると、溶接金属の強度が高強度化し靭性を低下させる。したがって、Mn量は1.5〜4.0質量%とする。Mn量は、機械的性質をより向上させる観点から、2.0質量%以上であることが好ましく、また、靭性を向上させる観点から、3.0質量%以下であることが好ましい。
<Mn: 1.5 to 4.0% by mass>
Mn acts as a deoxidizer to remove oxygen in the weld metal as slag and improve mechanical properties. If the amount of Mn is less than 1.5% by mass, its function is small. On the other hand, if it exceeds 4.0% by mass, the strength of the weld metal increases and the toughness decreases. Therefore, the amount of Mn is 1.5 to 4.0 mass%. The amount of Mn is preferably 2.0% by mass or more from the viewpoint of further improving mechanical properties, and is preferably 3.0% by mass or less from the viewpoint of improving toughness.

<Zr化合物およびZr酸化物のZr換算値と金属Zrとの合計:0.5〜2.0質量%>
ZrOは高融点スラグの主成分となるため添加が必須である。溶接ビード垂れを抑制するだけの効果を得るためには、ワイヤに添加するZr量、すなわち、Zr化合物およびZr酸化物のZr換算値と金属Zrとの合計(Zr合計量)を0.5質量%以上とする必要がある。しかし溶接金属中のZrは機械的性質を劣化させるため、上限値を2.0質量%とする。また、Zrは、金属又は合金の形態で添加されると、脱酸作用により溶接金属中の酸素と反応してZrOを形成し、ZrOと同様の効果を発揮する。Zr酸化物、Zr化合物についてもZrOと同様の効果を発揮する。したがって、Zr合計量は0.5〜2.0質量%とする。Zr合計量は、溶接ビード垂れをより抑制する観点から、1.0質量%以上であることが好ましく、また、機械的性質を向上させる観点から、1.5質量%以下であることが好ましい。
<Total of Zr conversion value of Zr compound and Zr oxide and metal Zr: 0.5 to 2.0% by mass>
Since ZrO 2 is a main component of the high melting point slag, addition is essential. In order to obtain an effect that only suppresses weld bead sagging, the amount of Zr added to the wire, that is, the total of the Zr converted value of the Zr compound and the Zr oxide and the metal Zr (Zr total amount) is 0.5 mass. % Or more is necessary. However, since Zr in the weld metal deteriorates the mechanical properties, the upper limit is set to 2.0 mass%. Further, Zr, when added in the form of a metal or alloy, the ZrO 2 is formed by reaction with oxygen in the weld metal by deoxidation, it has the same effect as ZrO 2. Zr oxides and Zr compounds also exhibit the same effects as ZrO 2 . Therefore, the total amount of Zr is set to 0.5 to 2.0% by mass. The total amount of Zr is preferably 1.0% by mass or more from the viewpoint of further suppressing welding bead sagging, and is preferably 1.5% by mass or less from the viewpoint of improving mechanical properties.

<Si化合物およびSi酸化物のSi換算値と金属Siとの合計:0.5〜2.0質量%>
SiOは、ZrOと同様に本発明におけるフラックスの主成分であり、スラグ形成剤として作用するため添加が必須である。SiOは光沢あるビード外観を得るのに有効な成分である。Si量、すなわち、Si化合物およびSi酸化物のSi換算値と金属Siとの合計(Si合計量)が0.5質量%未満ではビード表面の光沢が得られない。一方、2.0質量%を超えるとスラグ包被に不均一が生じる。また、Siは、金属又は合金の形態で添加されると、脱酸作用により溶接金属中の酸素と反応してSiOを形成し、SiOと同様の効果を発揮する。Si酸化物、Si化合物についてもSiOと同様の効果を発揮する。したがって、Si合計量は0.5〜2.0質量%とする。Si合計量は、ビード表面の光沢を得る効果をより発揮させる観点から、0.7質量%以上であることが好ましく、また、スラグ包被をより均一にする観点から、1.0質量%以下であることが好ましい。
<The total of Si conversion value of Si compound and Si oxide and metal Si: 0.5 to 2.0 mass%>
Like ZrO 2 , SiO 2 is the main component of the flux in the present invention, and it must be added because it acts as a slag forming agent. SiO 2 is an effective component for obtaining a glossy bead appearance. If the Si amount, that is, the sum of the Si conversion value of the Si compound and Si oxide and the metal Si (Si total amount) is less than 0.5% by mass, the gloss of the bead surface cannot be obtained. On the other hand, when it exceeds 2.0 mass%, a nonuniformity will arise in a slag covering. Also, Si, when added in the form of a metal or alloy, SiO 2 is formed by reaction with oxygen in the weld metal by deoxidation, it has the same effect as SiO 2. Si oxides and Si compounds exhibit the same effects as SiO 2 . Therefore, the total amount of Si is 0.5 to 2.0 mass%. The total amount of Si is preferably 0.7% by mass or more from the viewpoint of exerting the effect of obtaining the gloss of the bead surface, and 1.0% by mass or less from the viewpoint of making the slag covering more uniform. It is preferable that

