WO2012013154A1 - 一种非晶合金压铸件及其热处理方法 - Google Patents

一种非晶合金压铸件及其热处理方法 Download PDF

Info

Publication number
WO2012013154A1
WO2012013154A1 PCT/CN2011/077762 CN2011077762W WO2012013154A1 WO 2012013154 A1 WO2012013154 A1 WO 2012013154A1 CN 2011077762 W CN2011077762 W CN 2011077762W WO 2012013154 A1 WO2012013154 A1 WO 2012013154A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
casting
alloy die
die
die casting
Prior art date
Application number
PCT/CN2011/077762
Other languages
English (en)
French (fr)
Inventor
李运春
张法亮
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP11811855.3A priority Critical patent/EP2565289B1/en
Publication of WO2012013154A1 publication Critical patent/WO2012013154A1/zh
Priority to US13/431,159 priority patent/US20120222785A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to the field of manufacturing amorphous alloys, and more particularly to an amorphous alloy die casting and a heat treatment method thereof. Background technique
  • a large number of studies on amorphous alloys have confirmed that there are no crystal defects such as grain boundaries, dislocations, and stacking faults in amorphous alloys.
  • Amorphous alloys have many excellent properties not found in conventional crystalline metals, such as: good corrosion resistance. Sex, wear resistance, magnetic properties and electrical properties have broad application prospects in electronics, machinery, chemicals, and defense.
  • a bulk amorphous alloy that is, metallic glass
  • the formation of a bulk amorphous alloy is generally performed by cooling the molten metal alloy to a temperature below the glass transition temperature at a relatively fast cooling rate, suppressing the formation and growth of crystal nuclei during rapid cooling.
  • Direct solidification forms an amorphous alloy that is structurally long-range disordered.
  • a millimeter-sized amorphous alloy as a bulk amorphous alloy.
  • bulk amorphous alloys are still mainly in the laboratory research stage, such as: electric arc furnace smelting suction casting method, solvent coating method, water quenching method, etc., using high-purity raw materials, high vacuum, rapid cooling and other harsh environments.
  • the bulk amorphous which has better performance, is costly and inefficient, and is not conducive to industrial application.
  • Amorphous die-casting is one of the most promising directions.
  • the bulk amorphous alloy die-casting parts prepared under the existing preparation methods and conditions tend to have large fluctuations in performance, which seriously restricts the application of amorphous alloy die-casting parts.
  • the Chinese invention patent application discloses a rare earth-based bulk amorphous alloy and a composite material thereof, which is obtained by heat treatment on the basis of the bulk amorphous;
  • the crystal alloy is placed in an annealing furnace and is isothermally annealed in a subcooling temperature range of the sample at a vacuum of 1 (T 3 Pa, the annealing temperature is 325-650 ° C; ⁇ prepared by the heat treatment method Complex
  • the composite material has good thermal stability, high electrical resistance, excellent soft magnetic properties and superior processing ability in the supercooled liquid phase.
  • this heat treatment utilizes a relatively high annealing temperature (in the supercooled liquid phase, Above the glass transition temperature Tg), the amorphous alloy is partially crystallized. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the above-mentioned prior art, the complicated preparation process of the bulk amorphous alloy, and the disadvantage of the large fluctuation of the performance of the bulk amorphous alloy die-casting by die-casting.
  • the present invention provides a heat treatment method for an amorphous alloy die-casting part, wherein the amorphous alloy die-casting part is subjected to aging treatment, and the aging treatment temperature is 0.5 Tg-0.6 Tg, and the time is 10 min to 24 h.
  • the amorphous alloy die casting is formed by vacuum and low speed die casting, the pressure is 50-200 Pa, the die casting rate is 3-5 m/s; the thickness of the amorphous alloy die casting is 0.5. Mm-2mmtext
  • the aging treatment is carried out in a positive pressure environment of 0.1-0.5 MPa.
  • the amorphous alloy die casting has a thickness of 1.0 to 1.5 mm, an aging treatment temperature of 0.53 to 0.57 Tg, and a time of 30 to 60 minutes.
  • the present invention also provides an amorphous alloy die-casting member which is a zirconium-based amorphous alloy die-casting member, which is heat-treated by the heat treatment method as described above.
  • the amorphous alloy die-casting member treated by the heat treatment method of the amorphous alloy die-casting member provided by the present invention has an improved bending strength and a decrease in performance fluctuation.
