WO2012011516A1 - 光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法 - Google Patents

光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法 Download PDF

Info

Publication number
WO2012011516A1
WO2012011516A1 PCT/JP2011/066512 JP2011066512W WO2012011516A1 WO 2012011516 A1 WO2012011516 A1 WO 2012011516A1 JP 2011066512 W JP2011066512 W JP 2011066512W WO 2012011516 A1 WO2012011516 A1 WO 2012011516A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
trifluoromethyl
phenyl
ethane
bromo
Prior art date
Application number
PCT/JP2011/066512
Other languages
English (en)
French (fr)
Inventor
太一 日下部
健之介 松田
浩市 山▲崎▼
忠明 扇谷
公幸 渋谷
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to EP11809686.6A priority Critical patent/EP2597079A4/en
Priority to US13/811,651 priority patent/US9272966B2/en
Priority to IN1326CHN2013 priority patent/IN2013CN01326A/en
Priority to CN2011800357009A priority patent/CN102985395A/zh
Priority to JP2012525419A priority patent/JP5793143B2/ja
Publication of WO2012011516A1 publication Critical patent/WO2012011516A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/04Preparation of halogenated hydrocarbons by addition of halogens to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for producing optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane useful as a raw material for producing pharmaceuticals, agricultural chemicals, industrial products and the like.
  • the optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethyl group is important as a structural unit of a compound useful for pharmaceuticals and agricultural chemicals, and 1-bromo is used as a raw material for the production of a compound containing this group.
  • -1- [3,5-bis (trifluoromethyl) phenyl] ethane is a very useful compound.
  • 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is used as a raw material to produce a compound that acts as an NK-1 receptor antagonist (non- Patent Documents 1 and 2).
  • Racemic 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane can be synthesized by the method shown in Scheme 1 below (Patent Document 1). This method reduces 3,5-bis (trifluoromethyl) acetophenone with sodium borohydride in methanol to convert it to an alcohol compound, which is brominated with phosphorus tribromide in toluene. It includes a process.
  • Racemic 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane can also be synthesized by the method of Scheme 2 below (Non-patent Document 3).
  • 3 ′, 5′-bis (trifluoromethyl) acetophenone is reduced with sodium borohydride in methanol to give an alcohol compound, which is then brominated by treatment with hydrobromic acid and sulfuric acid. It includes a process.
  • Patent Document 1 and Non-Patent Document 3 do not specifically show a method for producing optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane.
  • Optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol is an asymmetric reduction reaction of bis-3 ′, 5 ′-(trifluoromethyl) phenylacetophenone, or bis-3,5- ( One of the enantiomers can be obtained with high optical purity by the asymmetric methylation reaction of (trifluoromethyl) benzaldehyde. Therefore, if a high optical purity alcohol as a starting material can be converted into 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane while maintaining high optical purity, the production method can be This is a simple and efficient production method. However, a method for efficiently producing 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane using an optically active alcohol as a starting material while maintaining high optical purity has not been known.
  • Non-patent Document 5 As a general method for brominating a hydroxyl group, a method is known in which alkyl alcohol or benzyl alcohol is converted to a leaving group such as a sulfonate ester and brominated by a bromide ion substitution reaction (non-patent). Reference 4). Further, when phosphorus tribromide is allowed to act on optically active 1-phenylethanol in diethyl ether in the presence of an excess amount of pyridine at a low temperature, 1-phenylbromo is obtained in a high yield (conversion rate 93.9%). It has been reported that ethane can be obtained (Non-patent Document 5).
  • Non-patent Document 6 a method of exchanging a hydroxyl group with a halogen using 1,2-dibromo-1,1,2,2-tetrachloroethane and triphenylphosphine
  • Non-patent Document 7 A method for exchanging a hydroxyl group with a halogen has also been reported (Non-patent Document 7).
  • these methods are applied to optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol to maintain 1-bromo-1- [3,5-bis (trimethyl) while maintaining high optical purity. It has not been previously known that fluoromethyl) phenyl] ethane can be produced.
  • a method for preparing an optically active compound a method in which a racemate is resolved by chiral column chromatography is generally performed.
  • the method of supplying the optically active substance by optically resolving the racemate may cause decomposition of the target product. It may be accompanied by racemization, and it is expected that the optically active substance cannot be supplied stably.
  • Non-Patent Document 2 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is used as a raw material as a racemate, and a mixture of the obtained diastereomers is used. A method is adopted in which the optically separated target is separated by two-stage optical resolution.
  • the object of the present invention is to use optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol as a raw material while maintaining high optical purity and optically active 1-bromo-1- [3,5-bis.
  • the object is to provide a method for producing (trifluoromethyl) phenyl] ethane efficiently and in high yield.
  • Non-Patent Document 4 optically active (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol.
  • R optically active
  • a bromine substitution exchange reaction takes place between the desired benzyl bromide once generated and the bromide ion present in the reaction system, and the resulting 1-bromo-1- [3,5-bis (tri Fluoromethyl) phenyl] ethane was almost completely racemized (see Comparative Example 1).
  • a) a method using a combination of phosphorus halide and bromide as a brominating agent, and b) 1,2-dibromo-1,1,2 in the presence of a solvent 2-tetrachloroethane and a method using a combination of organophosphorus compounds such as triphenylphosphine, or c) a method using a combination of N-bromosuccinimide and dialkyl sulfide in the presence of a solvent.
  • optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol
  • a process for producing optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane wherein a) a combination of phosphorus halide and hydrogen bromide as a brominating agent B) 1,2-dibromo-1,1,2,2-tetrachloroethane and general formula (I): P (R 1 ) (R 2 ) (R 3 ) (wherein R 1 , R 2 , and R 3 each independently represents a C 6-10 aryl group, a C 6-10 aryloxy group, a C 1-10 alkyl group, a C 1-10 alkoxyl group, a C 3-6 cycloalkyl group, or a C 3-6 cycloalkoxyl.
  • the optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol is (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol.
  • optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is (R) -1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane
  • optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol is (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol
  • optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is (S) -1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane Serial method is provided.
  • the above method wherein the phosphorus halide is phosphorus tribromide; the above method using hydrobromic acid as hydrogen bromide; bromide as hydrogen bromide
  • the above method using an acetic acid solution of hydrogen; the above using phosphorus tribromide in the range of 0.4 to 0.6 equivalents relative to optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol.
  • the above method in which the reaction is carried out in the presence of a solvent; the above method in which the organic phosphorus compound represented by the general formula (I) is triphenylphosphine; 1,2-Dibromo-1,1,2,2-tetrachloroethane is used in the range of 1.0 to 1.2 equivalents based on optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol.
  • the above method in which the reaction is carried out in the presence of a solvent; the above method in which the dialkyl sulfide is dimethyl sulfide; and N-bromosuccinimide is optically active 1- [ 3,5-bis (trifluoromethyl) phenyl]
  • the above method used in an amount of 1.4 to 1.6 equivalents based on ethanol; dimethyl sulfide is optically active 1- [3,5-bis (trifluoromethyl) Phenyl]
  • the above method used in the range of 1.7 to 1.9 equivalents with respect to ethanol; the above method wherein the solvent is a halogenated hydrocarbon; the above method wherein the solvent is dichloromethane; the reaction temperature is from 0 to 30
  • a method as described above is provided which is in ° C.
  • the present invention provides optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane.
  • the present invention also provides optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane that can be obtained by the above production method.
  • the optical purity of the optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is 97.0% ee to 99.5% ee.
  • optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane which is useful as a raw material for producing pharmaceuticals, agricultural chemicals, and industrial products, is optically active 1- [ It can be produced from 3,5-bis (trifluoromethyl) phenyl] ethanol in a single step with a high yield while maintaining the optical purity of the raw material without complicated operations.
  • the method of the present invention is a method for producing optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane, wherein a) a combination of phosphorus halide and hydrogen bromide as a brominating agent B) 1,2-dibromo-1,1,2,2-tetrachloroethane and general formula (I): P (R 1 ) (R 2 ) (R 3 ) (wherein R 1 , R 2 , and R 3 each independently represents a C 6-10 aryl group, a C 6-10 aryloxy group, a C 1-10 alkyl group, a C 1-10 alkoxyl group, a C 3-6 cycloalkyl group, or a C 3-6 cycloalkoxyl.
  • the optically active 1- [3,5-bis (trifluoromethyl) phenyl] ethanol used as a raw material in the method of the present invention is an asymmetric reduction reaction of bis-3,5- (trifluoromethyl) phenylmethylketone, or bis It can be produced by a known method such as asymmetric methylation reaction of -3,5- (trifluoromethyl) benzaldehyde, and any one of the enantiomers can be obtained with high optical purity.
  • phosphorus bromide such as phosphorus tribromide, phosphorus pentabromide, and phosphorus oxybromide can be used.
  • phosphorus bromide phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, etc. It may be used. Two or more types of phosphorus halides may be used in combination. Of these, phosphorus bromide is preferred, and phosphorus tribromide is particularly preferred.
  • hydrogen bromide in addition to hydrobromic acid, an acetic acid solution of hydrogen bromide such as a 30% acetic acid solution can be used.
  • the combination of phosphorus halide and hydrogen bromide is preferably a combination of phosphorus tribromide and acetic acid solution of hydrogen bromide.
  • Phosphorus halides such as phosphorus tribromide can be used in the range of 0.5 to 2.0 equivalents relative to the raw material alcohol, but preferably 0.4 to 0.6 equivalents.
  • Hydrogen bromide can be used, for example, in the range of 0.7 to 3.0 equivalents relative to the starting alcohol, but preferably 0.8 to 1.2 equivalents.
  • the above reaction can be carried out in the presence or absence of a solvent.
  • the type of solvent used is not particularly limited as long as it does not participate in the reaction.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, chlorobenzene, 1,2-dichlorobenzene, nitrobenzene; n-pentane, n-hexane, cyclohexane, n-heptane, n-octane, Aliphatic hydrocarbons such as n-decane; halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform and carbon tetrachloride.
  • benzene, toluene, xylene, dichloromethane, 1,2-dichloroethane, n-pentane, n-hexane, and n-heptane can be used, and n-heptane can be more preferably used.
  • These solvents can be used alone or in combination, and the amount of the solvent used is not particularly limited.
  • the reaction temperature is not particularly limited, but it may be usually in the range of ⁇ 50 to 150 ° C., more preferably ⁇ 20 to 80 ° C., and particularly preferably 0 to 15 ° C.
  • the reaction time is usually preferably 5 minutes to 48 hours, more preferably 30 minutes to 36 hours, and particularly preferably 12 to 24 hours.
  • a crude product can be obtained by performing a normal post-treatment operation.
  • the obtained crude product is subjected to purification operations such as activated carbon treatment, distillation, column chromatography, etc., if necessary, to give optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl.
  • Ethane can be obtained with high chemical and optical purity.
  • the optical purity of optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is, for example, 95% ee or more, preferably 96% ee or more, but is not particularly limited. Absent.
  • phosphorus halides such as phosphorus tribromide and hydrogen bromide such as hydrobromic acid used in the method using the combination of (a) above are used in general bromination reactions, and kainic acid and citric acid.
  • examples of the C 6-10 aryl group include a phenyl group, a naphthyl group, and an azulenyl group.
  • examples of the C 6-10 aryloxy group include a phenoxy group, a naphthyloxy group, and an azulenyloxy group.
  • Examples of the C 1-10 alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, octyl group. Group, nonyl group, decyl group and the like.
  • Examples of the C 1-10 alkoxyl group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an isobutoxy group, a t-butoxy group, a pentoxy group, and a hexyloxy group. Octyloxy group, nonyloxy group, decyloxy group and the like.
  • Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • Examples of the C 3-6 cycloalkoxyl group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group, and the like.
  • R 1 , R 2 , and R 3 are preferably C 6-10 aryl groups, and R 1 , R 2 , and R 3 are phenyl groups. In some cases, i.e., triphenylphosphine is more preferred.
  • 1,2-Dibromo-1,1,2,2-tetrachloroethane can be used, for example, in the range of 1.0 to 3.0 equivalents relative to the starting alcohol, but preferably 1.0 to 1.2. Equivalent amounts should be used.
  • the organophosphorus compound represented by the general formula (I), such as triphenylphosphine, can be used in the range of, for example, 1.0 to 3.0 equivalents relative to the raw material alcohol, but preferably 1.0 to 1. Two equivalents should be used.
  • the above reaction can be preferably performed in the presence of a solvent.
  • the type of solvent used is not particularly limited as long as it does not participate in the reaction.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, chlorobenzene, 1,2-dichlorobenzene, and nitrobenzene; n-pentane, n-hexane, cyclohexane, n-heptane, and n-octane.
  • aliphatic hydrocarbons such as n-decane; halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, and carbon tetrachloride.
  • benzene, toluene, xylene, dichloromethane, or 1,2-dichloroethane is preferable, and toluene, dichloromethane, or 1,2-dichloroethane is more preferable.
  • These solvents can be used alone or in combination, and the amount of the solvent used is not particularly limited.
  • the reaction temperature is not particularly limited, but it may be usually in the range of ⁇ 50 to 150 ° C., more preferably ⁇ 20 to 80 ° C., and particularly preferably 0 to 30 ° C.
  • the reaction time is preferably preferably 5 minutes to 48 hours, more preferably 30 minutes to 36 hours, and particularly preferably 1 to 12 hours.
  • a crude product can be obtained by performing a normal post-treatment operation.
  • the obtained crude product is subjected to purification operations such as activated carbon treatment, distillation, column chromatography, etc., if necessary, to give optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl.
  • Ethane can be obtained with high chemical and optical purity.
  • the optical purity of optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is, for example, 95% ee or more, preferably 96% ee or more, but is not particularly limited. Absent.
  • the two alkyl groups in the dialkyl sulfide may be the same or different, but are preferably the same.
  • the alkyl group the above C 1-10 alkyl group, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, pentyl group, A hexyl group, an octyl group, a nonyl group, a decyl group, etc. are mentioned.
  • a methyl group can be used as the two alkyl groups.
  • N-bromosuccinimide can be used, for example, in the range of 1.0 to 3.0 equivalents relative to the raw material alcohol, preferably 1.0 to 1.8 equivalents, more preferably 1.4 to 1. 6 equivalents should be used.
  • a dialkyl sulfide such as dimethyl sulfide can be used in the range of 1.0 to 3.0 equivalents relative to the raw material alcohol, preferably 1.5 to 2.0 equivalents, more preferably 1.7 to 1 equivalents. .9 equivalents should be used.
  • the above reaction can be preferably performed in the presence of a solvent.
  • the type of solvent used is not particularly limited as long as it does not participate in the reaction.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, chlorobenzene, 1,2-dichlorobenzene, and nitrobenzene; n-pentane, n-hexane, cyclohexane, n-heptane, and n-octane.
  • aliphatic hydrocarbons such as n-decane; halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, and carbon tetrachloride.
  • benzene, toluene, xylene, dichloromethane, or 1,2-dichloroethane is preferable, and toluene, dichloromethane, or 1,2-dichloroethane is more preferable.
  • These solvents can be used alone or in combination, and the amount of the solvent used is not particularly limited.
  • the reaction temperature is not particularly limited, but it may be usually in the range of ⁇ 50 to 150 ° C., more preferably ⁇ 20 to 80 ° C., and particularly preferably 0 to 30 ° C.
  • the reaction time is preferably preferably 5 minutes to 48 hours, more preferably 30 minutes to 36 hours, and particularly preferably 1 to 12 hours.
  • a crude product can be obtained by performing a normal post-treatment operation.
  • the obtained crude product is subjected to purification operations such as activated carbon treatment, distillation, column chromatography, etc., if necessary, to give optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl.
  • Ethane can be obtained with high chemical and optical purity.
  • the optical purity of optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane is, for example, 95% ee or more, preferably 96% ee or more, but is not particularly limited. Absent.
  • Example 1 The absolute configuration of 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane shown in Example 1 below is a commercially available known absolute configuration as shown in Examples 1-4 and 1-5. To ⁇ - [3,5-bis (trifluoromethyl) phenyl] ethylamine, which was determined by comparing the sign of specific rotation.
  • (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol has (S) -1- [3,5-bis (trifluoromethyl) phenyl having an optical purity of 99.5% and 98%.
  • optical purity % ee
  • conversion rate (%) % ee of product /% ee of raw material alcohol.
  • Example 1-1 (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (1.0 g, 3.87 mmol,> 99.5% ee) in an argon atmosphere on a water bath at 20 ° C. or lower with three odors Phosphorus bromide (0.52 g, 1.94 mmol) was added dropwise, and the mixture was stirred at 19-22 ° C. for 30 minutes. The reaction mixture was cooled, hydrogen bromide (30% acetic acid solution) (0.76 mL, 3.87 mmol) was added dropwise at 0 ° C. or lower, and the mixture was stirred at 13-15 ° C. for 18 hours.
  • Phosphorus bromide 0.52 g, 1.94 mmol
  • Example 1-2 Three odors of (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (1.0 g, 3.87 mmol,> 99.5% ee) in water bath at 20 ° C. or lower under argon atmosphere Phosphorus bromide (0.52 g, 1.94 mmol) was added dropwise, and the mixture was stirred at 19-22 ° C. for 30 minutes. The reaction mixture was cooled, hydrogen bromide (30% acetic acid solution) (0.76 mL, 3.87 mmol) was added dropwise at 0 ° C. or lower, and the mixture was stirred at 13-15 ° C. for 18 hours.
  • Phosphorus bromide 0.52 g, 1.94 mmol
  • Example 1-3 In a heptane suspension (2 mL) of (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (1.0 g, 3.87 mmol,> 99.5% ee) under an argon atmosphere, 0 to Phosphorus tribromide (0.52 g, 1.94 mmol) was added dropwise at 5 ° C., and the mixture was stirred at 0 to 5 ° C. for 30 minutes. Hydrogen bromide (30% acetic acid solution) (0.76 mL, 3.87 mmol) was added dropwise to the reaction solution at 0 to 5 ° C., and the mixture was stirred at 10 ° C. for 17 hours.
  • Example 1-4 A dimethylformamide solution of 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane (first peak: 96.8% ee, 102 mg, 0.32 mmol) obtained in Example 1-1 ( 1 mL) was added sodium azide (62.0 mg, 0.95 mmol), and the mixture was stirred at ⁇ 18 to ⁇ 15 ° C. for 3 hours.
  • Example 1-5 The ⁇ - [3,5-bis (trifluoromethyl) phenyl] ethylamine obtained in Example 1-5 is in the S form by comparing the sign of specific rotation with that of a commercially available standard amine. There was found. That is, since the amine is obtained from 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane via a nucleophilic substitution reaction of an azide ion, it is obtained in Example 1-1. It was confirmed that 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane was R form (chiral HPLC analysis: first peak).
  • a bromination reaction using phosphorus tribromide was performed under the conditions shown in Table 1 in the same manner as in Examples 1-1 and 1-2.
  • the isolation yield, optical purity (% ee), and conversion (% ee of product /% ee of raw material) are shown in Table 1.
  • (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol has (S) -1- [3,5-bis (trifluoromethyl) phenyl having an optical purity of 99.5% and 98%.
  • optical purity % ee
  • conversion rate (%) % ee of product /% ee of raw material alcohol.
  • Example 2-1 Under an argon atmosphere, 1,2-dibromo-1,1,2,2-tetrachloroethane (7.57 g, 23.2 mmol) was dissolved in toluene (12.5 mL), and triphenylphosphine (6. 1 g, 23.2 mmol) was added and stirred for 30 minutes. A toluene solution (12.5 mL) of (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (5.0 g, 19.4 mmol,> 99.5% ee) was added at 0 ° C. for 10 minutes. After dripping over the above, the temperature was raised to room temperature and stirred at the same temperature for 1 hour.
  • Example 2-2 Under an argon atmosphere, 1,2-dibromo-1,1,2,2-tetrachloroethane (7.57 g, 23.2 mmol) was dissolved in toluene (12.5 mL), and triphenylphosphine (6. 1 g, 23.2 mmol) was added and stirred for 30 minutes. A toluene solution (12.5 mL) of (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (5.0 g, 19.4 mmol,> 99.5% ee) was added at 0 ° C. for 10 minutes. After dripping over the above, the temperature was raised to room temperature and stirred at the same temperature for 1 hour.
  • Example 2-3 Under an argon atmosphere, dimethyl sulfide (105 ⁇ L, 1.40 mmol) was added dropwise over 3 minutes to a suspension of N-bromosuccinimide (206 mg, 1.16 mmol) in anhydrous dichloromethane (3.8 mL) under ice cooling. . At ⁇ 20 ° C., a solution of (S) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (200 mg, 0.78 mmol,> 99.5% ee) in anhydrous dichloromethane (2 mL) was added dropwise. And stirred at room temperature for 9 hours.
  • Example 2-4 Under an argon atmosphere, dimethyl sulfide (53 ⁇ L, 0.70 mmol) was added dropwise over 3 minutes to a suspension of N-bromosuccinimide (103 mg, 0.58 mmol) in anhydrous dichloromethane (2.0 mL) under ice cooling. . At ⁇ 20 ° C., a solution of (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (100 mg, 0.39 mmol,> 99.5% ee) in anhydrous dichloromethane (1 mL) was added dropwise. And stirred at room temperature for 6 hours.
  • Example 2-5 Dimethylformamide solution of 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane (first peak:> 99.5% ee, 106 mg, 0.33 mmol) obtained in Example 2-1 To (1 mL) was added sodium azide (64.4 mg, 0.99 mmol), and the mixture was stirred at ⁇ 18 to ⁇ 15 ° C. for 4 hours.
  • Example 2-6 The ⁇ - [3,5-bis (trifluoromethyl) phenyl] ethylamine obtained in Example 2-6 is in the S form by comparing the sign of specific rotation with a commercially available standard amine. There was found. That is, since the amine is obtained from 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane via a nucleophilic substitution reaction of an azide ion, it is obtained in Example 2-1. It was confirmed that 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane was R form (chiral HPLC analysis: first peak).
  • DCM dichloromethane
  • 1,2-DCE 1,2- dichloroethane
  • NBS N-bromosuccinimide
  • THF tetrahydrofuran
  • DMF N, N- dimethylformamide
  • TMSCl trimethylsilyl chloride
  • PyHBr 3 pyridinium tribromide
  • HMDS 1,1,1,2,2,2-hexamethyldisilane
  • DEAD diethyl azodicarboxylate
  • Example 3 (comparative example) With reference to Japanese Patent No. 39386651, dichloromethane of (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (optical purity> 99.5% ee, 1.6 g, 6.20 mmol) (20 mL) The solution was added with methanesulfonyl chloride (0.58 mL, 7.44 mmol), triethylamine (1.30 mL, 9.3 mmol), and dimethylaminopyridine (76 mg, 0.62 mmol) under ice-cooling and stirring. And stirred for 30 minutes. 1N hydrochloric acid and chloroform were added to the reaction solution at the same temperature, and the organic layer was separated.
  • Example 4 (comparative example) (R) -1- [3,5-bis (trifluoromethyl) phenyl] ethanol (optical purity> 99.5% ee, 100 mg, 0.39 mmol) in dehydrated diethyl ether (1.0 mL) solution under argon atmosphere Dehydrated pyridine (69.4 mg, 0.89 mmol) was added. A solution of phosphorus tribromide (117.2 mg, 0.43 mmol) in dehydrated diethyl ether (0.5 mL) was slowly added dropwise at ⁇ 15 to ⁇ 20 ° C., stirred at the same temperature for 2 hours, and then at ⁇ 5 ° C.
  • the method of the present invention is an industrially applicable condition for optically active 1-bromo-1- [3,5-bis (trifluoromethyl) phenyl] ethane, which is useful as a raw material for producing pharmaceuticals, agricultural chemicals, and industrial products. And can be produced efficiently and in high yield.

