WO2012011556A1 - 高密度リポタンパク質3中のコレステロールの定量方法 - Google Patents

高密度リポタンパク質3中のコレステロールの定量方法 Download PDF

Info

Publication number
WO2012011556A1
WO2012011556A1 PCT/JP2011/066674 JP2011066674W WO2012011556A1 WO 2012011556 A1 WO2012011556 A1 WO 2012011556A1 JP 2011066674 W JP2011066674 W JP 2011066674W WO 2012011556 A1 WO2012011556 A1 WO 2012011556A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
polyoxyethylene
cholesterol
hdl3
ether
Prior art date
Application number
PCT/JP2011/066674
Other languages
English (en)
French (fr)
Inventor
麻衣子 樋口
康樹 伊藤
Original Assignee
デンカ生研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45496974&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012011556(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デンカ生研株式会社 filed Critical デンカ生研株式会社
Priority to KR1020137003549A priority Critical patent/KR101833350B1/ko
Priority to AU2011280489A priority patent/AU2011280489B2/en
Priority to JP2012525433A priority patent/JP5671029B2/ja
Priority to DK11809726.0T priority patent/DK2597468T3/en
Priority to CN201180036041.0A priority patent/CN103080748B/zh
Priority to EP11809726.0A priority patent/EP2597468B1/en
Priority to US13/809,223 priority patent/US8932865B2/en
Priority to CA2811150A priority patent/CA2811150C/en
Publication of WO2012011556A1 publication Critical patent/WO2012011556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids

Definitions

  • the present invention relates to a method for quantifying cholesterol in high-density lipoprotein 3 (hereinafter sometimes referred to as “HDL3”) (cholesterol in HDL3 may also be referred to as “HDL3 cholesterol” hereinafter).
  • HDL3 high-density lipoprotein 3
  • High-density lipoprotein (HDL) cholesterol is related to the removal action of cholesterol accumulated in cells because it receives cholesterol from tissues including arteriosclerotic wall, and is therefore also referred to as a reverse cholesterol transfer system. That there is arteriosclerosis negatively correlated, such as coronary arteriosclerosis is known, it HDL is low value is low value limit is provided as one of dyslipidemia, useful as an indicator of arteriosclerosis It is known that
  • HDL is composed of apoprotein, phospholipid, cholesterol, and neutral fat.
  • 2 HDL3 of a further d 1.063 ⁇ HDL2
  • d 1.125 ⁇ 1.210g / mL is 1.125 g / mL
  • It is classified into two fractions. According to the distribution curve of lipoprotein, a notch is observed at the d 1.125 portion, and a portion with a heavy specific gravity is designated as HDL3.
  • the apolipoprotein E content difference among the apoprotein in HDL also present how divided the subfractions to the HDL lot of the content of apo E and apo E-rich HDL.
  • HDL is not metabolized to LDL or IDL due to CETP deficiency, and the amount of HDL cholesterol increases.
  • HDL increased by CETP deficiency is HDL2.
  • HDL2 is said to have an anti-arteriosclerotic effect.
  • apo E-rich HDL increases due to CETP deficiency, and Apo-E-rich HDL has a strong cholesterol-extracting ability and an antiplatelet action, and is said to be a better one among HDL.
  • HDL3 does not change to HDL2 due to a decrease in hepatic lipase activity, and HDL3 increases.
  • An increase in the incidence of coronary artery disease due to an increase in HDL3 has been suggested. It is expected that measuring each of the HDL subfractions from these tendencies will help determine the presence and cause of arteriosclerosis. Further, based on the functions of these HDL subfractions, development of therapeutic drugs that inhibit the function of CETP, decrease the amount of LDL cholesterol, and increase the amount of HDL cholesterol is being promoted by each manufacturer.
  • Ultracentrifugation is a method of performing fractionation by utilizing the difference in specific gravity of lipoproteins by centrifugation, and has the disadvantages that it requires skill in work, takes days, and is expensive.
  • the method of separating HDL2 and HDL3 using HPLC by Okazaki et al. Requires time and requires special equipment.
  • the HDL3 precipitation method is a method in which other than HDL3 is aggregated with a reagent containing a divalent metal ion and dextran sulfate, and HDL3 in the supernatant is collected by centrifugation and measured with an automatic analyzer.
  • the NMR method is a method of measuring the number of lipoprotein particles by magnetic resonance, but requires a special machine and is not general.
  • Patent Document 2 There is a method for analyzing HDL subfractions (Patent Document 2). Although it can be measured with a general-purpose automatic analyzer, it uses a method that inhibits lipoproteins other than HDL3 from the action of enzymes by using a surfactant, and there is a lipoprotein other than the target in the HDL3 reaction. In other words, if it has an influence on the measurement or if it has not been completely inhibited, there is a risk of measuring lipoproteins other than HDL3.
  • An object of the present invention is to provide a method for quantifying HDL3 in a test sample without requiring complicated operations.
  • the present inventors have found a surfactant that reacts with lipoproteins other than high-density lipoprotein 3 but hardly reacts with high-density lipoprotein 3. Then, it is conceivable that HDL3 cholesterol in the test sample can be quantified by reacting such a surfactant with the test sample and then quantifying the cholesterol in the remaining HDL3. This was experimentally confirmed and the present invention was completed.
  • the present invention comprises a first step of reacting a test sample with a surfactant that reacts with a lipoprotein other than the high-density lipoprotein 3 to transfer cholesterol out of the reaction system, and cholesterol remaining in the reaction system.
  • a method for quantifying cholesterol in high-density lipoprotein 3 comprising a second step of quantifying is provided.
  • HDL3 cholesterol in a test sample can be specifically quantified with an automatic analyzer without requiring complicated operations such as ultracentrifugation and pretreatment.
  • the amount of HDL2 cholesterol can be quantified by calculating the difference in the amount of HDL3 cholesterol from the amount of total HDL cholesterol obtained by the conventional method for quantifying HDL total cholesterol in a subject.
  • test sample to be subjected to the method of the present invention is not particularly limited as long as it is intended to quantify HDL3 cholesterol in the sample, but is preferably serum or plasma or a dilution thereof, particularly serum. Or a dilution thereof is preferred.
  • the test sample is reacted with a surfactant that reacts with lipoproteins other than HDL3.
  • surfactants that react with lipoproteins other than HDL3 include nonionic surfactants such as polyoxyethylene distyrenated phenyl ether; polyoxyethylene-polyoxypropylene condensates, amide ether sulfates and polyoxyethylene-stearylamine
  • Anionic surfactants such as coconut oil fatty acid-amidopropyldimethyl-aminoacetic acid betaine, alkyldimethyl-aminoacetic acid betaine and lauryl betaine; and cationic surfactants such as lauryltrimethylammonium chloride It can be mentioned, but is not limited to these.
  • the nonionic surfactant Emulgen A500 (trade name polyoxyethylene distyrenated phenyl ether, manufactured by Kao Corporation, hereinafter, the company name is the manufacturing company, the company name is also shown All are trade names);
  • As anions polyoxyethylene-polyoxypropylene condensate, Pluronic F127 (Asahi Denka), Pluronic F68 (Asahi Denka) Pluronic P103 (Asahi Denka), Sanamide, an amide ether sulfate CF-10 (Japanese fats and oils), polyoxyethylene-stearylamine, Niimine S210 (Japanese fats and oils); as amphoteric surfactants, coconut oil fatty acid-amidopropyldimethyl-aminoacetic acid betaine, Nissan Anon BDF-SF (Japanese fats and oils) ), Alkyldimethyl-aminoacetic acid solid A down NISSANANON BF (NOF), Amphi
  • the concentration of the surfactant that reacts with lipoproteins other than HDL3 is preferably 0.01 to 5.0% by weight, more preferably about 0.03 to 3.0% by weight.
  • the surfactant when the term “reacts” with respect to a surfactant is used, the surfactant is liable to act on the lipoprotein to bring it out of the reaction system, or to the lipoprotein. This means protecting the enzyme from acting.
  • the present inventors have further found that phospholipase and sphingomyelinase act on lipoproteins but hardly act on HDL3. Therefore, it is preferable to add phospholipase and / or sphingomyelinase in addition to the above-described surfactant because HDL3 cholesterol can be quantified more accurately.
  • the phospholipase is not particularly limited as long as it acts on phosphatidylcholine, and phospholipase A, phospholipase C and phospholipase D are preferable, and phospholipase C and phospholipase D are particularly preferable. Since phospholipase etc. are marketed, a commercial item can be used preferably. Phospholipases and the like can be used alone or in combination of two or more.
  • the final concentration of phospholipase or the like (when two or more types are used, the total concentration, the same shall apply hereinafter) is preferably about 0.1 to 100 U / mL, more preferably about 0.2 to 50 U / mL.
  • reaction conditions (reaction temperature, time, buffer, etc.) are as described above.
  • cholesterol is transferred out of the reaction system by the action of phospholipase or the like.
  • “transferring out of the reaction system” means eliminating or protecting cholesterol and its ester so that cholesterol and its ester are not involved in the subsequent steps.
  • erasing means degrading the cholesterol of lipoprotein in the test sample so that it does not act on the cholesterol measurement reaction in the subsequent steps.
  • the hydrogen peroxide generated by the action of cholesterol esterase and cholesterol oxidase to decompose the like into water and oxygen using catalase.
  • the hydrogen donor and the generated hydrogen peroxide may be reacted with peroxidase to convert to colorless quinone, but is not limited thereto.
  • the method of eliminating cholesterol itself is well known in this field, and is specifically described in the following examples.
  • “Protection” refers to protecting the lipoprotein in the test sample so that it does not react with cholesterol measurement in the subsequent steps.
  • To protect lipoproteins there is a method using a surfactant that specifically protects each lipoprotein so that cholesterol esterase and cholesterol oxidase do not act, but it is not limited thereto.
  • the step of reacting the surfactant and the step of transferring the exposed cholesterol to the outside of the reaction system can be sequentially performed.
  • both processes can be performed simultaneously as a single process. The latter is convenient and preferred.
  • the concentration of cholesterol esterase (in this specification, the concentration means the final concentration unless otherwise specified) is preferably about 0.1 to 10.0 U / mL. 0.2 to 2.0 U / mL is more preferable.
  • the concentration of cholesterol oxidase is preferably about 0.05 to 10.0 U / mL, more preferably about 0.1 to 1.0 U / mL.
  • the cholesterol esterase is not particularly limited as long as it acts on ester-type cholesterol.
  • cholesterol esterase COE-311, manufactured by Toyobo Co., Ltd.
  • COE-312 cholesterol esterase
  • COE-311 cholesterol esterase
  • COE-312 cholesterol esterase
  • the cholesterol oxidase is not particularly limited as long as it acts on free cholesterol.
  • cholesterol oxidase (CONII) manufactured by Asahi Kasei Co., Ltd. or cholesterol oxidase (COO-311, COO- 321 and COO-331) can be used.
  • the concentration of peroxidase is preferably about 2.0 to 5.0 units / mL, more preferably about 3.0 to 4.0 units / mL.
  • the concentration is preferably about 0.4 to 0.8 mm 0 l / L.
  • reaction solution used in the first step various buffer solutions used in normal biochemical reactions can be used, and the pH is preferably between 5 and 8.
  • a buffer solution of Good, Tris, phosphate and glycine is preferable.
  • Good buffer solutions such as bis (2-hydroxyethyl) iminotris (hydroxyethyl) methane (Bis-Tris), piperazine-1, 4-bis (2 -Ethanesulfonic acid (PIPES), piperazine-1,4-bis (2-ethanesulfonic acid), 1.5 sodium salt, monohydrate (PIPES1.5Na), 3-morpholinopropanesulfonic acid (MOPSO), N N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES) and piperazine-1,4- Bis (2-hydroxy-3-propanesulfonic acid) (
  • the reaction temperature in the first step is preferably about 25 to 40 ° C, more preferably 35 to 38 ° C, and most preferably 37 ° C.
  • the reaction time is not particularly limited, and is usually about 2 to 10 minutes. .
  • cholesterol remaining in the reaction system is quantified.
  • This can be done by reacting at least a surfactant that reacts with HDL3 and quantifying the exposed cholesterol.
  • a "surfactant that reacts with at least HDL3” the surfactant that reacts specifically with HDL3, HDL specifically react (i.e., react the HDL2 and HDL3) surfactant and all lipoprotein Reacting surfactants are included.
  • Surfactants that can be used in the second step include nonionic surfactants such as polyoxyethylene distyrenated phenyl ether, polyoxyethylene lauryl ether and p-isooctyl polyoxyethylene phenol formaldehyde polymer; lauryl dimethyl- cationic surfactants fatty aliphatic phosphoric acid esters; amphoteric surfactants such as betaine and polyoxyethylene lauryl ether polyoxyethylene distyrenated phenyl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyalkylene alkyl Nonionic surfactants with HLB between 11 and 14 such as ethers, polyoxyethylene polycyclic phenyl ethers and polyoxyethylene cumylphenyl ethers; imidazoline type amphoteric surfactants; Nonionic surfactants such as oxyethylene lauryl ether, polyoxyethylene alkyl ether and polyoxyethylene alkylphenyl ether; anionic surfactants such as la