<B化合物およびB酸化物のB換算値と金属Bとの合計:0.002〜0.010質量%>
Bは溶接金属の凝固過程において核となり組織を微細化する働きがある。B量、すなわち、B化合物およびB酸化物のB換算値と金属Bとの合計(B合計量)が0.002質量%未満では、機械的性質の向上が得られない。一方、0.010質量%を超えると、耐高温割れ性の劣化など機械的性質以外の諸性能が劣化する傾向がある。したがって、B合計量は0.002〜0.010質量%とする。B合計量は、機械的性質以外の諸性能を向上させる観点から、0.008質量%以下であることが好ましい。なお、Bは酸化物形態および化合物形態であっても同様の効果を発揮する。
<Total of B conversion value of B compound and B oxide and metal B: 0.002 to 0.010 mass%>
B serves as a nucleus in the solidification process of the weld metal and serves to refine the structure. If the amount of B, that is, the total of B converted values of the B compound and B oxide and the metal B (B total amount) is less than 0.002% by mass, improvement in mechanical properties cannot be obtained. On the other hand, when it exceeds 0.010 mass%, various performances other than mechanical properties such as deterioration of hot cracking resistance tend to deteriorate. Therefore, the total amount of B is set to 0.002 to 0.010 mass%. The total amount of B is preferably 0.008% by mass or less from the viewpoint of improving various performances other than mechanical properties. In addition, even if B is an oxide form and a compound form, the same effect is exhibited.

<「0.74・[Ti]/([TiO]・[Zr])(ただし、[Zr]はZr化合物およびZr酸化物のZr換算値と金属Zrとの合計)」:0.005〜0.040>
TiOとZrOは融点の差が大きく、溶接後のビード垂れ、スラグ剥離性を大きく左右する。Tiはアーク安定化のために添加は必須であるが、過剰な添加はTiが酸化されZrOとのバランスを乱し、スラグ包被が不均一となる。なお、Zr酸化物、Zr化合物についてもZrOと同様である。したがって、[TiO]、[Zr]、および[Ti]の含有量の関係を上記のように規定した。上記の関係の値が0.005未満では、アークの安定性が得られないだけでなく、溶接ビードが垂れ気味となる。一方、0.040を超えると、スラグ包被が不均一となり、スラグ巻き込みといった融合不良を生じやすくなるだけではなく、スラグが早く固まることにより溶接ビード表面に凹凸を生じる。したがって、「0.74・[Ti]/([TiO]・[Zr])」は0.005〜0.040とする。「0.74・[Ti]/([TiO]・[Zr])」は、アークの安定性をより向上させる観点から、また溶接ビード形状をより良好にする観点から、0.008以上であることが好ましい。また、スラグ包被をより均一にする観点から、また溶接ビード形状をより良好にする観点から、0.020以下であることが好ましい。
<“0.74 · [Ti] / ([TiO 2 ] · [Zr]) (where [Zr] is the total of the Zr-converted value of the Zr compound and the Zr oxide and the metal Zr)”: 0.005 0.040>
TiO 2 and ZrO 2 have a large difference in melting point, and greatly affect bead sag and slag peelability after welding. Although addition of Ti is indispensable for stabilizing the arc, excessive addition oxidizes Ti, disturbs the balance with ZrO 2, and makes the slag cover non-uniform. The Zr oxide and the Zr compound are the same as ZrO 2 . Therefore, the relationship between the contents of [TiO 2 ], [Zr], and [Ti] was defined as described above. If the value of the above relationship is less than 0.005, not only the arc stability cannot be obtained, but also the weld bead droops. On the other hand, if it exceeds 0.040, the slag covering becomes non-uniform, and not only fusion failure such as slag entrainment is likely to occur, but also the surface of the weld bead is uneven as the slag hardens quickly. Therefore, “0.74 · [Ti] / ([TiO 2 ] · [Zr])” is set to 0.005 to 0.040. “0.74 · [Ti] / ([TiO 2 ] · [Zr])” is 0.008 or more from the viewpoint of further improving the stability of the arc and further improving the weld bead shape. Preferably there is. Moreover, it is preferable that it is 0.020 or less from a viewpoint which makes a slag covering more uniform, and a viewpoint which makes a weld bead shape more favorable.

<「[B]/[Mn](ただし、[B]はB化合物およびB酸化物のB換算値と金属Bとの合計)」:0.001〜0.005>
横向継手の溶接入熱量(0.9〜1.5kJ/mm)にて良好な機械性能を得るには、溶接金属中のB量と脱酸剤となるMn量の関係が重要である。「[B]/[Mn]」、すなわち、B化合物およびB酸化物のB換算値と金属Bとの合計(B合計量)と、Mnとの関係の値が0.001未満ではBの核生成による組織の微細化が十分ではない。一方、0.005を超えるとMnによる脱酸効果が得られない。したがって、「[B]/[Mn]」は0.001〜0.005とする。「[B]/[Mn]」は、脱酸効果をより発揮させる観点から、0.003以下であることが好ましい。
<[B] / [Mn] (where [B] is the sum of the B compound and the B value of the B compound and the B oxide): 0.001 to 0.005>
In order to obtain good mechanical performance at the welding heat input (0.9 to 1.5 kJ / mm) of the transverse joint, the relationship between the amount of B in the weld metal and the amount of Mn serving as a deoxidizer is important. "[B] / [Mn]", that is, if the value of the relationship between the B-converted value of the B compound and B oxide and the metal B (the total amount of B) and Mn is less than 0.001, the nucleus of B The structure is not sufficiently refined by generation. On the other hand, when it exceeds 0.005, the deoxidation effect by Mn cannot be obtained. Therefore, “[B] / [Mn]” is set to 0.001 to 0.005. “[B] / [Mn]” is preferably 0.003 or less from the viewpoint of further exerting a deoxidation effect.