  • Fig. 2 is a DSC chart of samples A, Bl, and C11 of an amorphous alloy die-casting material according to Example 1 of the present invention. detailed description
  • Alloy die-casting parts are usually not heat-treated, because conventional aluminum, rhodium, and magnesium alloy die-casting parts inevitably enclose the air in the cavity inside the casting during high-pressure, high-speed die-casting, forming subcutaneous pores. Heat treatment, the surface of the alloy die casting will bubble and deform, affecting the performance and apparent quality of the die casting.
  • the amorphous alloy has a subcooled liquid phase region having a lower temperature, and the inventors of the present invention combine this feature of an amorphous alloy with an amorphous alloy.
  • a large number of tests on die-casting parts have been confirmed: in the die-casting process, a vacuum (pressure is 50-200Pa) and a low-speed (die-casting rate of 3-5m/s) die-casting method can be used to make the gas entrapped in the amorphous alloy die-casting part.
  • Step 1 Forming amorphous alloy die-casting parts by vacuum and low-speed die-casting, the vacuum pressure is 50-200Pa, and the die-casting rate is 3- 5m/s; the thickness of the obtained amorphous alloy die-casting part is 0.5mm-2mm, wherein the thickness of most amorphous alloy die-casting parts is concentrated in 1.0mm-1.5mm.
  • Step 2 aging treatment of the above amorphous alloy die-casting part, the temperature of the aging treatment is 0.5 Tg-0.6 Tg, and the time is 10 min-24 h; in this step, Tg is the glass transition temperature K, for the specific amorphous alloy
  • the die castings can be tested by DSC to obtain specific values.
  • the Tg test can be achieved by the prior art; the aging treatment can be carried out in an atmospheric or positive pressure environment, preferably at a positive pressure of 0.1-0.5 MPa.
  • the aging treatment in the environment is beneficial to suppress the diffusion of gas in the die casting to the surface;
  • the preferred aging temperature is 0.53 Tg-0.57Tg, and the preferred aging time is 30 ⁇ 60min.
  • the aging temperature can be moderately reduced or increased.
  • the heat treatment time can also be moderately shortened or extended, but it is necessary to ensure that the temperature of the aging treatment is in the range of 0.5 Tg to 0.6 Tg.
  • the heat-treated method of the present invention has no crystallization, no surface bubbling, and has improved performance and stability.
  • the reasons are as follows: 1. Since the amorphous alloy die-casting part is formed During the cooling process, the cooling rate of each part is different, resulting in local weak areas or stress concentration points, and the low temperature aging treatment (temperature 0.5 Tg-0.6Tg) of the present invention can alleviate or release the concentrated stress, thereby avoiding non- The crystal alloy breaks before reaching the yield point, the material properties are improved, and the stability is increased. 2.
  • the amorphous alloy is die-casted under vacuum (pressure 50-200Pa) and low speed (die casting rate 3-5m/s). Amorphous alloys have the characteristics of high viscosity.
  • the gas entrained in the die-casting parts is less than the conventional alloy die-casting parts.
  • the subsequent aging treatment due to the aging treatment in the medium-high pressure environment of 0.1-0.5 MPa, there is a certain Positive pressure inhibits the diffusion of gas in the die casting to the surface; 3.
  • the amorphous alloy is rapidly solidified, the microstructure is highly disordered.
  • Stable state, low temperature aging treatment (the glass transition temperature Tg below aging is low temperature aging, the aging temperature of the invention is 0.5 Tg-0.6Tg) provides insufficient energy to cause the disordered state to pass through the crystallization barrier to cause crystallization, but can promote
  • the high-energy disordered state crosses the metastable barrier into a short-range ordered state, for example: forming a quinary symmetry, twenty-symmetric quasi-quasi-crystal, such short-range ordered states cannot directly grow into crystals, and need to be re-melted into disorder It can crystallize after the state, but it can enhance the stability of the material and reduce the fluctuation of the performance.
  • the crystallization peak area of the die-casting member after the aging treatment is increased (the larger the area of the crystallization peak is, the more heat is released after the crystallization of the sample, the more stable the crystal structure is), and the material stability is increased.
  • the aging treatments of the following Examples 1 and 2 are respectively carried out by using two typical zirconium-based amorphous alloy compositions.
  • Zr 55 Al 15 Cu 25 Ni 5 , Zr 41 Ti 14 Cu 15 Ni 1Q Be 2Q is a typical bulk zirconium-based amorphous alloy with excellent amorphous forming ability, excellent mechanical properties and a broad supercooled liquid region.
  • the high-purity Zr, Al, Cu, Ni (purity greater than 99.0 wt%) is subjected to arc melting at a stoichiometric ratio, and then die-casting with a copper mold under an Ar atmosphere.