  • Emulgen A90 (manufactured by Kao) is a polyoxyethylene distyrenated phenyl ether, polyoxyethylene lauryl ether Emulgen 120 (Kao), P-isooctyl polyoxyethylene phenol formaldehyde polymer Triton-WR-1339 (Nacalai);
  • As an amphoteric surfactant Nissan Anon BL-SF (Nippon Oil & Fats, lauryl dimethyl-aminoacetic acid betaine) ), Peroxy NK-100 (Nippon Yushi) which is polyoxyethylene lauryl ether; and Adekacol PS-440E (Asahi Denka) which is a fatty acid group phosphate as a cationic surfactant.
  • the surfactant which specifically reacts with HDL is a non-ionic surfactant during the HLB is 11-14, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyalkylene alkyl Ether, polyoxyethylene polycyclic phenyl ether, polyoxyethylene cumylphenyl ether, or an imidazoline type of an amphoteric surfactant can be used.
  • Emulgen A60 Kao
  • Emulgen B66 Kao
  • Emulgen LS110 Kao
  • Newcol-CMP-11 Nippon Emulsifier
  • Newcol-710 Nippon Emulsifier
  • Newcol-610 Nippon Emulsifier
  • Newcol-2609 Nippon Emulsifier
  • Nissan Anon GLM-R-LV Nippon Yushi
  • polyoxyethylene lauryl ether polyoxyethylene alkyl ether
  • polyoxyethylene alkyl phenyl ether can be used as a nonionic surfactant.
  • anionic surfactant lauryl alcohol alkoxylate, polyoxyethylene-alkylphenyl ether sulfate sodium salt can be used.
  • Emulgen 707 Kao
  • Emulgen 909 Kao
  • Emulgen 108 Kao
  • Naimine L207 Nippon Yushi
  • Adekatol LB83 Adekatol LB83 (Asahi Denka)
  • Adekatol LB103 Adekatol LB103 (Asahi Denka)
  • Newcol-707 Japan Emulsifiers
  • the concentration of the surfactant in the second step is preferably 0.01 to 5.0% (w / v), more preferably 0.05 to 2.0% (w / v).
  • cholesterol is quantified by the reaction of these surfactants.
  • Different surfactants are used in the first step and the second step.
  • the cholesterol quantification method itself is well known, and any known method can be adopted, and is specifically described in the following examples.
  • ester cholesterol in lipoproteins is hydrolyzed using cholesterol esterase to produce free cholesterol and fatty acids, and the resulting free cholesterol and free cholesterol originally present in lipoproteins using cholesterol oxidase Cholesteinone and hydrogen peroxide are generated and quantified by forming a quinone dye in the presence of peroxidase.
  • Examples of compounds that generate quinone dyes include HDAOS (N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline), DAOS (N-ethyl-N (-2-hydroxy-3-sulfopropyl)) -3, 5-dimethoxyaniline sodium) or TOOS (N-ethyl-N (-2-hydroxy- 3-sulfopropyl) -3-methylaniline sodium dihydrate) and 4-aminoantipyrine. It is not limited to these as long as it is a combination capable of generating a dye.
  • cholesterol esterase and cholesterol oxidase are used in the first step, the cholesterol esterase and cholesterol oxidase used in the first step can be used as they are in the second step, and there is no need to newly add them.
  • the concentration of the compound that generates a quinone dye is preferably about 0.5 to 2.0 mmol / L for HDAOS, and preferably 0.1 to 2.0 mmol / L for 4-aminoantipyrine,
  • the concentration of peroxidase is preferably 0.4 to 5.0 U / mL.
  • sodium azide that is an inhibitor of catalase is used and added to the reaction solution in the second step.
  • the concentration of sodium azide is usually about 0.1 g / L to 1.0 g / L.
  • reaction conditions reaction temperature, time, buffer solution, pH, etc.
  • reaction temperature, time, buffer solution, pH, etc. reaction temperature, time, buffer solution, pH, etc.
  • Reagent A and reagent B having the following reagent composition were prepared, and reagents in which various surfactants were added to reagent A at a concentration of 0.1% (w / v) or 1.0% (W / V) were prepared.
  • the following reagents A and B containing various surfactants are mixed at a ratio of 1: 3, the HDL2 fraction and the cholesterol in the HDL3 fraction are reacted, and the final absorbance at a main wavelength of 700 nm and a subwavelength of 600 nm is obtained. Measured and compared.
  • HDL2 fraction and HDL3 fraction were fractionated as follows. Using a test sample containing HDL, that is, a solution containing sodium chloride and sodium bromide in serum, the sample was fractionated by ultracentrifugation so as to separate at the specific gravity (1.125) at the boundary between HDL2 and HDL3. Minutes were collected.
  • a test sample containing HDL that is, a solution containing sodium chloride and sodium bromide in serum
  • Table 1 at a rate of HDL2 / HDL3 is 0.75 or less, showed a surfactant CM ⁇ IDL / HDL3, LDL / HDL3 is 0.75 or less, and a surfactant that reacts them in HDL3 To do.
  • Table 2 shows surfactants having a HDL2 / HDL3 ratio of 1.25 or more and CM to IDL / HDL2 and LDL / HDL2 ratios of 1.25 or more. These surfactants react with those other than HDL3. Use as an agent.
  • Table 3 shows an interface where the ratio of HDL2 / HDL3 is between 0.75 and 1.25 and the ratio of CM to IDL / HDL2, LDL / HDL2, CM to IDL / HDL3, and LDL / HDL3 is 0.75 or less.
  • Indicate active agents which are surfactants that react to HDL.
  • Table 4 shows an interface in which the ratio of HDL2 / HDL3 is between 0.75 and 1.25 and the ratio of CM to IDL / HDL2, LDL / HDL2, CM to IDL / HDL3, and LDL / HDL3 is 0.75 or more.
  • Indicate active agents which are surfactants that react with all lipoproteins.
  • Table 5 shows surfactants not applicable to the above, and these are surfactants that react in addition to HDL.
  • BES buffer 100 mmol / L HDAOS 0.7mmol / L Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL
  • Reagent B BES buffer (pH 6.6) 100 mmol / L Sodium azide 0.1% 4-aminoantipyrine 4.0 mmol / L Peroxidase 2.4 U / mL
  • Emulgen A90, Emulgen 120, Nissan Anon BL-SF, Triton-WR-1339, Persoft NK-100 and Adecatol PS440E were surfactants that specifically react with HDL3.
  • Emulgen A500, Nissan Anon BDF-SF, Nissan Anon BF, Naimine S210, Pluronic P103, Cotamine 24P, Sanamide CF-10, Amphithol 24B, Pluronic F68, and Pluronic F127 were surfactants that react in addition to HDL3.
  • Emulgen B66, Emulgen A60, Emulgen LS110, Nowol610, Newcol2609, Newcol-CMP-11, Nissan Anon GLM-RLV, and Newcol-710 were surfactants that specifically react with HDL.
  • Emulgen 108, Emulgen 707, Newcol 707, Adekatol LB83, Adekatol LB103, and Emulgen 909 were surfactants that specifically react with all lipoproteins.
  • Newcol-714, Newcol-723, Newcol2614, Naimine S215, Pluronic P123, Letol WX, Nymid MT215, Nonion HS220 and Pluronic F88 were surfactants that specifically react in addition to HDL.
  • Example 1 Reagent C for eliminating cholesterol other than HDL3 and reagent D for the step of measuring HDL in the product reacted with reagent C were prepared with the following composition. Sixteen serum samples were measured and correlated with the HDL3 precipitation method. An HDL measuring reagent (manufactured by Denka Seiken Co., Ltd.) was used as a comparative control for the prepared reagent.
  • the measurement was performed by adding 150 ⁇ L of the following reagent C to 2 ⁇ L of serum, heating the mixture for 5 minutes, then adding reagent D and further heating for 5 minutes, and measuring the absorbance at the main wavelength of 700 nm and the subwavelength of 600 nm.
  • the operation of the known HDL3 precipitation method was in accordance with JP2009-207463.
  • the serum was measured with an HDL measurement reagent, similarly correlated with the HDL3 precipitation method (measurement method A), and compared with the prepared reagent.
  • Reagent C BES buffer 100 mmol / L HDAOS 0.7mmol / L Sunamide CF-10 1% Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL
  • FIG. 1 is a correlation diagram between the measurement method A and the HDL measurement reagent
  • FIG. 2 is a correlation diagram between the measurement method A, the reagent C, and the reagent D.
  • CM to HDL2 fraction and the HDL3 fraction were fractionated using ultracentrifugation, and measurement was performed with the above-described reagents, and the absorbance at each measurement time was measured.
  • the results of changes in absorbance after addition of reagent D are shown in FIG. As can be seen from FIG. 3, it reacts more specifically with HDL3 than with lipoproteins other than HDL3.
  • Example 2 The CM to LDL fraction, the HDL2 fraction, and the HDL3 fraction are fractionated using ultracentrifugation, and the reagent A used in Reference Example 1 is reacted with a reagent E to which phospholipase D (PLDP) is added.
  • the reagent D was added and measurement was performed. In the measurement, 150 ⁇ L of reagent E was added to 2 ⁇ L of serum, and after 5 minutes of warming reaction, reagent D was added and further warmed for 5 minutes, and absorbance at a main wavelength of 700 nm and a subwavelength of 600 nm was measured.
  • PLDP phospholipase D
  • Reagent E BES buffer 100 mmol / L HDAOS 0.7mmol / L Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL Phospholipase D 5.0 U / mL
  • FIG. 4 shows the results of changes in absorbance over time in each fraction after the addition of reagent D. It can be seen that it reacts specifically to HDL3.
  • Example 3 A reagent F obtained by adding a surfactant and sphingomyelinase to the reagent A used in Reference Example 1 and a reagent G in a step of measuring HDL3 in a product obtained by reacting the reagent F are prepared with the following composition, and ultracentrifuged The fraction between CM and IDL, the LDL fraction, the HDL2 fraction, and the HDL3 fraction were fractionated using and measured. The reagent measurement procedure was performed in the same manner as in Example 2, and the absorbance at each measurement time was measured.
  • Reagent F BES buffer (pH 7.0) 100 mmol / L HDAOS 0.7mmol / L Pluronic F68 0.03 w / v% Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL Sphingomyelinase 0.5U / mL
  • Reagent G BES buffer (pH 6.6) 100 mmol / L Sodium azide 0.1% Emulgen A90 2.0% 4-aminoantipyrine 4.0 mmol / L Peroxidase 2.4 U / mL
  • FIG. 5 shows the results of changes in absorbance over time in each fraction after the reagent G was added. It can be seen that it reacts specifically to HDL3.
  • Example 4 Using the same method as in Example 3, the absorbance was measured using the reagent H in which the phospholipase of the reagent E used in Example 2 was changed to phospholipase C and a surfactant was added.
  • Reagent H BES buffer 100 mmol / L HDAOS 0.7mmol / L Pluronic F68 0.03 w / v% Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL Phospholipase C 5.0 U / mL
  • FIG. 6 shows the results of changes in absorbance over time in each fraction after the reagent H was added. It can be seen that it reacts specifically to HDL3.
  • Example 5 Using the same method as in Example 3, the absorbance was measured using Reagent I in which the phospholipase of reagent H used in Example 4 was changed to phospholipase D (PLDP) and a surfactant was added. .
  • PLDP phospholipase D
  • Reagent I BES buffer (pH 7.0) 100 mmol / L HDAOS 0.7mmol / L Pluronic F68 0.03 w / v% Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL Phospholipase D 5.0 U / mL
  • FIG. 7 shows the results of changes in absorbance over time in each fraction after the addition of Reagent I. It can be seen that it reacts specifically to HDL3.
  • Example 6 Using the same method as in Example 3, the absorbance was measured using Reagent J and Reagent K having the composition described below.
  • Reagent J BES buffer (pH 7.0) 100 mmol / L HDAOS 0.7mmol / L Pluronic P103 0.03 w / v% Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL Phospholipase D 5.0 U / mL
  • Reagent K BES buffer (pH 6.6) 100 mmol / L Sodium azide 0.1% Emulgen 120 1.0% 4-aminoantipyrine 4.0 mmol / L Peroxidase 2.4 U / mL
  • FIG. 8 shows the results of the change in absorbance over time in each fraction after the addition of reagent K. It can be seen that it reacts specifically to HDL3.
  • Example 7 Using the same method as in Example 3, the absorbance was measured using the reagent J used in Example 5 and the reagent L having the composition described below.
  • FIG. 9 shows the results of changes in absorbance over time in each fraction after the reagent L was added. It can be seen that it reacts specifically to HDL3.
  • Example 8 The following reagent M is prepared and combined with reagent D to measure HDL-C (C is cholesterol, the same applies hereinafter) in the test sample.
  • HDL2-C was calculated by dividing the measured value of HDL3-C.
  • Table 6 shows the HDL-C, HDL3-C, and HDL2-C values of each specimen.
  • Reagent M BES buffer 100 mmol / L HDAOS 0.7mmol / L Pluronic P88 0.1 w / v% Catalase 600U / L Cholesterol oxidase 1.4U / mL Cholesterol esterase 0.8U / mL Phospholipase D 5.0 U / mL