<F化合物のF換算値とNa化合物およびNa酸化物のNa換算値とK化合物およびK酸化物のK換算値との合計:0.70質量%以下>
F、Na、Kはアーク安定剤として添加される成分である。これらの合計量が0.70質量%を超えるとスパッタ発生量が増加する傾向がある。したがって、これらを含有する場合には、F、Na、Kの合計量は0.70質量%以下とする。F、Na、Kの合計量は、スパッタ発生量をより低減させる観点から、0.20質量%以下であることが好ましい。なお、下限値については特に規定されるものではなく、0質量%であってもよいが、添加する場合はその効果を得るため、0.10質量%以上とすることが好ましい。
<Total of F converted value of F compound, Na converted value of Na compound and Na oxide, and K converted value of K compound and K oxide: 0.70% by mass or less>
F, Na, and K are components added as an arc stabilizer. When the total amount exceeds 0.70% by mass, the amount of spatter generated tends to increase. Therefore, when it contains these, the total amount of F, Na, and K shall be 0.70 mass% or less. The total amount of F, Na, and K is preferably 0.20% by mass or less from the viewpoint of further reducing the amount of spatter generated. In addition, about a lower limit, it may not be prescribed | regulated in particular, and may be 0 mass%, but when adding, in order to acquire the effect, it is preferable to set it as 0.10 mass% or more.

<NbおよびVのうちどちらか一方もしくは両方の合計:0.040質量%以下>
NbおよびVは溶接金属中でNbC、VCを形成し溶接金属の機械性能を劣化させる。そのため、溶接継手の溶接金属において良好な機械性能を得るためには上限を設ける必要がある。NbおよびVのうちどちらか一方もしくは両方の合計(NbとVの合計量)が0.040質量%を超えると溶接金属の機械性能が劣化する。したがって、これらを含有する場合には、NbとVの合計量は0.040質量%以下とする。なお、Nb、Vは不可避的に混入されるため特に下限値は設定しない。NbとVの合計量は、機械性能をより向上させる観点から、好ましくは0.004質量%以下である。
<Total of either Nb or V or both: 0.040 mass% or less>
Nb and V form NbC and VC in the weld metal and degrade the mechanical performance of the weld metal. Therefore, it is necessary to provide an upper limit in order to obtain good mechanical performance in the weld metal of the weld joint. When the sum of either one or both of Nb and V (total amount of Nb and V) exceeds 0.040% by mass, the mechanical performance of the weld metal deteriorates. Therefore, when these are contained, the total amount of Nb and V is 0.040% by mass or less. Since Nb and V are inevitably mixed, no lower limit value is set. The total amount of Nb and V is preferably 0.004% by mass or less from the viewpoint of further improving the mechanical performance.

<フラックスの充填率:10〜30質量%>
フラックス充填率(ワイヤ全質量に対するフラックスの質量)は特に規定されるものではないが、フラックス入りワイヤの生産時の安定性の観点から10〜30質量%であることが好ましい。
<Flux filling ratio: 10 to 30% by mass>
The flux filling rate (the mass of the flux with respect to the total mass of the wire) is not particularly defined, but is preferably 10 to 30% by mass from the viewpoint of stability during production of the flux-cored wire.

<残部:Feおよび不可避的不純物>
フラックス入りワイヤ全体としての残部は、Feおよび不可避的不純物である。Fe量は80〜95質量%とすることができる。
<Fe:80〜95質量%>
Feは溶着金属量を増加させる効果を有し、溶接施工効率を上昇させる。また、他のフラックス原料と混ざり合い、フラックスの流動性を良好にし、フラックス充填率の変動を抑制する。Feが80質量%未満では上記の効果が得られない。一方、上限については前述の種々のフラックス成分を添加できる量であればよく、例えば95質量%とすることができる。したがってFe量は80〜95質量%とすることができる。なお、Fe源としては、鋼製外皮以外にフラックスでは鉄粉およびFe系合金等がある。
<Balance: Fe and inevitable impurities>
The balance of the entire flux-cored wire is Fe and inevitable impurities. The amount of Fe can be 80-95 mass%.
<Fe: 80 to 95% by mass>
Fe has the effect of increasing the amount of deposited metal and increases the welding efficiency. Moreover, it mixes with other flux raw materials, improves the fluidity of the flux, and suppresses fluctuations in the flux filling rate. If Fe is less than 80% by mass, the above effect cannot be obtained. On the other hand, the upper limit may be an amount that can add the above-described various flux components, for example, 95% by mass. Therefore, the amount of Fe can be 80-95 mass%. As the Fe source, there are iron powder, Fe-based alloy and the like in the flux other than the steel outer shell.

