WO2012014020A1 - 負荷制御装置 - Google Patents

負荷制御装置 Download PDF

Info

Publication number
WO2012014020A1
WO2012014020A1 PCT/IB2011/000373 IB2011000373W WO2012014020A1 WO 2012014020 A1 WO2012014020 A1 WO 2012014020A1 IB 2011000373 W IB2011000373 W IB 2011000373W WO 2012014020 A1 WO2012014020 A1 WO 2012014020A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
switch
unit
capacitors
Prior art date
Application number
PCT/IB2011/000373
Other languages
English (en)
French (fr)
Inventor
東浜 弘忠
齋藤 裕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11811890.0A priority Critical patent/EP2600697A1/en
Priority to KR1020137002161A priority patent/KR101524954B1/ko
Priority to US13/812,161 priority patent/US9166496B2/en
Priority to CN201180036705.3A priority patent/CN103026794B/zh
Publication of WO2012014020A1 publication Critical patent/WO2012014020A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a two-wire load control device.
  • FIG. 10 shows a circuit configuration of a conventional two-wire load control device 50 connected in series between a commercial power source 2 and a load 3.
  • the load control device 50 includes a main opening / closing unit 51 and an auxiliary opening / closing unit 57 that control on / off of the load 3, a control unit 53 that controls conduction of the main opening / closing unit 51 and the auxiliary opening / closing unit 57, and a control unit 53. It consists of a power supply circuit for supplying drive power.
  • the power supply circuit includes a rectifier 52, a first power supply 54 that stabilizes power supply to the controller 53, a second power supply 55 that supplies power to the first power supply 54 when power to the load 3 is stopped, 3 is configured by a third power supply unit 56 that supplies power to the first power supply unit 54 when power is supplied to the power supply 3.
  • the auxiliary opening / closing unit 57 includes, for example, a thyristor 57a.
  • the thyristor 57a has a small capacity of the load 3 and is larger than a holding current for holding the conduction state of the triac (main switching element) 51a of the main opening / closing unit 51.
  • the second power supply unit 55 is a constant voltage circuit composed of, for example, a resistor that limits current and a Zener diode (constant voltage diode) 55a that clips voltage, and the pulsating current that has been full-wave rectified by the rectifier unit 52 is input. Is done.
  • the buffer capacitor 54 a serves as a power source and supplies power to the first power source unit 54. Therefore, the buffer capacitor 54a is repeatedly charged and discharged. In other words, a current flows through the load 3 via the Zener diode 55a and the rectifier 52 even when the load 3 is originally in an off state.
  • the current flowing through the load 3 at that time must be a very small current that does not cause the load 3 to malfunction, and is set so that the current consumption of the control unit 53 is reduced and the impedance of the second power supply unit 55 is maintained high. ing.
  • the first power supply unit 54 functions as a voltage stabilization unit.
  • the control unit 53 outputs a control signal, whereby the switch element 56c of the third power supply unit 56 is turned on, and as a result, the buffer capacitor 54a is charged.
  • the buffer capacitor 54 a When the buffer capacitor 54 a is charged, current flows in the order of the Zener diode 56 a, the thyristor 57 a of the auxiliary opening / closing part 57, and the triac 51 a of the main opening / closing part 51.
  • the triac 51a When the triac 51a is turned on, the rectified voltage of the rectifying unit 52 becomes substantially zero, so that the second power supply unit 55 becomes non-conductive and no current flows.
  • the third power supply unit 56 Since the first power supply 54 is supplied with power from the buffer capacitor 54a while the second power supply 55 and the third power supply 56 are non-conductive, the input voltage of the first power supply 54, that is, the terminal of the buffer capacitor 54a. The voltage gradually decreases.
  • the triac 51a When the current flowing through the triac 51a becomes zero, the triac 51a is opened (non-conducting) by self-extinguishing, and a voltage is generated in the rectifying unit 52. When this voltage becomes higher than the terminal voltage of the buffer capacitor 54a, the buffer capacitor 54a starts to be charged. Since the impedance of the second power supply unit 55 is set to be sufficiently higher than the impedance of the third power supply unit 56, the second power supply unit 55 operates the load control device 50 when the load 3 is on. Does not contribute. Once the main opening / closing part 51 becomes conductive (closed state), the current continues to flow.
  • the triac 51a self-extinguishes and the main opening / closing part 51 becomes non-conductive (open state).
  • a current flows again from the rectifying part 52 through the third power supply part 56 to the first power supply part 54, and the operation for securing the self-circuit power supply of the load control device 50 is performed.
  • the self-circuit power supply securing of the load control device 50, the conduction of the auxiliary opening / closing part 57, and the conduction operation of the main opening / closing part 51 are repeated every half cycle of the alternating current.
  • the present invention has been made to solve the above-described problem of the conventional example, and in a state where the load is turned off, standby power (power consumption in the internal power supply) of the load control device is reduced, and noise countermeasures are taken.
  • a two-wire load control device that can prevent malfunction of a load due to leakage current (such as erroneous light emission of an LED bulb) even when a load such as an LED bulb that is not connected is connected.
  • the two-wire load control device includes an off power supply unit that is connected in series between a commercial power supply and a load and secures an internal power supply when the load is turned off.
  • the off power supply unit includes a plurality of capacitors that are switched in series and in parallel according to the level of an input voltage, and repeatedly charges and discharges the plurality of capacitors, and uses the electric power generated by the discharge of the plurality of capacitors as the internal power source. .
  • the two-wire load control device according to another aspect of the present invention is connected in series between a commercial power source and a load, and the main electrode of the main switch element is connected in series to the commercial power source and the load.
  • a main switching unit that controls power supply to the load, a rectification unit connected between the main electrodes of the main switch element, and a control unit that controls on or off of the load in accordance with an external signal,
  • a first power source for stably supplying power to the control unit; and the first power unit when power is supplied from both ends of the main opening / closing unit via a rectifying unit and the load is turned off.
  • a second power supply unit for supplying power to the first power supply unit and a second power supply unit for supplying power to the first power supply unit when the load is turned on when power is supplied from both ends of the main switching unit via the rectification unit.
  • the first power supply unit receives the input DC power DC / DC converter that steps down the output voltage to be lower than the input voltage
  • the second power supply unit includes a plurality of capacitors, a series-parallel switching circuit that switches the plurality of capacitors between series connection and parallel connection, A first switch connected to an output terminal to the first power supply unit, and a first switch control unit for controlling on (closed state) and off (open state) of the first switch, to the second power supply unit
  • the series-parallel switching circuit connects the plurality of capacitors in series to charge the plurality of capacitors
  • the first switch control unit includes the first switch.
  • the series-parallel switching circuit connects the plurality of capacitors in parallel and connects the plurality of capacitors.
  • the first switch control unit turns on the first switch (closed state) and repeats charging and discharging of the plurality of capacitors to discharge the input voltage from the rectifying unit to a predetermined level. Step down to output.
  • the second power supply unit When stepping down by the second power supply unit (off power supply unit), energy loss due to heat conversion is much less than when using a Zener diode, so the standby power of the load control device (power consumption in the internal power supply) is reduced. can do.
  • the current flowing to the load via the second power supply unit (off power supply unit) is further reduced in the off state of the load, even if a load such as an LED bulb that is not subjected to noise countermeasures is connected, The possibility that the load malfunctions is reduced.
  • the second power supply unit further includes a voltage clamping circuit that clamps a voltage input from the rectifying unit to a predetermined value, and a voltage equal to or higher than the predetermined voltage is applied to the plurality of capacitors connected in series.