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

要約 煩雑な操作を必要とすることなく、被検試料中の高密度リポタンパク質3(HDL3)中のコレステロールを定量する方法が開示されている。HDL3中のコレステロールの定量方法は、被検試料に高密度リポタンパク質3以外のリポタンパク質と反応する界面活性剤を反応させ、コレステロールを反応系外に移行させる第1工程と、反応系内に残存するコレステロールを定量する第2工程を含む。被検試料中のHDL3コレステロールを、超遠心や前処理といった煩雑な作業を必要とせずに自動分析装置で特異的に定量することが可能となった。また、従来技術である被検体中HDL総コレステロール定量法により得られた総HDLコレステロール量よりHDL3コレステロール量の差を算出することによりHDL2コレステロール量を定量することも可能となった。

Description

高密度リポタンパク質3中のコレステロールの定量方法
 本発明は、高密度リポタンパク質3(以下、「HDL3」と呼ぶことがある)中のコレステロール(HDL3中のコレステロールを以下、「HDL3コレステロール」と呼ぶことがある)の定量方法に関する。
 高密度リポ蛋白(HDL)コレステロールは動脈硬化壁を含めた各組織からコレステロールを受け取るため細胞内に蓄積したコレステロールの除去作用に関係し、そのためコレステロール逆転送系ともいわれている。冠動脈硬化などの動脈硬化疾患と負の相関があることが知られており、HDLが低値であることは脂質異常症の一つとして低値限界が設けられており、動脈硬化の指標として有用であることが知られている。
 HDLはアポタンパク質とリン脂質、コレステロール、中性脂肪から構成されている。HDLは比重がd=1.063~1.210g/mLであり、さらにd=1.063~1.125g/mLであるHDL2とd=1.125~1.210g/mLであるHDL3の2つの分画に分類される。リポ蛋白の分布曲線によりd=1.125部分にノッチが認められ、ここから比重の重い部分をHDL3とされる。また、HDL中のアポタンパク質のうちアポリポ蛋白E含有量差から、アポEの含有量の多いHDLをアポE-rich HDLとする亜分画の分け方も存在する。
 従来までのHDL蛋白全体だけではなく、HDL2およびHDL3それぞれの亜分画において異なった働きを示すことが知られている。臨床において、CETP欠損によりHDLがLDLやIDLに代謝されず、HDLコレステロール量が増加することが知られている。CETP欠損により増加したHDLはHDL2である。HDL2には抗動脈硬化作用があると言われている。また、CETP欠損によりアポE-rich HDLが上昇するとも言われており、Apo-E―richi HDLはコレステロール引き抜き能が強く抗血小板作用があり、HDLの中でもより善玉であるとも言われている。また、肝性リパーゼ活性の低下によりHDL3がHDL2に変化せず、HDL3が増加する。HDL3の増加による冠動脈疾患の発症率の増加が示唆されている。これらの傾向からHDL亜分画それぞれを測定することは、動脈硬化疾患の有無や原因を判断する助けとなることが予想される。また、現在、これらHDL亜分画の働きを踏まえ、CETPの働きを阻害し、LDLコレステロール量を減少させ、HDLコレステロール量を増加させる治療薬の開発が各メーカーで進められている。
 HDL亜分画の簡便な測定方法を確立することは詳細な働きの解明や、これらの治療の効果やへと繋がる可能性がある。
 現在までにHDL亜分画の測定法として知られているものとしては、超遠心法、高速液体クロマトグラフィ(HPLC)法、HDL3沈殿法(特許文献1)、NMR法、などが知られている。
 超遠心は遠心によりリポ蛋白の比重の差を利用して画分する方法であり、作業に熟練が必要なこと、日数がかかること、また費用も高額となる欠点がある。岡崎らによるHPLCを用いたHDL2とHDL3とを分ける方法では、作業に時間を要し、特別な機器が必要である。HDL3沈殿法は2価金属イオンおよびデキストラン硫酸を含む試薬によりHDL3以外を凝集させ、遠心により上清部分のHDL3を回収し自動分析装置で測定する方法である。やはり、作業に熟練が必要であること、また用手法であり検体の前処理操作が必要であることもあり、測定までにある程度の時間がかかるといった欠点があり、汎用的ではなかった。また、NMR法は磁気共鳴によりリポ蛋白の粒子数を計測する方法であるが、特殊な機械が必要であり、一般的ではない。
 なお、HDL亜画分の分析方法(特許文献2)が存在する。汎用自動分析装置により測定が可能であるが、界面活性剤を使用することによりHDL3以外のリポ蛋白を酵素の作用から阻害する方法を用いており、HDL3反応中において、目的以外のリポ蛋白質が存在していることなり、測定への影響、もしくは、阻害しきれなかった場合は、HDL3以外のリポ蛋白を測りこむ恐れがある。
 このような方法に変わり、簡便でかつコレステロール量をより選択的に定量できる試薬の発明が必要とされている。
特開2009-207463号公報 特開2001-346598号公報
 本発明の目的は、煩雑な操作を必要とすることなく、被検試料中のHDL3を定量する方法を提供することである。
 本願発明者らは、鋭意研究の結果、高密度リポタンパク質3以外のリポタンパク質と反応するが高密度リポタンパク質3とはほとんど反応しない界面活性剤を見出した。そして、被検試料にこのような界面活性剤を反応させ、次いで、残存するHDL3中のコレステロールを定量することにより被検試料中のHDL3コレステロールが定量可能であることに想到し、これが可能であることを実験的に確認して本発明を完成した。
 すなわち、本発明は、被検試料に高密度リポタンパク質3以外のリポタンパク質と反応する界面活性剤を反応させ、コレステロールを反応系外に移行させる第1工程と、反応系内に残存するコレステロールを定量する第2工程を含む、高密度リポタンパク質3中のコレステロールの定量方法を提供する。
 本発明により、被検試料中のHDL3コレステロールを、超遠心や前処理といった煩雑な作業を必要とせずに自動分析装置で特異的に定量することが可能となった。また、従来技術である被検体中HDL総コレステロール定量法により得られた総HDLコレステロール量よりHDL3コレステロール量の差を算出することによりHDL2コレステロール量を定量することも可能となった。
公知のHDL沈殿法(測定法A)と市販のHDL測定試薬を用いた測定結果の相関図である。 公知のHDL沈殿法(測定法A)と、本発明の定量方法による測定結果との相関図である。 本発明の実施例において行った、第2工程の試薬Dを添加してからの各分画の吸光度変化の結果を示す図である。 本発明の実施例において行った、第2工程の試薬Dを添加してからの各分画の吸光度変化の結果を示す図である。 本発明の実施例において行った、第2工程の試薬Gを添加してからの各分画の吸光度変化の結果を示す図である。 本発明の実施例において行った、第2工程の試薬Hを添加してからの各分画の吸光度変化の結果を示す図である。 本発明の実施例において行った、第2工程の試薬Iを添加してからの各分画の吸光度変化の結果を示す図である。 本発明の実施例において行った、第2工程の試薬Kを添加してからの各分画の吸光度変化の結果を示す図である。 本発明の実施例において行った、第2工程の試薬Lを添加してからの各分画の吸光度変化の結果を示す図である。
 本発明の方法に供される被検試料としては、その試料中のHDL3コレステロールを定量しようとするものであれば特に限定されないが、好ましくは、血清若しくは血漿又はこれらの希釈物であり、特に血清又はその希釈物が好ましい。
 本発明の第1工程では、被検試料にHDL3以外のリポタンパク質に反応する界面活性剤を反応させる。HDL3以外のリポタンパク質に反応する界面活性剤としては、ポリオキシエチレンジスチレン化フェニルエーテル等の非イオン界面活性剤;ポリオキシエチレン-ポリオキシプロピレン縮合物、アミドエーテルサルフェート及びポリオキシエチレン-ステアリルアミン等の陰イオン界面活性剤;ヤシ油脂肪酸―アミドプロピルジメチル-アミノ酢酸ベタイン、アルキルジメチル-アミノ酢酸ベタイン及びラウリルベタイン等の両性界面活性剤;並びにラウリルトリメチルアンモニウムクロライドのような陽イオン界面活性剤を挙げることができるがこれらに限定されるものではない。より具体的には、非イオン界面活性剤としてはポリオキシエチレンジスチレン化フェニルエーテルであるエマルゲンA500(商品名、花王社製、以下、会社名は製造会社であり、会社名が併記されているものは全て商品名である);陰イオンとしてはポリオキシエチレン-ポリオキシプロピレン縮合物であるプルロニックF127(旭電化)、プルロニックF68(旭電化)プルロニックP103(旭電化)、アミドエーテルサルフェートであるサンアミドCF-10(日本油脂)、ポリオキシエチレン-ステアリルアミンであるナイミーンS210(日本油脂);両性界面活性剤としてはヤシ油脂肪酸―アミドプロピルジメチル-アミノ酢酸ベタインであるニッサンアノンBDF-SF(日本油脂)、アルキルジメチル-アミノ酢酸ベタインであるニッサンアノンBF(日本油脂)、ラウリルベタインであるアンヒトール24B(花王);陽イオン界面活性剤としては、ラウリルトリメチルアンモニウムクロライドであるコータミン24P(花王)、が挙げられる。これらは単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 HDL3以外のリポタンパク質に反応する界面活性剤の濃度は、0.01~5.0重量%が好ましく、0.03~3.0重量%程度がより好ましい。
 本発明中において界面活性剤に対して「反応する」という言葉を用いる場合は、界面活性剤がリポ蛋白質に対して、反応系外に導くために酵素が作用しやすくする、もしくはリポ蛋白に対して酵素が作用できないよう保護することを意味する。
 被検試料に上記界面活性剤を反応させると、HDL3はほとんど反応を受けず、次工程において定量されることが可能となる。
 本願発明者らは、さらに、ホスフォリパーゼ及びスフィンゴミエリナーゼがリポタンパク質に作用するが、HDL3にはほとんど作用しないことを見出した。従って、上記した界面活性剤に加え、ホスフォリパーゼ及び/又はスフィンゴミエリナーゼを共存させることにより、HDL3コレステロールをさらに正確に定量できるので好ましい。
 ホスフォリパーゼとしては、少なくともホスファチジルコリンに作用するものであればよく、ホスフォリパーゼA、ホスフォリパーゼC及びホスフォリパーゼDが好ましく、特にホスフォリパーゼC及びホスフォリパーゼDが好ましい。ホスフォリパーゼ等は市販されているので、市販品を好ましく用いることができる。ホスフォリパーゼ等は単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 ホスフォリパーゼ等の終濃度(2種類以上のものが用いられる場合にはその合計濃度、以下同じ)は0.1~100U/mL程度が好ましく、0.2~50U/mL程度がより好ましい。