そして、前記したワイヤ成分の他、ワイヤ成分としてフラックス中に、Ca、Li等を脱酸等の微調整剤として、また、Cu、Co、Nを溶接金属のさらなる硬化剤として、少量含有させることもできる。これらの元素は、本発明の目的には影響を及ぼさない。また、フラックス中には上記の元素以外のアルカリ金属化合物を微量に含む。
また、不可避的不純物として、前記したNb、Vの他、例えば、Ni、Mo、Cr等を各々、Ni:0.1質量%未満、Mo:0.01質量%未満、Cr:0.30質量%未満を含有してもよい。ただし、これらの成分、数値に限定されるものではない。
In addition to the wire component described above, a small amount of Ca, Li, etc. as a fine-tuning agent such as deoxidation, and Cu, Co, N as a further hardener for the weld metal are contained in the flux as the wire component. You can also. These elements do not affect the object of the present invention. Further, the flux contains a trace amount of an alkali metal compound other than the above elements.
In addition to Nb and V described above as inevitable impurities, for example, Ni, Mo, Cr, etc., respectively, Ni: less than 0.1% by mass, Mo: less than 0.01% by mass, Cr: 0.30% by mass % May be contained. However, it is not limited to these components and numerical values.

<その他>
フラックス入りワイヤの製造方法としては、帯鋼の長さ方向にフラックスを散布してから包み込むように円形断面に成形し伸線する方法や、太径の鋼管にフラックスを充填して伸線する方法がある。しかしながら、いずれの方法でも本発明には影響しないため、いずれの方法で製造しても良い。さらにシームが有るものと無いものがあるが、これもいずれでも良い。外皮の成分については何ら規定する必要はないが、コスト面と伸線性の面から軟鋼または低合金鋼の材質を用いるのが一般的である。また、表面に銅めっきを施す場合もあるが、めっきの有無は問わない。
<Others>
As a method of manufacturing a flux-cored wire, a method in which a flux is spread in the length direction of a steel strip and then formed into a circular cross-section so as to be wrapped, or a method in which a steel pipe having a large diameter is filled with a flux and drawn There is. However, since any method does not affect the present invention, any method may be used. In addition, there are seams with and without seams. Although it is not necessary to define anything about the components of the outer skin, it is common to use a material of mild steel or low alloy steel from the viewpoint of cost and wire drawing. Moreover, although copper plating may be given to the surface, the presence or absence of plating is not ask | required.

以下、本発明の効果を説明するために、本発明の範囲に入る実施例と、本発明の範囲から外れる比較例とを比較して説明する。   Hereinafter, in order to explain the effects of the present invention, examples that fall within the scope of the present invention and comparative examples that fall outside the scope of the present invention will be compared and described.

表1、2に示すワイヤ成分を有するフラックス入りワイヤを用いて、表3に示す条件にて溶接を実施した。また、フープ成分(外皮成分)の一例を表4に示す。表1、2のワイヤ成分において、本発明の範囲を満たさないものについては数値に下線を引いて示す。
なお、フラックス入りワイヤに含有される各成分の量は、Cは燃焼−赤外線吸収法で、Ti、Si、Zr、Mn、B、Nb、VはICP発光分光分析方法で、NaおよびKは原子吸光分析方法で、Fは中和滴定法で、それぞれ測定した。
Welding was performed under the conditions shown in Table 3 using flux-cored wires having the wire components shown in Tables 1 and 2. Table 4 shows an example of the hoop component (skin component). Of the wire components in Tables 1 and 2, those not satisfying the scope of the present invention are indicated by underlining the numerical values.
The amount of each component contained in the flux-cored wire is as follows. C is a combustion-infrared absorption method, Ti, Si, Zr, Mn, B, Nb, and V are ICP emission spectroscopic analysis methods, and Na and K are atoms. F was measured by a neutralization titration method using an absorption analysis method.

Figure 0006029513
Figure 0006029513

Figure 0006029513
Figure 0006029513

Figure 0006029513
Figure 0006029513

Figure 0006029513
Figure 0006029513

そして、以下の評価を行った。
<融合不良(スラグ巻き含む)>
融合不良については、X線透過試験(JIS Z 3104に準拠)により溶接金属内部の融合不良(スラグ巻き含む)を調査することにより評価した。
融合不良発生数(個/500mm(長さ))が0個のものを合格、1個以上のものを不合格とした。
And the following evaluation was performed.
<Fusion failure (including slag winding)>
The fusion failure was evaluated by investigating the fusion failure (including slag winding) inside the weld metal by an X-ray transmission test (based on JIS Z 3104).
The number of occurrences of poor fusion (pieces / 500 mm L (length)) was 0, and one or more were considered unacceptable.

<ビード外観>
ビード外観については、官能にて評価した。
ビード垂れがなく、ビードの重ね目が良好なものを「○」、溶接後のビード形状が垂れ気味なものを「△」、ビード垂れが顕著で横向溶接が行えないものを「×」とした。
<Bead appearance>
The bead appearance was evaluated by sensuality.
“○” indicates that there is no bead sagging and the bead overlap is good, “△” indicates that the bead shape after welding is drooping, and “x” indicates that the bead sagging is significant and lateral welding cannot be performed. .