  • the conditions of the die casting are: a pressure of 150 Pa, and a die casting rate of 3 m/ s; obtained 15 samples of amorphous alloy die casting, the size is 80*6*1.5mm, labeled A1-A15, and its composition is Zr 55 Al 15 Cu 25 Ni 5 ;
  • the Tg temperature of the alloy is 704K by DSC test.
  • the 15 pieces of the amorphous alloy die-casting sample A1-A15 were divided into three parts.
  • the first amorphous alloy die-casting sample A1-A5 is not aged.
  • the second amorphous alloy die casting sample A6-A10 was aged in a medium-high pressure environment of 0.2 MPa with an aging temperature of 0.53 Tg (373 K) and an aging time of 1 hour to obtain a sample of amorphous alloy die-casting material Bl-B5.
  • the third amorphous alloy die casting sample A11-A15 was aged in a medium-high pressure environment of 0.2 MPa.
  • the aging temperature was 0.81 Tg (573 K) and the aging time was 1 hour.
  • the amorphous alloy die-casting sample Cl-C5 was obtained. Performance Testing
  • XRD analysis Amorphous alloy die casting samples Al, Bl, CI were respectively subjected to XRD powder diffraction analysis on an X-ray powder diffractometer of model D-MAX 2200PC to determine whether the alloy was an amorphous alloy.
  • Al and B1 have an amorphous structure
  • C1 It is a crystal structure with sharp diffraction peaks.
  • DSC test The DSC test equipment uses the differential heat and thermogravimetric analyzer STA409, and the choice is A1 2 0 3 (purity: 99%).
  • the amorphous alloy die casting samples Al, Bl, CI are tested respectively.
  • the crystallized peak area of the amorphous alloy die-casting sample B1 after 0.53 Tg aging treatment increases, and the material stability increases.
  • High-purity Zr, Ti, Cu, Ni, and Be (purity greater than 99.0 wt%) are arc-smelted in stoichiometric ratio, and then die-casted in a copper atmosphere under Ar atmosphere.
  • the conditions of die casting are: pressure 120 Pa, die casting rate is 4m/s; obtained 15 samples of amorphous alloy die-casting parts, size 80*18*lmm, labeled D1-D15, and its composition is Zr 41 Ti 14 Cu 15 Ni 1() Be 2 Q.
  • the alloy was obtained by DSC test.
  • the Tg temperature was 662 K, and the 15 amorphous alloy die casting samples D1-D15 were divided into three parts.
  • the first amorphous alloy die casting sample D1-D5 no aging treatment.
  • the second amorphous alloy die casting sample D6-D10 was aged in an atmosphere of O.lMPa with an aging temperature of 0.57Tg (377K) and an aging time of 0.5 hours to obtain an amorphous alloy die-casting part El-E5.