 なお、第1工程に界面活性剤を共存させる場合でも、反応条件(反応温度、時間、緩衝液等)は上記の通りである
 本発明の方法の第1工程では、ホスフォリパーゼ等の作用によりコレステロールを反応系外に移行させる。ここで、「反応系外に移行させる」とは、コレステロール及びそのエステルを消去又は保護することにより、その後の工程において、コレステロール及びそのエステルが関与しないようにすることを意味する。
 ここで、「消去」とは、被検試料中のリポ蛋白のコレステロールを分解し、その後の工程において、コレステロール測定の反応に作用させないようにすることである。リポ蛋白コレステロールを消去するための方法としては、コレステロールエステラーゼ及びコレステロールオキシダーゼを作用させ発生した過酸化水素を、カタラーゼを用いて水と酸素に分解する方法が挙げられる。また、ペルオキシダーゼを用いて水素供与体と発生した過酸化水素を反応させ無色キノンに転化してもよいが、これらに限定されるものではない。コレステロールの消去の方法自体はこの分野において周知であり、下記実施例にも具体的に記載されている。
 「保護」とは、被検試料中のリポ蛋白をその後の工程においてコレステロール測定に反応しないように、保護を行なうことである。リポ蛋白を保護するのには、各リポ蛋白をコレステロールエステラーゼ及びコレステロールオキシダーゼが作用しないように特異的に保護する界面活性剤を用いる方法が挙げられるが、これらに限定されるものではない。
 第1工程は、上記界面活性剤を反応させる工程と、露出したコレステロールを反応系外に移行させる工程とを逐次的に行うことも可能であるが、試薬中に、上記界面活性剤と、露出したコレステロールを反応系外に移行させるための酵素系や界面活性剤を同時に添加しておくことにより、両工程を単一の工程として同時に行うこともできる。後者が簡便で好ましい。
 第1工程において、コレステロールエステラーゼ及びコレステロールオキシダーゼを用いる場合、コレステロールエステラーゼの濃度(本明細書において、濃度は特に断りがない限り終濃度を意味する)は0.1~10.0U/mL程度が好ましく、0.2~2.0U/mL程度がより好ましい。コレステロールオキシダーゼの濃度は0.05~10.0U/mL程度が好ましく、0.1~1.0U/mL程度がより好ましい。なお、コレステロールエステラーゼは、エステル型コレステロールに作用するものであれば、特に制限されるものではなく、例えば、旭化成社製のコレステロールエステラーゼ(CEBP、CEN)や東洋紡社製のコレステロールエステラーゼ(COE-311、COE-312)などの市販品を用いることができる。また、コレステロールオキシダーゼは、遊離型コレステロールに作用するものであれば、特に制限されるものではなく、例えば、旭化成社製のコレステロールオキシダーゼ(CONII)や東洋紡社製のコレステロールオキシダーゼ(COO-311、COO-321、COO-331)などの市販品を用いることができる。
 第1工程において、ペルオキシダーゼを用いる場合、ペルオキシダーゼの濃度は2.0~5.0単位/mL程度が好ましく、さらに3.0~4.0単位/mL程度が好ましい。また、無色キノンに転化する化合物を用いる場合、その濃度は0.4~0.8mm0l/L程度が好ましい。
 第一工程で用いる反応液には通常の生化学反応に用いられる各種の緩衝液を使用することができ、pHが5~8の間であるのが好ましい。溶液としては、グッド、トリス、リン酸、グリシンの緩衝溶液が好ましく、グッド緩衝液であるビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシエチル)メタン(Bis-Tris)、ピペラジンー1、4-ビス(2-エタンスルフォン酸)(PIPES)、ピペラジンー1、4-ビス(2-エタンスルフォン酸)、1.5ナトリウム塩、一水和物(PIPES1.5Na)、3-モルホリノプロパンスルホン酸(MOPSO)、N、N-ビス(2-ヒドロキシエチル)―2―アミノエタンスルフォン酸(BES)、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルフォン酸(HEPES)およびピペラジン-1、4-ビス(2-ヒドロキシー3-プロパンスルフォン酸)(POPSO)が好ましい。
 第一工程の反応温度は25~40℃程度が好ましく、さらに35~38℃が好ましく、37℃が最も好ましい。反応時間は特に限定されず、通常、2~10分程度である。
 続く第2工程では、反応系内に残存するコレステロールを定量する。これは、少なくともHDL3と反応する界面活性剤を反応させ、露出したコレステロールを定量することにより行うことができる。「少なくともHDL3と反応する界面活性剤」には、HDL3と特異的に反応する界面活性剤、HDLと特異的に反応する(すなわち、HDL2とHDL3に反応する)界面活性剤及び全てのリポタンパク質に反応する界面活性剤が包含される。
 第2工程に用いることができる界面活性剤としては、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンラウリルエーテル及びp-イソオクチルポリオキシエチレンフェノールホルムアルデヒドポリマー等の非イオン界面活性剤;ラウリルジメチル-アミノ酢酸ベタイン及びポリオキシエチレンラウリルエーテル等の両性界面活性剤;脂肪酸族リン酸エステル等の陽イオン界面活性剤;ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル及びポリオキシエチレンクミルフェニルエーテル等の、HLBが11~14の間の非イオン界面活性剤;イミダゾリン型の両性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル及びポリオキシエチレンアルキルフェニルエーテル等の非イオン界面活性剤;ラウリルアルコールアルコキシレート及びポリオキシエチレン-アルキルフェニルエーテル硫酸エステルナトリウム塩のような陰イオン界面活性剤を挙げることができる。これらは単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 より具体的には、HDL3に特異的に反応する界面活性剤の例としては、非イオン界面活性剤として、ポリオキシエチレンジスチレン化フェニルエーテルであるエマルゲンA90(花王)、ポリオキシエチレンラウリルエーテルであるエマルゲン120(花王)、P-イソオクチルポリオキシエチレンフェノールホルムアルデヒドポリマーであるTriton-WR-1339(ナカライ);両性界面活性剤として、ラウリルジメチル-アミノ酢酸ベタインであるニッサンアノンBL-SF(日本油脂)、ポリオキシエチレンラウリルエーテルであるパーソフトNK-100(日本油脂);陽イオン界面活性剤として脂肪酸族リン酸エステルであるアデカコールPS-440E(旭電化)が挙げられる。
 HDLに特異的に反応する界面活性剤としては、HLBが11~14の間の非イオン界面活性剤である、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシエチレンクミルフェニルエーテル、もしくは、両性界面活性剤のイミダゾリン型を用いることができる。具体的には、例えばエマルゲンA60(花王)、エマルゲンB66(花王)、エマルゲンLS110(花王)、Newcol-CMP-11(日本乳化剤)、Newcol-710(日本乳化剤)、Newcol-610(日本乳化剤)、Newcol-2609(日本乳化剤)、ニッサンアノンGLM-R-LV(日本油脂)を使用することが可能である。
 全てのリポ蛋白に特異的に反応する界面活性剤としては、非イオン界面活性剤としてポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルを使用することができる。陰イオン界面活性剤として、ラウリルアルコールアルコキシレート、ポリオキシエチレンーアルキルフェニルエーテル硫酸エステルナトリウム塩を使用することができる。具体的には、例えばエマルゲン707(花王)、エマルゲン909(花王)、エマルゲン108(花王)、ナイミーンL207(日本油脂)、アデカトールLB83(旭電化)、アデカトールLB103(旭電化)、Newcol-707(日本乳化剤)、を使用することが可能である。
 第二工程における界面活性剤の濃度は0.01~5.0%(w/v)が好ましく、さらには0.05~2.0%(w/v)が好ましい。
 第2工程においては、これらの界面活性剤の反応によりコレステロールを定量する。なお、第1工程と第2工程では異なる界面活性剤を用いる。コレステロールの定量方法自体は周知であり、周知のいずれの方法をも採用することができ、下記実施例にも具体的に記載されている。例えば、リポ蛋白中のエステル型コレステロールにコレステロールエステラーゼを用いて加水分解し、遊離型コレステロールと脂肪酸が生じ、生じた遊離型コレステロールと元来リポ蛋白中に存在する遊離コレステロールとをコレステロールオキシダーゼを用いてコレステノンと過酸化水素を発生させ、これをペルオキシダーゼの存在下でキノン色素を形成させ定量する。キノン色素を発生させる化合物として、例えばHDAOS(N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン)、DAOS(N-エチル-N(-2-ヒドロキシ-3-スルホプロピル)-3, 5-ジメトキシアニリンナトリウム)又はTOOS(N-エチル-N(-2-ヒドロキシ- 3-スルホプロピル)-3-メチルアニリンナトリウム二水和物)と4-アミノアンチピリンが挙げられるが、キノン色素を発生させることができる組み合わせであればこれらに限定されるものではない。第1工程でコレステロールエステラーゼ及びコレステロールオキシダーゼを用いる場合には、第2工程では、第1工程で用いたコレステロールエステラーゼ及びコレステロールオキシダーゼをそのまま用いることができ、新たに添加する必要はない。
 キノン色素を発生させる化合物の濃度は、例えば、HDAOSであれば濃度は0.5~2.0mmol/L程度が好ましく、4-アミノアンチピリンであれば0.1~2.0mmol/Lが好ましく、また、ペルオキシダーゼの濃度は0.4~5.0U/mLが好ましい。また、第一工程で発生した過酸化水素をカタラーゼで分解する工程ではカタラーゼの阻害剤であるアジ化ナトリウムを使用し、第二工程の反応液中へ添加する。この場合のアジ化ナトリウムの濃度は、通常、0.1g/L~1.0g/L程度である。
 第2工程の他の反応条件(反応温度、時間、緩衝液、pH等)は上記した第1工程の反応条件と同様でよい。
 さらに、被検試料中のHDLコレステロール量から第一工程と第二工程から得られたHDL3コレステロール量の差を算出し、被検試料中のHDL2コレステロール量を求めることも可能である。被検試料中のHDLコレステロール量を求める方法は周知であり(例えば、特開2001-103998号公報)、そのためのキットも市販されているので、それらを用いて容易に定量することができる。
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
参考例1
 以下の試薬組成の試薬Aと試薬Bを調製し、試薬Aに各種界面活性剤を0.1%(w/v)または1.0%(W/V)濃度添加した試薬をそれぞれ調製した。測定直前に各種界面活性剤入りの下記試薬Aと試薬Bを1:3の割合で混合し、HDL2分画とHDL3分画のコレステロールを反応させ、主波長700nm、副波長600nmでの終吸光度を測定し比較した。
 HDL2分画とHDL3分画は、以下の様にして画分した。HDLを含む被検試料、すなわち、血清に塩化ナトリウム及び臭化ナトリウムを用いた溶液を用いて、超遠心によりHDL2とHDL3との境目の比重(1.125)で別れるように画分し、それぞれの画分を回収した。
 下記表1には、HDL2/HDL3の率が0.75以下で、CM~IDL/HDL3、LDL/HDL3が0.75以下である界面活性剤を示し、これらをHDL3に反応する界面活性剤とする。表2には、HDL2/HDL3の率が1.25以上で、CM~IDL/HDL2、LDL/HDL2の率が1.25以上である界面活性剤を示し、これらをHDL3以外に反応する界面活性剤とする。表3には、HDL2/HDL3の率が0.75~1.25間で、CM~IDL/HDL2、LDL/HDL2、CM~IDL/HDL3、LDL/HDL3の率が0.75以下である界面活性剤を示し、これらをHDLに反応する界面活性剤とする。表4には、HDL2/HDL3の率が0.75~1.25間で、CM~IDL/HDL2、LDL/HDL2、CM~IDL/HDL3、LDL/HDL3の率が0.75以上である界面活性剤を示し、これらを全てのリポ蛋白に反応する界面活性剤とする。表5には、上記にあてはまらない界面活性剤を示しこれらを、HDL以外に反応する界面活性剤とする。
試薬A
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
試薬B
 BES緩衝液 (pH6.6) 100mmol/L
 アジ化ナトリウム 0.1%
 4-アミノアンチピリン 4.0mmol/L 
 ペルオキシダーゼ 2.4U/mL
Figure JPOXMLDOC01-appb-T000001
(単位:Abs×10000)
 エマルゲンA90、エマルゲン120、ニッサンアノンBL-SF、Triton-WR-1339、パーソフトNK-100、アデカトールPS440EがHDL3に特異的に反応する界面活性剤であった。
Figure JPOXMLDOC01-appb-T000002
(単位:Abs×10000)
 エマルゲンA500、ニッサンアノンBDF-SF、ニッサンアノンBF、ナイミーンS210、プルロニックP103、コータミン24P、サンアミドCF-10、アンヒトール24B、プルロニックF68、プルロニックF127がHDL3以外に反応する界面活性剤であった。
Figure JPOXMLDOC01-appb-T000003
(単位:Abs×10000)
 エマルゲンB66、エマルゲンA60、エマルゲンLS110、Nowol610、Newcol2609、Newcol-CMP-11、ニッサンアノンGLM-RLV、Newcol-710がHDLに特異に反応する界面活性剤であった。
Figure JPOXMLDOC01-appb-T000004
(単位:Abs×10000)
 エマルゲン108、エマルゲン707、Newcol707、アデカトールLB83、アデカトールLB103、エマルゲン909が全てのリポ蛋白に特異に反応する界面活性剤であった。
Figure JPOXMLDOC01-appb-T000005
(単位:Abs×10000)
 Newcol-714、Newcol-723、Newcol2614、ナイミーンS215、プルロニックP123、レベノールWX、ナイミッドMT215、ノニオンHS220、プルロニックF88がHDL以外に特異に反応する界面活性剤であった。
実施例1
 HDL3以外のコレステロールを消去する試薬Cと、試薬Cを反応させた産物中のHDLを測定する工程の試薬Dを以下の組成で調製した。血清16検体を測定し、HDL3沈澱法との相関を取った。なお、調製試薬の比較対照としてはHDL測定試薬(デンカ生研社製)を用いた。
 測定は、血清2μLに下記試薬Cを150μL添加し、5分加温反応の後、試薬Dを添加しさらに5分加温反応させ、主波長700nm、副波長600nmの吸光度を測定した。なお、公知のHDL3沈澱法の操作は特開2009-207463に従った。同血清をHDL測定試薬で測定し、同じくHDL3沈澱法(測定法Aとする)との相関を取り、調製試薬との比較をした。
試薬C
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 サンアミドCF-10 1%
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
試薬D
 BES緩衝液 (pH6.6) 100mmol/L
 アジ化ナトリウム 0.1%
 エマルゲンB66 1.5%
 4-アミノアンチピリン 4.0mmol/L
 ペルオキシダーゼ  2.4U/mL
 相関図を図1及び図2に示す。図1が測定法AとHDL測定試薬との相関図、図2が測定法Aと試薬Cおよび試薬Dとの相関図である。
 HDLのHDL3沈澱法との相関係数はr=-0.051であり、試薬C、Dを用いて測定した値は、HDL3沈澱法との相関係数がr=0.74であった。よって、HDL測定法よりもよりHDL3と良好な相関関係が認められ、よりHDL3を特異的に測定している。
 また、超遠心を用いてCM~HDL2分画とHDL3分画を画分し、上記の試薬で測定を行ない、それぞれの測定時間における吸光度を測定した。試薬Dを添加してからの吸光度変化の結果を図3に示す。図3からわかるように、HDL3以外のリポ蛋白よりもHDL3に対して特異的に反応する。
実施例2
 超遠心を用いてCM~LDL分画、HDL2分画、HDL3分画を画分し、参考例1で使用した試薬AにホスフォリパーゼD(PLDP)を加えた試薬Eとを反応させ、さらに、上記試薬Dを添加し、測定を行なった。測定は、血清2μLに試薬Eを150μL添加し、5分加温反応の後、試薬Dを添加しさらに5分加温反応させ、主波長700nm、副波長600nmの吸光度を測定した。
試薬E
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
 ホスフォリパーゼD  5.0U/mL
 試薬Dが添加されてからの各分画における吸光度の経時変化の結果を図4に示す。HDL3に対して特異的に反応するのが見て取れる。
実施例3
 参考例1で使用した試薬Aに界面活性剤とスフィンゴミエリナーゼを加えた試薬Fと、試薬Fを反応させた産物中のHDL3を測定する工程の試薬Gを以下の組成で調製し、超遠心を用いてCM~IDL間の分画、LDL分画、HDL2分画、HDL3分画を画分し、測定を行なった。試薬の測定手順は実施例2と同様に実施し、それぞれの測定時間における吸光度を測定した。
試薬F
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 プルロニックF68 0.03w/v%
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
 スフィンゴミエリナーゼ  0.5U/mL
試薬G
 BES緩衝液 (pH6.6) 100mmol/L
 アジ化ナトリウム 0.1%
 エマルゲンA90 2.0%
 4-アミノアンチピリン 4.0mmol/L
 ペルオキシダーゼ  2.4U/mL
 試薬Gが添加されてからの各分画における吸光度の経時変化の結果を図5に示す。HDL3に対して特異的に反応することが見て取れる。
実施例4
 実施例3と同様の方法を用いて、実施例2で使用した試薬EのホスフォリパーゼをホスフォリパーゼCに変更し界面活性剤を添加した試薬Hを用いて、吸光度を測定した。
試薬H
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 プルロニックF68 0.03w/v%
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
 ホスフォリパーゼC  5.0U/mL
 試薬Hが添加されてからの各分画における吸光度の経時変化の結果を図6に示す。HDL3に対して特異的に反応することが見て取れる。
実施例5
 実施例3と同様の方法を用いて、実施例4で使用した試薬HのホスフォリパーゼをホスフォリパーゼD(PLDP)に変更し界面活性剤を添加した試薬Iを用いて、吸光度を測定した。
試薬I
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 プルロニックF68 0.03w/v%
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
 ホスフォリパーゼD  5.0U/mL
 試薬Iが添加されてからの各分画における吸光度の経時変化の結果を図7に示す。HDL3に対して特異的に反応することが見て取れる。
実施例6
 実施例3と同様の方法を用いて、下記に記載の組成の試薬Jおよび試薬Kを用いて、吸光度を測定した。
試薬J
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 プルロニックP103 0.03w/v%
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
 ホスフォリパーゼD  5.0U/mL
試薬K
 BES緩衝液 (pH6.6) 100mmol/L
 アジ化ナトリウム 0.1%
 エマルゲン120 1.0%
 4-アミノアンチピリン 4.0mmol/L
 ペルオキシダーゼ  2.4U/mL
 試薬Kが添加されてからの各分画における吸光度の経時変化の結果を図8に示す。HDL3に対して特異的に反応することが見て取れる。
実施例7
 実施例3と同様の方法を用いて、実施例5で使用した試薬Jと下記に記載の組成の試薬Lを用いて、吸光度を測定した。
試薬L
 BES緩衝液 (pH6.6) 100mmol/L
 アジ化ナトリウム 0.1%
 エマルゲン909 1.0%
 4-アミノアンチピリン 4.0mmol/L
 ペルオキシダーゼ  2.4U/mL
 試薬Lが添加されてからの各分画における吸光度の経時変化の結果を図9に示す。HDL3に対して特異的に反応することが見て取れる。
実施例8
 以下の試薬Mを調製し、試薬Dと組み合わせることにより被検試料中のHDL-C(Cはコレステロール、以下同様)を測定し、その値から、実施例5の試薬I、試薬Dを使用しHDL3-Cを測定した値を除する事によりHDL2-Cを算出した。それぞれの検体のHDL-C、HDL3-C、HDL2-C値を表6に示す。
試薬M
 BES緩衝液 (pH7.0) 100mmol/L
 HDAOS  0.7mmol/L
 プルロニックP88 0.1w/v%
 カタラーゼ  600U/L
 コレステロールオキシダーゼ  1.4U/mL
 コレステロールエステラーゼ  0.8U/mL
 ホスフォリパーゼD  5.0U/mL
Figure JPOXMLDOC01-appb-T000006
(単位:mAbs)

Claims (13)

  1.  被検試料に高密度リポタンパク質3以外のリポタンパク質と反応する界面活性剤を反応させ、コレステロールを反応系外に移行させる第1工程と、反応系内に残存するコレステロールを定量する第2工程を含む、高密度リポタンパク質3中のコレステロールの定量方法。
  2.  前記界面活性剤が、ポリオキシエチレンジスチレン化フェニルエーテルである少なくとも1種の非イオン界面活性剤である請求項1記載の方法。
  3.  前記界面活性剤が、ポリオキシエチレン-ポリオキシプロピレン縮合物、アミドエーテルサルフェート及びポリオキシエチレン-ステアリルアミンから成る群より選ばれる少なくとも1種の陰イオン界面活性剤である請求項1記載の方法。
  4.  前記界面活性剤が、ヤシ油脂肪酸―アミドプロピルジメチル-アミノ酢酸ベタイン、アルキルジメチル-アミノ酢酸ベタイン及びラウリルベタインから成る群より選ばれる少なくとも1種の両性界面活性剤である請求項1記載の方法。
  5.  前記界面活性剤が、ラウリルトリメチルアンモニウムクロライドである陽イオン界面活性剤である請求項1記載の方法。
  6.  前記第2工程を、少なくとも高密度リポタンパク質3と反応する界面活性剤の存在下で行う請求項1~5のいずれか1項に記載の方法。
  7.  第2工程で用いる界面活性剤が、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンラウリルエーテル及びp-イソオクチルポリオキシエチレンフェノールホルムアルデヒドポリマーから成る群より選ばれる少なくとも1種の非イオン界面活性剤である請求項6記載の方法。
  8.  第2工程で用いる界面活性剤が、ラウリルジメチル-アミノ酢酸ベタイン、ポリオキシエチレンラウリルエーテルから成る群より選ばれる少なくとも1種の両性界面活性剤である請求項6記載の方法。
  9.   第2工程で用いる界面活性剤が、脂肪酸族リン酸エステルである少なくとも1種の陽イオン界面活性剤である請求項6記載の方法。
  10.  第2工程で用いられる界面活性剤が、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル及びポリオキシエチレンクミルフェニルエーテルから成る群より選ばれる少なくとも1種の、HLBが11~14の間の非イオン界面活性剤である請求項6記載の方法。
  11.  第2工程で用いる界面活性剤が、イミダゾリン型の少なくとも1種の両性界面活性剤である請求項6記載の方法。
  12.  第2工程で用いる界面活性剤が、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル及びポリオキシエチレンアルキルフェニルエーテルから成る群より選ばれる少なくとも1種の請求項6記載の方法。
  13.  第2工程で用いる界面活性剤が、ラウリルアルコールアルコキシレート及びポリオキシエチレン-アルキルフェニルエーテル硫酸エステルナトリウム塩から成る群より選ばれる少なくとも1種の陰イオン界面活性剤である請求項6記載の方法。
PCT/JP2011/066674 2010-07-23 2011-07-22 高密度リポタンパク質3中のコレステロールの定量方法 WO2012011556A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137003549A KR101833350B1 (ko) 2010-07-23 2011-07-22 고밀도 리포단백질3 중의 콜레스테롤의 정량 방법
AU2011280489A AU2011280489B2 (en) 2010-07-23 2011-07-22 Method for quantifying the amount of cholesterol in high-density lipoprotein 3
JP2012525433A JP5671029B2 (ja) 2010-07-23 2011-07-22 高密度リポタンパク質3中のコレステロールの定量方法
DK11809726.0T DK2597468T3 (en) 2010-07-23 2011-07-22 PROCEDURE FOR QUANTIFYING THE QUANTITY OF CHOLESTEROL IN HIGH DENSITY LIPOPROTEIN 3
CN201180036041.0A CN103080748B (zh) 2010-07-23 2011-07-22 高密度脂蛋白3中的胆固醇的定量方法
EP11809726.0A EP2597468B1 (en) 2010-07-23 2011-07-22 Method for quantifying the amount of cholesterol in high-density lipoprotein 3
US13/809,223 US8932865B2 (en) 2010-07-23 2011-07-22 Method for quantifying the amount of cholesterol in high-density lipoprotein 3
CA2811150A CA2811150C (en) 2010-07-23 2011-07-22 Method for quantifying the amount of cholesterol in high-density lipoprotein 3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-166376 2010-07-23
JP2010166376 2010-07-23

Publications (1)

Publication Number Publication Date
WO2012011556A1 true WO2012011556A1 (ja) 2012-01-26

Family

ID=45496974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066674 WO2012011556A1 (ja) 2010-07-23 2011-07-22 高密度リポタンパク質3中のコレステロールの定量方法

Country Status (9)

Country Link
US (1) US8932865B2 (ja)
EP (1) EP2597468B1 (ja)
JP (1) JP5671029B2 (ja)
KR (1) KR101833350B1 (ja)
CN (1) CN103080748B (ja)
AU (1) AU2011280489B2 (ja)
CA (1) CA2811150C (ja)
DK (1) DK2597468T3 (ja)
WO (1) WO2012011556A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130344518A1 (en) * 2011-03-16 2013-12-26 Kumamoto Health Science University Method for measuring cholesterol in hdl subfraction, and reagents and kit therefor
JP2015023801A (ja) * 2013-07-24 2015-02-05 デンカ生研株式会社 高密度リポタンパク質3中のコレステロールの定量方法及び定量試薬
JPWO2014034823A1 (ja) * 2012-08-31 2016-08-08 協和メデックス株式会社 高密度リポ蛋白中のコレステロールの測定方法
JP2017060522A (ja) * 2016-12-20 2017-03-30 デンカ生研株式会社 高密度リポ蛋白(hdl)中のコレステロールの定量方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057333A1 (ja) * 2010-10-29 2012-05-03 アークレイ株式会社 低密度リポタンパク質中のコレステロールの測定方法及び測定用キット
JP6022165B2 (ja) * 2012-01-25 2016-11-09 デンカ生研株式会社 高密度リポタンパク質3中のコレステロールの定量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299A (ja) * 1995-06-21 1997-01-07 Internatl Reagents Corp 高比重リポ蛋白分画中のコレステロールの定量方法及び定量用試薬キット
WO1998047005A1 (fr) * 1997-04-14 1998-10-22 Denka Seiken Co., Ltd. Procede pour determiner le taux de cholesterol present dans des lipoproteines de basse densite
WO1999010526A1 (fr) * 1997-08-27 1999-03-04 Daiichi Pure Chemicals Co., Ltd. Methodes de quantification de cholesterol des lipoproteines de haute densite
JP2001103998A (ja) 1996-12-09 2001-04-17 Denka Seiken Co Ltd 高密度リポ蛋白中のコレステロール定量用試薬
JP2001346598A (ja) 2000-06-07 2001-12-18 Internatl Reagents Corp Hdl亜画分の分析方法
WO2005100591A1 (ja) * 2004-04-15 2005-10-27 Kyowa Medex Co., Ltd. 高密度リポ蛋白中のコレステロールの測定方法
JP2009207463A (ja) 2008-03-06 2009-09-17 Denka Seiken Co Ltd Hdl3−cの測定方法及びhdl3−c測定用試薬

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799835B2 (ja) * 1995-01-31 1998-09-21 第一化学薬品株式会社 コレステロールの定量方法
JP3193634B2 (ja) * 1996-05-29 2001-07-30 第一化学薬品株式会社 Ldlコレステロールの定量方法
JP4428863B2 (ja) * 1998-09-18 2010-03-10 協和メデックス株式会社 リポ蛋白中のコレステロールの分別定量方法および定量用試薬
CN1379235A (zh) * 2002-05-10 2002-11-13 肖洪武 高密度脂蛋白胆固醇测定方法及试剂
CN101373190A (zh) * 2002-11-27 2009-02-25 积水医疗株式会社 特定脂蛋白中的脂质测定法
WO2007037419A1 (ja) * 2005-09-30 2007-04-05 Denka Seiken Co., Ltd. 生体試料中の2項目の測定対象物の同時分別定量方法
CN101078729B (zh) * 2006-05-10 2012-07-18 富士胶片株式会社 高密度脂蛋白胆固醇的测定方法
CA2679309C (en) * 2007-02-28 2015-05-26 Denka Seiken Co., Ltd. Reagent for quantitative determination of small, dense ldls
KR101586505B1 (ko) * 2007-10-10 2016-01-18 덴카 세이켄 가부시키가이샤 소입자 고비중 ldl 콜레스테롤의 정량 방법 및 키트
JP5813284B2 (ja) * 2009-10-26 2015-11-17 デンカ生研株式会社 ApoE−containingHDL中コレステロールの測定方法
US20130171674A1 (en) * 2010-07-23 2013-07-04 Denka Seiken Co., Ltd. Method for quantifying the amount of cholesterol in high-density lipoprotein 3

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299A (ja) * 1995-06-21 1997-01-07 Internatl Reagents Corp 高比重リポ蛋白分画中のコレステロールの定量方法及び定量用試薬キット
JP2001103998A (ja) 1996-12-09 2001-04-17 Denka Seiken Co Ltd 高密度リポ蛋白中のコレステロール定量用試薬
WO1998047005A1 (fr) * 1997-04-14 1998-10-22 Denka Seiken Co., Ltd. Procede pour determiner le taux de cholesterol present dans des lipoproteines de basse densite
WO1999010526A1 (fr) * 1997-08-27 1999-03-04 Daiichi Pure Chemicals Co., Ltd. Methodes de quantification de cholesterol des lipoproteines de haute densite
JP2001346598A (ja) 2000-06-07 2001-12-18 Internatl Reagents Corp Hdl亜画分の分析方法
WO2005100591A1 (ja) * 2004-04-15 2005-10-27 Kyowa Medex Co., Ltd. 高密度リポ蛋白中のコレステロールの測定方法
JP2009207463A (ja) 2008-03-06 2009-09-17 Denka Seiken Co Ltd Hdl3−cの測定方法及びhdl3−c測定用試薬

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597468A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130344518A1 (en) * 2011-03-16 2013-12-26 Kumamoto Health Science University Method for measuring cholesterol in hdl subfraction, and reagents and kit therefor
US9080201B2 (en) * 2011-03-16 2015-07-14 Kyowa Medex Co., Ltd. Method for measuring cholesterol in HDL subfraction, and reagents and kit therefor
KR101924663B1 (ko) 2011-03-16 2018-12-03 교와 메덱스 가부시키가이샤 Hdl 소분획 중의 콜레스테롤의 측정 방법, 측정용 시약 및 측정용 키트
JPWO2014034823A1 (ja) * 2012-08-31 2016-08-08 協和メデックス株式会社 高密度リポ蛋白中のコレステロールの測定方法
JP2015023801A (ja) * 2013-07-24 2015-02-05 デンカ生研株式会社 高密度リポタンパク質3中のコレステロールの定量方法及び定量試薬
US20160161512A1 (en) * 2013-07-24 2016-06-09 Denka Seiken Co., Ltd. Method and reagent for quantifying cholesterol in high density lipoprotein 3
US11041869B2 (en) * 2013-07-24 2021-06-22 Denka Company Limited Method and reagent for quantifying cholesterol in high density lipoprotein 3
JP2017060522A (ja) * 2016-12-20 2017-03-30 デンカ生研株式会社 高密度リポ蛋白(hdl)中のコレステロールの定量方法

Also Published As

Publication number Publication date
DK2597468T3 (en) 2017-05-15
KR20130043184A (ko) 2013-04-29
JP5671029B2 (ja) 2015-02-18
CN103080748A (zh) 2013-05-01
CA2811150A1 (en) 2012-01-26
JPWO2012011556A1 (ja) 2013-09-09
EP2597468B1 (en) 2017-03-15
KR101833350B1 (ko) 2018-02-28
CN103080748B (zh) 2015-05-27
EP2597468A4 (en) 2014-01-15
EP2597468A1 (en) 2013-05-29
AU2011280489B2 (en) 2015-07-16
CA2811150C (en) 2019-01-22
US8932865B2 (en) 2015-01-13
AU2011280489A1 (en) 2013-03-14
US20130157374A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5706418B2 (ja) 高密度リポタンパク質3中のコレステロールの定量方法
JP5671029B2 (ja) 高密度リポタンパク質3中のコレステロールの定量方法
US20210278424A1 (en) Method and reagent for quantifying cholesterol in high density lipoprotein 3
JP5653434B2 (ja) 高密度リポタンパク質3中のコレステロールの定量方法
US8906638B2 (en) Method for quantification of remnant-like lipoprotein cholesterol and kit for same
JP5956420B2 (ja) 高密度リポタンパク質2中のコレステロールの定量方法およびそのための試薬キット
JP2014030393A (ja) 高密度リポ蛋白(hdl)中のコレステロールの定量方法
TWI597364B (zh) Quantitation of subcomponents of cholesterol (-C) in high density lipoprotein (HDL)
JP6022165B2 (ja) 高密度リポタンパク質3中のコレステロールの定量方法
WO2019177093A1 (ja) 高密度リポ蛋白質中のコレステロールの定量方法
JP2010148526A (ja) 低密度リポ蛋白中のコレステロールの定量方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036041.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525433

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003549

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011809726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011809726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13809223

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2811150

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011280489

Country of ref document: AU

Date of ref document: 20110722

Kind code of ref document: A