<溶接作業性(アーク安定性およびスパッタ発生量)>
溶接作業性については、溶接時に官能にて評価した。
溶滴移行がスムーズでスパッタ発生量が少ないものを「○」、アークがやや不安定でスパッタ発生量も多いものを「△」、アークが不安定でスパッタ発生量が多い(商品として実用性がない)ものを「×」とした。
<Welding workability (arc stability and spatter generation amount)>
The welding workability was evaluated by sensuality during welding.
“○” indicates that the droplet transfer is smooth and the amount of spatter is small, “△” indicates that the arc is slightly unstable and the amount of spatter is large, and “Δ” indicates that the arc is unstable and the amount of spatter is large. No) was marked “x”.

<機械的性質>
機械的性質については、JIS Z 3111に準拠し溶着金属から試験片を作製し、引張試験、衝撃試験を実施することにより評価した。具体的には、引張強度、0℃吸収エネルギー(靭性)を測定した。
引張試験片はタイプIA0号、衝撃試験片はVノッチ試験片である。
判定基準は、引張強度540MPa以上640MPa以下且つ衝撃値80J以上で特に良好なものを「◎」、引張強度540MPa以上640MPa以下且つ衝撃値47J以上のものを「○」、引張強度540MPa以上640MPa以下もしくは衝撃値47J以上のものを「△」、前記範囲(「△」の範囲)を共に満足しないものを「×」とした。
<Mechanical properties>
About the mechanical property, based on JISZ3111, the test piece was produced from the weld metal, and it evaluated by implementing a tensile test and an impact test. Specifically, tensile strength and 0 ° C. absorbed energy (toughness) were measured.
The tensile test piece is type IA0 and the impact test piece is a V-notch test piece.
Judgment criteria are “を” for those having a tensile strength of 540 MPa or more and 640 MPa or less and an impact value of 80 J or more, “◯” for those having a tensile strength of 540 MPa or more and 640 MPa or less and an impact value of 47 J or more, and tensile strengths of 540 MPa or more and 640 MPa or less. Those having an impact value of 47 J or more were evaluated as “Δ”, and those not satisfying the above range (the range of “Δ”) were evaluated as “X”.

<耐割れ性>
耐割れ性については、油圧式C形高速冶具による突合せ溶接割れ試験を実施(JIS 3155に準拠)することにより評価した。具体的には、以下の溶接条件で溶接した際における割れ発生率にて評価した。
(溶接条件)
[供試鋼板]JIS G3106 SM400B、25mm(厚さ)×(150+150)mm(幅)×500mm(長さ)
[開先形状]40°V開先、ルートギャップ4mm
[裏当て材]セラミックタイプ
[溶接方法]半自動溶接
[溶接姿勢]下向
[電流−電圧]240A−28V
割れ発生率=割れ合計長さ/(溶接長−クレータ長さ)×100
割れ発生率が10%以下のものを合格、10%を超えるものを不合格とした。
<Crack resistance>
The crack resistance was evaluated by conducting a butt weld cracking test (based on JIS 3155) using a hydraulic C-type high-speed jig. Specifically, the crack occurrence rate when welding was performed under the following welding conditions was evaluated.
(Welding conditions)
[Test steel plate] JIS G3106 SM400B, 25 mm t (thickness) × (150 + 150) mm w (width) × 500 mm L (length)
[Groove shape] 40 ° V groove, root gap 4mm
[Backing material] Ceramic type [Welding method] Semi-automatic welding
[Welding posture] downward
[Current-Voltage] 240A-28V
Crack generation rate = total crack length / (welding length−crater length) × 100
Those with a crack occurrence rate of 10% or less were accepted and those with a crack rate exceeding 10% were rejected.

(総合評価)
融合不良発生数がゼロで、ビード外観、溶接作業性が「○」、割れ発生率が10%以下のもので、特に機械的性質に優れるものを「◎」とした。
融合不良発生数がゼロで、ビード外観、溶接作業性が「○」、割れ発生率が10%以下のものを「○」とした。
上記以外のうち割れ発生率が10%以下のものを「△」とし、10%以上のものを「×」とした。
これらの結果を表5に示す。
(Comprehensive evaluation)
The number of occurrences of poor fusion was zero, the appearance of the beads, the welding workability was “◯”, the crack occurrence rate was 10% or less, and particularly excellent in mechanical properties was designated as “◎”.
The case where the number of fusion failures was zero, the bead appearance, the welding workability was “◯”, and the crack occurrence rate was 10% or less was designated as “◯”.
Among those other than the above, those having a crack occurrence rate of 10% or less were designated as “Δ”, and those having 10% or more were designated as “X”.
These results are shown in Table 5.

Figure 0006029513
Figure 0006029513

表5に示すように、No.6〜22は、本発明の範囲を満たすため、または参考例のため、各評価において良好な結果を得られた。なお、No.20およびNo.21については「F+Na+K」を添加しておらず、その他の実施例および参考例と比較して溶接作業性が若干劣るものの、問題ない性能が得られた。
一方、No.1〜5、23〜31は、本発明の範囲を満たさないため、良好な結果が得られなかった。
As shown in Table 5, no. Nos. 6 to 22 were satisfactory in each evaluation because they satisfy the scope of the present invention or for reference examples . In addition, No. 20 and no. For No. 21, “F + Na + K” was not added, and although welding workability was slightly inferior to those of the other examples and reference examples , performance without problems was obtained.
On the other hand, no. Since 1-5 and 23-31 do not satisfy the scope of the present invention, good results were not obtained.