  • the series-parallel switching circuit is connected to terminals of the plurality of capacitors, and a second switch for switching a series connection and a parallel connection of the plurality of capacitors and a second switch control unit for controlling a connection state of the second switch It is preferable that it is comprised.
  • the number of the plurality of capacitors is three or more, and the second switch control unit can change the number of the plurality of capacitors connected in series.
  • the second power supply unit further includes a peak voltage detection unit that detects a peak voltage of an input voltage input from the commercial power supply or the rectification unit, and the second switch control unit is configured to respond to the peak voltage of the commercial power supply.
  • the number of the plurality of capacitors connected in series by the second switch may be changed.
  • the series-parallel switching circuit may include a first diode connected in series between the plurality of capacitors and a second diode connected so as to flow a current in a direction opposite to that during charging.
  • the number of the plurality of capacitors is three or more, and the second power supply unit is turned on (closed state) and off (opened state) of the third switch and the third switch connected in parallel with at least one of the plurality of capacitors.
  • a third switch control unit that controls the number of the plurality of capacitors connected in series can be changed by controlling on (closed state) and off (open state) of the third switch. .
  • the second power supply unit further includes a peak voltage detection unit that detects a peak voltage of an input voltage input from the commercial power supply or the rectification unit, and the third switch control unit is configured to respond to the peak voltage of the commercial power supply.
  • the number of the plurality of capacitors connected in series by the third switch may be changed.
  • the second power supply unit may further include a current limiting element for limiting an amount of current for charging the plurality of capacitors when the plurality of capacitors are connected in series.
  • the current limiting element is variable in current amount, and the second power supply unit controls an output voltage detection unit that detects a voltage output from the second power supply unit to the first power supply unit and a current amount by the current limiting element.
  • a current limiting element control unit that controls the amount of current by the current limiting element according to the output voltage from the second power supply unit detected by the output voltage detection unit.
  • the second power supply unit further includes a peak voltage detection unit that detects a peak voltage of an input voltage input from the commercial power supply or the rectification unit, and the first switch control unit is configured to detect the first voltage according to the peak voltage. It is good also as controlling the open time of 1 switch.
  • the first switch and the first switch control unit may include a semiconductor element that is turned on by inputting a predetermined control signal, and an output voltage from the rectifying unit may be input to the semiconductor element as the control signal. preferable.
  • the first switch and the first switch control unit are configured by a semiconductor switch element that is turned on by inputting a predetermined control signal, and an output voltage from the voltage clamp circuit is input to the semiconductor switch element as the control signal. It is preferable to do.
  • the first switch control unit may control an open time of the first switch according to an output voltage of the second power supply unit.
  • the voltage clamp circuit includes a plurality of constant voltage diodes connected in series, an intermediate connection point of the plurality of constant voltage diodes connected in series is connected to an input unit of the first power supply unit, and is connected in series It is preferable to pass a part of the current flowing through the plurality of constant voltage diodes to the first power supply unit side.
  • the voltage clamp circuit includes a plurality of constant voltage diodes connected in series and a switch element connected in parallel to at least one constant voltage diode, and the load control device receives an input from the commercial power supply or the rectifier unit.
  • a peak voltage detection unit that detects a peak voltage of the voltage; and a fourth switch control unit that controls on (closed state) and off (open state) of the switch element, wherein the fourth switch control unit includes the peak It is preferable that the voltage of the constant voltage diode is variable according to the voltage.
  • FIG. 1 is a circuit diagram showing a configuration of a two-wire load control device according to a first embodiment of the present invention.
  • the time chart which shows the voltage and operation
  • the circuit diagram which shows the structure of the 2-wire type load control apparatus which concerns on 2nd Embodiment of this invention.
  • the time chart which shows the voltage and operation
  • the circuit diagram which shows the structure of the 2-wire type load control apparatus which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a circuit diagram showing a configuration of a two-wire load control apparatus 1A
  • FIG. 2 is a time chart showing voltages and operations of each part.
  • This load control device 1 ⁇ / b> A is connected in series with a commercial power source 2 and a load 3.
  • the load control device 1A controls the main opening / closing part 11 and the auxiliary opening / closing part 17 for controlling on / off of the load 3, and the control for controlling the conduction of the main opening / closing part 11 and the auxiliary opening / closing part 17 as in the first conventional example.
  • a power supply circuit for supplying drive power to the control unit 13.
  • the power supply circuit includes a rectifying unit 12, a first power supply unit 14 that stabilizes power supply to the control unit 13, a second power supply unit 15 that supplies power to the first power supply unit 14 when power to the load 3 is stopped, and a load 3 includes a third power supply unit 16 that supplies power to the first power supply unit 14 when power is supplied to the power supply 3.
  • the auxiliary opening / closing part 17 includes, for example, a thyristor 17a, and supplies a current having a magnitude necessary for conducting the TRIAC (main switching element) 11a of the main opening / closing part 11 to the gate of the main switching element 11a.
  • the first power supply unit 14 is a DC / DC converter that steps down the input direct current so that the output voltage is lower than the input voltage. Since the configuration other than the second power supply unit 15 is the same as that of the first conventional example, the description thereof is omitted.
  • the second power supply unit 15 includes a plurality of (for example, three) capacitors 151a to 151c and a plurality of diodes 152a to 152g connected between terminals of the capacitors 151a to 151c.
  • a first switch (FET) 153 is connected to the output terminal 15 b of the second power supply unit 15, and an input of the second power supply unit 15 is connected to a control electrode (a gate electrode of the FET) of the first switch 153.
  • a voltage is applied.
  • the rectifying unit 12 outputs a full-wave rectified pulsating flow (that is, the input voltage of the second power supply unit 15), so that the first switch 153 is first turned on (closed state). It is assumed that the input voltage of the second power supply unit 15 is 0V voltage. As the input voltage of the second power supply unit 15 increases, a current flows to the first power supply unit 14 through the diode 152 a and the first switch 153.
  • the first switch 153 When the input voltage of the second power supply unit 15 becomes higher than a predetermined voltage, the first switch 153 is turned off (opened), the supply of power to the first power supply unit 14 is stopped, and the first power supply is supplied from the buffer capacitor 14a. Power is supplied to the unit 1.
  • the first switch 153 When the first switch 153 is turned off (opened), the diode 152a, the capacitor 151a, the diode 152b, the capacitor 151b, the diode 152c, and the capacitor 151c are connected in series, and the current flows to the ground through these series circuits.
  • each of the capacitors 151a to 151c is charged, and the terminal voltage of each of the capacitors 151a to 151c is a voltage obtained by dividing the peak voltage of the input voltage by the number of capacitors on the condition that capacitors (components) of the same standard are used.
  • the diodes 152a and 152b and the diode 152c function as a first diode that connects the capacitors 151a to 151c in series.
  • the second power supply unit 15 is a step-down circuit.
  • the diodes 152a to 152g connect the capacitors 151a to 151c in parallel and function as a second diode for flowing a current in the opposite direction to that during charging.
  • the diodes 152a to 152g and the first switch 153 function as a series-parallel switching circuit for switching between the series and the parallel of the capacitors 151a to 151c.
  • control electrode of the first switch 153 (the gate electrode of the FET) and the input voltage of the second power supply unit 15 are a first switch control unit that controls on (closed state) and off (open state) of the first switch 153.
  • the number of capacitors in the second power supply unit 15 may be two or more, and is not particularly limited.
  • the first switch and the first switch control unit turn off the first switch when the input voltage to the second power supply unit 15 is higher than a predetermined voltage, and input to the second power supply unit 15. It is only necessary that the first switch can be turned on (closed state) when the voltage is equal to or lower than the predetermined voltage, and the present invention is not limited to the FET.
  • a switch controlled by a microcomputer may be used.
  • the energy loss due to thermal conversion or the like is much less than in the conventional example configured by a constant voltage circuit using a Zener diode, so the standby power of the load control device 1A is reduced. can do. Therefore, in the state where the load 3 is turned off, the current flowing to the load 3 via the second power supply unit 15 is further reduced, and the load malfunctions even when a load such as an LED bulb without noise countermeasures is connected. (Such as erroneous light emission of LED bulbs) can be prevented. (Second Embodiment) A two-wire load control device 1B according to a second embodiment of the present invention will be described with reference to FIGS. FIG.
  • the second power supply unit 15 of the load control device 1B includes a Zener diode (in order to clamp an input voltage in front of the plurality of diodes 151a to 151c connected in series.
  • a voltage clamp circuit (constant voltage circuit) composed of a constant voltage diode) 154 and a semiconductor switch element 155 is connected.
  • the voltage clamp circuit outputs a rectangular wave voltage governed by the Zener voltage of the Zener diode 154, and the first switch 153 is turned on / off almost in synchronization with the rectangular wave.
  • the output voltage from the voltage clamp circuit is almost 0 V, so that only the electric charges discharged from the capacitors 151 a to 151 c are supplied to the first power supply unit 14.
  • the output voltage from the second power supply unit 15 is a substantially rectangular wave having a peak voltage obtained by dividing the peak voltage of the input voltage by the number of capacitors.
  • the second power supply unit 15 of the second embodiment includes a voltage clamp circuit (constant voltage circuit) composed of a Zener diode 154 and a semiconductor switch element 155, as in the conventional example.
  • the value of the current flowing through the clamp circuit is very small.
  • the output voltage of the voltage clamp circuit is further divided and reduced by a plurality of capacitors 151a to 151c. Therefore, compared to the conventional example, the Zener voltage of the Zener diode 154 can be increased, and the energy loss due to thermal conversion or the like can be further reduced. Further, compared to the configuration of the first embodiment, the voltage applied to the components such as the capacitor and the diode is stepped down by the voltage clamp circuit, so that the breakdown voltage of these components can be guaranteed.
  • FIG. 5 is a circuit diagram showing a configuration of the two-wire load control apparatus 1C.
  • the first switch 153 and the series-parallel switching circuit that switches between series connection and parallel connection of a plurality of capacitors and their control units are integrated into an IC.
  • the series / parallel switching circuit is connected to the terminals of the capacitors 151a to 151c, and includes a second switch 156 that switches the series connection and parallel connection of the capacitors, and a second switch control unit 157 that controls the connection state of the second switch 156. ing.
  • the 2nd switch control part 157 may be comprised so that it may serve as the 1st switch control part which controls ON (closed state) and OFF (open state) of a 1st switch. Furthermore, when there are three or more capacitors, the second switch control unit 157 may be configured to arbitrarily change the number of capacitors connected in series. Or the peak voltage detection part 158 which detects the peak voltage of the input voltage input from the commercial power supply 2 or the rectification part 12 is provided, for example, the number of capacitors connected in series is automatically changed according to the peak voltage of the input voltage. It may be configured to be able to. As is well known, 100 to 120 V system and 200 to 240 V system coexist as the voltage of the commercial power source 2.
  • the same load control device 1C can be used for systems having different voltages, such as a commercial power supply 100V system and a 200V system.
  • the open time of the first switch 153 may be controlled according to the peak voltage detected by the peak voltage detection unit 158.
  • an output voltage detection unit 162 (see FIG. 7) that detects a voltage output from the second power supply unit 15 to the first power supply unit 14 is provided, and the first switch 153 is controlled according to the output voltage of the second power supply unit 15. You may comprise so that opening time may be controlled.
  • FIG. 6 shows a configuration of a two-wire load control device 1D according to a modification of the second embodiment shown in FIG. 3, and when there are three or more capacitors connected in series, at least one of the plurality of capacitors 151a to 151c.
  • a third switch 159 is connected in parallel with one, and a third switch controller 160 for controlling on (closed state) and off (open state) of the third switch 159 is provided. Thereby, the number of the plurality of capacitors connected in series can be changed. Furthermore, a peak voltage detection unit 158 that detects the peak voltage of the input voltage input from the commercial power supply 2 or the rectification unit 12 is provided, and the number of capacitors connected in series is automatically determined according to the peak voltage of the input voltage. You may be comprised so that it can change.
  • FIG. 7 is a circuit diagram showing a configuration of a two-wire load control device 1E according to another modification.
  • a current limiting element 161 such as a resistor is connected in series to a series circuit of a plurality of capacitors 151a to 151c.
  • the current limiting element 161 can limit the charging current when charging the capacitors 151a to 151c.
  • the current limiting element 161 is made variable by using a variable resistor or the like, and the current by the output voltage detecting unit 162 and the current limiting element 161 for detecting the voltage output from the second power supply unit 15 to the first power supply unit 14 is used.
  • FIG. 8 is a circuit diagram showing a configuration of a two-wire load control apparatus 1F according to still another modification.
  • a plurality of (not limited to two) Zener diodes 154a, 154b,. 15 output terminals 15b In this two-wire load control device 1F, a plurality of (not limited to two) Zener diodes 154a, 154b,. 15 output terminals 15b.
  • FIG. 9 is a circuit diagram showing a configuration of a two-wire load control apparatus 1G according to still another modification.
  • this two-wire load control device 1F a plurality of (not limited to two) Zener diodes 154a, 154b,. are connected in parallel, and a fourth switch control unit 165 that controls on (closed state) and off (open state) of the switch element 164 is provided.
  • the voltage output from the voltage clamp circuit is made constant or an arbitrary value by switching the Zener voltage according to the peak voltage of the commercial power supply 2 to which the two-wire load control device 1G is connected. Can be switched to.
  • the constant voltage circuit configured with a Zener diode and a semiconductor switch element is exemplified as the voltage clamp circuit.
  • the voltage clamp circuit is not limited to this configuration, and other step-down circuits using a transformer, a capacitor, or the like. It is also possible to use a circuit.
  • a plurality of sets of series circuits of a plurality of capacitors may be prepared, and the series circuit of a plurality of sets of capacitors may be switched between series and parallel.
  • the rectifier 12 need not be a full-wave rectifier circuit, but may be a half-wave rectifier circuit.
  • the rectifier 12 is a half-wave rectifier circuit
  • two sets of the half-wave rectifier circuit and the second power supply unit are prepared, the two sets of half-wave rectifier circuits and the second power supply unit are connected in parallel, and the current flowing through each circuit The same effect can be obtained even if the phase is shifted by 1 ⁇ 2 period.
  • a plurality of second power supply units may be connected in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Electrical Variables (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