  • the third amorphous alloy die casting sample D11-D15 was aged in an atmosphere of O.lMPa, the aging temperature was 0.47Tg (311K), and the aging time was 0.5 hours, and the amorphous alloy die casting Fl-F5 was obtained.
  • Performance Testing Using the CMT5105 electronic universal testing machine, the three amorphous alloy die casting samples Dl-D15, El-E5, F1-F5 were tested for three-point bending rupture strength, the bending strength was measured, and the average value and variance were calculated. , listed in Table 2.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Description

一种非晶合金压铸件及其热处理方法 技术领域
本发明涉及非晶合金的制造领域, 具体来说, 涉及一种非晶合金压铸件及其 热处理方法。 背景技术
对非晶合金的大量研究证实, 非晶合金中不存在晶界、 位错、 层错等晶体缺 陷, 非晶合金具有传统的晶态金属所不具有的诸多优良性能, 例如: 良好的耐腐 蚀性、 耐磨性、 磁性能和电性能, 在电子、 机械、 化工、 国防等方面具有广泛的 应用前景。
在现有技术中, 大块非晶合金即金属玻璃的形成通常是将熔融的金属合金以 较快的冷却速度冷却到玻璃转化温度以下, 在快冷过程中抑制了晶核的形成和长 大, 直接凝固形成一种结构上为长程无序的非晶态合金。 通常我们将毫米尺寸的 非晶合金定义成大块非晶合金。 目前,大块非晶合金主要还处在实验室研究阶段, 例如: 电弧炉熔炼吸铸法, 溶剂包敷法, 水淬法等, 利用高纯度的原料、 高真空 度、 急速冷却等苛刻环境得到较好性能的大块非晶, 成本高、 效率低, 不利于在 工业上推广应用。
因而, 一些大企业和科研院所将目光投向在常规条件下能大规模生产的非晶 制备工艺, 非晶压铸是其中最有前景的一个方向。 然而, 现有的制备方法和条件 下所制备的大块非晶合金压铸件往往性能波动大, 严重制约非晶合金压铸件的应 用推广。
中国发明专利申请(公开号为 CN101550521A )公开了一种稀土基块体非晶 合金及其复合材料, 该复合材料是在该块体非晶基础上通过热处理而得; 所述热 处理过程是将非晶合金放入退火炉中, 在真空为 l(T3Pa下, 在样品的过冷温度区 间内等温退火, 所述的退火温度为 325-650°C ; 釆用这种热处理方法所制备的复 合材料具有良好的热稳定性、 较高的电阻, 优良的软磁性能及过冷液相区优越的 加工处理能力, 然而, 这种热处理利用相对高的退火温度(在过冷液相区, 高于 玻璃化转变温度 Tg ) , 会使得非晶合金部分晶化。 发明内容
本发明要解决的技术问题是克服上述现有技术中, 大块非晶合金的制备工艺 复杂, 而釆用压铸成型大块非晶合金压铸件, 其性能波动大的缺点。
根据本发明的实施例, 本发明提供了一种非晶合金压铸件的热处理方法, 将 非晶合金压铸件进行时效处理, 时效处理的温度为 0.5 Tg-0.6Tg , 时间为 10min-24h。
在本发明的一个实施例中, 所述非晶合金压铸件釆用真空、 低速的压铸方式 成型, 压强为 50-200Pa , 压铸速率为 3-5m/s ; 非晶合金压铸件的厚度为 0.5mm-2mm„
在本发明的一些示例中, 所述时效处理在 0.1-0.5MPa的正压环境下进行。 在本发明的一些示例中, 所述非晶合金压铸件的厚度为 1.0-1.5mm, 时效处 理的温度为 0.53~0.57Tg, 时间为 30~60min。
根据本发明的实施例, 本发明还提供了一种非晶合金压铸件, 所述非晶合金 压铸件为锆基非晶合金压铸件, 釆用如上所述的热处理方法进行热处理。
其中, 所述锆基非晶合金压铸件的组成为 (Zr Tix)a(Cu Niy)bAlcMd, 式中, M为 Be、 Y、 Sc、 La中的一种或几种, 38<a<65 , 0<x<0.45 , 0<y<0.75 , 20<b<40, 0<c<15 , 0<d<30 , 且 a + b + c + d = 100。
本发明提供的非晶合金压铸件的热处理方法处理后的非晶合金压铸件的抗 弯强度有所提高, 同时性能的波动性有所降低。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将 变得明显和容易理解, 其中:
图 1为本发明实施例 1的非晶合金压铸件样品 All、 Bll、 C11的 XRD衍射 图谱; 以及
图 2为本发明实施例 1的非晶合金压铸件样品 All、 Bl l、 C11的 DSC曲线 图。 具体实施方式
合金压铸件通常不做热处理, 因为常规的铝、 辞、 镁合金压铸件在高压、 高 速的压铸成型过程中, 不可避免地会将型腔中的空气夹裹在铸件内部, 形成皮下 气孔, 稍加热处理, 合金压铸件表面就会冒泡变形, 影响压铸件的性能和表观质 量。
但是, 与常规的铝、 辞、 镁合金压铸件不同的是, 非晶合金存在一个温度较 低的过冷液相区, 本发明的发明人结合非晶合金的这个特点, 通过对非晶合金压 铸件的大量试验证实: 在压铸过程中釆用真空 (压强为 50-200Pa )、 低速(压铸 速率为 3-5m/s )的压铸方式成型, 能够使非晶合金压铸件中卷入的气体比常规铝 辞镁合金要少得多; 同时, 压铸后在大气或正压环境中 (压强为 0.1-0.5MPa, 在 中高压的范围内)对非晶合金压铸件进行低温热处理, 就可以有效避免常规合金 压铸件热处理时冒泡变形的风险。
根据上述研究发现, 发明人提出了一种非晶合金压铸件的热处理方法: 步骤 1、 釆用真空、 低速的压铸方式成型非晶合金压铸件, 真空压强为 50-200Pa,压铸速率为 3-5m/s;所得非晶合金压铸件的厚度为 0.5mm-2mm,其中, 大部分非晶合金压铸件的厚度集中在 1.0mm-1.5mm。
步骤 2、 对上述非晶合金压铸件进行时效处理, 时效处理的温度为 0.5 Tg-0.6Tg, 时间为 10min-24h; 在本步骤中, Tg为玻璃化转化温度 K, 针对具体 的非晶合金压铸件通过 DSC进行测试可得到具体的数值, Tg的测试可通过现有 技术实现; 时效处理可以在大气或者正压环境下进行,优选在 0.1-0.5MPa的正压 环境下进行时效处理, 有利于抑制了压铸件中的气体向表面扩散; 对于厚度为
1.0mm-1.5mm的非晶合金压铸件, 优选时效温度为 0.53 Tg-0.57Tg, 优选时效时 间为 30~60min, 随着非晶合金压铸件厚度的减少或增加, 时效温度可以适度降 低或升高, 热处理时间也可以适度缩短或延长, 但是需要保证时效处理的温度在 0.5 Tg-0.6Tg的范围内。
本发明的热处理方法处理后的压铸件没有晶化, 也没有出现表面冒泡现象, 并且在性能方面有所提高, 性能稳定性增强, 其原因在于: 1、 由于非晶合金压 铸件在成型后的冷却过程中, 各部位的冷却速度不一样, 导致局部的薄弱区或应 力集中点, 而通过本发明的低温时效处理(温度 0.5 Tg-0.6Tg ) 能够緩解或释放 集中的应力, 从而避免非晶合金在达到屈服点前就发生断裂, 材料性能提高, 稳 定性增加; 2、 非晶合金在真空 (压强为 50-200Pa )、 低速(压铸速率为 3-5m/s ) 下压铸成型, 由于非晶合金具有粘度大的特点, 压铸件中卷入的气体比常规的合 金压铸件少,在后续的时效处理时, 由于是在 0.1-0.5MPa的中高压环境下进行时 效处理, 有一定的正压抑制了压铸件中的气体向表面扩散; 3、 非晶合金快速凝 固成型时, 微观组织处于高度无序的不稳定状态, 低温时效处理(玻璃转变温度 Tg以下时效属于低温时效, 本发明的时效温度为 0.5 Tg-0.6Tg )提供的能量不足 以使无序状态越过晶化势垒产生晶化, 却能促使高能无序状态组织越过亚稳态势 垒进入短程有序状态, 例如: 形成五次对称, 二十次对称等准晶, 该类短程有序 状态不能直接长大形成晶体, 需要重新融化成无序状态后才能结晶, 但是却能使 材料的稳定性增强, 性能波动性降低。 如图 2显示, 时效处理后的压铸件的晶化 峰面积增加 (晶化峰的面积越大表示该样品晶化后放出的热量越多, 晶体结构越 稳定), 材料稳定性增加。
下面釆用实施例对本发明进行进一步详细地描述。 这些实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
下述实施例 1、 2的时效处理分别釆用典型的两种锆基非晶合金组分, 组成 为 Zr55Al15Cu25Ni5、 Zr41Ti14Cu15Ni1QBe2Q, 是典型的具有优异非晶形成能力、 优异 力学性能和具有宽广过冷液相区的块体锆基非晶合金体系, 以用于说明本发明的 时效处理对于锆基非晶合金的作用。
实施例 1
将高纯度的 Zr、 Al、 Cu、 Ni (纯度大于 99.0wt% )按化学计量配比进行电弧 熔炼, 然后在 Ar气氛下用铜模压铸, 压铸的条件为: 压强 150Pa, 压铸速率为 3m/s; 得到非晶合金压铸件样品 15件, 尺寸为 80*6*1.5mm, 标记为 A1-A15 , 其组成为 Zr55Al15Cu25Ni5; 通过 DSC测试得到该合金的 Tg温度为 704K, 将该 15件的非晶合金压铸件样品 A1-A15分为三份。
其中, 第一份非晶合金压铸件样品 A1-A5, 不做时效处理。
第二份非晶合金压铸件样品 A6-A10在 0.2MPa的中高压环境中进行时效处 理, 时效温度为 0.53Tg ( 373K ), 时效时间为 1小时, 得到非晶合金压铸件样品 Bl-B5。
第三份非晶合金压铸件样品 A11-A15在 0.2MPa的中高压环境中进行时效处 理, 时效温度为 0.81Tg ( 573K ), 时效时间为 1小时, 得到非晶合金压铸件样品 Cl-C5。 性能测试
1 )、按照 GB/T14452-93的方法, 利用 CMT5105电子万能试验机, 对上述三 份非晶合金压铸件样品 Al-A5、 Bl-B5、 C1-C5分别进行三点弯曲断裂强度性能 测试, 测得抗弯强度, 计算出平均值和方差, 列于表 1中。
2 )、 XRD 分析: 分别将非晶合金压铸件样品 Al、 Bl、 CI 在型号为 D-MAX2200PC的 X射线粉末衍射仪上进行 XRD粉末衍射分析, 以判定合金是 否为非晶合金。 X射线粉末衍射的条件包括以铜靶辐射, 入射波长 λ=1.54060Α, 加速电压为 40千伏, 电流为 20毫安, 釆用步进扫描, 扫描步长为 0.04。, 结果如 图 1所示的 XRD衍射图谱, 从图 1中可以看出, Al、 B1具有非晶结构, 而 C1 为晶体结构, 有尖锐的衍射峰。
3 ) DSC测试: DSC测试的设备选用差热及热重分析仪 STA409, 坩埚选择 为 A1203 (纯度: 99% ), 分别对非晶合金压铸件样品 Al、 Bl、 CI进行测试, 结 果如图 2所示的 DSC曲线图, 从图 2中可以看出, 经过 0.53Tg时效处理后的非 晶合金压铸件样品 B1的晶化峰面积增加, 材料稳定性增加。 表 1
Figure imgf000008_0001
实施例 2
将高纯度的 Zr、 Ti、 Cu、 Ni及 Be (纯度大于 99.0wt% )按化学计量配比进 行电弧熔炼, 然后在 Ar气氛下用铜模压铸, 压铸的条件为: 压强 120Pa, 压铸速 率为 4m/s; 得到非晶合金压铸件样品 15件, 尺寸 80*18*lmm, 标记为 D1-D15 , 其组成为 Zr41Ti14Cu15Ni1()Be2Q, 通过 DSC测试得到该合金 Tg温度为 662K, 将该 15件非晶合金压铸件样品 D1-D15分为三份。
其中, 第一份非晶合金压铸件样品 D1-D5, 不做时效处理。
第二份非晶合金压铸件样品 D6-D10在 O.lMPa的大气环境中进行时效处理, 时效温度为 0.57Tg ( 377K ), 时效时间为 0.5小时, 得到非晶合金压铸件 El-E5。
第三份非晶合金压铸件样品 D11-D15 在 O.lMPa 的大气环境中进行时效处 理,时效温度为 0.47Tg( 311K ),时效时间为 0.5小时,得到非晶合金压铸件 Fl-F5。 性能测试: 利用 CMT5105电子万能试验机, 对上述三份非晶合金压铸件样品 Dl-D15、 El-E5、 F1-F5分别进行三点弯曲断裂强度性能测试, 测得抗弯强度, 计算出平均 值和方差, 列于表 2中。
表 2
Figure imgf000009_0001
试验结论: 从表 1 中可以看出, 经过 0.53Tg时效处理的非晶合金压铸件样 品 B1-B5 ,相较于未经过时效处理的非晶合金压铸件样品 A1-A5 ,以及经过 0.81Tg 时效处理的非晶合金压铸件样品 B1-B5具有更高的抗弯强度和性能稳定性;从表 2中可以看出, 经过 0.57Tg时效处理的非晶合金压铸件样品 E1-E5 , 相较于未经 过时效处理的非晶合金压铸件样品 D1-D5 , 以及经过 0.47Tg时效处理的非晶合 金压铸件样品 F1-F5具有更高的抗弯强度和性能稳定性。 由上可知, 釆用本发明 的热处理方法得到的非晶合金压铸件具有较高的抗弯强度和性能稳定性。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特 征、 结构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书 中, 对上述术语的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的 具体特征、 结构、 材料或者特点可以在任何的一个或多个实施例或示例中以合适 的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种非晶合金压铸件的热处理方法, 其特征在于, 对非晶合金压铸件进 行时效处理, 时效处理的温度为 0.5 Tg-0.6Tg, 时间为 10min-24h。
2、 根据权利要求 1所述的非晶合金压铸件的热处理方法, 其特征在于, 所 述非晶合金压铸件釆用真空、 低速的压铸方式成型, 压强为 50-200Pa, 压铸速率 为 3-5m/s; 非晶合金压铸件的厚度为 0.5mm-2mm。
3、 根据权利要求 1所述的非晶合金压铸件的热处理方法, 其特征在于, 所 述时效处理在 0.1-0.5MPa的正压环境下进行。
4、 根据权利要求 1-3任意一项所述的非晶合金压铸件的热处理方法, 其特 征在于, 所述非晶合金压铸件的厚度为 1.0-1.5mm , 时效处理的温度为 0.53~0.57Tg, 时间为 30~60min。
5、 根据权利要求 1-3任意一项所述的非晶合金压铸件的热处理方法, 其特 征在于, 所述非晶合金压铸件为锆基非晶合金压铸件, 其组成如下通式所示: (Zri-xTix)a(Cui-yNiy)bAlcMd, 其中, M为 Be、 Y、 Sc、 La中的一种或几种,
38<a<65 , 0<x<0.35 , 0<y<0.75 , 20<b<40 , 0<c<15 , 0<d<30 ,且 a + b + c + d = 100。
6、 一种非晶合金压铸件, 其特征在于, 所述非晶合金压铸件为锆基非晶合 金压铸件, 釆用如权利要求 1-5任意一项所述的热处理方法进行热处理。
7、 根据权利要求 6所述的非晶合金压铸件, 其特征在于, 所述锆基非晶合 金压铸件的组成为(Zr1-xTix)a(Cu1-y Niy)bAlcMd, 式中, M为 Be、 Y、 Sc、 La中的 一种或几种, 38<a<65 , 0<x<0.45 , 0<y<0.75 , 20<b<40 , 0<c<15 , 0<d<30, 且 a + b + c + d = 100。
8、 根据权利要求 7所述的非晶合金压铸件, 其特征在于, 所述锆基非晶合 金压铸件的组成为: Zr55Al15Cu25Ni5、 Zr41Ti14Cu15Ni1C)Be20
9、 根据权利要求 6所述的非晶合金压铸件, 其特征在于, 所述非晶合金压 铸件的厚度为 0.5mm-2mm。
PCT/CN2011/077762 2010-07-29 2011-07-28 一种非晶合金压铸件及其热处理方法 WO2012013154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11811855.3A EP2565289B1 (en) 2010-07-29 2011-07-28 Thermal treatment process of an amorphous alloy die casting
US13/431,159 US20120222785A1 (en) 2010-07-29 2012-03-27 Amorphous alloy die cast and heat treatment process of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010244468.7 2010-07-29
CN201010244468.7A CN102345082B (zh) 2010-07-29 2010-07-29 一种非晶合金压铸件及其热处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/431,159 Continuation US20120222785A1 (en) 2010-07-29 2012-03-27 Amorphous alloy die cast and heat treatment process of the same

Publications (1)

Publication Number Publication Date
WO2012013154A1 true WO2012013154A1 (zh) 2012-02-02

Family

ID=45529427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077762 WO2012013154A1 (zh) 2010-07-29 2011-07-28 一种非晶合金压铸件及其热处理方法

Country Status (4)

Country Link
US (1) US20120222785A1 (zh)
EP (1) EP2565289B1 (zh)
CN (1) CN102345082B (zh)
WO (1) WO2012013154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017810B2 (en) 2012-05-10 2018-07-10 The General Hospital Corporation Methods for determining a nucleotide sequence contiguous to a known target nucleotide sequence

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400353A1 (fr) * 2010-06-22 2011-12-28 The Swatch Group Research and Development Ltd. Aiguille de pièce d'horlogerie
CN103774065A (zh) * 2012-10-19 2014-05-07 华为技术有限公司 一种锆基非晶合金
US9938605B1 (en) 2014-10-01 2018-04-10 Materion Corporation Methods for making zirconium based alloys and bulk metallic glasses
US10668529B1 (en) 2014-12-16 2020-06-02 Materion Corporation Systems and methods for processing bulk metallic glass articles using near net shape casting and thermoplastic forming
CN106282850A (zh) * 2015-05-18 2017-01-04 基准精密工业(惠州)有限公司 锆基非晶合金及其制备方法
CN109548765B (zh) * 2019-01-04 2024-01-02 鄱阳县黑金刚钓具有限责任公司 一种鱼钩及其制造方法
CN109609880B (zh) * 2019-01-29 2020-11-17 西安工业大学 一种含类金属的轻稀土基块体非晶合金及其制备方法
CN110295293A (zh) * 2019-06-28 2019-10-01 中国科学院金属研究所 一种非晶合金构件及其制备方法
CN111906271A (zh) * 2020-07-08 2020-11-10 松山湖材料实验室 用于谐波减速器非晶合金柔轮的真空压铸模具及其方法
CN112593123B (zh) * 2020-12-14 2021-11-09 昆明理工大学 一种锆基非晶颗粒增强铝基复合材料及其制备方法
CH718894A1 (fr) * 2021-08-02 2023-02-15 Hublot Sa Geneve Alliage à composition complexe.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445293A (en) 1974-04-06 1976-08-11 British Leyland Uk Ltd Energy absorbing bumper assembly
US5876519A (en) * 1996-03-19 1999-03-02 Unitika Ltd. Fe-based amorphous alloy
CN101550521A (zh) 2008-04-01 2009-10-07 中国科学院物理研究所 具有磁热效应的稀土基块体非晶合金及其复合材料
CN101570837A (zh) * 2008-04-29 2009-11-04 比亚迪股份有限公司 一种锆基非晶合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353737A (en) * 1979-03-23 1982-10-12 Allied Corporation Method of making metallic glass powders from glassy alloys
EP1632584A1 (en) * 2004-09-06 2006-03-08 Eidgenössische Technische Hochschule Zürich Amorphous alloys on the base of Zr and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445293A (en) 1974-04-06 1976-08-11 British Leyland Uk Ltd Energy absorbing bumper assembly
US5876519A (en) * 1996-03-19 1999-03-02 Unitika Ltd. Fe-based amorphous alloy
CN101550521A (zh) 2008-04-01 2009-10-07 中国科学院物理研究所 具有磁热效应的稀土基块体非晶合金及其复合材料
CN101570837A (zh) * 2008-04-29 2009-11-04 比亚迪股份有限公司 一种锆基非晶合金及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUANG, SHENGTAO ET AL.: "Study on the Amorphous Phase Separation of Co-Ni-Fe-Bas( Metallic Glass by Artificial Ageing.", SCIENCE IN CHINA, June 1986 (1986-06-01), pages 612, XP008169892 *
QIXIAN B. A. ET AL.: "Influence of Heat treatment on Magnetic Aftereffect of Fe-Based Amorphous Alloys.", JOURNAL OF NORTH EASTERN UNIVERSITY (NATURAL SCIENCE), vol. 16, no. 4, August 1995 (1995-08-01), pages 406 - 409, XP008162377 *
See also references of EP2565289A4
WANG, GANG ET AL.: "Tension Fracture Behavior of Zr4l1.25Ti13.75Ni10CU12.5Be22.5 Bulk Metallic Glass.", ACTA METALLURGICA SINICA, vol. 41, no. 3, March 2005 (2005-03-01), pages 291 - 296, XP008162375 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017810B2 (en) 2012-05-10 2018-07-10 The General Hospital Corporation Methods for determining a nucleotide sequence contiguous to a known target nucleotide sequence

Also Published As

Publication number Publication date
CN102345082B (zh) 2017-02-22
EP2565289A1 (en) 2013-03-06
EP2565289B1 (en) 2018-07-18
CN102345082A (zh) 2012-02-08
EP2565289A4 (en) 2017-05-17
US20120222785A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
WO2012013154A1 (zh) 一种非晶合金压铸件及其热处理方法
CN108425050B (zh) 一种高强高韧铝锂合金及其制备方法
WO2005098065A1 (ja) 熱伝導性に優れた熱処理用アルミニウム合金鋳造材及びその製造方法
WO2016015488A1 (zh) 铝合金及其制备方法和应用
JP5586027B2 (ja) Mg基合金
CN1851019A (zh) Er、Zr复合强化的Al-Mg-Mn合金
WO2016074423A1 (zh) 镁合金及其制备方法和应用
CN113234971A (zh) 一种复合添加稀土改性高强高热导压铸铝合金材料及其制备方法
CN110904369A (zh) 一种高性能的铸造Al-Si-Mg-Er合金
WO2015135253A1 (zh) 铝硅系合金及其生产方法
CN105018813A (zh) 一种抗蠕变稀土镁合金及其制备方法
CN107447144A (zh) 一种耐热稀土铝合金及其制备方法
CN105039817A (zh) 一种多元耐热镁合金的制备方法及多元耐热镁合金
CN102676961B (zh) 一种富铜铸造亚共晶铝硅合金的热处理方法
WO2022134275A1 (zh) 一种铝合金以及铝合金结构件
CN103290285B (zh) 一种镁-锌-锰-锡-钇合金及其制备方法
CN110592503B (zh) 一种Al-6Si-3.5Cu型铸造铝合金的强韧化热处理工艺方法
CN103305736B (zh) 一种镁-锂-铝-锶-钇合金及其制备方法
US10920301B2 (en) Aluminum alloy casting having superior high-temperature strength and thermal conductivity, method for manufacturing same, and aluminum alloy casting piston for internal combustion engine
CN102424927A (zh) 镁铝合金及其制备方法
WO2016074424A1 (zh) 镁合金及其制备方法和应用
CN104532091A (zh) 一种2系铝合金
CN103225031B (zh) 一种镁-锌-锰-锡-钕合金及其制备方法
CN105200278A (zh) 一种含Ce挤压铸造Al-Si-Cu-Mg合金
CN112359255B (zh) 一种高强低热裂镁合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011811855

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE