WO2012010077A1 - 颗粒状的硬脂酸盐及其制备方法和应用 - Google Patents

颗粒状的硬脂酸盐及其制备方法和应用 Download PDF

Info

Publication number
WO2012010077A1
WO2012010077A1 PCT/CN2011/077311 CN2011077311W WO2012010077A1 WO 2012010077 A1 WO2012010077 A1 WO 2012010077A1 CN 2011077311 W CN2011077311 W CN 2011077311W WO 2012010077 A1 WO2012010077 A1 WO 2012010077A1
Authority
WO
WIPO (PCT)
Prior art keywords
stearate
stearic acid
cadmium
heating
lead
Prior art date
Application number
PCT/CN2011/077311
Other languages
English (en)
French (fr)
Inventor
佟立新
Original Assignee
辽宁嘉凯精化有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁嘉凯精化有限公司 filed Critical 辽宁嘉凯精化有限公司
Publication of WO2012010077A1 publication Critical patent/WO2012010077A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • This invention relates to particulate stearates and methods for their preparation. More specifically, the present invention relates to a method for preparing a granulated stearate and a granule stearate (the conventional stearate is mostly a powder), which has a stearic acid having a higher bulk density and a heat loss. smaller. At the same time, the invention also relates to the use of the stearate in the field of rubber and plastics. Background technique
  • metal stearates also known as metal soaps
  • stearic acid 4 bow stearic acid
  • lead stearate stearate
  • heat stabilizers for polyvinyl chloride and various plastics.
  • most of the existing stearate products are in powder form, such as the chemical industry standard HG/T 2424-93.
  • the light stearic acid 4 bow needs to reach 99% fineness and can pass the 75 ⁇ sieve. .
  • this powdered stearate not only causes dust pollution or dust explosion, but also causes difficulty in feeding and metering due to its fluidity in application, causing clogging, uneven mixing and hanging. Walls, etc., affect the quality of plastic products.
  • CN 1107168 A discloses a process for the manufacture of spherical granulated stearates, which comprises reacting molten stearic acid with a metal oxide and adding the resulting stearate to ethylene glycol. 130. C is agitated and cooled while stirring, but this patent application does not specifically define such spherical granulated stearates.
  • CN 1132763A discloses low dust particles for use as plastic additives, the particles comprising at least
  • CN 101045681 A discloses a process for producing heavy stearates using a screw reactor reactive extrusion process which utilizes a pelletizing die for granulation, but wherein the specific particle size of the produced stearates is not given therein.
  • CN 1837176A discloses a method for preparing a metal stearate, that is, stirring stearic acid, metal hydroxide (or oxide or carbonate) and medium water under the melting point of stearic acid under normal pressure, and then The reaction is carried out by heating to the melting point of stearic acid, and the reaction product is dried, dehydrated, dispersed and dried to obtain a metal stearate.
  • this method overcomes some shortcomings of the double decomposition method and the direct method, the stearate prepared by the method is powdery, and its apparent density is less than 0.39 g/cm 3 (see the specification). Table 1 in page 8.).
  • CN 101353300A discloses a one-step method for synthesizing stearic acid 4 bow, which is obtained by heating a suspension of stearic acid and calcium hydroxide in an aqueous medium under a dilute aqueous ammonia catalysis under normal pressure.
  • the stearic acid 4 bow can pass 99% through a 200 mesh (75 ⁇ ) sieve with a water content of 2.5% or more (see Examples 8 and 9 on page 10 of the specification).
  • the present invention provides a granular stearate having a particle size of 150 to 880 ⁇ , a bulk density of 0.3 to 0.7 g/cm 3 , and a heating reduction of 1.5% by weight. .
  • the stearate has a particle size of from 180 to 830 ⁇ .
  • the stearate has a bulk density of from 0.4 to 0.6 g/cm 3 . In still another preferred embodiment, the stearate is heated down by 1.0% by weight.
  • the stearate is selected from the group consisting of stearic acid 4 bow, barium stearate, stearic acid, magnesium stearate, cadmium stearate, lead stearate, hard One of lithium oleate, aluminum stearate and stannous stearate.
  • the present invention provides a process for preparing a stearate, which comprises emulsifying stearic acid in an aqueous solution of a metal salt corresponding to the stearate under heating, and subsequently adding hydrogen
  • the sodium hydroxide aqueous solution is kept warm for 0.2-5 hours.
  • the heating condition described in the method of the present invention means that the temperature is
  • the heating conditions described in the method of the present invention refer to reaction conditions at a temperature of from 60 to 160 °C.
  • the method of the present invention further comprises adding an emulsifier in an amount of from 0 to 15% by weight based on the weight of stearic acid in the emulsification step.
  • the method of the invention further comprises, after the reaction is completed, The steps of product cooling, centrifugation and drying should be carried out.
  • the present invention provides the use of the above stearate as a rubber auxiliaries.
  • the present invention provides the use of a mixture of the above stearate and an antioxidant 168 and an antioxidant 1010 as a rubber auxiliaries; the present invention also provides the following composite stabilizer comprising the stearate of the present invention : Calcium compound stabilizer, ⁇ compound stabilizer, cadmium-cadmium composite stabilizer, cadmium-lead composite stabilizer, or cadmium-cadmium lead composite stabilizer.
  • the present invention provides a stearate prepared according to the method of the present invention, the stearate having a particle size of 150 to 880 ⁇ , a bulk density of 0.3 to 0.7 g/cm 3 , and a heating reduction of 1.5% by weight. And selected from calcium stearate, barium stearate, stearic acid, magnesium stearate, cadmium stearate, and lead stearate, lithium stearate, aluminum stearate and stearic acid One of the tin.
  • the stearate of the present invention is in the form of granules, this not only avoids dust pollution or explosion, but also makes the product environmentally friendly, and overcomes the difficulty in feeding and metering of conventional powdered stearates and clogging and uneven mixing. And shortcomings such as wall hanging, which significantly improves the production efficiency and quality of the main rubber and plastic products.
  • the stearate particles of the present invention are large, the hygroscopicity of the product itself is small, and the heating loss is also lower than that of the conventional powdered stearate, so that the quality of the main rubber product can be further improved.
  • Figure 1 is a process flow diagram for the preparation of the stearate of the present invention. detailed description
  • the term "metal salt corresponding to the stearate” as used in the present invention means a chloride, a sulfate, an acetate, a nitrate or the like of the metal ion of the stearate, for example.
  • the "metal salt corresponding to the stearate” may be calcium chloride or the like.
  • the "metal salt corresponding to the stearate” may be a calcium salt, a barium salt, a salt salt, a magnesium salt, a cadmium salt, a lead salt, a lithium salt, an aluminum salt and a tin salt.
  • Particularly preferred are calcium salts, barium salts, salt, magnesium salts, cadmium salts, lead salts, lithium salts, aluminum salts and tin salts which are soluble in water.
  • the term "heat reduction” as used in the present invention means at normal pressure and 105 ⁇ 3.
  • particle size refers to the particle size measured by vibrating sieve method
  • bulk density means the method specified in Section 4.7 of HG/T2424-93 The measured bulk density of the material.
  • particle size In addition, the terms "particle size”, “bulk density”, “emulsifier”, “centrifugal separation” and the like used in the present invention have the same meanings as in the prior art.
  • the emulsifier used is usually selected from the group consisting of gum arabic, sodium lauryl benzoate, sodium lauryl sulphate, stearyl alcohol ethoxylate, nonyl phenol ethoxylate. And one or more of bisphenethyl phenol polyvinyl ether.
  • the amount of emulsifier is generally from 0 to 15% by weight of stearic acid.
  • raw materials such as stearic acid, metal salt, sodium hydroxide and emulsifier used are chemical raw materials well known to those skilled in the art, and are commercially available.
  • the antioxidant 168 used refers to tris(2,4-di-tert-butylphenyl) phosphite
  • the antioxidant 1010 used refers to four [ ⁇ -(3,5-di). Tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester, they
  • the stearic acid was first emulsified in an aqueous solution of a metal salt corresponding to stearate in a closed reactor under stirring, and then heated to 60 to 180. C, followed by the addition of an aqueous solution of sodium hydroxide, and the reaction is kept for 0.2 to 5 hours.
  • reaction mixture is cooled, centrifuged, and the product is washed if necessary, and finally the product is dried.
  • an emulsifier may be used as necessary, which not only improves the stability of the solution after emulsification, but also increases the dispersion of stearic acid in an aqueous solution of the metal salt corresponding to the stearate, thereby improving the product.
  • the particle uniformity of the stearate makes the stearate of the present invention more suitable for rubber processing, such as granulation of polyethylene and polypropylene.
  • incubation step one skilled in the art can select the duration of the incubation reaction according to the particular needs. Moreover, those skilled in the art are also well aware of conventional centrifugation and drying.
  • the mixture was cooled, centrifuged, and dried to obtain a particulate calcium stearate having a particle size of 150 to 880 ⁇ m, a bulk density of 0.38 g/cm 3 , and a heating loss of 1.4% by weight.
  • the stearate prepared according to the process of the present invention is in the form of granules having a particle size much larger than the existing stearate, which not only avoids dust pollution or explosion, but makes the product environmentally friendly. Moreover, it overcomes the difficulties of feeding and measuring the conventional powdered stearate and the defects of blockage, uneven mixing and wall hanging, thereby significantly improving the production efficiency and quality of the main rubber and plastic products.
  • the stearate particles of the present invention are large, the hygroscopicity of the product itself is small, and the heating loss is also lower than that of the conventional powdered stearate, so that the quality of the main rubber product can be further improved.
  • Example 7 Preparation of Granular Calcium Compound Resin Stearic acid 4 bow and stearic acid were synthesized in a manner similar to any of Examples 1 to 6, and the obtained calcium stearate and stearic acid were sieved, and stearic acid of the same particle size was prepared. Calcium and stearic acid are mixed in proportion to obtain a granular calcium compound stabilizer.
  • the composite stabilizer can be used as a heat stabilizer for polyvinyl chloride, especially soft polyvinyl chloride such as food packaging bags, candy twisted conjunctiva, medical blood transfusion/infusion tubes, and medicine bottles. The amount is generally 0.5 to 2 parts by weight.
  • the bismuth stearate and stearic acid were synthesized in a manner similar to any of Examples 1 to 6, and the obtained bismuth stearate and stearic acid were sieved, and strontium stearate of the same particle size was prepared.
  • the stearic acid is mixed with the stearic acid in a proportional manner to obtain a granular conjugate compound stabilizer.
  • the composite stabilizer can be used as a heat stabilizer for polyvinyl chloride of flooring materials such as floor leathers and floor tiles. The amount is generally 0.5 to 3 parts by weight.
  • Example 9 Preparation of granular cadmium-cadmium-lead composite stabilizer
  • Strontium stearate, cadmium stearate, stearic acid and lead stearate were synthesized in a manner similar to any of Examples 1 to 6, and the obtained barium stearate and cadmium stearate were sieved.
  • Stearic acid and lead stearate, and the same size specification of barium stearate, cadmium stearate, stearic acid and lead stearate are mixed in proportion to obtain granular cadmium-cadmium lead Composite stabilizer.
  • the composite stabilizer has excellent thermal stability, low initial coloration, no scaling, no blooming, and no dust. Suitable for calendering and extrusion of flexible, semi-rigid PVC products.
  • particulate stearate of the present invention may be used in combination with other known antioxidants and/or other rubber auxiliaries and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

颗粒状的硬脂酸盐及其制备方法和应用 技术领域
本发明涉及颗粒状的硬脂酸盐及其制备方法。 更具体地, 本发明涉及颗 粒状硬脂酸盐以及颗粒硬脂酸盐 (传统硬脂酸盐多为粉体)的制备方法, 该方 法得到的硬脂酸盐堆积密度更大而加热减量更小。 同时本发明还涉及该硬脂 酸盐在橡塑领域中的应用。 背景技术
众所周知, 金属硬脂酸盐 (也称作金属皂), 例如硬脂酸 4弓、 硬脂酸辞、 硬脂酸铅等, 广泛地用作聚氯乙烯的热稳定剂和多种塑料加工的润滑剂、 脱 模剂等。 然而, 现有的硬脂酸盐产品绝大多数为粉末状的, 例如化工行业标 准 HG/T 2424-93规定, 轻质硬脂酸 4弓的细度需达到 99%可经过 75 μηι的筛 子。 尽管人们已经认识到, 这种粉末状的硬脂酸盐, 不仅导致粉尘污染或者 粉尘爆炸,而且在应用中会因其流动性而导致加料和计量困难,并引起堵塞、 混料不匀和挂壁等, 影响塑料产品的质量。
针对上述问题, CN 1107168A公开了球形粒状硬脂酸盐的制造方法, 该 方法包括令融化的硬脂酸与金属氧化物反应,及将所得硬脂酸盐熔体加到乙 二醇中, 于 130。C搅拌均勾, 且边搅拌边冷却, 但是该专利申请没有具体地 定义这种球形粒状的硬脂酸盐。
CN 1132763A公开了用作塑料添加剂的低粉尘颗粒, 该颗粒包含至少
10%重量的含水量小于 2%的硬脂酸 4弓,粒径为 l~10 mm,松密度大于 400 g/1, 流动性小于 15 s (tR25)0
CN 101045681A公开了利用螺杆反应器反应挤出工艺生产重质硬脂酸 盐的方法, 该方法利用切粒模头造粒, 但是其中并未给出所生产的硬脂酸盐 的具体颗粒尺寸。
CN 1837176A公开一种金属硬脂酸盐的制备方法, 即在常压下, 将硬脂 酸、金属氢氧化物 (或者氧化物或者碳酸盐)和介质水在硬脂酸熔点以下搅拌, 然后加热至硬脂酸熔点以上进行反应, 反应产物经甩干脱水、 分散和干燥, 得到金属硬脂酸盐。 该方法虽然克服了复分解法和直接法的一些缺点, 但是 由该方法制得的硬脂酸盐为粉末状, 其表观密度小于 0.39 g/cm3 (参见说明书 第 8页中的表 1)。
CN 101353300A公开了一步法合成硬脂酸 4弓的方法, 即在常压下,令硬 脂酸和氢氧化钙的悬浊液在稀氨水催化下于水介质中加热反应, 由该方法制 得的硬脂酸 4弓可 99%通过 200目(75 μηι)的筛子, 含水量在 2.5%以上 (参见说 明书第 10页的例 8和例 9)。
另外, 由于现有硬脂酸盐的粒度很小, 控制其吸湿性也十分困难, 因而 在使用中不可避免地影响塑料主产品的性能。 发明内容
鉴于现有硬脂酸盐的上述问题, 本发明人进行了广泛和深入的研究, 并 意想不到地发现, 在加温条件下, 通过先将硬脂酸在与欲制备的硬脂酸盐对 应的金属盐的水溶液中乳化, 随后加入氢氧化钠水溶液, 可以制得粒度为
150-880 μηι,堆积密度为 0.3~0.7 g/cm3,及加热减量 1.5%重量的硬脂酸盐。
因此, 一方面, 本发明提供一种颗粒状的硬脂酸盐, 该硬脂酸盐具有 150~880 μηι的粒度, 0.3~0.7 g/cm3的堆积密度, 及 1.5%重量的加热减量。
在一优选的实施方案中, 所述硬脂酸盐的粒度为 180~830 μηι。
在另一优选的实施方案中, 所述硬脂酸盐的堆积密度为 0.4~0.6 g/cm3。 在再一优选的实施方案中, 所述硬脂酸盐的加热减量 1.0%重量。
在又一优选的实施方案中, 所述硬脂酸盐为选自硬脂酸 4弓, 硬脂酸钡, 硬脂酸辞, 硬脂酸镁, 硬脂酸镉, 硬脂酸铅, 硬脂酸锂, 硬脂酸铝及硬脂酸 亚锡中的一种。
另一方面, 本发明提供一种制备硬脂酸盐的方法, 该方法包括在加温条 件下, 令硬脂酸在与该硬脂酸盐对应的金属盐的水溶液中乳化, 以及随后加 入氢氧化钠水溶液并保温反应 0.2-5小时。
在一优选的实施方案中, 本发明的方法中所述的加温条件是指温度为
60~180°C的反应条件。
在另一优选的实施方案中,本发明的方法中所述的加温条件是指温度为 60~160°C的反应条件。
在另一优选的实施方案中,本发明的方法还包括在所述乳化步骤中加入 数量为硬脂酸重量 0~15%的乳化剂。
在又一优选的实施方案中, 本发明的方法还包括在反应完成之后, 将反 应产物冷却、 离心分离和干燥的步骤。
再一方面, 本发明提供上述硬脂酸盐作为橡塑助剂的应用。
在再一方面, 本发明提供上述硬脂酸盐与抗氧剂 168和抗氧剂 1010的 混合物作为橡塑助剂的应用; 本发明还提供下列包含本发明的硬脂酸盐的复 合稳定剂: 钙辞复合稳定剂, 钡辞复合稳定剂, 钡镉复合稳定剂, 镉铅复合 稳定剂, 或者钡镉辞铅复合稳定剂。
此外, 本发明还提供根据本发明的方法制备的硬脂酸盐, 该硬脂酸盐具 有 150~880 μηι的粒度, 0.3-0.7 g/cm3的堆积密度, 及 1.5%重量的加热减 量, 并且为选自硬脂酸钙, 硬脂酸钡, 硬脂酸辞, 硬脂酸镁, 硬脂酸镉, 及 硬脂酸铅, 硬脂酸锂, 硬脂酸铝及硬脂酸亚锡中的一种。
由于本发明的硬脂酸盐为颗粒状, 这不仅避免了粉尘污染或者爆炸, 使 得该产品对环境友好, 而且克服了常规粉状硬脂酸盐的加料和计量困难以及 堵塞、 混料不匀和挂壁等缺点, 进而显著地提高了橡塑主产品的生产效率和 质量。
此外, 由于本发明的硬脂酸盐颗粒大, 产品自身的吸湿性小, 而且加热 减量也较常规的粉状硬脂酸盐低, 故可以进一步地提高橡塑主产品的质量。
现将说明本发明的下列有关实施方案, 以使本领域的技术人员更加明了 本发明的其它目的及具体的优点。 附图说明
图 1是制备本发明的硬脂酸盐的工艺流程图。 具体实施方式
下面将参照附图, 结合本发明的优选实施方案, 更具体地说明本发明的 硬脂酸盐及其制备方法, 以及该硬脂酸盐在橡塑领域中的应用。
如文中所述, 本发明中所使用的术语 "与该硬脂酸盐对应的金属盐" 是 指该硬脂酸盐的金属离子的氯化物、 硫酸盐、 醋酸盐、 硝酸盐等, 例如当该 硬脂酸盐为硬脂酸 4弓时, "与该硬脂酸盐对应的金属盐" 可以为氯化钙等。
需要指出的是, 在本发明中, "与该硬脂酸盐对应的金属盐" 可以为钙 盐, 钡盐, 辞盐, 镁盐, 镉盐, 铅盐, 锂盐, 铝盐和锡盐, 特别优选能够溶 解于水中的钙盐, 钡盐, 辞盐, 镁盐, 镉盐, 铅盐, 锂盐, 铝盐和锡盐。 如文中所述,本发明中所使用的术语 "加热减量"是指在常压和 105±3。C 温度下, 将样品加热 2小时之后, 样品重量损失的百分数; "粒度" 是指用 振筛法测得的物料粒度; "堆积密度" 是指按 HG/T2424-93 中 4.7条款规定 的方法测得的物料的堆积密度。
另夕卜,本发明中所使用的"粒度"、 "堆积密度"、 "乳化剂"、 "离心分离" 等术语具有与现有技术中相同的含义。
在本发明中,所使用的乳化剂通常为选自阿拉伯胶,十二烷基苯橫酸钠, 十二烷基橫酸钠, 十八烷醇聚氧乙烯醚、 壬基酚聚氧乙烯醚及双苯乙基酚聚 乙烯醚中的一种或多种。 按硬脂酸的重量计, 乳化剂的用量一般为 0~15%。
在本发明中, 所使用的硬脂酸、 金属盐、 氢氧化钠和乳化剂等原料是本 领域技术人员熟知的化工原料, 并且均可从商业上购得。
在本发明中, 所使用的抗氧剂 168是指亚磷酸三 (2,4-二叔丁基苯基)酯, 所使用的抗氧剂 1010是指四 [β-(3,5-二叔丁基 -4-羟基苯基)丙酸]季戊四醇酯, 它们
Figure imgf000006_0001
抗氧剂 168 抗氧剂 1010
如图 1中所示, 首先在搅拌下于密闭反应器中, 将硬脂酸在与硬脂酸盐 对应的金属盐的水溶液中乳化, 然后升温至 60~180。C,接着加入氢氧化钠的 水溶液, 并保温反应 0.2~5小时。
待反应完成之后, 将反应混合物冷却, 离心分离, 必要时对产物进行洗 涤, 最后将产物干燥。
在乳化步骤中, 必要时可以使用乳化剂, 这不仅可以提高乳化之后的溶 液的稳定性,还可以提高硬脂酸在与硬脂酸盐对应的金属盐的水溶液中的分 散度, 进而提高产物硬脂酸盐的颗粒均匀性, 使得本发明的硬脂酸盐更适合 于橡塑加工, 如聚乙烯、 聚丙烯的造粒。
在保温反应步骤中,本领域的技术人员可根据具体的需要选择保温反应 的时间。 而且, 本领域的技术人员对常规的离心分离和干燥也是熟知的。
下面通过实施例进一步地说明本发明。 应当理解, 这些实施例仅用于更 具体地说明本发明, 而不是对本发明的范围的限制。 实施例 1: 硬脂酸钙的合成
在 3L密闭反应器中加入 900 mL水; 加入 300 g硬脂酸; 加入 62氯化 钙 (以干基计); 在搅拌条件下, 再加入 22.5 g十二烷基苯磺酸钠。 将反应釜 温度加热至 125 ± 5。C, 使硬脂酸在氯化钙的水溶液中充分乳化。 然后加入 用 48 g氢氧化钠配制的碱液, 加完之后, 使反应混合物保温反应 2小时。反 应完成后, 冷却、 离心分离和干燥, 得到粒度为 180~830 μηι、 堆积密度为 0.48 g/cm3和加热减量为 1.0%的颗粒状硬脂酸钙。
实施例 2: 硬脂酸 4弓的合成
在 3L密闭反应器中加入 900 mL水; 加入 300 g硬脂酸; 加入 62氯化 钙(以干基计); 在搅拌条件下, 将反应釜温度加热至 125 ± 5。C, 使硬脂酸在 氯化钙的水溶液中充分乳化。 然后加入用 48 g氢氧化钠配制的碱液,加完之 后, 使反应混合物保温反应 2小时。 反应完成后, 冷却、 离心分离和干燥, 得到粒度为 600~880 μηι、 堆积密度为 0.50 g/cm3和加热减量 1.0%重量的颗 粒状硬脂酸钙。
实施例 3: 硬脂酸 4弓的合成
在 3L密闭反应器中加入 900 mL水; 加入 300 g硬脂酸; 加入 62氯化 钙 (以干基计); 在搅拌条件下, 再加入 22.5g十二烷基苯横酸钠。 将反应釜 温度加热至 110 ± 5。C,使硬脂酸在氯化钙的水溶液中充分乳化。然后加入用 48 g氢氧化钠配制的碱液, 加完之后, 使反应混合物保温反应 2小时。 反应 完成后, 冷却、 离心分离和干燥, 得到粒度为 150~180μηι、 堆积密度为 0.32 g/cm3和加热减量 1.5%重量的颗粒状硬脂酸钙。
实施例 4: 硬脂酸 4弓的合成
在 3L密闭反应器中加入 900 mL水; 加入 300 g硬脂酸; 加入 62氯化 钙 (以干基计); 在搅拌条件下, 再加入 22.5 g十二烷基苯磺酸钠。 将反应釜 温度加热至 125 ± 5。C, 使硬脂酸在氯化钙的水溶液中充分乳化。 然后加入 用 48 g氢氧化钠配制的碱液, 加完之后, 使反应混合物保温反应 2小时。反 应完成后, 冷却、 离心分离和干燥, 得到粒度为 180~830 μηι、 堆积密度为 0.49 g/cm3和加热减量 1.1 %重量的颗粒状硬脂酸 4丐。
实施例 5: 硬脂酸 4弓的合成
在 3L密闭反应器中加入 900 mL水; 加入 300 g硬脂酸; 加入 62氯化 钙 (以干基计); 在搅拌条件下, 将反应釜温度加热至 110 ± 5。C, 使硬脂酸在 氯化钙的水溶液中充分乳化。 然后加入用 48 g氢氧化钠配制的碱液,加完之 后, 使反应混合物保温反应 2小时。 反应完成后, 冷却、 离心分离和干燥, 得到粒度为 150~880μηι、堆积密度为 0.38 g/cm3和加热减量 1.4%重量的颗粒 状硬脂酸钙。
实施例 6: 硬脂酸钙的合成
在 3L密闭反应器中加入 900 mL水; 加入 300 g硬脂酸; 加入 62氯化 钙 (以干基计); 在搅拌条件下, 再加入 22.5 g十二烷基苯磺酸钠。 将反应釜 温度加热至 125 ± 5。C, 使硬脂酸在氯化钙的水溶液中充分乳化。 然后加入 用 48 g氢氧化钠配制的碱液, 加完之后, 使反应混合物保温反应 1.5小时。 反应完成后, 冷却、 离心分离和干燥, 得到粒度为 150~700 μηι、 堆积密度 为 0.42 g/cm3和加热减量 1.3%重量的颗粒状硬脂酸 4丐。
将实施例 1~6中所得的硬脂酸 4弓的粒度、堆积密度和加热减量总结于下 面的表 1中。
表 1
Figure imgf000008_0001
从表 1中可以看出, 根据本发明的方法制备的硬脂酸盐呈颗粒状, 其粒 度远大于现有的硬脂酸盐, 这不仅避免了粉尘污染或者爆炸, 使得该产品对 环境友好, 而且克服了常规粉状硬脂酸盐的加料和计量困难以及堵塞、 混料 不匀和挂壁等缺点, 进而显著地提高了橡塑主产品的生产效率和质量。
此外, 由于本发明的硬脂酸盐颗粒大, 产品自身的吸湿性小, 而且加热 减量也较常规的粉状硬脂酸盐低, 故可以进一步地提高橡塑主产品的质量。
另外, 还可以将根据上述实施例合成的单一硬脂酸盐进行复配, 得到同 时具有各硬脂酸盐之性能的复合稳定剂。
实施例 7: 颗粒状钙辞复合稳定剂的制备 按类似于实施例 1~6中任一项的方法合成硬脂酸 4弓和硬脂酸辞, 筛分所 得到的硬脂酸钙和硬脂酸辞, 并将相同粒度规格的硬脂酸钙和硬脂酸辞按比 例混合均勾, 即得到颗粒状的钙辞复合稳定剂。 该复合稳定剂可用作聚氯乙 烯, 尤其是食品包装袋、 糖果扭结膜、 医用输血 /输液管、 药品瓶等软聚氯乙 烯的热稳定剂。 用量一般为 0.5~2重量份。
实施例 8: 颗粒状钡辞复合稳定剂的制备
按类似于实施例 1~6中任一项的方法合成硬脂酸钡和硬脂酸辞, 筛分所 得到的硬脂酸钡和硬脂酸辞, 并将相同粒度规格的硬脂酸钡和硬脂酸辞按比 例混合均勾,即得到颗粒状的钡辞复合稳定剂。该复合稳定剂可用作地板革、 地面砖等铺地材料之聚氯乙烯的热稳定剂。 用量一般为 0.5~3重量份。
实施例 9: 颗粒状钡镉辞铅复合稳定剂的制备
按类似于实施例 1~6中任一项的方法合成硬脂酸钡、硬脂酸镉、硬脂酸 辞和硬脂酸铅, 筛分所得到的硬脂酸钡、 硬脂酸镉、 硬脂酸辞和硬脂酸铅, 并将相同粒度规格的硬脂酸钡、 硬脂酸镉、 硬脂酸辞和硬脂酸铅按比例混合 均勾, 即得到颗粒状的钡镉辞铅复合稳定剂。 该复合稳定剂具有优良的热稳 定性, 初期着色性小, 不结垢, 不喷霜, 无粉尘。 适用于聚氯乙烯软质、 半 硬质制品的压延和挤出成型。
显然, 通过复配本发明的不同的硬脂酸盐, 可以实现较单一硬脂酸盐更 优异、 更全面的性能, 进而获得性能更优异的各种橡塑制品。
本领域的技术人员应当理解, 除了上面的示例之外, 本发明的颗粒状硬 脂酸盐还可以与公知的其它抗氧剂和 /或其它橡塑助剂等混合使用。
尽管已经参考其示例性的实施方案具体地说明和描述了本发明,但是本 领域的普通技术人员应当理解,可以在形式和内容上对本发明作出各种改变 和替换, 而不脱离如权利要求书中所限定的本发明的构思和范围。

Claims

权利要求
I. 一种颗粒状的硬脂酸盐, 其中该硬脂酸盐具有 150~880 μηι的粒度, 0.3-0.7 g/cm3的堆积密度, 及 1.5%重量的加热减量。
2. 根据权利要求 1的硬脂酸盐, 其中所述粒度为 180~830 μηι。
3. 根据权利要求 1或 2的硬脂酸盐,其中所述堆积密度为 0.4~0.6 g/cm3
4. 根据权利要求 1~3 中任一项的硬脂酸盐, 其中所述加热减量 1.0% 重量。
5. 根据权利要求 4的硬脂酸盐, 其中所述加热减量 0.8%重量。
6. 根据权利要求 1~5 中任一项的硬脂酸盐, 其中所述硬脂酸盐为选自 硬脂酸钙, 硬脂酸钡, 硬脂酸辞, 硬脂酸镁, 硬脂酸镉, 硬脂酸铅, 硬脂酸 锂, 硬脂酸铝及硬脂酸亚锡中的一种。
7. 一种制备硬脂酸盐的方法,该方法包括在加温条件下,令硬脂酸在与 该硬脂酸盐对应的金属盐的水溶液中乳化, 以及随后加入氢氧化钠水溶液并 保温反应 0.2~5小时。
8. 根据权利要求 7的方法,其中所述硬脂酸盐为选自硬脂酸 4弓,硬脂酸 钡, 硬脂酸辞, 硬脂酸镁, 硬脂酸镉, 硬脂酸铅, 硬脂酸锂, 硬脂酸铝及硬 脂酸亚锡中的一种。
9. 根据权利要求 7的方法, 其中所述加温是指温度为 60~180°C的反应 条件。
10. 根据权利要求 9的方法,其中所述加温是指温度为 60~160°C的反应 条件。
I I. 根据权利要求 7的方法, 其中所述与该硬脂酸盐对应的金属盐为能 够溶解于水中的氯化钙, 氯化钡, 氯化辞, 硫酸镁, 氯化镉或硫酸镉, 醋酸 铅或硝酸铅, 氯化锂, 硫酸铝, 或者氯化亚锡。
12. 根据权利要求 7的方法, 还包括在所述乳化步骤中加入数量为硬脂 酸重量 0~15%的乳化剂。
13. 根据权利要求 12的方法,其中所述乳化剂为选自阿拉伯胶,十二烷 基苯橫酸钠, 十二烷基磺酸钠, 十八烷醇聚氧乙烯醚, 壬基酚聚氧乙烯醚及 双苯乙基酚聚乙烯醚中的一种或多种。
14. 根据权利要求 7的方法,还包括在反应完成之后,将反应产物冷却、 离心分离和干燥的步骤。
15. 根据权利要求 7~14 中任一项的方法制备的硬脂酸盐作为橡塑助剂 的应用。
16. 根据权利要求 15的应用,其中该硬脂酸盐与抗氧剂 168、抗氧剂 1010 配合使用。
17. 根据权利要求 15 的应用, 其中该硬脂酸盐可以形成下列复合稳定 剂: 钙辞复合稳定剂,钡辞复合稳定剂,钡镉复合稳定剂,镉铅复合稳定剂, 或者钡镉辞铅复合稳定剂。
PCT/CN2011/077311 2010-07-20 2011-07-19 颗粒状的硬脂酸盐及其制备方法和应用 WO2012010077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010231294.0A CN102336645B (zh) 2010-07-20 2010-07-20 颗粒状的硬脂酸盐及其制备方法和应用
CN201010231294.0 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012010077A1 true WO2012010077A1 (zh) 2012-01-26

Family

ID=45496516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077311 WO2012010077A1 (zh) 2010-07-20 2011-07-19 颗粒状的硬脂酸盐及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN102336645B (zh)
WO (1) WO2012010077A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679145A (zh) * 2018-12-19 2019-04-26 南京清研新材料研究院有限公司 一种提高塑料性能的稳定剂制备方法及其振磨设备
CN110437058A (zh) * 2019-08-27 2019-11-12 如皋市涤诺皂业有限公司 一种硬脂酸钡的生产工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690187A (zh) * 2012-03-27 2012-09-26 江苏汉光实业股份有限公司 一种稳定剂生产系统
CN106928603B (zh) * 2017-04-13 2019-04-16 兰溪佳达塑料助剂有限公司 乳化硬脂酸钙粉剂及其制备和应用
CN107628940A (zh) * 2017-08-07 2018-01-26 郑州庆宏塑胶科技有限公司 一种硬脂酸铅的制备方法
CN109795058A (zh) * 2019-02-11 2019-05-24 贵州长田水晶胶粘剂有限公司 橡胶内脱膜剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1768241A1 (de) * 1968-04-19 1971-09-23 Metallgesellschaft Ag Verfahren zur Herstellung von Metallseifen
JPS52138505A (en) * 1975-12-29 1977-11-18 Sakai Chem Ind Co Ltd Preparation of granurated metallic soap
CN1107830A (zh) * 1994-01-15 1995-09-06 天津化工厂 硬脂酸盐的制备工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1768241U (de) * 1958-03-26 1958-06-12 Opel Adam Ag Abtaugeraet fuer plattenfoermige verdampfer.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1768241A1 (de) * 1968-04-19 1971-09-23 Metallgesellschaft Ag Verfahren zur Herstellung von Metallseifen
JPS52138505A (en) * 1975-12-29 1977-11-18 Sakai Chem Ind Co Ltd Preparation of granurated metallic soap
CN1107830A (zh) * 1994-01-15 1995-09-06 天津化工厂 硬脂酸盐的制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679145A (zh) * 2018-12-19 2019-04-26 南京清研新材料研究院有限公司 一种提高塑料性能的稳定剂制备方法及其振磨设备
CN110437058A (zh) * 2019-08-27 2019-11-12 如皋市涤诺皂业有限公司 一种硬脂酸钡的生产工艺

Also Published As

Publication number Publication date
CN102336645B (zh) 2015-02-04
CN102336645A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2012010077A1 (zh) 颗粒状的硬脂酸盐及其制备方法和应用
CN102597074B (zh) 用于聚丙烯的纳米尺度β-成核剂
CN107082976B (zh) 一种高抗冲高流动性pvc配方及其制备方法
US10131751B2 (en) Additive composition and process for using the same
CN105419064B (zh) 一种层状复合金属氢氧化物及其多功能母粒制备方法
JP6735281B2 (ja) ペロブスカイト構造を有する鉱物のビニル芳香族ポリマーフォームでの使用
CN102525880B (zh) 一种阿瑞匹坦固体分散组合物
JP2018501386A (ja) シリカと黒鉛との組み合わせおよびビニル芳香族ポリマーフォームの熱伝導度を低減させるためのその使用
CN102525879B (zh) 制备阿瑞匹坦固体分散组合物的方法
WO2006040289A1 (en) Melamine cyanurate in crystalline form
US20180105650A1 (en) Process to produce fluoropolymer-based latex with mechanical stability
CN108690222B (zh) 一种复合聚丙烯成核剂和由其制备的医用聚丙烯材料
CN102827205B (zh) 一种成核剂的制备方法
CN104031332B (zh) 高流动性硬质聚氯乙烯材料及其制备方法
TWI231301B (en) Coagulation of particles from emulsions by the insitu formation of a coagulating agent
US20070173566A1 (en) New polymer concentrates with improved processability
JPH02212532A (ja) 顆粒形態繊維状マグネシウムオキシサルフェートで強化されたポリプロピレン複合材料
JPS6021602B2 (ja) 粉末状ポリクロロプレンゴムの製造方法
JP4845324B2 (ja) マルチトール含蜜結晶およびその製造方法
CN101342154A (zh) 内增塑型乙基纤维素(ec)药物缓控释水性包衣剂制备技术
CN113248372B (zh) 一种功夫酸球形晶体及其制备方法和应用
CN107922704B (zh) 聚合物组合物、其制备方法和用途
CN106280142B (zh) 一种粉末26型氟橡胶混合物的制备方法
JPH0735247B2 (ja) 粒状次亜塩素酸カルシウム
CN106280015A (zh) 聚丙烯/高岭土复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809265

Country of ref document: EP

Kind code of ref document: A1