 ノイズ対策が施されていないLED電球などの負荷が接続された場合でも、LED電球の誤発光などの、漏れ電流による負荷の誤作動を防止する2線式の負荷制御装置を提供する。 この2線式負荷制御装置は、商用電源と負荷の間に直列に接続され、前記負荷をオフする状態のときに内部電源を確保するためのオフ電源部が、入力電圧のレベルに応じて直列と並列に切り換えられる複数のコンデンサを備え、前記複数のコンデンサの充電と放電を繰り返させ、前記複数のコンデンサの放電による電力を前記内部電源とすることにより、負荷をオフする状態において負荷制御装置の待機電力を少なくする。

Description

負荷制御装置
 本発明は、2線式の負荷制御装置に関する。
 従来から、照明装置や換気扇など負荷のオン/オフを制御するために、接点が機械的に開閉される2線式スイッチに変えて、トライアックなどの無接点スイッチ素子を用いた負荷制御装置(電子スイッチ)が実用化されている(特許文献1参照)。その様な負荷制御装置は、省配線の見地から、2線式結線が一般的であり、商用電源(交流電源)と負荷との間に直列に接続される。このように商用電源と負荷との間に直列に接続される負荷制御装置においては、如何にして自己の回路電源を確保するかが問題となる。
 図10は、従来の商用電源2と負荷3との間に直列に接続される2線式の負荷制御装置50の回路構成を示す。この負荷制御装置50は、負荷3のオン/オフを制御する主開閉部51及び補助開閉部57と、主開閉部51及び補助開閉部57の導通を制御する制御部53と、制御部53に駆動電力を供給するための電源回路で構成されている。電源回路は、整流部52と、制御部53への給電を安定させる第1電源部54と、負荷3への電力停止時に第1電源部54へ電力を供給する第2電源部55と、負荷3への電力供給時に第1電源部54へ電力を供給する第3電源部56で構成されている。補助開閉部57は、例えばサイリスタ57aを備えており、このサイリスタ57aは、負荷3の容量が小さく、主開閉部51のトライアック(主スイッチ素子)51aの導通状態を保持するための保持電流よりも小さい電流しか流れない場合に、この負荷3に主回路電流を流す役割を果たす。
 第2電源部55は、例えば電流を制限する抵抗と電圧をクリップするツェナーダイオード(定電圧ダイオード)55aなどで構成された定電圧回路であり、整流部52により全波整流された脈流が入力される。そして、入力された脈流の電圧値がツェナーダイオード55aのツェナー電圧よりも高いときだけ電流が流れる。電流の一部は第1電源部54に流れ、制御部53の電力として供給されると共に、第1電源部54の入力端子間に接続されたバッファコンデンサ54aを充電する。整流部52により全波整流された脈流の電圧がツェナー電圧よりも低いときは、バッファコンデンサ54aが電源となって第1電源部54に電力を供給する。そのため、バッファコンデンサ54aは充放電を繰り返す。換言すれば、本来負荷3がオフの状態であっても、ツェナーダイオード55a及び整流部52を介して負荷3に電流が流れる。そのときに負荷3に流れる電流は、負荷3が誤動作しない程度の微小電流でなければならず、制御部53の消費電流を小さく、第2電源部55のインピーダンスを高く維持されるように設定されている。なお、第1電源部54は電圧安定化部として機能する。
 一方、負荷3を起動させるための操作ハンドル(SW)4が操作されると、制御部53は制御信号を出力し、それによって第3電源部56のスイッチ素子56cが導通し、その結果バッファコンデンサ54aを充電する。バッファコンデンサ54aが充電されると、電流は、ツェナーダイオード56a、補助開閉部57のサイリスタ57a、主開閉部51のトライアック51aの順に流れる。トライアック51aがオンすると、整流部52の整流電圧がほぼ零になるので、第2電源部55は非導通となり、電流は流れない。第3電源部56も同様である。
 第2電源部55及び第3電源部56が非導通の間、第1電源部54はバッファコンデンサ54aから電力が供給されるので、第1電源部54の入力電圧、すなわち、バッファコンデンサ54aの端子電圧が徐々に低下する。そして、トライアック51aに流れる電流が零になると、自己消弧によりトライアック51aが開状態(非導通)になり、整流部52に電圧が発生する。この電圧がバッファコンデンサ54aの端子電圧よりも高くなると、バッファコンデンサ54aを充電し始める。第2電源部55のインピーダンスは第3電源部56のインピーダンスよりも十分に高くなるように設定されているので、負荷3がオンしているとき、第2電源部55は負荷制御装置50の動作には寄与しない。
 一旦、主開閉部51が導通する(閉状態)と電流を流し続けるが、商用電流がゼロクロス点に達したときにトライアック51aは自己消弧し、主開閉部51が非導通(開状態)になる。主開閉部51が非導通(開状態)になると、再び整流部52から第3電源部56を経て第1電源部54に電流が流れ、負荷制御装置50の自己回路電源を確保する動作を行う。すなわち、交流の1/2周期ごとに、負荷制御装置50の自己回路電源確保、補助開閉部57の導通及び主開閉部51の導通動作が繰り返される。
 ところで、消費電力低減の観点からLED電球などへの置き換えが進められている。LED素子は直流によって発光するため、LED電球の内部に交流を直流に変換する電源回路が設けられているが、安価なLED電球など、一部の負荷の電源回路にはノイズ対策(例えば、電源回路の端子間にコンデンサなどを並列接続するなど)が施されていないものも存在する。上記2線式の負荷制御装置50にノイズ対策が施されていないLED電球などが負荷として接続された場合、本来負荷がオフの状態であるべきときでも、負荷制御装置50の自己回路電源確保のために、負荷に電流が流れ、それによって負荷の誤動作(例えば、LED電球の点滅など)が生じる可能性がある。また、上記従来の負荷制御装置50では、ツェナーダイオード55aによって電圧を降下させているため、電圧降下分のエネルギーが熱変換などによって消費され、エネルギー効率の改善にはあまり寄与していない。
特開2008−97535号公報
 本発明は、上記従来例の問題を解決するためになされたものであり、負荷をオフする状態において、負荷制御装置の待機電力(内部電源における消費電力)を少なくして、ノイズ対策が施されていないLED電球などの負荷が接続された場合でも漏れ電流による負荷の誤作動(LED電球の誤発光など)を防止しうる2線式の負荷制御装置を提供する。
 本発明の一態様に係る2線式負荷制御装置は、商用電源と負荷の間に直列に接続され、前記負荷をオフする状態のときに内部電源を確保するためのオフ電源部を有し、前記オフ電源部は入力電圧のレベルに応じて直列と並列に切り換えられる複数のコンデンサを備え、前記複数のコンデンサの充電と放電を繰り返させ、前記複数のコンデンサの放電による電力を前記内部電源とする。
 また、本発明の他の一態様に係る2線式負荷制御装置は、商用電源と負荷の間に直列に接続され、前記主スイッチ素子の主電極が前記商用電源及び前記負荷に対し直列に接続され、負荷に対する電力の供給を制御する主開閉部と、前記主スイッチ素子の主電極間に接続された整流部と、外部からの信号に応じて負荷のオン又はオフを制御する制御部と、前記制御部に安定して電力を供給するための第1電源部と、前記主開閉部の両端から整流部を介して電力供給され、前記負荷をオフする状態のときに、前記第1電源部への電源を供給する第2電源部と、前記主開閉部の両端から整流部を介して電力供給され、前記負荷をオンする状態のときに、前記第1電源部への電源を供給する第3電源部とを備え、前記第1電源部は、入力された直流電流を、出力電圧が入力電圧よりも低くなるように降圧するDC/DCコンバータであり、前記第2電源部は複数のコンデンサ、前記複数のコンデンサを直列接続と並列接続に切り換える直並列切換回路と、前記第1電源部への出力端子に接続された第1スイッチ及び前記第1スイッチのオン(閉状態)及びオフ(開状態)を制御する第1スイッチ制御部を備え、前記第2電源部への入力電圧が所定の電圧よりも高いときは、前記直並列切換回路は、前記複数のコンデンサを直列接続して前記複数のコンデンサを充電させると共に、前記第1スイッチ制御部は、前記第1スイッチをオフ(開状態)とし、前記第2電源部への入力電圧が前記所定の電圧以下のときは、前記直並列切換回路は、前記複数のコンデンサを並列接続して前記複数のコンデンサを放電させると共に、前記第1スイッチ制御部は、前記第1スイッチをオン(閉状態)とし、前記複数のコンデンサの充電と放電を繰り返させることにより、前記整流部からの入力電圧を所定レベルに降圧して出力する。
 上記構成によれば、負荷をオフする状態における負荷制御装置の内部電源となる第2電源部(オフ電源部)において、直列接続されるコンデンサの段数に応じて入力電圧(脈流)のピーク電圧が降圧される。第2電源部(オフ電源部)による降圧の際、熱変換などによるエネルギーロスはツェナーダイオードを用いる場合に比べて遙かに少ないので、負荷制御装置の待機電力(内部電源における消費電力)を少なくすることができる。また、負荷のオフ状態において、第2電源部(オフ電源部)を介して負荷に流れる電流がさらに少なくなるので、仮にノイズ対策が施されていないLED電球などの負荷が接続された場合でも、負荷が誤動作する可能性が小さくなる。