No.1は、TiO、Mn、B合計値が上限値を超え、「0.74・[Ti]/([TiO]・[Zr])」、Si合計値が下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No.2は、TiO、Mn、B合計値が上限値を超え、「0.74・[Ti]/([TiO]・[Zr])」、Zr合計値、Si合計値が下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No. 1 is a poor fusion because the total value of TiO 2 , Mn and B exceeds the upper limit, and “0.74 · [Ti] / ([TiO 2 ] · [Zr])” and the Si total value is less than the lower limit. In addition, the bead appearance, welding workability, mechanical properties, and crack resistance were poor.
No. 2 is because the total value of TiO 2 , Mn, and B exceeds the upper limit, and “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, the Zr total value, and the Si total value are less than the lower limit. The fusion was poor, and the bead appearance, welding workability, mechanical properties, and crack resistance were poor.

No.3は、TiO、Mnが上限値を超え、「0.74・[Ti]/([TiO]・[Zr])」、Si合計値、B合計値、「[B]/[Mn]」が下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質に劣った。
No.4は、TiO、Ti、Zr合計値、B合計値、「[B]/[Mn]」、「F、Na、Kの合計値」が上限値を超え、C、「0.74・[Ti]/([TiO]・[Zr])」、Mn、Si合計値が下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No.5は、TiO、Zr合計値、B合計値、「[B]/[Mn]」、「F、Na、Kの合計値」が上限値を超え、C、「0.74・[Ti]/([TiO]・[Zr])」、Mn、Si合計値が下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No. 3, TiO 2 , Mn exceeded the upper limit, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Si total value, B total value, “[B] / [Mn] ”Is less than the lower limit, resulting in poor fusion and inferior bead appearance, welding workability, and mechanical properties.
No. 4, TiO 2 , Ti, Zr total value, B total value, “[B] / [Mn]”, “total value of F, Na, K” exceeds the upper limit value, C, “0.74 · [ Ti] / ([TiO 2 ] · [Zr]) ”, Mn and Si total value was less than the lower limit, resulting in poor fusion and poor bead appearance, welding workability, mechanical properties, and crack resistance.
No. 5, TiO 2 , Zr total value, B total value, “[B] / [Mn]”, “total value of F, Na, K” exceeds the upper limit, C, “0.74 · [Ti] / ([TiO 2 ] · [Zr]) ”, Mn, and Si total value is less than the lower limit, resulting in poor fusion and inferior bead appearance, welding workability, mechanical properties, and crack resistance.

No.23は、TiO、Ti、「0.74・[Ti]/([TiO]・[Zr])」、Si合計値、「[B]/[Mn]」が上限値を超え、C、Mnが下限未満のため、融合不良となり、また、ビード外観、機械的性質に劣った。
No.24は、TiO、Ti、「0.74・[Ti]/([TiO]・[Zr])」、Si合計値、「F、Na、Kの合計値」が上限値を超え、Mnが下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質に劣った。
No.25は、TiO、Ti、「0.74・[Ti]/([TiO]・[Zr])」、Si合計値、「F、Na、Kの合計値」が上限値を超え、Mn、B合計値が下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質に劣った。
No. 23, TiO 2 , Ti, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Si total value, “[B] / [Mn]” exceeds the upper limit value, C, Since Mn was less than the lower limit, the fusion was poor, and the bead appearance and mechanical properties were inferior.
No. 24, TiO 2 , Ti, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Si total value, “total value of F, Na, K” exceeds the upper limit, Mn Was less than the lower limit, resulting in poor fusion and poor bead appearance, welding workability, and mechanical properties.
No. 25, TiO 2 , Ti, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Si total value, “total value of F, Na, K” exceeds the upper limit, Mn , B total value was less than the lower limit, resulting in poor fusion and poor bead appearance, welding workability, and mechanical properties.

No.26は、TiO、Ti、「0.74・[Ti]/([TiO]・[Zr])」、Si合計値が上限値を超え、Mn、B合計値が下限未満のため、融合不良となり、また、ビード外観、機械的性質に劣った。
No.27は、Ti、「0.74・[Ti]/([TiO]・[Zr])」、Zr合計値、Si合計値が上限値を超え、TiO、Mnが下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質に劣った。
No. 26, TiO 2 , Ti, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, the Si total value exceeds the upper limit, and the Mn and B total values are less than the lower limit. In addition, the bead appearance and mechanical properties were inferior.
No. 27 is fused because Ti, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Zr total value, Si total value exceeds the upper limit, and TiO 2 and Mn are less than the lower limit. In addition, the bead appearance, welding workability, and mechanical properties were inferior.

No.28は、Ti、C、「0.74・[Ti]/([TiO]・[Zr])」、Zr合計値、Si合計値、B合計値、「[B]/[Mn]」が上限値を超え、TiO、Mnが下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No.29は、Ti、C、「0.74・[Ti]/([TiO]・[Zr])」、「Nb、Vの合計値」、Zr合計値、Si合計値、B合計値、「[B]/[Mn]」が上限値を超え、TiO、Mnが下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No. 28, Ti, C, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Zr total value, Si total value, B total value, “[B] / [Mn]” Since the upper limit was exceeded and TiO 2 and Mn were less than the lower limit, poor fusion occurred, and the bead appearance, welding workability, mechanical properties, and crack resistance were poor.
No. 29, Ti, C, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, “total value of Nb and V”, Zr total value, Si total value, B total value, “ [B] / [Mn] ”exceeded the upper limit and TiO 2 and Mn were less than the lower limit, resulting in poor fusion and poor bead appearance, weldability, mechanical properties, and crack resistance.

No.30は、Ti、C、「0.74・[Ti]/([TiO]・[Zr])」、「Nb、Vの合計値」、Zr合計値、Si合計値、B合計値、「[B]/[Mn]」が上限値を超え、TiO、Mnが下限未満のため、融合不良となり、また、ビード外観、溶接作業性、機械的性質、耐割れ性に劣った。
No.31は、Ti、「0.74・[Ti]/([TiO]・[Zr])」、Mn、B合計値、「[B]/[Mn]」が下限未満のため、ビード外観、溶接作業性、機械的性質に劣った。
No. 30 is Ti, C, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, “total value of Nb and V”, Zr total value, Si total value, B total value, “ [B] / [Mn] ”exceeded the upper limit and TiO 2 and Mn were less than the lower limit, resulting in poor fusion and poor bead appearance, weldability, mechanical properties, and crack resistance.
No. 31 is Ti, “0.74 · [Ti] / ([TiO 2 ] · [Zr])”, Mn, B total value, “[B] / [Mn]” is less than the lower limit, Poor welding workability and mechanical properties.

なお、No.31のサンプルは、特許文献1に記載された従来のフラックス入りワイヤを想定したものである。本実施例で示すように、この従来のフラックス入りワイヤは、前記の評価において一定の水準を満たさないものである。従って、本実施例によって、本発明に係る溶接金属が従来のフラックス入りワイヤと比較して、優れていることが客観的に明らかとなった。   In addition, No. The sample of 31 assumes the conventional flux cored wire described in Patent Document 1. As shown in this example, this conventional flux-cored wire does not satisfy a certain level in the above evaluation. Therefore, this example objectively revealed that the weld metal according to the present invention is superior to conventional flux-cored wires.

以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。   The present invention has been described in detail with reference to the embodiments and examples. However, the gist of the present invention is not limited to the above-described contents, and the scope of right is widely interpreted based on the description of the claims. Must. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

Claims (6)

鋼製外皮内にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量当たり、
TiO:0.2〜0.9質量%、
Ti:0.005〜0.015質量%、
C:0.01〜0.05質量%、
Mn:1.5〜4.0質量%、
Zr化合物およびZr酸化物のZr換算値と金属Zrとの合計:0.5〜2.0質量%、
Si化合物およびSi酸化物のSi換算値と金属Siとの合計:0.5〜2.0質量%、
B化合物およびB酸化物のB換算値と金属Bとの合計:0.002〜0.010質量%、
0.74・[Ti]/([TiO]・[Zr]):0.005〜0.040(ただし、[Zr]はZr化合物およびZr酸化物のZr換算値と金属Zrとの合計)、
[B]/[Mn]:0.001〜0.005(ただし、[B]はB化合物およびB酸化物のB換算値と金属Bとの合計)、
であり、残部がFeおよび不可避的不純物であることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shield arc welding formed by filling the steel outer shell with flux,
Per total mass of wire,
TiO 2 : 0.2 to 0.9% by mass,
Ti: 0.005 to 0.015 mass%,
C: 0.01-0.05 mass%,
Mn: 1.5 to 4.0% by mass,
Total of Zr conversion value of Zr compound and Zr oxide and metal Zr: 0.5 to 2.0% by mass,
Sum of Si conversion value of Si compound and Si oxide and metal Si: 0.5 to 2.0% by mass,
Total of B conversion value of B compound and B oxide and metal B: 0.002 to 0.010% by mass,
0.74 · [Ti] / ([TiO 2 ] · [Zr]): 0.005 to 0.040 (where [Zr] is the sum of the Zr converted value of the Zr compound and the Zr oxide and the metal Zr) ,
[B] / [Mn]: 0.001 to 0.005 (where [B] is the sum of the B compound and the B value of the B compound and the metal B),
Der is, gas shielded arc welding flux cored wire the balance being Fe and unavoidable impurities der Rukoto.
さらに、ワイヤ全質量当たり、F化合物のF換算値とNa化合物およびNa酸化物のNa換算値とK化合物およびK酸化物のK換算値との合計が0.70質量%以下であることを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。   Further, the total of the F converted value of the F compound, the Na converted value of the Na compound and the Na oxide, and the K converted value of the K compound and the K oxide is 0.70% by mass or less per total mass of the wire. The flux-cored wire for gas shielded arc welding according to claim 1. さらに、ワイヤ全質量当たり、NbおよびVのうちどちらか一方もしくは両方の合計が0.040質量%以下であることを特徴とする請求項1または請求項2に記載のガスシールドアーク溶接用フラックス入りワイヤ。   Furthermore, the total of either one or both of Nb and V is 0.040 mass% or less per total mass of the wire, and contains the flux for gas shielded arc welding according to claim 1 or 2 Wire. 前記Mnが2.0〜3.0質量%であることを特徴とする請求項1から請求項3のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux cored wire for gas shielded arc welding according to any one of claims 1 to 3, wherein the Mn is 2.0 to 3.0 mass%. フラックスの充填率が10〜30質量%であることを特徴とする請求項1から請求項4のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux-filled wire for gas shielded arc welding according to any one of claims 1 to 4, wherein a filling rate of the flux is 10 to 30% by mass. 横向溶接に用いることを特徴とする請求項1から請求項5のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux-cored wire for gas shielded arc welding according to any one of claims 1 to 5, wherein the flux-cored wire is used for horizontal welding.
JP2013070135A 2013-03-28 2013-03-28 Flux-cored wire for gas shielded arc welding Active JP6029513B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013070135A JP6029513B2 (en) 2013-03-28 2013-03-28 Flux-cored wire for gas shielded arc welding
CN201410064805.2A CN104070298B (en) 2013-03-28 2014-02-25 Flux-cored wire for gas-shielded arc welding
KR1020140035986A KR101600174B1 (en) 2013-03-28 2014-03-27 Flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070135A JP6029513B2 (en) 2013-03-28 2013-03-28 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2014193472A JP2014193472A (en) 2014-10-09
JP6029513B2 true JP6029513B2 (en) 2016-11-24

Family

ID=51592121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070135A Active JP6029513B2 (en) 2013-03-28 2013-03-28 Flux-cored wire for gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP6029513B2 (en)
KR (1) KR101600174B1 (en)
CN (1) CN104070298B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666098B2 (en) * 2015-09-29 2020-03-13 株式会社神戸製鋼所 High current pulse arc welding method and flux cored welding wire
JP2017148821A (en) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 Flux-cored wire for arc welding developed for duplex stainless steel and welding metal
CN106736027A (en) * 2016-12-15 2017-05-31 昆山京群焊材科技有限公司 A kind of 1Cr 0.5Mo V power stations steel-casting repair welding flux-cored wire of extremely low carbon high-purity
KR20190116245A (en) * 2017-02-08 2019-10-14 미쓰이금속광업주식회사 Wiring structure, manufacturing method thereof, sputtering target material, and oxidation prevention method
CN110788520B (en) * 2019-11-20 2021-07-23 桂林航天工业学院 High-alloy steel wear-resistant flux-cored wire and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127994A (en) * 1983-01-10 1984-07-23 Nippon Steel Corp Low hydrogen type coated electrode
JP3439019B2 (en) * 1996-03-07 2003-08-25 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JPH10291092A (en) * 1997-04-17 1998-11-04 Nippon Steel Corp Flux-cored wire for gas-shielded metal arc welding
JP3512340B2 (en) * 1998-07-28 2004-03-29 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP3589882B2 (en) * 1998-12-11 2004-11-17 日鐵住金溶接工業株式会社 Flux-cored wire for two-electrode single-sided gas shielded arc welding
KR100427546B1 (en) * 2001-09-06 2004-04-30 고려용접봉 주식회사 Basic flux cored wire
JP3758040B2 (en) * 2002-07-26 2006-03-22 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
KR100706022B1 (en) * 2005-11-17 2007-04-12 고려용접봉 주식회사 Flux cored wire for large square bar
JP4841238B2 (en) * 2005-12-07 2011-12-21 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
US20080093351A1 (en) * 2006-10-19 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux-cored wire for gas shielded arc welding for creep-resisting steels
JP5194593B2 (en) * 2007-07-10 2013-05-08 新日鐵住金株式会社 Flux-cored welding wire for gas shielded arc welding of refractory steel
JP5361797B2 (en) * 2010-05-18 2013-12-04 日鐵住金溶接工業株式会社 Flux-cored wire for horizontal fillet gas shielded arc welding

Also Published As

Publication number Publication date
JP2014193472A (en) 2014-10-09
CN104070298B (en) 2016-05-11
KR20140118901A (en) 2014-10-08
KR101600174B1 (en) 2016-03-04
CN104070298A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP6040125B2 (en) Flux cored wire
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
CN106392369B (en) Ni-based alloy flux-cored wire
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP6029513B2 (en) Flux-cored wire for gas shielded arc welding
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP2016137508A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5459083B2 (en) Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP2003019595A (en) Flux cored wire for gas-shielded arc welding for low alloy heat resistant steel
JP6453178B2 (en) Flux-cored wire for gas shielded arc welding
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP5314414B2 (en) Flux cored wire
KR102675635B1 (en) Flux Cored Wire and Welding Methods
KR102156027B1 (en) Flux cored wire
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
WO2016060208A1 (en) Wire containing flux for gas shield arc welding
JP2015205304A (en) Flux-cored wire for gas shield arc welding
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JP4166752B2 (en) Metal flux cored wire for high strength steel with excellent weldability
JP5845168B2 (en) Flux-cored wire for gas shielded arc welding and gas shielded arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150