Abstract

 高い光学純度を有する1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法であって、臭素化剤としてa)ハロゲン化リン及び臭化水素の組み合わせ、b)1,2-ジブロモ-1,1,2,2-テトラクロロエタン及び一般式(I):P(R1)(R2)(R3)(式中、R1、R2、及びR3はそれぞれ独立にC6-10アリール基、C6-10アリールオキシ基、C1-10アルキル基、C1-10アルコキシル基、C3-6シクロアルキル基、又はC3-6シクロアルコキシル基を示す)で表される有機リン化合物の組み合わせ、又はc)N-ブロモコハク酸イミド及びジアルキルスルフィドの組み合わせのいずれかを用いて光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを臭素化する工程を含む方法。

Description

光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法
 本発明は、医薬、農薬、及び工業製品などの製造原料として有用な光学活性な1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法に関する。
 光学活性な1-[3,5-ビス(トリフルオロメチル)フェニル]エチル基は医薬や農薬などに有用な化合物の構成単位として重要であり、この基を含む化合物の製造用原料として1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンは極めて有用な化合物である。たとえば、NK-1レセプター・アンタゴニストとして作用する化合物を製造するために1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを原料として使用することが開示されている(非特許文献1及び2)。しかしながら、このような重要な用途があるにもかかわらず、1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンについてはラセミ体の製造方法しか知られておらず、光学活性化合物の製造方法については具体的な製造方法の報告例はない。
 ラセミ体の1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンは下記スキーム1に示す方法によって合成することができる(特許文献1)。この方法は、3,5-ビス(トリフルオロメチル)アセトフェノンをメタノール中で水素化ホウ素ナトリウムにより還元してアルコール化合物に変換し、このアルコール化合物をトルエン中で三臭化リンを用いて臭素化する工程を含んでいる。
Figure JPOXMLDOC01-appb-C000001
 ラセミ体の1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンは下記スキーム2の方法によっても合成が可能である(非特許文献3)。この方法は、3',5’-ビス(トリフルオロメチル)アセトフェノンをメタノール中で水素化ホウ素ナトリウムにより還元してアルコール化合物とし、このアルコール化合物を臭化水素酸及び硫酸で処理して臭素化する工程を含んでいる。しかしながら、特許文献1及び非特許文献3には光学活性の1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを製造する方法は具体的に示されていない。
Figure JPOXMLDOC01-appb-C000002
 光学活性な1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールは、ビス-3',5'-(トリフルオロメチル)フェニルアセトフェノンの不斉還元反応、またはビス-3,5-(トリフルオロメチル)ベンズアルデヒドの不斉メチル化反応によって、いずれか一方の鏡像体を高い光学純度で得ることができる。従って、出発原料として高い光学純度のアルコールを高い光学純度を維持したまま1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンへ変換することができれば、該製造方法は工業的に簡便で且つ効率のよい製造方法となる。しかしながら、光学活性アルコールを出発原料として、高い光学純度を維持したまま1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを効率よく製造する方法は従来知られていない。
 一方、水酸基を臭素化する一般的な方法として、アルキルアルコールやベンジルアルコールをスルホン酸エステルなどの脱離基に変換し、臭化物イオンによる置換反応により臭素化を行う方法が知られている(非特許文献4)。また、光学活性な1-フェニルエタノールに対してジエチルエーテル中で過剰量のピリジン存在下に低温で三臭化リンを作用させると、高収率(転化率93.9%)で1-フェニルブロモエタンが得られることが報告されている(非特許文献5)。
Figure JPOXMLDOC01-appb-C000003
 さらに、1,2-ジブロモ-1,1,2,2-テトラクロロエタン及びトリフェニルホスフィンを用いて水酸基をハロゲンに交換する方法(非特許文献6)、及びN-ブロモコハク酸イミド及びジメチルスルフィドを用いて水酸基をハロゲンに交換する方法も報告されている(非特許文献7)。しかしながら、これらの方法を光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに適用して、高い光学純度を維持したまま1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを製造できることは従来知られていない。
Figure JPOXMLDOC01-appb-C000004
 なお、光学活性な化合物の調製方法として、ラセミ体をキラルカラムクロマトグラフィーにより分割する方法が一般的に行われている。しかしながら、1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンは反応性が高いことから、ラセミ体を光学分割して光学活性体を供給する方法では目的物の分解やラセミ化を伴う可能性があり、光学活性体を安定に供給することができないことが予想される。前記の非特許文献2においても、1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンはラセミ体のまま原料として使用されており、得られたジアステレオマーの混合物を2段階の光学分割により分離して光学活性な目的物に導く方法が採用されている。
Figure JPOXMLDOC01-appb-C000005
国際公開第2008/129951号パンフレット 国際公開第2007/044829号パンフレット
J. Am. Chem. Soc. 125, 2129-2135 (2003). J. Org. Chem. 71, 7378-7390 (2006). Tetrahedron Lett. 48, 8001-8004 (2007). J. Org. Chem. 26, 3645-3649 (1961). Indian J. Chem., Sec B, 44B, 557-562 (2005). Synthesis Commun., 139-141 (1983) Tetrahedron Lett., 42, 4339-4342 (1972)
 本発明の課題は 光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを原料として用いて、高い光学純度を維持しつつ光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを効率的かつ高収率に製造する方法を提供することにある。
 本発明者らは上記の課題を解決すべく鋭意研究を行い、上記非特許文献4の臭素化法を光学活性な(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに適用したところ、一旦生じた所望のベンジルブロミドと反応系中に存在する臭化物イオンとの間で臭素の置換交換反応が起こり、得られた1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンはほぼ完全にラセミ化してしまうという結果を得た(比較例1参照)。また、(R)-1-[3、5-ビス(トリフルオロメチル)フェニル]エタノールに対して上記非特許文献5と同様の条件下で臭素化反応を行ったところ、所望のベンジルブロミドは低収率でしか得られないという結果を得た(比較例2参照)。これらの臭素化条件では、反応系中に一旦生じた所望のベンジルブロミドと臭化物イオンが共存することになり、目的物が臭化物イオンとさらに反応してラセミ体が生成してしまうものと考えられた。
 本発明者らはさらに研究を行ったところ、臭素化剤としてa)ハロゲン化リンと臭化物との組み合わせを用いる手法、b)溶媒の存在下にて、1,2-ジブロモ-1,1,2,2-テトラクロロエタンとトリフェニルホスフィンなどの有機リン化合物との組み合わせを用いる手法、又はc)溶媒の存在下にて、N-ブロモコハク酸イミド及びジアルキルスルフィドの組み合わせを用いる手法のいずれかの手法で、光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを臭素化することにより、高い光学純度を維持したまま所望の光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを製造できることを見出した。
 すなわち、本発明により、光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法であって、臭素化剤としてa)ハロゲン化リン及び臭化水素の組み合わせ、b)1,2-ジブロモ-1,1,2,2-テトラクロロエタン及び一般式(I):P(R1)(R2)(R3)(式中、R1、R2、及びR3はそれぞれ独立にC6-10アリール基、C6-10アリールオキシ基、C1-10アルキル基、C1-10アルコキシル基、C3-6シクロアルキル基、又はC3-6シクロアルコキシル基を示す)で表される有機リン化合物の組み合わせ、又はc)N-ブロモコハク酸イミド及びジアルキルスルフィドの組み合わせのいずれかを用いて光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを臭素化する工程を含む方法が提供される。
 上記方法の好ましい態様によれば、光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールが(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールであり、かつ光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンが(R)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンである上記の方法;光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールが(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールであり、かつ光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンが(S)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンである上記の方法が提供される。
 上記(a)の組み合わせを用いる手法の好ましい態様によれば、ハロゲン化リンが三臭化リンである上記の方法;臭化水素として臭化水素酸を用いる上記の方法;臭化水素として臭化水素の酢酸溶液を用いる上記の方法;三臭化リンを光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに対して0.4~0.6当量の範囲で用いる上記の方法;臭化水素を光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに対して0.8~1.2当量の範囲で用いる上記の方法;溶媒の非存在下で行う上記の方法;溶媒としてヘプタンを用いる上記の方法;反応温度が10~15℃である上記の方法が提供される。
 上記(b)の組み合わせを用いる手法の好ましい態様によれば、反応を溶媒の存在下に行う上記の方法;一般式(I)で表される有機リン化合物がトリフェニルホスフィンである上記の方法;1,2-ジブロモ-1,1,2,2-テトラクロロエタンを光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに対して1.0~1.2当量の範囲で用いる上記の方法;トリフェニルホスフィンを光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに対して1.0~1.2当量の範囲で用いる上記の方法;溶媒が芳香族炭化水素類又はハロゲン化炭化水素類である上記の方法;溶媒がトルエン、ジクロロメタン、又は1,2-ジクロロエタンである上記の方法;及び反応温度が0~30℃である上記の方法が提供される。
 上記(c)の組み合わせを用いる手法の好ましい態様によれば、反応を溶媒の存在下に行う上記の方法;ジアルキルスルフィドがジメチルスルフィドである上記の方法;N-ブロモコハク酸イミドを光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに対して1.4~1.6当量の範囲で用いる上記の方法;ジメチルスルフィドを光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールに対して1.7~1.9当量の範囲で用いる上記の方法;溶媒がハロゲン化炭化水素類である上記の方法;溶媒がジクロロメタンである上記の方法;反応温度が0~30℃である上記の方法が提供される。
 別の観点からは、本発明により光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンが提供される。また、本発明により上記の製造方法で得ることができる光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンが提供される。好ましくは、該光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの光学純度は97.0%ee~99.5%eeである。
 本発明の方法によれば、医薬、農薬、及び工業製品などの製造原料として有用な光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールから煩雑な操作を伴うことなく原料の光学純度をそのまま保ちつつ一工程で高収率で製造することができる。
 本発明の方法は、光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法であって、臭素化剤としてa)ハロゲン化リン及び臭化水素の組み合わせ、b)1,2-ジブロモ-1,1,2,2-テトラクロロエタン及び一般式(I):P(R1)(R2)(R3)(式中、R1、R2、及びR3はそれぞれ独立にC6-10アリール基、C6-10アリールオキシ基、C1-10アルキル基、C1-10アルコキシル基、C3-6シクロアルキル基、又はC3-6シクロアルコキシル基を示す)で表される有機リン化合物の組み合わせ、又はc)N-ブロモコハク酸イミド及びジアルキルスルフィドの組み合わせのいずれかを用いて光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを臭素化する工程を含むことを特徴としている。上記(b)又は(c)の組み合わせによる臭素化剤を用いる場合には、反応を溶媒の存在下で行うことが好ましい。
 本発明の方法において原料として用いる光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールは、ビス-3,5-(トリフルオロメチル)フェニルメチルケトンの不斉還元反応、またはビス-3,5-(トリフルオロメチル)ベンズアルデヒドの不斉メチル化反応などの公知の方法により製造することができ、いずれか一方の鏡像体を高い光学純度で得ることができる。
 上記(a)の組み合わせを用いる手法について以下詳しく説明する。
 ハロゲン化リンとしては三臭化リン、五臭化リン、オキシ臭化リンなどの臭化リンを用いることができるが、臭化リンのほか、三塩化リン、五塩化リン、オキシ塩化リンなどを用いてもよい。2種以上のハロゲン化リンを組み合わせて用いてもよい。これらのうち臭化リンが好ましく、三臭化リンが特に好ましい。臭化水素としては、臭化水素酸のほか、臭化水素の酢酸溶液、例えば30%酢酸溶液などを用いることができる。ハロゲン化リン及び臭化水素の組み合わせとしては三臭化リンと臭化水素の酢酸溶液との組み合わせが好ましい。
 三臭化リンなどのハロゲン化リンは原料アルコールに対して例えば0.5~2.0当量の範囲で使用することができるが、好ましくは0.4~0.6当量を用いるのがよい。臭化水素は原料アルコールに対して例えば0.7~3.0当量の範囲で使用することができるが、好ましくは0.8~1.2当量を用いるのがよい。
 上記反応は溶媒の存在下又は非存在下で行うことができる。溶媒の存在下で反応を行う場合、使用する溶媒の種類は反応に関与しないものであれば特に制限はない。溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、1,2-ジクロロベンゼン、ニトロベンゼン等の芳香族炭化水素類;n-ペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、n-デカン等の脂肪族炭化水素類;ジクロロメタン、1,2-ジクロロエタン、クロロホルム及び四塩化炭素等のハロゲン化炭化水素類等が挙げられる。好ましくは、ベンゼン、トルエン、キシレン、ジクロロメタン、1,2-ジクロロエタン、n-ペンタン、n-ヘキサン、n-ヘプタンを用いることができ、n-ヘプタンをより好ましく用いることができる。これらの溶媒は単独又は組み合わせて使用することもでき、溶媒の使用量は特に制限されない。
 反応温度は特に限定されないが、通常は-50~150℃の範囲で行えばよく、-20~80℃がより好ましく、0~15℃が特に好ましい。反応時間は、通常5分~48時間が好ましく、30分~36時間がより好ましく、12~24時間が特に好ましい。
 反応終了後、通常の後処理操作を行うことにより、粗生成物を得ることができる。得られた粗生成物は、必要に応じて、活性炭処理、蒸留、カラムクロマトグラフィー等の精製操作を行うことにより、光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを高い化学純度及び光学純度で得ることができる。光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの光学純度としては、例えば95%ee以上、好ましくは96%ee以上であるが、特に限定されることはない。
 なお、上記(a)の組み合わせを用いる方法で用いる三臭化リンなどのハロゲン化リン及び臭化水素酸などの臭化水素は一般的な臭素化反応に用いられており、カイニン酸、クエン酸ペントキシベリン、ホスフェストロール、及びメシル酸ベタヒスチン等の製造(第13改正日本薬局方解説書、1996年、廣川書店)にも用いられているように工業的規模での生産にも適した汎用試薬であることから、本発明の方法は工業的な応用に適した方法である。
 上記(b)の組み合わせを用いる手法について以下詳しく説明する。
 一般式(I)で表される有機リン化合物において、C6-10アリール基としては、例えば、フェニル基、ナフチル基、アズレニル基等が挙げられる。C6-10アリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、アズレニルオキシ基等が挙げられる。C1-10アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基等が挙げられる。C1-10アルコキシル基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基、ペントキシ基、ヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基等が挙げられる。C3-6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。C3-6シクロアルコキシル基としては、例えば、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 一般式(I)で表される有機リン化合物としては、R1、R2、及びR3がC6-10アリール基であることが好ましく、R1、R2、及びR3がフェニル基である場合、すなわちトリフェニルホスフィンがより好ましい。
 1,2-ジブロモ-1,1,2,2-テトラクロロエタンは原料アルコールに対して例えば1.0~3.0当量の範囲で使用することができるが、好ましくは1.0~1.2当量を用いるのがよい。一般式(I)で表される有機リン化合物、例えばトリフェニルホスフィンは原料アルコールに対して例えば1.0~3.0当量の範囲で使用することができるが、好ましくは1.0~1.2当量を用いるのがよい。
 上記反応は、好ましくは溶媒の存在下で行うことができる。溶媒の存在下で反応を行う場合、使用する溶媒の種類は反応に関与しないものであれば特に制限はない。溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、1,2-ジクロロベンゼン、及びニトロベンゼン等の芳香族炭化水素類;n-ペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、及びn-デカン等の脂肪族炭化水素類;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、及び四塩化炭素等のハロゲン化炭化水素類等が挙げられる。これらのうち、ベンゼン、トルエン、キシレン、ジクロロメタン、又は1,2-ジクロロエタンが好ましく、トルエン、ジクロロメタン、又は1,2-ジクロロエタンがより好ましい。これらの溶媒は単独又は組み合わせて使用することもでき、溶媒の使用量は特に制限されない。
 反応温度は特に限定されないが、通常は-50~150℃の範囲で行えばよく、-20~80℃がより好ましく、0~30℃が特に好ましい。反応時間は、通常5分~48時間が好ましく、30分~36時間がより好ましく、1~12時間が特に好ましい。
 反応終了後、通常の後処理操作を行うことにより、粗生成物を得ることができる。得られた粗生成物は、必要に応じて、活性炭処理、蒸留、カラムクロマトグラフィー等の精製操作を行うことにより、光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを高い化学純度及び光学純度で得ることができる。光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの光学純度としては、例えば95%ee以上、好ましくは96%ee以上であるが、特に限定されることはない。
 上記(c)の組み合わせを用いる手法について以下詳しく説明する。
 ジアルキルスルフィドにおける2個のアルキル基は同一でも異なっていてもよいが、同一であることが好ましい。アルキル基としては上記のC1-10アルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基等が挙げられる。好ましくは2個のアルキル基としてメチル基を用いることができる。
 N-ブロモコハク酸イミドは原料アルコールに対して例えば1.0~3.0当量の範囲で使用することができるが、好ましくは1.0~1.8当量、より好ましくは1.4~1.6当量を用いるのがよい。ジアルキルスルフィド、例えばジメチルスルフィドは原料アルコールに対して例えば1.0~3.0当量の範囲で使用することができるが、好ましくは1.5~2.0当量、より好ましくは1.7~1.9当量を用いるのがよい。
 上記反応は、好ましくは溶媒の存在下で行うことができる。溶媒の存在下で反応を行う場合、使用する溶媒の種類は反応に関与しないものであれば特に制限はない。溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、1,2-ジクロロベンゼン、及びニトロベンゼン等の芳香族炭化水素類;n-ペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、及びn-デカン等の脂肪族炭化水素類;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、及び四塩化炭素等のハロゲン化炭化水素類等が挙げられる。これらのうち、ベンゼン、トルエン、キシレン、ジクロロメタン、又は1,2-ジクロロエタンが好ましく、トルエン、ジクロロメタン、又は1,2-ジクロロエタンがより好ましい。これらの溶媒は単独又は組み合わせて使用することもでき、溶媒の使用量は特に制限されない。
 反応温度は特に限定されないが、通常は-50~150℃の範囲で行えばよく、-20~80℃がより好ましく、0~30℃が特に好ましい。反応時間は、通常5分~48時間が好ましく、30分~36時間がより好ましく、1~12時間が特に好ましい。
 反応終了後、通常の後処理操作を行うことにより、粗生成物を得ることができる。得られた粗生成物は、必要に応じて、活性炭処理、蒸留、カラムクロマトグラフィー等の精製操作を行うことにより、光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを高い化学純度及び光学純度で得ることができる。光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの光学純度としては、例えば95%ee以上、好ましくは96%ee以上であるが、特に限定されることはない。
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例により限定されるものではない。
 以下の例1に示した1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの絶対配置は、例1-4及び1-5に示すように、絶対配置既知の市販されているα-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミンに導き、比旋光度の符号を比較することで決定した。また、所望の1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの光学純度はキラルHPLC分析(CHIRALPAK(登録商標)AS-RH;移動相:エタノール/水=60/40;流速:0.5mL/min;カラム温度:25℃;検出波長:220nm;保持時間:第一ピーク/(R)21.8min、第二ピーク/(S)26.0min)により決定した。
 (S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールとしては光学純度99.5%及び98%の(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを用い、生成物については光学純度(%ee)のほか、光学純度が維持された相対的割合を示すための数値「転化率(%)」を記載した。転化率(%)=生成物の%ee/原料アルコールの%eeである。
例1-1
 アルゴン雰囲気下、(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(1.0g, 3.87mmol、>99.5%ee)に水浴上、20℃以下で三臭化リン(0.52g,1.94mmol)を滴下し、19~22℃で30分撹拌した。反応液を冷却し、0℃以下で臭化水素(30%酢酸溶液)(0.76mL,3.87mmol)を滴下し、13~15℃で18時間撹拌した。反応液を氷水に注加し、n-ヘキサン(15mL×2)で抽出した。有機層を合わせ、飽和重曹水(15mL×1)で洗浄、次いで飽和食塩水(15mL×1)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗体をカラムクロマトグラフィー(シリカゲル8g、展開溶媒:n-ヘキサン)で精製することにより1.06gの(R)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:85%
キラルHPLC分析:光学純度96.8%ee(第一ピーク)、転化率97.3%
[α]D 25 +56.6(c=1.18,CHCl3
1H-NMR (CDCl3):δ 2.08 (3H, d, J = 7.1 Hz), 5.21 (1H, q, J = 7.1 Hz), 7.81 (1H, s), 7.87 (2H, s).
例1-2
 アルゴン雰囲気下、(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(1.0g, 3.87mmol、>99.5%ee)に水浴上、20℃以下で三臭化リン(0.52g,1.94mmol)を滴下し、19~22℃で30分撹拌した。反応液を冷却し、0℃以下で臭化水素(30%酢酸溶液)(0.76mL,3.87mmol)を滴下し、13~15℃で18時間撹拌した。反応液を氷水に注加し、n-ヘキサン(15mL×2)で抽出した。有機層を合わせ、飽和重曹水(15mL×1)で洗浄、次いで飽和食塩水(15mL×1)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗体をカラムクロマトグラフィー(シリカゲル8g、展開溶媒:n-ヘキサン)で精製することにより1.13gの(S)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:91%
キラルHPLC分析:光学純度96.3%ee(第二ピーク)、転化率>96.8%
[α]D 25 -55.6(c=1.23,CHCl3
1H-NMRスペクトルは例1-1に示したものと同じであった。
例1-3
 アルゴン雰囲気下(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(1.0g, 3.87mmol、>99.5%ee)のヘプタン懸濁液(2mL)に0~5℃で三臭化リン(0.52g,1.94mmol)を滴下し、0~5℃で30分撹拌した。反応液に0~5℃で臭化水素(30%酢酸溶液)(0.76mL,3.87mmol)を滴下し、10℃で17時間撹拌した。反応液を氷水に注加し、n-ヘキサン(15mL×2)で抽出した。有機層を合わせ、飽和重曹水洗浄(15mL×1)、飽和食塩水洗浄(15mL×1)し、無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗体をカラムクロマトグラフィー(シリカゲル8g、展開溶媒:n-ヘキサン)で精製することにより1.12gの(R)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:90%
キラルHPLC分析:光学純度97.7%ee(第二ピーク)、転化率>98.2%
1H-NMRスペクトルは例1-1に示したものと同じであった。
例1-4
 例1-1で得られた1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタン(第一ピーク:96.8%ee,102mg, 0.32mmol)のジメチルホルムアミド溶液(1mL)にアジ化ナトリウム(62.0mg,0.95mmol)を加え-18~-15℃にて3時間撹拌した。反応溶液を酢酸エチル/ヘキサン(1:1)で希釈し、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥後、減圧濃縮することで118.8mgの1-アジド-[3,5-ビス(トリフルオロメチル)フェニル]エタンの粗生成物を得た。
1H-NMR (CDCl3):δ 1.61 (3H, d, J = 6.8 Hz), 4.79 (1H, q, J = 6.8 Hz), 7.78 (2H, s), 7.84 (1H, s).
例1-5
 例1-4で得られた1-アジド-[3,5-ビス(トリフルオロメチル)フェニル]エタンの粗生成物にパラジウム-フィブロイン(18mg)とメタノール(6mL)を加え水素で置換し、室温で撹拌した。1時間撹拌後、セライトろ過、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1~5:1)にて精製し、58.9mgのα-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミンを無色油状物として得た。
収率:74%(2工程)
[α]D 25 -15.4(c=1.01,CHCl3
1H-NMR (CDCl3):δ 1.42 (3H, d, J = 6.8 Hz), 1.58 (2H, br-s), 4.30 (1H, q, J = 6.8 Hz), 7.75 (1H, s), 7.85 (2H, s).
標品:(S)-α-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミン
セントラル硝子社製
Lot.0102000
光学純度:99%ee
[α]D 25 -15.9(c=1.15,CHCl3
 市販されている標品のアミンと比旋光度の符号を比較することにより、例1-5で得られたα-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミンはS体であることが判明した。すなわち、当該アミンはアジ化物イオンの求核置換反応を経て1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンから得られていることから、例1-1で得られた1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンはR体(キラルHPLC分析:第一ピーク)であることを確認した。
 例1-1及び1-2と同様にして表1に示す条件で三臭化リンを用いた臭素化反応を行った。単離収率、光学純度(%ee)、及び転化率(生成物の%ee / 原料の%ee)を表1に示す。
Figure JPOXMLDOC01-appb-T000006
注)DCM:ジクロロメタン、Pyr:ピリジン
 表1に示された結果から明らかなように、特にNo.1~3及びNo.22の反応条件において極めて高収率で、かつ高い光学純度を保ったまま目的物を得ることができた。
 以下の例2に示した1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの絶対配置は、例2-5及び2-6に示すように、絶対配置既知の市販されているα-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミンに導き、比旋光度の符号を比較することで決定した。また、所望の1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの光学純度はキラルHPLC分析(CHIRALPAK(登録商標)AS-RH;移動相:エタノール/水=60/40;流速:0.5mL/min;カラム温度:25℃;検出波長:220nm;保持時間:第一ピーク/(R)21.8min、第二ピーク/(S)26.0min)により決定した。
 (S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールとしては光学純度99.5%及び98%の(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを用い、生成物については光学純度(%ee)のほか、光学純度が維持された相対的割合を示すための数値「転化率(%)」を記載した。転化率(%)=生成物の%ee/原料アルコールの%eeである。
例2-1
 アルゴン雰囲気下、1,2-ジブロモ-1,1,2,2-テトラクロロエタン(7.57g,23.2mmol)をトルエン(12.5mL)に溶解し、0℃にてトリフェニルホスフィン(6.1g,23.2mmol)を加え30分間撹拌した。(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(5.0g,19.4mmol, >99.5%ee)のトルエン溶液(12.5mL)を0℃で10分以上かけて滴下した後、室温まで昇温し、同温にて1時間撹拌した。反応液にn-ヘキサン(25mL)を加え、セライトろ過した。ろ液を水、飽和重曹水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥後、減圧留去した。得られた残渣を減圧蒸留(56oC,0.7mmHg)することで、5.52gの(R)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:89%
キラルHPLC分析:光学純度>99.5%ee(第一ピーク),転化率>99.5%
[α]D 25 +59.1(c=1.03,CHCl3
1H-NMR (CDCl3):δ 2.08 (3H, d, J = 7.1 Hz), 5.21 (1H, q, J = 7.1 Hz), 7.81 (1H, s), 7.87 (2H, s).
例2-2
 アルゴン雰囲気下、1,2-ジブロモ-1,1,2,2-テトラクロロエタン(7.57g,23.2mmol)をトルエン(12.5mL)に溶解し、0℃にてトリフェニルホスフィン(6.1g,23.2mmol)を加え30分間撹拌した。(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(5.0g,19.4mmol,>99.5%ee)のトルエン溶液(12.5mL)を0℃で10分以上かけて滴下した後、室温まで昇温し、同温にて1時間撹拌した。反応液にn-ヘキサン(25mL)を加え、セライトろ過した。ろ液を水、飽和重曹水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥後、減圧留去した。得られた残渣を減圧蒸留(56oC,0.7mmHg)することで、5.45gの(S)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:88%
キラルHPLC分析:光学純度99.0%ee(第二ピーク),転化率>99.5%
1H-NMRスペクトルは例2-1に示したものと同じであった。
例2-3
 アルゴン雰囲気下、N-ブロモコハク酸イミド(206mg,1.16mmol)の無水ジクロロメタン(3.8mL)懸濁液に、氷冷下にてジメチルスルフィド(105μL,1.40mmoL)を3分間かけて滴下した。-20℃にて、(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(200mg,0.78mmol、>99.5%ee)の無水ジクロロメタン(2mL)溶液を滴下し、室温にて9時間攪拌した。反応液にn-ヘキサンを加え、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥後、減圧濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン)で精製し、144 mgの(R)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:58%
キラルHPLC分析:光学純度>99.5%ee(第一ピーク),転化率>99.5%
1H-NMRスペクトルは例2-1に示したものと同じであった。
例2-4
 アルゴン雰囲気下、N-ブロモコハク酸イミド(103mg,0.58mmol)の無水ジクロロメタン(2.0mL)懸濁液に、氷冷下にてジメチルスルフィド(53μL,0.70mmoL)を3分間かけて滴下した。-20℃にて、(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(100mg,0.39mmol、>99.5%ee)の無水ジクロロメタン(1mL)溶液を滴下し、室温にて6時間攪拌した。反応液にn-ヘキサンを加え、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥後、減圧濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン)で精製し、82mgの(S)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:66%
キラルHPLC分析:光学純度>99.5%ee(第二ピーク),転化率>99.5%
1H-NMRスペクトルは例2-1に示したものと同じであった。
例2-5
 例2-1で得られた1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタン(第一ピーク:>99.5%ee,106mg, 0.33mmol)のジメチルホルムアミド溶液(1mL)にアジ化ナトリウム(64.4mg,0.99mmol)を加え-18~-15℃にて4時間撹拌した。反応溶液を酢酸エチル/ヘキサン(1:1)で希釈し、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥後、減圧濃縮することで111.5mgの1-アジド-[3,5-ビス(トリフルオロメチル)フェニル]エタンの粗生成物を得た。
1H-NMR (CDCl3):δ 1.61 (3H, d, J = 6.8 Hz), 4.79 (1H, q, J = 6.8 Hz), 7.78 (2H, s), 7.84 (1H, s).
例2-6
 例2-5で得られた1-アジド-[3,5-ビス(トリフルオロメチル)フェニル]エタンの粗生成物にパラジウム-フィブロイン(18mg)とメタノール(6mL)を加え水素で置換し、室温で撹拌した。1時間撹拌後、セライトろ過、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1~5:1)にて精製し、77.6mgのα-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミンを無色油状物として得た。
収率:91%(2工程)
[α]D 25 -15.9(c=1.31,CHCl3
1H-NMR (CDCl3):δ 1.42 (3H, d, J = 6.8 Hz), 1.58 (2H, br-s), 4.30 (1H, q, J = 6.8 Hz), 7.75 (1H, s), 7.85 (2H, s).
標品:(S)-α-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミン
セントラル硝子社製
Lot.0102000
光学純度:99%
[α]D 25 -15.9(c=1.15,CHCl3
 市販されている標品のアミンと比旋光度の符号を比較することにより、例2-6で得られたα-[3,5-ビス(トリフルオロメチル)フェニル]エチルアミンはS体であることが判明した。すなわち、当該アミンはアジ化物イオンの求核置換反応を経て1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンから得られていることから、例2-1で得られた1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンはR体(キラルHPLC分析:第一ピーク)であることを確認した。
 例2-1及び2-2と同様にして、表2に示す条件で臭素化条件で反応を行った。単離収率、光学純度(%ee)、及び転化率(生成物の%ee / 原料の%ee)を表2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
注)DCM:ジクロロメタン、1,2-DCE:1,2-ジクロロエタン、NBS:N-ブロモコハク酸イミド、THF:テトラヒドロフラン、DMF:N,N-ジメチルホルムアミド、TMSCl:塩化トリメチルシリル、PyHBr3:ピリジニウムトリブロミド、HMDS:1,1,1,2,2,2-ヘキサメチルジシラン、DEAD:ジエチルアゾジカルボキシレート
 表2に示された結果から明らかなように、特にNo.1~4の反応条件において極めて高収率で、かつ高い光学純度を保ったまま目的物を得ることができた。
例3(比較例)
 日本国特許第3938651号を参考に、(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(光学純度>99.5%ee, 1.6g, 6.20mmol)のジクロロメタン(20mL)溶液に氷冷攪拌下、塩化メタンスルホニル(0.58mL,7.44mmol)、トリエチルアミン(1.30mL,9.3mmol)、ジメチルアミノピリジン(76mg,0.62mmol)を加え、同温にて30分間攪拌した。反応液に同温にて1N塩酸とクロロホルムを加え有機層を分取した。水層をクロロホルム(20mL×3)で抽出し、有機層を合わせ飽和食塩水にて洗浄後、無水硫酸ナトリウムにて乾燥し、減圧濃縮し、無色油状物として(R)-メタンスルホン酸 1-[3,5-ビス(トリフルオロメチル)フェニル]エチルエステル(2.23g)を得た。次に得られた(R)-メタンスルホン酸 1-[3,5-ビス(トリフルオロメチル)フェニル]エチル エステル(2.23 g)のN,N-ジメチルホルムアミド(20mL)溶液に臭化ナトリウム(1.26g,12.25mmoL)を加え、50℃にて1時間攪拌した。反応液に室温にて水(30mL)を加え、ヘキサン(30mL×3)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)にて精製し、1.85gの1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。比旋光度より、得られた1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンがラセミ化していることを確認した。
収率:93 %(2工程)
[α]D 25 -0.19(c=1.01,CHCl3
1H-NMRスペクトルは例1-1に示したものと同じであった。
例4(比較例)
 (R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノール(光学純度>99.5%ee,100mg,0.39mmol)の脱水ジエチルエーテル(1.0mL)溶液にアルゴン雰囲気下、脱水ピリジン(69.4mg,0.89mmol)を加えた。-15~-20℃にて三臭化リン(117.2mg, 0.43mmol)の脱水ジエチルエーテル(0.5mL)溶液をゆっくり滴下し、同温にて2時間攪拌した後、-5℃で48時間静置させた後、氷冷下、反応液に冷却水 (3mL)を加え室温で15分攪拌した後、ジエチルエーテル (10mL)で抽出した。有機層を減圧濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル3.0g, 展開溶媒:n-ヘキサン)で精製し、17.6 mgの1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを無色油状物として得た。
収率:14%
1H-NMRスペクトルは例1-1に示したものと同じであった。
 本発明の方法は、医薬、農薬、及び工業製品などの製造原料として有用な光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンを工業的に応用可能な条件で効率的かつ高収率に製造することができる。

Claims (14)

  1. 光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法であって、臭素化剤として(a)ハロゲン化リン及び臭化水素の組み合わせ、(b)1,2-ジブロモ-1,1,2,2-テトラクロロエタン及び一般式(I):P(R1)(R2)(R3)(式中、R1、R2、及びR3はそれぞれ独立にC6-10アリール基、C6-10アリールオキシ基、C1-10アルキル基、C1-10アルコキシル基、C3-6シクロアルキル基、又はC3-6シクロアルコキシル基を示す)で表される有機リン化合物の組み合わせ、又は(c)N-ブロモコハク酸イミド及びジアルキルスルフィドの組み合わせのいずれかを用いて光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールを臭素化する工程を含む方法。
  2. 光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールが(S)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールであり、かつ光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンが(R)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンである請求項1に記載の方法。
  3. 光学活性1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールが(R)-1-[3,5-ビス(トリフルオロメチル)フェニル]エタノールであり、かつ光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンが(S)-1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンである請求項1に記載の方法。
  4. ハロゲン化リンが三臭化リンである請求項1ないし3のいずれか1項に記載の方法。
  5. 臭化水素として臭化水素酸又は臭化水素の酢酸溶液を用いる請求項1ないし4のいずれか1項に記載の方法。
  6. 溶媒の非存在下又は存在下で行う請求項1ないし5のいずれか1項に記載の方法。
  7. 溶媒としてヘプタンを用いる請求項6に記載の方法。
  8. 上記(b)又は(c)の組み合わせを用いて溶媒の存在下に臭素化を行う請求項1ないし3のいずれか1項に記載の方法。
  9. 溶媒が芳香族炭化水素類又はハロゲン化炭化水素類である請求項8に記載の方法。
  10. 溶媒がトルエン、ジクロロメタン、又は1,2-ジクロロエタンである請求項9に記載の方法。
  11. 一般式(I)で表される有機リン化合物がトリフェニルホスフィンである請求項8ないし10のいずれか1項に記載の方法。
  12. ジアルキルスルフィドがジメチルスルフィドである請求項8ないし10のいずれか1項に記載の方法。
  13. 光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタン。
  14. 光学純度が97.0%ee~99.5%eeである請求項13に記載の光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタン。
PCT/JP2011/066512 2010-07-22 2011-07-21 光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法 WO2012011516A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11809686.6A EP2597079A4 (en) 2010-07-22 2011-07-21 PROCESS FOR PREPARING OPTICALLY ACTIVE 1-BROM-1- [3,5-BIS- (TRIFLUOROMETHYL-) PHENYL-] ETHANE
US13/811,651 US9272966B2 (en) 2010-07-22 2011-07-21 Method for preparing optically active 1-bromo-1[3,5-bis(trifluoromethyl)phenyl]ethane
IN1326CHN2013 IN2013CN01326A (ja) 2010-07-22 2011-07-21
CN2011800357009A CN102985395A (zh) 2010-07-22 2011-07-21 光学活性1-溴-1-[3,5-双(三氟甲基)苯基]乙烷的制备方法
JP2012525419A JP5793143B2 (ja) 2010-07-22 2011-07-21 光学活性1−ブロモ−1−[3,5−ビス(トリフルオロメチル)フェニル]エタンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010164725 2010-07-22
JP2010164726 2010-07-22
JP2010-164726 2010-07-22
JP2010-164725 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012011516A1 true WO2012011516A1 (ja) 2012-01-26

Family

ID=45496934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066512 WO2012011516A1 (ja) 2010-07-22 2011-07-21 光学活性1-ブロモ-1-[3,5-ビス(トリフルオロメチル)フェニル]エタンの製造方法

Country Status (7)

Country Link
US (1) US9272966B2 (ja)
EP (1) EP2597079A4 (ja)
JP (1) JP5793143B2 (ja)
CN (2) CN105837401A (ja)
HK (1) HK1223908A1 (ja)
IN (1) IN2013CN01326A (ja)
WO (1) WO2012011516A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628584B (zh) * 2013-11-08 2017-03-08 广州朗圣药业有限公司 一种适合工业化的高纯度达泊西汀的制备方法
CN114105796B (zh) * 2021-12-11 2023-11-28 上海化工研究院有限公司 一种稳定性同位素氘标记异亮氨酸的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007044829A2 (en) 2005-10-06 2007-04-19 Dr. Reddy's Laboratories Ltd. Preparation of aprepitant
JP3938651B2 (ja) 2000-04-13 2007-06-27 セントラル硝子株式会社 光学活性α−メチル−ビス−3、5−(トリフルオロメチル)ベンジルアミンの製造方法
WO2008129951A1 (ja) 2007-04-13 2008-10-30 Kowa Company, Ltd. 新規なジベンジルアミン構造を有するピリミジン化合物及びこれを含有する医薬
WO2009062371A1 (fr) * 2007-10-15 2009-05-22 Shanghai Hengrui Pharmaceutical Co., Ltd. Dérivés de carbamate et utilisation en tant que médicament
JP2010077116A (ja) * 2008-08-25 2010-04-08 Kowa Co 新規なジベンジルアミン構造を有するピリミジン化合物及びこれを含有する医薬

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750344B1 (en) * 1997-09-05 2004-06-15 Isis Pharmaceuticals, Inc. Amine compounds and combinatorial libraries comprising same
US7790737B2 (en) * 2007-03-13 2010-09-07 Kowa Company, Ltd. Substituted pyrimidine compounds and their utility as CETP inhibitors
KR20100094554A (ko) * 2007-12-06 2010-08-26 쉐링 코포레이션 감마 세크레타제 조절인자
TWI492749B (zh) * 2010-06-04 2015-07-21 Kowa Co Optically active dibenzylamine derivatives and methods for their manufacture
EP2626351A4 (en) * 2010-10-04 2014-03-12 Kowa Co AGENT CAPABLE OF INHIBITING THE EXPRESSION OF LIPID METABOLISM-RELATED MRNA

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938651B2 (ja) 2000-04-13 2007-06-27 セントラル硝子株式会社 光学活性α−メチル−ビス−3、5−(トリフルオロメチル)ベンジルアミンの製造方法
WO2007044829A2 (en) 2005-10-06 2007-04-19 Dr. Reddy's Laboratories Ltd. Preparation of aprepitant
WO2008129951A1 (ja) 2007-04-13 2008-10-30 Kowa Company, Ltd. 新規なジベンジルアミン構造を有するピリミジン化合物及びこれを含有する医薬
WO2009062371A1 (fr) * 2007-10-15 2009-05-22 Shanghai Hengrui Pharmaceutical Co., Ltd. Dérivés de carbamate et utilisation en tant que médicament
JP2010077116A (ja) * 2008-08-25 2010-04-08 Kowa Co 新規なジベンジルアミン構造を有するピリミジン化合物及びこれを含有する医薬

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Guide Book of Japanese Pharmacopoeia", 1996, HIROKAWA PUBLISHING CO.
INDIAN J. CHEM., SEC B, vol. 44B, 2005, pages 557 - 562
J. AM. CHEM. SOC., vol. 125, 2003, pages 2129 - 2135
J. ORG. CHEM., vol. 26, 1961, pages 3645 - 3649
J. ORG. CHEM., vol. 71, 2006, pages 7378 - 7390
See also references of EP2597079A4
SYNTHESIS COMMUN., 1983, pages 139 - 141
TETRAHEDRON LETT., vol. 42, 1972, pages 4339 - 4342
TETRAHEDRON LETT., vol. 48, 2007, pages 8001 - 8004

Also Published As

Publication number Publication date
CN102985395A (zh) 2013-03-20
US9272966B2 (en) 2016-03-01
JP5793143B2 (ja) 2015-10-14
IN2013CN01326A (ja) 2015-04-24
CN105837401A (zh) 2016-08-10
EP2597079A1 (en) 2013-05-29
JPWO2012011516A1 (ja) 2013-09-09
EP2597079A4 (en) 2015-11-11
US20130190540A1 (en) 2013-07-25
HK1223908A1 (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
Wang et al. Iodine-mediated regioselective hydroxyselenenylation of alkenes: Facile access to β-hydroxy selenides
CN111910209A (zh) 一种3-芳硒基喹啉酮化合物的电化学合成方法
CN113527188B (zh) 一种制备间位官能团化的吡啶化合物的方法
JP5793143B2 (ja) 光学活性1−ブロモ−1−[3,5−ビス(トリフルオロメチル)フェニル]エタンの製造方法
CN109293491B (zh) 一种芳基重氮盐脱重氮上酰基的方法
Ishii et al. Asymmetric Friedel–Crafts reactions of vinyl ethers with fluoral catalyzed by chiral binaphthol-derived titanium catalysts
Mahrwald et al. Ti (OiPr) 4-Mediated nucleophilic substitution of propargylic esters
JP2004026691A (ja) 含フッ素スチレン重合性単量体の製造方法及びそれに使用される中間体化合物
CN112592280B (zh) 一种消旋沙丁胺醇的制备方法
CN114057785A (zh) 手性α-二氟甲基硅烷化合物的合成方法
Ikeuchi et al. Model Synthetic Study of Tutin, a Picrotoxane-Type Sesquiterpene: Stereoselective Construction of a cis-Fused 5, 6-Ring Skeleton
CN112675920A (zh) 一类单手性中心催化剂及其制备和催化合成手性醇类化合物和手性α-烯丙醇的方法
JP6869614B2 (ja) ホスフィン化合物及びこれを配位子とするカップリング用触媒
WO2009110406A1 (ja) ジアルコールの製造方法、アリルハライド化合物の製造方法およびアリルクロライド化合物
CN114437124B (zh) 官能团化的氟代烷基硅烷及其合成方法和应用
JP6213999B2 (ja) アミン化合物、光学活性アミン、光学活性アミンを含む不斉触媒および不斉触媒を用いた光学活性ハロゲン化合物の製造方法
Cummins Stereospecific syntheses of clomiphene and tamoxifen via stannylcupration of diphenylacetylene
Funabiki et al. Practical asymmetric synthesis of β-hydroxy-β-trifluoromethylated ketones via the first example of the in situ generation of trifluoro-acetaldehyde and its successive asymmetric carbon–carbon bond formation reaction with chiral imines
CN113072435B (zh) 一种含烯基氟的3-羟基-1-茚酮衍生物的制备方法
EP0209905B1 (en) 1,1-(3-ethylphenyl)phenylethylene and method for its preparation
JP4635251B2 (ja) 有機ビスマス化合物およびその製法
JP4243683B2 (ja) 1−テトラロン類の製造方法
CN118027092A (en) Functionalized fluoroalkyl silane and synthesis method and application thereof
CN113968802A (zh) 环烯烃的氯化三氟甲基化合物的合成方法
CN114621045A (zh) 一种由芳基甲醛合成多芳烃的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180035700.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525419

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011809686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13811651

Country of ref document: US