 上記構成において、前記第2電源部は、前記整流部から入力される電圧を所定の値にクランプする電圧クランプ回路をさらに備え、直列接続された前記複数のコンデンサに前記所定の電圧以上の電圧が印加されないようにしたことが好ましい。
 また、前記直並列切換回路は、前記複数のコンデンサの端子に接続され、前記複数のコンデンサの直列接続と並列接続を切り換える第2スイッチ及び前記第2スイッチの接続状態を制御する第2スイッチ制御部で構成されていることが好ましい。
 また、前記複数のコンデンサは3個以上であり、前記第2スイッチ制御部は、直列接続される前記複数のコンデンサの数を可変とすることが好ましい。
 前記第2電源部は前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部をさらに備え、前記第2スイッチ制御部は、前記商用電源のピーク電圧に応じて前記第2スイッチにより直列接続される前記複数のコンデンサの数を変更しても良い。
 前記直並列切換回路は、前記複数のコンデンサの間に直列接続された第1ダイオードと、充電時とは逆の方向に電流を流すように接続された第2ダイオードで構成されても良い。
 前記複数のコンデンサは3個以上であり、前記第2電源部は前記複数のコンデンサの少なくとも1つと並列に接続された第3スイッチ及び前記第3スイッチのオン(閉状態)及びオフ(開状態)を制御する第3スイッチ制御部をさらに備え、前記第3スイッチのオン(閉状態)及びオフ(開状態)を制御することにより、直列接続される前記複数のコンデンサの数を変更することもできる。
 前記第2電源部は前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部をさらに備え、前記第3スイッチ制御部は、前記商用電源のピーク電圧に応じて前記第3スイッチにより直列接続される前記複数のコンデンサの数を変更しても良い。
 前記第2電源部は前記複数のコンデンサが直列接続されているときに、前記複数のコンデンサを充電するための電流量を制限するための限流素子をさらに備えても良い。
 前記限流素子は電流量可変であり、前記第2電源部は前記第2電源部から前記第1電源部に出力される電圧を検出する出力電圧検出部及び前記限流素子による電流量を制御する限流素子制御部をさらに備え、前記限流素子制御部は、前記出力電圧検出部により検出された第2電源部からの出力電圧に応じて前記限流素子による電流量を制御することもある。
 前記第2電源部は前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部をさらに備え、前記第1スイッチ制御部は、前記ピーク電圧に応じて、前記第1スイッチの開時間を制御することとしても良い。
 前記第1スイッチ及び前記第1スイッチ制御部は、所定の制御信号を入力することによって導通する半導体素子で構成され、前記整流部からの出力電圧を前記制御信号として前記半導体素子に入力することが好ましい。
 前記第1スイッチ及び前記第1スイッチ制御部は、所定の制御信号を入力することによって導通する半導体スイッチ素子で構成され、前記電圧クランプ回路からの出力電圧を前記制御信号として前記半導体スイッチ素子に入力することが好ましい。
 前記第1スイッチ制御部は前記第2電源部の出力電圧に応じて前記第1スイッチの開時間を制御することが好ましい。
 前記電圧クランプ回路は、直列接続された複数の定電圧ダイオードを備え、前記直列接続された複数の定電圧ダイオードの中間接続点が前記第1電源部の入力部に接続され、前記直列接続された複数の定電圧ダイオードに流れる電流の一部を前記第1電源部側に流すことが好ましい。
 前記電圧クランプ回路は、直列接続された複数の定電圧ダイオード及び少なくとも1つの定電圧ダイオードに並列接続されたスイッチ素子を備え、前記負荷制御装置は、前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部と、前記スイッチ素子のオン(閉状態)及びオフ(開状態)を制御する第4スイッチ制御部をさらに備え、前記第4スイッチ制御部は、前記ピーク電圧に応じて前記定電圧ダイオードの電圧を可変とすることが好ましい。
 本発明の目的及び特徴は以下のような添付図面とともに与えられた後述する好ましい実施形態の説明から明白になる。
本発明の第1実施形態に係る2線式負荷制御装置の構成を示す回路図。 第1実施形態に係る2線式負荷制御装置の各部の電圧及び動作を示すタイムチャート。 本発明の第2実施形態に係る2線式負荷制御装置の構成を示す回路図。 第2実施形態に係る2線式負荷制御装置の各部の電圧及び動作を示すタイムチャート。 本発明の第3実施形態に係る2線式負荷制御装置の構成を示す回路図。 第2実施形態の変形例に係る2線式負荷制御装置の構成を示す回路図。 他の変形例に係る2線式負荷制御装置の構成を示す回路図。 さらに他の変形例に係る2線式負荷制御装置の構成を示す回路図。 さらに他の変形例に係る2線式負荷制御装置の構成を示す回路図。 従来例に係る2線式負荷制御装置の構成を示す回路図。
 以下、本発明の実施形態が本明細書の一部をなす図面を参照してより詳細に説明する。図面全体において、同一または類似した部分には固じ部材符号を付してそれについての重複する説明を省略する。
(第1実施形態)
 本発明の第1実施形態に係る2線式負荷制御装置1Aについて、図1及び図2を参照しつつ説明する。図1は2線式負荷制御装置1Aの構成を示す回路図であり、図2は各部の電圧及び動作を示すタイムチャートである。この負荷制御装置1Aは、商用電源2と負荷3に対して直列に接続される。負荷制御装置1Aは、上記第1従来例と同様に、負荷3のオン/オフを制御する主開閉部11及び補助開閉部17と、主開閉部11及び補助開閉部17の導通を制御する制御部13と、制御部13に駆動電力を供給するための電源回路で構成されている。電源回路は、整流部12と、制御部13への給電を安定させる第1電源部14と、負荷3への電力停止時に第1電源部14へ電力を供給する第2電源部15と、負荷3への電力供給時に第1電源部14へ電力を供給する第3電源部16で構成されている。補助開閉部17は、例えばサイリスタ17aを備えており、主開閉部11のトライアック(主スイッチ素子)11aを導通させるために必要な大きさの電流を主スイッチ素子11aのゲートに供給する。第1電源部14は、入力された直流電流を、出力電圧が入力電圧よりも低くなるように降圧するDC/DCコンバータである。なお、第2電源部15以外の構成は上記第1従来例と同様であるため、その説明を省略する。
 第2電源部15は、複数(例えば3つ)のコンデンサ151a~151cと、各コンデンサ151a~151cの端子間に接続された複数のダイオード152a~152gを備えている。また、第2電源部15の出力端子15bには、第1スイッチ(FET)153が接続されており、第1スイッチ153の制御電極(FETのゲート電極)には、第2電源部15の入力電圧が印加される。整流部12からは、図2に示すように、全波整流された脈流(すなわち、第2電源部15の入力電圧)が出力されるので、最初、第1スイッチ153はオン(閉状態)であり、第2電源部15の入力電圧は0V電圧と仮定する。第2電源部15の入力電圧の上昇に伴って、電流がダイオード152a及び第1スイッチ153を通って第1電源部14に流れる。第2電源部15の入力電圧が所定の電圧よりも高くなると、第1スイッチ153はオフ(開状態)となり、第1電源部14への電力の供給が停止され、バッファコンデンサ14aから第1電源部1に電力が供給される。
 第1スイッチ153がオフ(開状態)になると、ダイオード152a、コンデンサ151a、ダイオード152b、コンデンサ151b、ダイオード152c、コンデンサ151cが直列接続され、電流はこれらの直列回路を経てグランドに流れる。その間、各コンデンサ151a~151cはそれぞれ充電され、各コンデンサ151a~151cの端子電圧は、同じ規格のコンデンサ(部品)を用いることを条件として、入力電圧のピーク電圧をコンデンサの数で割った電圧となる。ダイオード152a、152b及びダイオード152cは、コンデンサ151a~151cを直列接続する第1ダイオードとして機能する。
 第2電源部15の入力電圧が所定の電圧以下になると、再び第1スイッチ153はオン(閉状態)となり、電流が限流抵抗、ダイオード152a及び第1スイッチ153を通って第1電源部14に流れる。第2電源部15の入力電圧がコンデンサ151a~151cの端子電圧よりも低くなると、各コンデンサ151a~151cに受電された電荷が放電されはじめ、第1スイッチ153を通って第1電源部14に流れる。すなわち、第2電源部15の入力電圧の低下による電力不足を、コンデンサ151a~151cからの放電によって補完することになり、図1に示す第2電源部15の回路構成は、いわゆる谷埋め回路となる。また、入力電圧のピーク電圧が複数のコンデンサ151a~151cの直列回路によって分圧されると共に、第1スイッチ153により、上記所定の電圧以上の電圧が出力されないので、第2電源部15は降圧回路として機能する。ダイオード152a~152gは、コンデンサ151a~151cを並列接続すると共に、充電時とは逆向きに電流を流すための第2ダイオードとして機能する。また、ダイオード152a~152g及び第1スイッチ153は、コンデンサ151a~151cの直列と並列を切り換えるための直並列切換回路として機能する。さらに、第1スイッチ153の制御電極(FETのゲート電極)及び第2電源部15の入力電圧は、第1スイッチ153のオン(閉状態)及びオフ(開状態)を制御する第1スイッチ制御部として機能する。
 なお、第2電源部15のコンデンサの数は2以上であればよく、特に限定されない。また、第1スイッチ及び第1スイッチ制御部は、第2電源部15への入力電圧が所定の電圧よりも高いときに第1スイッチをオフ(開状態)とし、第2電源部15への入力電圧が前記所定の電圧以下のときに、第1スイッチをオン(閉状態)とすることができればよく、上記FETには限定されない。例えば、マイクロコンピュータにより制御されるスイッチなどであってもよい。
 第1実施形態の構成によれば、ツェナーダイオードを用いた定電圧回路で構成された従来例に比べて、熱変換などによるエネルギーロスは遙かに少ないので、負荷制御装置1Aの待機電力を少なくすることができる。そのため、負荷3をオフする状態において、第2電源部15を介して負荷3に流れる電流がさらに少なくなり、ノイズ対策が施されていないLED電球などの負荷が接続された場合でも負荷の誤作動(LED電球の誤発光など)を防止することができる。
(第2実施形態)
 本発明の第2実施形態に係る2線式負荷制御装置1Bについて、図3及び図4を参照しつつ説明する。図3は2線式負荷制御装置1Bの構成を示す回路図であり、図4は各部の電圧及び動作を示すタイムチャートである。この負荷制御装置1Bの第2電源部15は、上記第1実施形態の構成に加えて、直列接続される複数のダイオードの151a~151cの前段に、入力電圧をクランプするために、ツェナーダイオード(定電圧ダイオード)154と半導体スイッチ素子155で構成された電圧クランプ回路(定電圧回路)が接続されている。
 電圧クランプ回路からは、ツェナーダイオード154のツェナー電圧に支配された矩形波電圧が出力され、第1スイッチ153は、この矩形波とほぼ同期してオン/オフされる。第1スイッチ153がオン(閉状態)のとき、電圧クランプ回路からの出力電圧はほぼ0Vであるので、専らコンデンサ151a~151cから放電された電荷のみが第1電源部14に供給される。第2電源部15からの出力電圧は、入力電圧のピーク電圧をコンデンサ数で割った電圧をピーク電圧とする略矩形波となる。
 第2実施形態の第2電源部15は、従来例と同様に、ツェナーダイオード154と半導体スイッチ素子155で構成された電圧クランプ回路(定電圧回路)を備えている。しかしながら、電圧クランプ回路から出力される電流は専らコンデンサ151a~151cを充電するためにのみ用いられ、直接第1電源部14には流れないので、クランプ回路に流れる電流値は非常に小さい。さらに、電圧クランプ回路の出力電圧は、さらに複数のコンデンサ151a~151cによって分圧され、降圧される。従って、従来例に比べて、ツェナーダイオード154のツェナー電圧を高くすることができ、熱変換などによるエネルギーロスをさらに小さくすることができる。また、上記第1実施形態の構成と比較して、コンデンサやダイオードなどの部品に印加される電圧が電圧クランプ回路によって降圧されているので、これらの部品の耐圧を保証することができる。
(第3実施形態)
 本発明の第3実施形態に係る2線式負荷制御装置1Cについて、図5を参照しつつ説明する。図5は2線式負荷制御装置1Cの構成を示す回路図である。第3実施形態では、第1スイッチ153及び複数のコンデンサの直列接続と並列接続を切り換える直並列切換回路及びそれらの制御部をIC化したものである。直並列切換回路は、コンデンサ151a~151cの端子に接続され、コンデンサの直列接続と並列接続を切り換える第2スイッチ156と、第2スイッチ156の接続状態を制御する第2スイッチ制御部157で構成されている。第2スイッチ制御部157は、第1スイッチのオン(閉状態)及びオフ(開状態)を制御する第1スイッチ制御部を兼ねるように構成されていてもよい。
 さらに、コンデンサが3個以上の場合、第2スイッチ制御部157は、直列接続されるコンデンサの数を任意に変更できるように構成されていてもよい。あるいは、商用電源2又は整流部12から入力される入力電圧のピーク電圧を検出するピーク電圧検出部158を設け、例えば入力電圧のピーク電圧に応じて直列接続されるコンデンサの数を自動的に変更できるように構成されていてもよい。周知のように、商用電源2の電圧として100~120V系と200~240V系が併存している。このような構成によれば、同じ負荷制御装置1Cを商用電源100V系と200V系など、電圧の異なるシステムに使用することができる。さらに、第2スイッチ制御部157が第1スイッチ制御部を兼ねる場合、ピーク電圧検出部158により検出されたピーク電圧に応じて、第1スイッチ153の開時間を制御するように構成してもよい。あるいは、第2電源部15から第1電源部14に出力される電圧を検出する出力電圧検出部162(図7参照)を設け、第2電源部15の出力電圧に応じて第1スイッチ153の開時間を制御するように構成してもよい。例えば、第2電源部15への入力電圧又は第2電源部15からの出力電圧が所定の閾値よりも高い場合、第1スイッチ153の開時間が短くなるように制御することにより、第2電源部15から出力される電流量が一定となるように制御することができる。さらに、ピーク電圧に応じて閾値を変更するように構成してもよい。
(その他の変形例)
 図6は、図3に示す第2実施形態の変形例に係る2線式負荷制御装置1Dの構成を示し、直列接続されたコンデンサが3個以上の場合に、複数のコンデンサ151a~151cの少なくとも1つと並列に第3スイッチ159を並列接続すると共に、第3スイッチ159のオン(閉状態)及びオフ(開状態)を制御する第3スイッチ制御部160を設けたものである。それによって、直列接続される複数のコンデンサの数を変更することが可能となる。さらに、商用電源2又は整流部12から入力される入力電圧のピーク電圧を検出するピーク電圧検出部158を設け、入力電圧のピーク電圧に応じて直列接続される複数のコンデンサの数を自動的に変更できるように構成されていてもよい。
 図7は、他の変形例に係る2線式負荷制御装置1Eの構成を示す回路図である。この2線式負荷制御装置1Eでは、複数のコンデンサ151a~151cの直列回路に抵抗器などの限流素子161が直列接続されている。限流素子161により、コンデンサ151a~151cに充電する際の充電電流を制限することができる。さらに、限流素子161として可変抵抗器などを用いて電流量可変とし、第2電源部15から第1電源部14に出力される電圧を検出する出力電圧検出部162及び限流素子161による電流量を制御する限流素子制御部163をさらに設けてもよい。それによって、第2電源部15からの出力電圧に応じて限流素子161による電流量を制御することができる。なお、図7は図3に示す第2実施形態の構成をベースとして描かれているが、第2実施形態の変形例に限定されるものではなく、その他の実施形態の構成に限流素子を追加することも可能である(以下の変形例においても、特に矛盾のない限り、同様である)。
 図8は、さらに他の変形例に係る2線式負荷制御装置1Fの構成を示す回路図である。この2線式負荷制御装置1Fでは、電圧クランプ回路のツェナーダイオードとして、複数(2つに限定されない)のツェナーダイオード154a、154b・・・を直列接続し、ツェナー電圧の中間電圧が第2電源部15の出力端子15bに入力される。電圧クランプ回路のツェナーダイオードを流れる電流がグランドを介して負荷3にも流れるが、その一部を第1電源部14に流すことによって、負荷3に流れる電流を少なくすることができる。
 図9は、さらに他の変形例に係る2線式負荷制御装置1Gの構成を示す回路図である。この2線式負荷制御装置1Fでは、電圧クランプ回路のツェナーダイオードとして、複数(2つに限定されない)のツェナーダイオード154a、154b・・・を直列接続すると共に、少なくとも1つのツェナーダイオード(例えば154b)に並列接続されたスイッチ素子164と、スイッチ素子164のオン(閉状態)及びオフ(開状態)を制御する第4スイッチ制御部165を備えている。このような構成によれば、2線式負荷制御装置1Gが接続される商用電源2のピーク電圧に応じてツェナー電圧を切り換えることにより、電圧クランプ回路から出力される電圧を一定に又は任意の値に切り換えることができる。
 また、上記各実施形態において、電圧クランプ回路としてツェナーダイオードと半導体スイッチ素子で構成された定電圧回路を例示したが、この構成に限定されるものではなく、トランスやコンデンサなどを用いたその他の降圧回路を用いることも可能である。さらに、複数のコンデンサの直列回路を複数組用意し、さらに、複数組のコンデンサの直列回路の直並列を切り換えるように構成してもよい。さらに、整流部12は全波整流回路である必要はなく、半波整流回路であってもよい。整流部12が半波整流回路である場合、半波整流回路と第2電源部を2組用意し、2組の半波整流回路と第2電源部を並列接続させ、それぞれの回路に流れる電流の位相を1/2周期ずらすように構成しても、同様の効果が得られる。あるいは、複数の第2電源部を直列接続させるように構成してもよい。
 以上、本発明の好ましい実施形態が説明されているが、本発明はこれらの特定の実施形態に限られるものではなく、請求範囲の範疇から離脱しない多様な変更及び変形が可能であり、それも本発明の範疇内に属する。

Claims (17)

  1.  商用電源と負荷の間に直列に接続される2線式負荷制御装置において、前記負荷をオフする状態のときに内部電源を確保するためのオフ電源部を有し、前記オフ電源部は入力電圧のレベルに応じて直列と並列に切り換えられる複数のコンデンサを備え、前記複数のコンデンサの充電と放電を繰り返させ、前記複数のコンデンサの放電による電力を前記内部電源とする2線式負荷制御装置。
  2.  商用電源と負荷の間に直列に接続される2線式負荷制御装置であって、
     主スイッチ素子の主電極が前記商用電源及び前記負荷に対し直列に接続され、負荷に対する電力の供給を制御する主開閉部と、
     前記主スイッチ素子の主電極間に接続された整流部と、
     外部からの信号に応じて負荷のオン又はオフを制御する制御部と、
     前記制御部に安定して電力を供給するための第1電源部と、
     前記主開閉部の両端から整流部を介して電力供給され、前記負荷をオフする状態のときに、前記第1電源部への電源を供給する第2電源部と、
     前記主開閉部の両端から整流部を介して電力供給され、前記負荷をオンする状態のときに、前記第1電源部への電源を供給する第3電源部とを備え、
     前記第1電源部は、入力された直流電流を、出力電圧が入力電圧よりも低くなるように降圧するDC/DCコンバータであり、
     前記第2電源部は複数のコンデンサ、前記複数のコンデンサを直列接続と並列接続に切り換える直並列切換回路と、前記第1電源部への出力端子に接続された第1スイッチ及び前記第1スイッチのオン(閉状態)及びオフ(開状態)を制御する第1スイッチ制御部を備え、
     前記第2電源部への入力電圧が所定の電圧よりも高いときは、前記直並列切換回路は、前記複数のコンデンサを直列接続して前記複数のコンデンサを充電させると共に、前記第1スイッチ制御部は、前記第1スイッチをオフ(開状態)とし、前記第2電源部への入力電圧が前記所定の電圧以下のときは、前記直並列切換回路は、前記複数のコンデンサを並列接続して前記複数のコンデンサを放電させると共に、前記第1スイッチ制御部は、前記第1スイッチをオン(閉状態)とし、前記複数のコンデンサの充電と放電を繰り返させることにより、前記整流部からの入力電圧を所定レベルに降圧して出力する2線式負荷制御装置。
  3.  前記第2電源部は、前記整流部から入力される電圧を所定の値にクランプする電圧クランプ回路をさらに備え、直列接続された前記複数のコンデンサに前記所定の電圧以上の電圧が印加されないようにした請求項2に記載の2線式負荷制御装置。
  4.  前記直並列切換回路は、前記複数のコンデンサの端子に接続され、前記複数のコンデンサの直列接続と並列接続を切り換える第2スイッチ及び前記第2スイッチの接続状態を制御する第2スイッチ制御部で構成されている請求項2又は請求項3に記載の2線式負荷制御装置。
  5.  前記複数のコンデンサは3個以上であり、前記第2スイッチ制御部は、直列接続される前記複数のコンデンサの数を可変とする請求項4に記載の2線式負荷制御装置。
  6.  前記第2電源部は前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部をさらに備え、
     前記第2スイッチ制御部は、前記商用電源のピーク電圧に応じて前記第2スイッチにより直列接続される前記複数のコンデンサの数を変更する請求項5に記載の2線式負荷制御装置。
  7.  前記直並列切換回路は、前記複数のコンデンサの間に直列接続された第1ダイオードと、充電時とは逆の方向に電流を流すように接続された第2ダイオードで構成されている請求項2乃至請求項4のいずれか一項に記載の2線式負荷制御装置。
  8.  前記複数のコンデンサは3個以上であり、
     前記第2電源部は前記複数のコンデンサの少なくとも1つと並列に接続された第3スイッチ及び前記第3スイッチのオン(閉状態)及びオフ(開状態)を制御する第3スイッチ制御部をさらに備え、
     前記第3スイッチのオン(閉状態)及びオフ(開状態)を制御することにより、直列接続される前記複数のコンデンサの数を変更する請求項7に記載の2線式負荷制御装置。
  9.  前記第2電源部は前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部をさらに備え、
     前記第3スイッチ制御部は、前記商用電源のピーク電圧に応じて前記第3スイッチにより直列接続される前記複数のコンデンサの数を変更する請求項8に記載の2線式負荷制御装置。
  10.  前記第2電源部は前記複数のコンデンサが直列接続されているときに、前記複数のコンデンサを充電するための電流量を制限するための限流素子をさらに備えた請求項2乃至請求項9のいずれか一項に記載の2線式負荷制御装置。
  11.  前記限流素子は電流量可変であり、
     前記第2電源部は前記第2電源部から前記第1電源部に出力される電圧を検出する出力電圧検出部及び前記限流素子による電流量を制御する限流素子制御部をさらに備え、
    前記限流素子制御部は、前記出力電圧検出部により検出された第2電源部からの出力電圧に応じて前記限流素子による電流量を制御する請求項10に記載の2線式負荷制御装置。
  12.  前記第2電源部は前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部をさらに備え、
     前記第1スイッチ制御部は、前記ピーク電圧に応じて、前記第1スイッチの開時間を制御する請求項2又は請求項3に記載の2線式負荷制御装置。
  13.  前記第1スイッチ及び前記第1スイッチ制御部は、所定の制御信号を入力することによって導通する半導体素子で構成され、前記整流部からの出力電圧を前記制御信号として前記半導体素子に入力する請求項2に記載の2線式負荷制御装置。
  14.  前記第1スイッチ及び前記第1スイッチ制御部は、所定の制御信号を入力することによって導通する半導体スイッチ素子で構成され、前記電圧クランプ回路からの出力電圧を前記制御信号として前記半導体スイッチ素子に入力する請求項3に記載の2線式負荷制御装置。
  15.  前記第2電源部は前記第2電源部で前記第1電源部に出力される電圧を検出する出力電圧検出部をさらに備え、
    前記第1スイッチ制御部は前記第2電源部の出力電圧に応じて前記第1スイッチの開時間を制御する請求項12に記載の2線式負荷制御装置。
  16.  前記電圧クランプ回路は、直列接続された複数の定電圧ダイオードを備え、前記直列接続された複数の定電圧ダイオードの中間接続点が前記第1電源部の入力部に接続され、前記直列接続された複数の定電圧ダイオードに流れる電流の一部を前記第1電源部側に流す請求項3に記載の2線式負荷制御装置。
  17.  前記電圧クランプ回路は、直列接続された複数の定電圧ダイオード及び少なくとも1つの定電圧ダイオードに並列接続されたスイッチ素子を備え、
     前記負荷制御装置は、前記商用電源又は前記整流部から入力される入力電圧のピーク電圧を検出するピーク電圧検出部と、前記スイッチ素子のオン(閉状態)及びオフ(開状態)を制御する第4スイッチ制御部をさらに備え、
     前記第4スイッチ制御部は、前記ピーク電圧に応じて前記定電圧ダイオードの電圧を可変とする請求項3記載の2線式負荷制御装置。
PCT/IB2011/000373 2010-07-27 2011-02-24 負荷制御装置 WO2012014020A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11811890.0A EP2600697A1 (en) 2010-07-27 2011-02-24 Load control device
KR1020137002161A KR101524954B1 (ko) 2010-07-27 2011-02-24 2선식 부하 제어 장치
US13/812,161 US9166496B2 (en) 2010-07-27 2011-02-24 Load control device
CN201180036705.3A CN103026794B (zh) 2010-07-27 2011-02-24 负载控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-168349 2010-07-27
JP2010168349A JP5645109B2 (ja) 2010-07-27 2010-07-27 2線式負荷制御装置

Publications (1)

Publication Number Publication Date
WO2012014020A1 true WO2012014020A1 (ja) 2012-02-02

Family

ID=45529471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/000373 WO2012014020A1 (ja) 2010-07-27 2011-02-24 負荷制御装置

Country Status (7)

Country Link
US (1) US9166496B2 (ja)
EP (1) EP2600697A1 (ja)
JP (1) JP5645109B2 (ja)
KR (1) KR101524954B1 (ja)
CN (1) CN103026794B (ja)
TW (1) TWI423003B (ja)
WO (1) WO2012014020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594022A (zh) * 2018-05-25 2018-09-28 杭州得诚电力科技股份有限公司 一种智能电容器自动化测试系统及方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392281B2 (ja) * 2011-02-25 2014-01-22 ダイキン工業株式会社 電源回路およびヒートポンプユニット
JP5830659B2 (ja) * 2011-03-18 2015-12-09 パナソニックIpマネジメント株式会社 負荷制御装置
US9572206B2 (en) * 2013-05-14 2017-02-14 Atmel Corporation Active valley fill power factor correction
US9713207B2 (en) 2013-11-18 2017-07-18 Tridonic Gmbh & Co. Kg Driver module for driving LEDs
GB2536851B (en) * 2013-11-18 2020-12-02 Tridonic Uk Ltd Driver module for driving LEDs
JP6195200B2 (ja) * 2014-04-03 2017-09-13 パナソニックIpマネジメント株式会社 調光装置
CN104079160B (zh) * 2014-06-18 2016-09-21 广州金升阳科技有限公司 一种填谷电路
KR101792540B1 (ko) * 2014-12-29 2017-11-02 주식회사 효성 Mmc 컨버터의 서브모듈용 전원제어장치
US10680436B2 (en) * 2015-08-24 2020-06-09 Nec Corporation Constant current supply device, constant current supply system, and constant current supply method
CN105792474B (zh) * 2015-11-23 2018-06-15 厦门兴恒隆股份有限公司 一种用于led电源的宽电压交流驱动电路
CN106208310B (zh) * 2016-07-27 2018-10-12 深圳佰维存储科技股份有限公司 多电容分级控制系统及其方法
JP7199011B2 (ja) * 2018-11-30 2023-01-05 パナソニックIpマネジメント株式会社 負荷制御装置
CN111029184B (zh) * 2019-12-16 2022-03-08 广东瑞德智能科技股份有限公司 一种开关装置及具有该开关装置的烘烤装置、家用电器
CN112087222B (zh) * 2020-09-09 2024-06-25 上海京硅智能技术有限公司 钳位降压的固态电子开关及混合开关

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133473A (ja) * 1998-10-30 2000-05-12 Matsushita Electric Works Ltd 2線式配線器具
JP2006033497A (ja) * 2004-07-16 2006-02-02 Matsushita Electric Works Ltd スイッチ
JP2008097535A (ja) * 2006-10-16 2008-04-24 Matsushita Electric Works Ltd 2線式スイッチ装置
WO2010020855A1 (en) * 2008-08-21 2010-02-25 Panasonic Electric Works Co., Ltd. Load controller

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167777A (en) * 1978-02-24 1979-09-11 Instrumentation Specialties Company Switching-mode regulator
US5331234A (en) 1992-06-12 1994-07-19 The United States Of America As Represented By The United States Department Of Energy Solid state switch
JP3351088B2 (ja) * 1994-03-28 2002-11-25 松下電工株式会社 電源装置
CN2255697Y (zh) * 1995-08-08 1997-06-04 袁九如 交流触发电子自动控制器
JP3425299B2 (ja) * 1996-07-01 2003-07-14 東京電力株式会社 分散型電源装置
JPH1023762A (ja) * 1996-07-03 1998-01-23 Matsushita Electric Works Ltd 電源装置
FR2754655B1 (fr) * 1996-10-11 1998-12-24 Legrand Sa Interrupteur electronique a alimentation deux fils
JP3562251B2 (ja) * 1997-08-15 2004-09-08 松下電工株式会社 電源装置
JP3533928B2 (ja) * 1998-02-20 2004-06-07 松下電工株式会社 2線式配線器具
US6262565B1 (en) * 1999-05-07 2001-07-17 Mytech Corporation Electrical load switch
US7009858B2 (en) * 2001-01-29 2006-03-07 Seiko Epson Corporation Adjustable current consumption power supply apparatus
JP4259008B2 (ja) * 2001-03-05 2009-04-30 東芝ライテック株式会社 電球形蛍光ランプ
US7091672B2 (en) * 2003-06-10 2006-08-15 Lutron Electronics Co., Inc. High efficiency off-line linear power supply
US7907429B2 (en) * 2007-09-13 2011-03-15 Texas Instruments Incorporated Circuit and method for a fully integrated switched-capacitor step-down power converter
US7872886B2 (en) * 2008-02-20 2011-01-18 Virginia Tech Intellectual Properties, Inc. Quasi-parallel voltage regulator
US8975785B2 (en) * 2009-08-26 2015-03-10 Panasonic Corporation Load control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133473A (ja) * 1998-10-30 2000-05-12 Matsushita Electric Works Ltd 2線式配線器具
JP2006033497A (ja) * 2004-07-16 2006-02-02 Matsushita Electric Works Ltd スイッチ
JP2008097535A (ja) * 2006-10-16 2008-04-24 Matsushita Electric Works Ltd 2線式スイッチ装置
WO2010020855A1 (en) * 2008-08-21 2010-02-25 Panasonic Electric Works Co., Ltd. Load controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594022A (zh) * 2018-05-25 2018-09-28 杭州得诚电力科技股份有限公司 一种智能电容器自动化测试系统及方法

Also Published As

Publication number Publication date
JP5645109B2 (ja) 2014-12-24
EP2600697A1 (en) 2013-06-05
CN103026794A (zh) 2013-04-03
KR20130041921A (ko) 2013-04-25
TW201222184A (en) 2012-06-01
CN103026794B (zh) 2015-05-27
US20130128641A1 (en) 2013-05-23
KR101524954B1 (ko) 2015-06-01
JP2012029529A (ja) 2012-02-09
TWI423003B (zh) 2014-01-11
US9166496B2 (en) 2015-10-20

Similar Documents

Publication Publication Date Title
JP5645109B2 (ja) 2線式負荷制御装置
JP5975375B2 (ja) 2線式調光スイッチ
JP5822670B2 (ja) Led点灯装置
CN107736080B (zh) 调光装置
WO2017038097A1 (ja) 調光装置
AU2004211837B2 (en) Switch mode power converter
JP2014029763A (ja) Led点灯装置
JP5909634B2 (ja) 2線式負荷制御装置
JP5830659B2 (ja) 負荷制御装置
JP2011254323A (ja) 2線式負荷制御装置
TWI590710B (zh) Dimming device
JP6912136B1 (ja) 調光装置
JP7027964B2 (ja) 点灯装置、照明器具および照明システム
TW202114470A (zh) 負載控制裝置
JP2012248093A (ja) 2線式の負荷制御装置
JP2006278010A (ja) 電源装置、放電灯点灯装置及び照明器具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036705.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137002161

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13812161

Country of ref document: US

Ref document number: 2011811890

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE