WO2012008256A1 - 自動製パン器 - Google Patents

自動製パン器 Download PDF

Info

Publication number
WO2012008256A1
WO2012008256A1 PCT/JP2011/063637 JP2011063637W WO2012008256A1 WO 2012008256 A1 WO2012008256 A1 WO 2012008256A1 JP 2011063637 W JP2011063637 W JP 2011063637W WO 2012008256 A1 WO2012008256 A1 WO 2012008256A1
Authority
WO
WIPO (PCT)
Prior art keywords
bread
container
blade
motor
rotating shaft
Prior art date
Application number
PCT/JP2011/063637
Other languages
English (en)
French (fr)
Inventor
廉幸 伊藤
野村 英史
也寸志 曽根
Original Assignee
三洋電機株式会社
三洋電機コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010157810A external-priority patent/JP2012019819A/ja
Priority claimed from JP2010236298A external-priority patent/JP2012085901A/ja
Application filed by 三洋電機株式会社, 三洋電機コンシューマエレクトロニクス株式会社 filed Critical 三洋電機株式会社
Publication of WO2012008256A1 publication Critical patent/WO2012008256A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B7/00Baking plants
    • A21B7/005Baking plants in combination with mixing or kneading devices

Definitions

  • the present invention relates to an automatic bread maker mainly used in general households.
  • an automatic bread maker for home use generally has a mechanism for producing bread by directly using a bread container into which bread ingredients are placed (see, for example, Patent Document 1).
  • a bread container in which bread ingredients are placed is placed in a baking chamber in the main body.
  • the bread raw material in a bread container is kneaded into bread dough with the kneading blade provided in a bread container (kneading process).
  • a fermentation process for fermenting the kneaded bread dough is performed, and the bread container is used as a baking mold to bake the bread (baking process).
  • this bread manufacturing method first, cereal grains and liquid are mixed, and the crushed blade is rotated in this mixture to pulverize the cereal grains (grinding step). And the bread raw material containing the paste-form ground powder obtained through the grinding process is kneaded into bread dough using a kneading blade (kneading process). Thereafter, a fermentation process for fermenting the kneaded bread dough is performed, followed by a baking process for baking the bread.
  • the applicants are working on the development of an automatic bread maker equipped with a new mechanism capable of executing the above-described method for producing bread using the grain as a starting material.
  • the automatic bread maker provided with this new mechanism satisfies the demand for cost reduction and downsizing and can execute the above-described bread manufacturing process as well as being easy to assemble (first). Issue).
  • the automatic bread maker provided with the above-described new mechanism, it is considered to grind grain grains in a bread container that is housed in a baking chamber and used as a baking mold.
  • a configuration in which the crushing blade and the kneading blade are rotated by rotation of one blade rotation shaft arranged at the bottom of the bread container has been studied.
  • a coupling for transmitting the rotation of the motor to the blade rotation shaft is required.
  • This coupling includes, for example, a main body side connecting portion provided at the upper end of a driving shaft (a rotating shaft that is disposed within the main body and rotates by driving of a motor), a container side connecting portion provided at the lower end of the blade rotating shaft, Can be configured.
  • a driving shaft a rotating shaft that is disposed within the main body and rotates by driving of a motor
  • a container side connecting portion provided at the lower end of the blade rotating shaft
  • the blade rotation shaft is rotated at a high speed for the purpose of improving the pulverization efficiency. Therefore, as in the kneading process, unnecessary force is applied to the bread container, and the above-described lifting is likely to occur. For this reason, in an automatic bread maker equipped with a new mechanism for carrying out the pulverization step and the kneading step, there is a high possibility that disconnection between the two connecting portions will occur, and countermeasures are required.
  • an object of the present invention is a technique suitable for an automatic bread maker that can manufacture bread using cereal grains as a starting material, and provides a technique for improving the assembly of the automatic bread maker. That is.
  • Another object of the present invention is to provide an automatic bread maker having a configuration in which the rotational power of a motor is transmitted to a rotating shaft of a bread container by coupling and capable of stably transmitting power by the coupling.
  • another object of the present invention is to enable stable operation of an automatic bread maker equipped with a convenient mechanism for baking bread from cereal grains.
  • an automatic bread maker of the present invention includes a main body having a storage portion for storing a bread container into which bread ingredients are charged, a first rotating shaft provided at the bottom of the bread container, A second rotary shaft provided in the main body and coupled to the first rotary shaft of the bread container accommodated in the accommodating portion so as to be capable of transmitting power; a motor provided in the main body; A power transmission unit that transmits the rotational force of the output shaft to the second rotation shaft, and the power transmission unit is connected to the second rotation shaft through a plurality of parallel belts so as to be able to transmit power.
  • a third axis of rotation is included.
  • the automatic bread maker configured as described above is particularly suitable when the torque of the output shaft of the motor is increased and transmitted to the third rotating shaft in the power transmission unit.
  • the width of the belt connecting the second rotating shaft and the third rotating shaft is narrow (thin)
  • the belt cannot withstand high torque, and the second rotating shaft and the third rotating shaft
  • the belt connecting the rotary shaft may slip.
  • it is conceivable to widen (thicken) the width of the belt it is conceivable to widen (thicken) the width of the belt.
  • this configuration is a configuration in which a plurality of belts arranged in parallel are used to connect the second rotating shaft and the third rotating shaft so that power can be transmitted. Will not be difficult.
  • the motor is a kneading motor used when kneading dough in the bread container
  • the power transmission unit is a power transmission unit for the kneading motor.
  • a clutch for switching a connection state between the output shaft of the motor and the second rotating shaft, and a pulverization motor used when pulverizing the grain in the bread container, and an output shaft of the pulverization motor It is preferable to further include a power transmission unit for the crushing motor that transmits a rotational force to the second rotation shaft.
  • this configuration is a configuration in which a motor is used properly in the pulverization step and the kneading step, and is suitable for producing bread using cereal grains as a starting material.
  • the pulverizing motor for high-speed rotation is used regardless of the configuration in which the second rotating shaft is shared for pulverization and kneading.
  • a large load is applied to the crushing motor, which can prevent a failure.
  • pulleys around which the plurality of belts are wound are attached to the second rotating shaft and the third rotating shaft, respectively,
  • a plurality of engagement grooves are formed along the rotation direction of the second rotation shaft and the third rotation shaft, and each of the plurality of belts has an engagement mountain that engages with the engagement groove. It is preferable that a plurality of is formed.
  • pulleys around which the plurality of belts are wound are attached to the second rotating shaft and the third rotating shaft, respectively, It is preferable that a flange portion for providing a predetermined interval is formed between the plurality of belts. According to this configuration, it is possible to avoid a situation where the belts interfere with each other when the second rotation shaft and the third rotation shaft are rotated. As a result, for example, it is possible to suppress the generation of abnormal noise when the motor is driven.
  • an automatic bread maker includes a main body having a housing part for housing a bread container into which bread ingredients are charged, a motor provided in the main body, and a bottom part of the bread container.
  • a first rotating shaft that is provided, and a main body side connecting portion that is provided at the bottom of the housing portion to transmit the rotational power of the motor to the first rotating shaft of the bread container housed in the housing portion.
  • the first rotating shaft is provided at a tip portion of the first rotating shaft that protrudes outward from the bottom of the bread container, and the bread container is accommodated in the accommodating portion to constitute a coupling together with the main body side connecting portion.
  • a container-side connecting portion wherein the main body-side connecting portion has a base and a protruding portion protruding from the base, and the container-side connecting portion is in a direction substantially perpendicular to the first rotation axis. Arm portion extending to In the state where the first rotation shaft is rotated by driving, the projecting portion and the arm portion are engaged with the projecting portion so that a portion where the arm portion is lower is generated. .
  • one of the projecting portion and the arm portion is provided with a convex portion and the other has a concave portion, and the first is driven by the motor.
  • the protrusion and the arm may be engaged with each other by fitting the protrusion and the recess.
  • a cylindrical shape having a first engaging portion on the outer surface, disposed on the outer surface side of the bottom of the bread container so as to surround the first rotating shaft and the container-side connecting portion.
  • a body is provided, and a second engaging portion is provided around the main body side connecting portion at a bottom portion of the housing portion, and the bread container housed in the housing portion is the first container. It is preferable that positioning in a plane direction substantially perpendicular to the first rotating shaft is performed by engagement between the engaging portion and the second engaging portion.
  • the bread container is positioned in a plane direction (for example, a horizontal direction) substantially perpendicular to the rotation axis (first rotation axis) by the engagement between the first engagement portion and the second engagement portion. Will be made. For this reason, even if an unnecessary force is applied to the bread container while the rotating shaft provided in the bread container is rotating, the bread container is hardly rotated. Therefore, in the automatic bread maker with this configuration, even if an unnecessary force is applied to the bread container while the rotating shaft is rotating, the bread container hardly moves (raises hardly rises), and power transmission by coupling is possible. It can be expected to be stable.
  • the protruding portion is configured to generate a force to rotate the base when the arm portion comes into contact with the protruding portion when the bread container is accommodated in the accommodating portion. It is preferable that an inclined surface is formed. According to this configuration, when the bread container is accommodated in the accommodating portion (for example, the baking chamber), even if the arm portion comes into contact with the protruding portion, the bread container can be set by being pushed in as it is. For this reason, according to this configuration, it is possible to provide an automatic bread maker that is convenient for the user.
  • the pulverizing blade for pulverizing the grain and the kneading blade for kneading the bread dough may be rotatable by the rotation of the first rotating shaft.
  • the pulverization step and the kneading step are performed, there is a strong demand for a configuration in which stable power transmission is performed by the coupling.
  • the lifting of the bread container can be suppressed, and this requirement can be satisfied.
  • the automatic bread maker with this configuration is a single unit that can bake bread from cereal grains without replacing the blades during the bread making process. A bread machine can be provided.
  • the motor includes a first motor provided for rotating the kneading blade at a low speed and a second motor provided for rotating the crushing blade at a high speed. It is also possible that The rotation of the pulverization blade during the pulverization process (high-speed rotation) and the rotation of the kneading blade during the kneading process (high torque, low-speed rotation) require different rotations. For this reason, it is preferable that the automatic bread maker provided with the crushing blade and the kneading blade have different motors for rotating the blades as in this configuration.
  • the rotation direction of the first rotating shaft is reverse when the grain is pulverized using the pulverizing blade and when the dough is kneaded using the kneading blade.
  • the protruding portion and the arm portion are portions where the arm portion is lower than the protruding portion. It is preferable to engage so as to generate.
  • an automatic bread maker that can manufacture bread using cereal grains as a starting material.
  • the schematic perspective view which shows the external appearance structure of the automatic bread maker of this embodiment The schematic diagram for demonstrating the structure inside the main body of the automatic bread maker of this embodiment.
  • Schematic perspective view when the automatic bread maker of the present embodiment is viewed from obliquely below with the main body cover removed The figure for demonstrating the clutch contained in the 1st power transmission part with which the automatic bread maker of this embodiment is provided, and the figure which shows the state in which a clutch cuts off power
  • the schematic side view which shows the structure of the pulley for 2nd relay rotating shafts with which the automatic bread maker of this embodiment is provided.
  • FIG. 6 is a diagram for explaining the structure of the belt constituting the second belt portion provided in the automatic bread maker of the present embodiment, and is a schematic cross-sectional view taken along the BB position in FIG.
  • the figure which shows typically the structure of the baking chamber in which the bread container was accommodated, and its periphery in the automatic bread maker of this embodiment.
  • the schematic perspective view which shows the structure of the blade unit with which the automatic bread maker of this embodiment is provided.
  • FIG. 2 is a schematic plan view of the blade unit provided in the automatic bread maker according to the present embodiment when viewed from below, and a view when the kneading blade is in a folded posture.
  • FIG. 3 is a schematic plan view of the blade unit provided in the automatic bread maker according to the present embodiment when viewed from below, and a diagram when the kneading blade is in an open posture.
  • the figure when the bread container provided in the automatic bread maker of the present embodiment is viewed from above, and the figure when the kneading blade is in the folded posture The figure when the bread container provided in the automatic bread maker of this embodiment is viewed from above, and the figure when the kneading blade is in the open posture
  • the block diagram which shows the structure of the automatic bread maker of this embodiment The schematic diagram which shows the flow of the bread-making course for rice grains performed with the automatic bread maker of this embodiment Schematic plan view showing a state before the bread container is put in the baking chamber in the automatic bread maker of the present embodiment.
  • Schematic plan view when the bread container provided in the automatic bread maker of the present embodiment is viewed from below It is a figure for demonstrating the relationship between the main body side connection part with which the automatic bread maker of this embodiment is equipped, and the container side connection part, and is a schematic perspective view which shows both relationship also including the bread container which removed the base. It is a figure for demonstrating the relationship between the main body side connection part with which the automatic bread maker of this embodiment is equipped, and a container side connection part, The schematic plan view which shows both relationship
  • FIG. 1 is a schematic perspective view showing an external configuration of the automatic bread maker according to the present embodiment.
  • an operation unit 20 is provided on a part of the upper surface of a main body 10 (the outer shell of which is formed of, for example, metal or synthetic resin) of an automatic bread maker 1 provided in a substantially rectangular parallelepiped shape. It has been.
  • the operation unit 20 includes an operation key group and a display unit that displays time, contents set by the operation key group, errors, and the like.
  • the operation key group includes, for example, a start key, a cancel key, a timer key, a reservation key, a bread manufacturing course (a course for manufacturing bread using rice grains as a starting material, a course for manufacturing bread using rice flour as a starting material) And a selection key for selecting a course for producing bread using flour as a starting material.
  • the display unit is configured by, for example, a liquid crystal display panel.
  • the baking chamber 30 is a box-shaped chamber having a substantially rectangular shape, which includes a bottom wall 30a made of, for example, sheet metal and four side walls 30b (see also FIG. 7 described later), and an upper surface thereof is open.
  • the firing chamber 30 can be opened and closed by a lid 40 provided on the upper part of the main body 10.
  • the lid 40 is attached to the back side of the main body 10 with a hinge shaft (not shown), and the firing chamber 30 can be opened and closed by rotating about the hinge shaft as a fulcrum.
  • FIG. 1 shows a state where the lid 40 is opened.
  • the lid 40 is provided with a viewing window 41 made of heat-resistant glass, for example, so that the inside of the baking chamber 30 can be seen.
  • a bread ingredient storage container 42 is attached to the lid 40. This bread ingredient storage container 42 makes it possible to automatically feed some bread ingredients during the bread production process.
  • the bread raw material storage container 42 includes a box-shaped container body 42a having a substantially rectangular plane shape, and a container lid 42b that is provided so as to be rotatable with respect to the container body 42a and opens and closes the opening of the container body 42a. .
  • the bread ingredient storage container 42 can support the container lid 42b from the outer surface (lower surface) side and maintain the closed state of the opening of the container body 42a, and is moved by an external force to move the container lid 42b to the container lid 42b. There is also provided a movable hook 42c for releasing the engagement.
  • An automatic closing solenoid 16 (see FIG. 13 to be described later) is provided in the main body 10 on the lower side of the operation unit 20, and when the automatic closing solenoid 16 is driven, the plunger is adjacent to the lid 40. It protrudes from the opening 10b provided in the wall surface 10a. Then, a movable member (not shown) movable by the protruding plunger moves the movable hook 42c, the container lid 42b and the movable hook 42c are disengaged, and the container lid 42b rotates. As a result, the opening of the container body 42a is opened. Note that FIG. 1 shows a state where the opening of the container main body 42a is opened.
  • the container main body 42a and the container lid 42b are preferably provided with a metal such as aluminum so that powder bread materials (for example, gluten, dry yeast, etc.) stored in the container do not remain in the container.
  • the inner surfaces thereof are preferably covered with a silicon-based or fluorine-based coating layer, and are preferably formed smoothly with as little unevenness as possible.
  • a flange is provided on the opening side edge of the container main body 42a so that the above-described steam or the like does not enter the container main body 42a, and the container main body 42a is provided between the flange and the container lid 42b. Is provided with a packing (seal member) 42d.
  • FIG. 2 is a schematic diagram for explaining the internal configuration of the main body of the automatic bread maker according to the present embodiment.
  • FIG. 2 assumes a case where the automatic bread maker 1 is viewed from above, and the lower side of the figure is the front side of the automatic bread maker 1 and the upper side of the figure is the back side.
  • a low-speed / high-torque type kneading motor 50 used in the kneading process is fixedly disposed on the right side of the baking chamber 30, and the grinding process is performed behind the baking chamber 30.
  • the high-speed rotation type crushing motor 60 used in the above is fixedly arranged.
  • the kneading motor 50 and the crushing motor 60 are both shafts.
  • the kneading motor 50 is an example of the first motor of the present invention
  • the crushing motor 60 is an example of the second motor of the present invention.
  • the output shaft pulley 52 is fixed to the output shaft 51 protruding from the upper surface of the kneading motor 50.
  • the output shaft pulley 52 is formed by the first belt portion 53 to have a diameter larger than that of the output shaft pulley 52 and is fixed to the upper side of the first relay rotation shaft 54. It is connected to a shaft pulley 55.
  • the first relay rotating shaft 54 is disposed on the back side of the kneading motor 60 and is rotatably supported inside the main body 10.
  • a second relay rotation shaft 57 is provided on the lower side of the first relay rotation shaft 54 so that the rotation center thereof is substantially the same as that of the first relay rotation shaft 54 (FIGS. 3 and 5 described later). See also 4A and FIG. 4B). Note that the second relay rotating shaft 57 is also rotatably supported inside the main body 10. Further, a clutch 56 for transmitting power and interrupting power is provided between the first relay rotating shaft 54 and the second relay rotating shaft 57 (see also FIGS. 3, 4A and 4B described later). ). The configuration of the clutch 56 will be described later.
  • a second relay rotary shaft pulley 58 is fixed to the lower side of the second relay rotary shaft 57 (see also FIGS. 3, 4A and 4B described later).
  • the second relay rotating shaft pulley 58 is connected to the driving shaft pulley 12 provided on the lower side of the firing chamber 30 and fixed to the driving shaft 11 (details will be described later) by a second belt portion 59. (See also FIG. 3, FIG. 4A and FIG. 4B described later).
  • the second relay rotating shaft pulley 58 and the driving shaft pulley 12 have substantially the same diameter.
  • the kneading motor 50 itself is a low speed / high torque type, and the rotation of the output shaft pulley 52 is decelerated and rotated by the first relay rotating shaft pulley 55 (for example, decelerated to a speed of 1/5). . For this reason, when the kneading motor 50 is driven while the clutch 56 is transmitting power, the torque of the output shaft 51 of the kneading motor 50 is increased and transmitted to the driving shaft 11, and the driving shaft 11 has a low speed (for example, about 180 rpm). Rotates with high torque.
  • the pulley 58, the second belt portion 59, and the driving shaft pulley 12 constitute a power transmission unit that transmits the rotational force of the output shaft 51 of the kneading motor 50 to the driving shaft 11.
  • This power transmission part is an example of the power transmission part for the kneading motor of the present invention.
  • the power transmission unit for the kneading motor may be expressed as a first power transmission unit PT1.
  • the driving shaft 11 is an example of the second rotating shaft of the present invention
  • the second relay rotating shaft 57 is an example of the third rotating shaft of the present invention.
  • the output shaft pulley 62 is fixed to the output shaft 61 protruding from the lower surface of the grinding motor 60.
  • the output shaft pulley 62 is connected to a driving shaft pulley 12 fixed to the driving shaft 11 by a third belt portion 63.
  • the driving shaft pulley 12 is shared by the second belt portion 59 and the third belt portion 63.
  • the second belt portion 59 is disposed on the lower side of the third belt portion 63 (see also FIGS. 4A and 4B described later).
  • the output shaft pulley 62 and the drive shaft pulley 12 have substantially the same diameter.
  • Crushed motor 60 is selected to be capable of high speed rotation. Since the rotation of the output shaft pulley 62 is maintained at substantially the same speed in the driving shaft pulley 12, the driving shaft 11 rotates at a high speed (for example, 7000 to 8000 rpm) by the high speed rotation of the grinding motor 60.
  • a high speed for example, 7000 to 8000 rpm
  • the output shaft pulley 62, the third belt portion 63, and the driving shaft pulley 12 constitute a power transmission unit that transmits the rotational force of the output shaft 61 of the grinding motor 60 to the driving shaft 11.
  • This power transmission unit is an example of a power transmission unit for the grinding motor of the present invention.
  • the power transmission unit for the pulverization motor may be expressed as a second power transmission unit PT2.
  • the second power transmission unit PT2 has a configuration that does not have a clutch, and connects the output shaft 61 of the crushing motor 60 and the driving shaft 11 so that power can be transmitted constantly.
  • FIG. 3 is a schematic perspective view of the automatic bread maker according to the present embodiment when viewed from obliquely below with the main body cover removed.
  • 4A and 4B are views for explaining a clutch included in the first power transmission unit included in the automatic bread maker of the present embodiment.
  • 4A and 4B are diagrams assuming a case of viewing along the direction of arrow X in FIG. 4A shows a state where the clutch 56 performs power cut-off, and FIG. 4B shows a state where the clutch 56 performs power transmission.
  • the clutch 56 includes a first clutch member 561 and a second clutch member 562. Then, when the claw 561a provided on the first clutch member 561 and the claw 562a provided on the second clutch member 562 are engaged with each other (the state shown in FIG. 4B), the clutch 56 transmits power. Further, when the two claws 561a and 562b are not engaged with each other (the state shown in FIG. 4A), the clutch 56 cuts off the power. That is, the clutch 56 is a meshing clutch.
  • each of the two clutch members 561 and 562 has a circumferential direction (when the first clutch member 561 is seen in plan view from below, or the second clutch member 562 is seen in plan view from above. Assuming the case), six claws 561a and 562a arranged at almost equal intervals are provided, but the number of the claws may be appropriately changed. Moreover, what is necessary is just to select a preferable shape suitably for the shape of nail
  • the first clutch member 561 is slidable in the axial direction (vertical direction in FIGS. 4A and 4B) with respect to the first relay rotating shaft 54 after taking measures to prevent the first clutch member 561 from being removed, and is not relatively rotatable. Is attached.
  • a spring 71 is loosely fitted on the upper side of the first clutch member 561 of the first relay rotation shaft 54. The spring 71 is disposed so as to be sandwiched between a stopper portion 54a provided on the first relay rotation shaft 54 and the first clutch member 561, and biases the first clutch member 561 downward. is doing.
  • the second clutch member 562 is fixed to the upper end of the second relay rotation shaft 57.
  • Switching between the power transmission state and the power cut-off state in the clutch 56 is performed using the arm portion 72 that can be selectively arranged at the lower position and the upper position.
  • a part of the arm portion 72 is disposed below the first clutch member 561 and can come into contact with the outer peripheral side of the first clutch member 561.
  • the driving of the arm portion 72 is performed using a clutch solenoid 73.
  • the clutch solenoid 73 includes a permanent magnet 73a and is a so-called self-holding solenoid.
  • the plunger 73 b of the clutch solenoid 73 is fixed to the plunger fixing attachment portion 72 a of the arm portion 72. For this reason, the arm part 72 moves according to the movement of the plunger 73b in which the amount of protrusion from the housing 73c varies due to the application of voltage.
  • the first clutch member 561 is pushed against the urging force of the spring 71 by being pushed by the arm portion 72. Move in the direction.
  • the first clutch member 561 and the second clutch member 562 do not mesh with each other. That is, when the arm portion 72 is in the upper position, the clutch 56 performs power interruption. In the state where the clutch 56 cuts off the power, the output shaft 51 of the kneading motor 50 and the driving shaft 11 are not connected.
  • the first clutch member 561 moves downward while being pushed by the urging force of the spring 71.
  • the first clutch member 561 and the second clutch member 562 are engaged with each other. That is, when the arm portion 72 is in the lower position, the clutch 56 transmits power. In a state where the clutch 56 transmits power, the output shaft 51 of the kneading motor 50 and the driving shaft 11 are connected.
  • the automatic bread maker 1 includes the clutch 56 that performs power transmission and power interruption in the first power transmission unit PT1.
  • the first power transmission unit PT1 includes the second relay rotating shaft 57, the second relay shaft rotating pulley 58, the second belt portion 59, and the driving shaft pulley. As a configuration including 12, the height is prevented from becoming too high.
  • the second power transmission unit PT2 is not provided with a clutch. This is due to the following reason. That is, even if the kneading motor 50 is driven, the driving shaft 11 is only rotated at a low speed (for example, 180 rpm). For this reason, even if the rotational power for rotating the driving shaft 11 is transmitted to the output shaft 61 of the grinding motor 60, a large load is not applied to the kneading motor 50. And the manufacturing cost of the automatic bread maker 1 is suppressed by adopting the structure in which the clutch is not provided in the second power transmission part PT2 in this way. However, it goes without saying that a configuration in which a clutch is provided in the second power transmission unit PT2 may be adopted.
  • the second belt portion 59 provided in the first power transmission portion PT1 will be described in detail.
  • the torque of the output shaft 51 of the kneading motor 50 is transmitted to the first and second relay rotating shafts 54 and 57 in a torque-up state due to the presence of the first relay rotating shaft pulley 55.
  • the second relay rotating shaft pulley 58 and the driving shaft pulley 12 are larger in size (diameter) than the first relay rotating shaft pulley 55 so that the automatic bread maker 1 does not increase in size. Is configured to be small. For this reason, unless the width of the second belt portion 59 (and the width of the pulley) is sufficiently wide, the second belt portion 59 cannot withstand high torque and slip (slip) occurs in the second belt portion 59.
  • the automatic bread maker 1 includes two belts 59a and 59b (corresponding to a plurality of belts of the present invention) in which the second belt portion 59 is arranged in parallel. Is adopted.
  • variety of each belt 59a, 59b can implement
  • the two belts 59a and 59b are preferably made of the same material and the same shape. Thereby, the production efficiency can be improved.
  • the two belts 59a and 59b are made of a stretchable material such as rubber.
  • the belt The number is one.
  • the belt portions 53 and 56 may have a plurality of belts.
  • FIG. 5 is a schematic side view showing a configuration of a second relay rotating shaft pulley included in the automatic bread maker of the present embodiment.
  • the second relay rotating shaft pulley 58 has a plurality of engaging grooves EG having a substantially V-shaped cross-sectional view formed without interruption along the rotation direction (in the present embodiment). Then there are six). Further, a flange portion FP is formed at the center of the second relay rotating shaft pulley 58.
  • the driving shaft pulley 12 also has an engaging groove EG and a flange portion FP, similarly to the second relay rotating shaft pulley 58. However, since the driving shaft pulley 12 is shared with the third belt portion 63, the width (height) in the vertical direction is larger than that of the second relay rotating shaft pulley 58, and the engagement groove The number of EGs and the position where the flange portion FP is provided (not the central portion of the driving shaft pulley 12) are different.
  • FIGS. 6A and 6B are diagrams for explaining the structure of the belt constituting the second belt portion provided in the automatic bread maker of the present embodiment
  • FIG. 6A is a view of the belt from the surface facing the pulley
  • FIG. 6B is a schematic cross-sectional view taken along the BB position in FIG. 6A.
  • the two belts 59a and 59b are engaged with a plurality (three in this embodiment) of substantially V-shaped cross sections on the surfaces facing the pulleys 58 and 12, respectively.
  • Mountains EM are formed at equal intervals.
  • the belts 59a and 59b are wound in order on the upper side and the lower side across the flange portion FP. Is done. At this time, the belts 59a and 59b are attached so that the engagement peaks EM of the belts 59a and 59b fit into the engagement grooves EG of the pulleys 58 and 12. Since the two belts 59a and 59b are not wound at the same time but are wound separately one by one, the attaching work of the second belt portion 59 becomes very easy.
  • the pulleys 58 and 12 are provided with the engagement grooves EG and the belts 59a and 59b are provided with the engagement peaks EM that engage with the engagement grooves EG, the pulleys 58 and 12 and the belt 59a are used. , 59b, a large frictional force is generated. For this reason, slip (slip) hardly occurs between the pulleys 58 and 12 and the belts 59a and 59b, and the width of the belts 59a and 59b (also pulleys 58 and 12) can be reduced. It has become.
  • a configuration in which the engagement grooves EG are not provided in the pulleys 58 and 12 and the engagement mountains EM are not provided in the belts 59a and 59b (a flat belt) is adopted. May be.
  • the flange portion FP since the flange portion FP is provided, a predetermined interval is provided between the two belts 59a and 59b. For this reason, the situation where the two belts 59a and 59b interfere with each other when the driving shaft 11 and the second relay rotation shaft 57 are rotated can be avoided. As a result, it is possible to suppress the occurrence of abnormal noise when the motors 50 and 60 are driven.
  • the flange portion FP may not be provided depending on circumstances.
  • FIG. 7 is a diagram schematically showing a configuration of a baking chamber in which a bread container is accommodated and its surroundings in the automatic bread maker of the present embodiment.
  • FIG. 7 assumes a configuration when the automatic bread maker 1 is viewed from the front side, and the configurations of the baking chamber 30 and the bread container 80 are generally shown in cross-sectional views.
  • the bread container 80 used as a baking mold while the bread raw material is input can be taken in and out of the baking chamber 30.
  • a sheathed heater 31 (an example of a heating unit) is disposed inside the baking chamber 30 so as to surround a bread container 80 accommodated in the baking chamber 30. By using this sheathed heater 31, it is possible to heat the bread ingredients (including the dough) in the bread container 80.
  • a bread container support portion 14 (for example, made of an aluminum alloy die cast product) that supports the bread container 80 is fixed to a location that is substantially at the center of the bottom wall 30a of the baking chamber 30.
  • the bread container support portion 14 is formed so as to be recessed from the bottom wall 30a of the baking chamber 30, and the shape of the recess is substantially circular when viewed from above.
  • the above-described driving shaft 11 is supported so as to be substantially perpendicular to the bottom wall 30a.
  • a main body side connecting portion 17 is fixed to the upper end of the driving shaft 11.
  • the bread container 80 is, for example, an aluminum alloy die-cast molded product (others may be made of sheet metal or the like), has a bucket-like shape, and is handed to the flange 80a provided on the side edge of the opening. A handle (not shown) is attached.
  • the horizontal cross section of the bread container 80 is a rectangle with rounded corners. Further, a concave portion 81 having a substantially circular shape in a plan view is formed on the bottom of the bread container 80 so as to accommodate a part of a blade unit 90 which will be described in detail later.
  • a blade rotation shaft 82 (an example of the first rotation shaft of the present invention) extending in the vertical direction is rotatably supported in a state where a countermeasure against sealing is taken.
  • a container-side connecting portion 84 is fixed to the lower end of the blade rotation shaft 82 (projecting outward from the bottom of the bread container 80).
  • a cylindrical pedestal 83 (an example of the cylindrical body of the present invention) is provided on the bottom outer surface side of the bread container 80 so as to surround the blade rotation shaft 82.
  • the bread container 80 is accommodated in the baking chamber 30 in a state where the pedestal 83 is received by the bread container support portion 14.
  • the pedestal 83 may be formed separately from the bread container 80 or may be formed integrally with the bread container 80.
  • FIG. 15A, FIG. 15B, FIG. 16, FIG. 17A and FIG. 17B the bread container 80 and the bread container support portion 14 (of the baking chamber 30) in a state where the bread container 80 is accommodated in the baking chamber 30.
  • the relationship with respect to (provided at the bottom) will be described in more detail.
  • FIG. 15A and 15B are diagrams for explaining the configuration of the bottom part of the baking chamber provided in the automatic bread maker of the present embodiment.
  • FIG. 15A is an automatic bread maker (lid) before the bread container is placed in the baking chamber.
  • FIG. 15B is an enlarged schematic perspective view showing the main body side connecting portion provided in the bread container supporting portion.
  • FIG. 16 is a schematic plan view when the bread container provided in the automatic bread maker of the present embodiment is viewed from the lower side.
  • 17A and 17B are diagrams for explaining the relationship between the main body side connection portion and the container side connection portion provided in the automatic bread maker of the present embodiment, and FIG. 17A includes both the bread container from which the base is removed.
  • FIG. 17B is a schematic plan view showing the relationship between the two.
  • FIGS. 15A and 15B on the inner wall of the bread container support portion 14, there are four engagement grooves 14a (of the second engagement portion of the present invention) whose center positions are arranged at substantially equal intervals in the circumferential direction. An example) is formed.
  • FIG. 16 on the outer surface of the pedestal 83 of the bread container 80, four engagement protrusions 83a (of the first engagement portion of the present invention) whose center positions are arranged at substantially equal intervals in the circumferential direction. An example) is formed.
  • the bread container 80 is attached to the bread container support 14 by adjusting the position so that the engagement protrusion 83a of the base 83 fits into the engagement groove 14a of the bread container support 14 and then lowering.
  • the bread container 80 attached to the bread container support 14 is positioned in the horizontal direction (a plane direction substantially perpendicular to the blade rotation shaft 82) by the engagement groove 14a and the engagement protrusion 83a.
  • the bread container 80 can hardly rotate in the baking chamber 30.
  • the circumferential width of the engaging protrusion 83a is formed to be approximately the same size as the circumferential width of the corresponding engaging groove 14a (slightly smaller than the engaging groove 14a).
  • the sizes of the four engaging grooves 14a and the four engaging protrusions 83a in the circumferential direction may be the same, but in the present embodiment, the adjacent engaging grooves 14a and the adjacent engaging protrusions 83a are the same.
  • the circumferential widths of the two are different, and the same size is obtained by skipping one. This is to prevent the bread container 80 accommodated in the baking chamber 30 from being set in a direction (incorrect direction) rotated 90 ° from the original direction.
  • the engagement groove 14a and the engagement protrusion 83a may be provided so as to be positioned, and the number and size thereof can be changed as appropriate. Furthermore, a configuration in which an engagement protrusion is provided on the inner wall of the bread container support portion 14 and an engagement groove is provided in the pedestal 83 of the bread container 80 (a configuration opposite to that of the present embodiment) may be employed.
  • the main body side connecting portion 17 fixed to the upper end of the driving shaft 11 is surrounded by the engaging groove 14a inside the bread container supporting portion 14. Is provided.
  • the main body side connecting portion 17 includes a substantially disc-shaped first base 17a and two protruding portions 17b having the same shape and provided near the outer periphery of the upper surface of the first base 17a.
  • the two protrusions 17b are arranged substantially symmetrically with respect to the center (the driving shaft 11) of the first base 17a.
  • the protrusion 17b has recesses 17c formed on both side surfaces thereof.
  • the container-side connecting portion 84 is provided at the lower end of the blade rotating shaft 82 (the tip portion protruding from the bottom of the bread container 80 to the outer surface side). Is fixed.
  • the container side connecting portion 84 is a cup that transmits the rotational power of the driving shaft 11 (in other words, the rotational power of the motors 50 and 60) to the blade rotating shaft 82 together with the main body side connecting portion 17. Configure the ring.
  • the container-side connection portion 84 includes a substantially disc-shaped second base 84a and two arm portions 84b extending from the second base 84a in the horizontal direction (substantially perpendicular to the blade rotation shaft 83). Yes.
  • the two arm portions 84b are provided so as to be substantially symmetric with respect to the center of the second base 84a (blade rotation shaft 83).
  • Convex portions 84c are formed on both side surfaces of the arm portion 84b provided in a substantially kamaboko shape when viewed in cross section.
  • the protrusion 17b of the main body side connection part 17 and the arm part 84b of the container side connection part 84 are not necessarily engaged, but when the driving shaft 11 is rotated, both are engaged as shown in FIGS. 17A and 17B. In this engaged state, the convex portion 84c of the arm portion 84b is fitted into the concave portion 17c of the protruding portion 17b.
  • the bread container 80 receives a force upward (in the direction of lifting) while the blade rotation shaft 82 is rotating, the arm part 84b (part of it) is caught by the protruding part 17b and the bread container 80 does not rise. Further, the bread container 80 is fixed so as not to rotate in the horizontal plane by the engagement groove 14a and the engagement protrusion 83a. For this reason, in the automatic bread maker 1 of this embodiment, the rotational power of the driving shaft 11 is stably transmitted to the blade rotating shaft 82 by the coupling constituted by the main body side connecting portion 17 and the container side connecting portion 84. It is possible to do.
  • the automatic bread maker 1 of the present embodiment adopts a configuration in which the rotation direction of the driving shaft 11 is reversed between the crushing step and the kneading step.
  • the concave portions 17c are provided on both side surfaces of the projecting portion 17b and the convex portions 84c are provided on both side surfaces of the arm portion 84b, the driving shaft 11 rotates in any direction.
  • the projecting portion 17b and the arm portion 84b are engaged with each other with the convex portion 84c fitted into the concave portion 17c.
  • FIGS. 17A and 17B are drawn assuming that the rotational direction of the drive shaft 11 is different in order to make this point easier to understand.
  • FIG. 17A assumes a case where the driving shaft 11 rotates in the clockwise direction R1 when viewed from above
  • FIG. 17B illustrates a case where the driving shaft 11 rotates in the counterclockwise direction R2 when viewed from above. Assumed.
  • the inclined surface 17d (refer FIG. 15B and FIG. 17B) is formed in the upper surface of the protrusion part 17b.
  • the arm part 84b may collide with the protrusion part 17b.
  • the arm portion 84b in contact with the protruding portion 17b applies a rotational force to the first base 17a constituting the main body side connecting portion 17 due to the presence of the inclined surface 17d.
  • the first base 17a is rotated simply by pushing the bread container 80 downward, the collision state between the projecting portion 17b and the arm portion 84b is eliminated, and the bread container 80 is appropriately attached to the bread container support portion 14. Can be attached.
  • the present invention is not limited to this configuration. In short, it is only necessary that the protrusion 17b and the arm 84b overlap with each other so that a portion of the arm 84b is lower than the protrusion 17b.
  • the protrusion 17b has a protrusion and the arm 84b has a protrusion.
  • a configuration in which a concave portion that fits into the convex portion of the protruding portion 17b may be provided.
  • the number and arrangement of the projecting portions 17b and the arm portions 84b are not limited to the configuration of the present embodiment, and may be appropriately changed within a range in which a function as a coupling is obtained.
  • the arm portion 84b is configured to extend from the second base 84a, but may be configured to extend directly from the blade rotation shaft 82.
  • the blade unit 90 is detachably attached to the portion of the blade rotating shaft 82 that protrudes into the bread container 80 from above.
  • the configuration of the blade unit 90 will be described with reference to FIGS. 8, 9, 10A, 10B, 11A, 11B, 12A, and 12B.
  • FIG. 8 is a schematic perspective view showing the configuration of the blade unit provided in the automatic bread maker of the present embodiment.
  • FIG. 9 is a schematic exploded perspective view showing a configuration of a blade unit provided in the automatic bread maker of the present embodiment.
  • 10A and 10B are diagrams showing the configuration of the blade unit provided in the automatic bread maker of the present embodiment, FIG. 10A is a schematic side view, and FIG. 10B is a cross-sectional view at the position AA in FIG. 10A.
  • 11A and 11B are schematic plan views of the blade unit provided in the automatic bread maker according to the present embodiment when viewed from below, FIG. 11A is a view when the kneading blade is in a folded position, and FIG. 11B is a kneading blade.
  • FIG. 12A and FIG. 12B are diagrams when the bread container provided in the automatic bread maker of the present embodiment is viewed from above.
  • FIG. 12A is a view when the kneading blade is in the folded position
  • FIG. 12B is a view when the kneading blade is in the open position.
  • the blade unit 90 is roughly attached to the unit shaft 91, the pulverizing blade 92 that is attached to the unit shaft 91 so as not to rotate relative to the unit shaft 91, and the relative rotation to the unit shaft 91 so as to cover the pulverizing blade 92 from above.
  • a configuration comprising: a dome-shaped cover 93 that is substantially circular in plan view; a kneading blade 101 that is attached to the dome-shaped cover 93 so as to be relatively rotatable; and a guard 106 that is attached to the dome-shaped cover 93 and covers the grinding blade 92 from below. (For example, see FIGS. 8, 9, 10A, and 10B).
  • the crushing blade 92 is positioned slightly above the bottom surface of the recess 81 of the bread container 80. Further, almost the entire grinding blade 92 and the dome-shaped cover 93 are accommodated in the recess 81 (see, for example, FIG. 7).
  • the unit shaft 91 is a substantially cylindrical member formed of a metal such as a stainless steel plate, for example, and has an opening at one end (lower end), and the inside is hollow. That is, the unit shaft 91 has a configuration in which an insertion hole 91c is formed so that the blade rotation shaft 82 can be inserted from the lower end (see, for example, FIG. 10B).
  • a pair of cutout portions 91a are formed on the lower side (opening side) of the side wall of the unit shaft 91 so as to be symmetrically arranged with respect to the rotation center of the unit shaft 91 (see, for example, FIG. 9).
  • FIG. 9 shows only one of the pair of cutout portions 91a).
  • the shape of the notch 91a is substantially rectangular in a side view, and in detail, one end (upper end) is rounded.
  • the notch 91a is provided to engage the pin 821 (see FIG. 10B) penetrating the blade rotation shaft 82 horizontally. When the pin 821 of the blade rotating shaft 82 and the notch 91a are engaged, the unit shaft 91 is attached to the blade rotating shaft 82 so as not to be relatively rotatable.
  • the center of the upper surface on the inner side of the unit shaft 91 so as to engage with a convex portion 82b provided at the center of the upper end surface (substantially circular) of the blade rotation shaft 82 (shown by a broken line).
  • a concave portion 91b is formed in the portion. Accordingly, the blade unit 90 can be easily attached to the blade rotation shaft 82 in a state where the centers of the unit shaft 91 and the blade rotation shaft 82 are aligned. For this reason, when the blade rotating shaft 82 is rotated, occurrence of unnecessary rattling is suppressed.
  • the convex portion 82b is provided on the blade rotating shaft 82 side and the concave portion 91b is provided on the unit shaft 91 side, but conversely, the concave portion is provided on the blade rotating shaft 82 side and the unit shaft 91 side is provided.
  • a configuration in which a convex portion is provided may be employed.
  • the pulverization blade 92 for pulverizing grains is formed by processing a stainless steel plate, for example.
  • the pulverization blade 92 includes a first cutting portion 921, a second cutting portion 922, and a connecting portion 923 that connects the first cutting portion 921 and the second cutting portion 922. And comprising.
  • An opening 923 a having a substantially rectangular shape (stadium shape) in plan view is formed at the center of the connecting portion 923.
  • the grinding blade 92 is attached to the unit shaft 91 such that the lower side of the unit shaft 91 is fitted into the opening 923a.
  • a flat surface is formed on the lower side of the unit shaft 91 by shaving a part of the side surface (near the position where the notch 91a is provided).
  • the lower side of the unit shaft 91 has substantially the same shape (substantially rectangular shape) as the opening 923a provided in the connecting portion 923.
  • the area when the lower side of the unit shaft 91 is viewed in plan is slightly smaller than the opening 923a. Since such a shape is adopted, the grinding blade 92 is attached to the unit shaft 91 so as not to be relatively rotatable. Since the stopper member 94 for preventing the retaining member 94 is fitted into the unit shaft 91 on the lower side of the pulverizing blade 92, the pulverizing blade 92 does not fall off the unit shaft 91.
  • the dome-shaped cover 93 disposed so as to surround and cover the crushing blade 92 is made of, for example, an aluminum alloy die-cast product, and a bearing 95 (in this embodiment, a rolling bearing is used on the inner surface side thereof. ) (See FIG. 10B) is formed.
  • the dome-shaped cover 93 has a configuration in which a substantially cylindrical convex portion 93a is formed at the center when viewed from the outer surface.
  • the opening is not formed in the convex part 93a, and the bearing 95 accommodated in the accommodating part 931 is in the state in which the side surface and the upper surface are enclosed by the wall surface of the accommodating part 931.
  • the inner ring 95a is attached to the unit shaft 91 so as not to rotate relative to the bearing 95 with the retaining rings 96a and 96b arranged on the upper and lower sides (the unit shaft 91 is press-fitted into a through hole inside the inner ring 95a. ing).
  • the bearing 95 is press-fitted into the housing portion 931 so that the outer wall of the outer ring 95b is fixed to the side wall of the housing portion 931.
  • the dome-shaped cover 93 is attached to the unit shaft 91 so as to be rotatable relative to the bearing 95 (the inner ring 95a rotates relative to the outer ring 95b).
  • the housing portion 931 of the dome-shaped cover 93 is made of, for example, a silicon-based material so that foreign matter (for example, liquid used when pulverizing grain grains or paste-like material obtained by pulverization) does not enter the bearing 95 from the outside.
  • a seal material 97 formed of a fluorine-based material and a metal seal cover 98 that holds the seal material 97 are press-fitted from the lower side of the bearing 95.
  • the seal cover 98 is fixed to the dome-shaped cover 93 with a rivet 99 so that the fixing to the dome-shaped cover 93 is ensured. Although fixing with the rivet 99 may not be performed, it is preferable to configure as in the present embodiment in order to obtain reliable fixing.
  • the sealing material 97 and the sealing cover 98 function as sealing means.
  • a kneading blade 101 (for example, aluminum) in a planar shape is formed by a support shaft 100 (see FIG. 9) arranged so as to extend in a vertical direction at a location adjacent to the convex portion 93 a. (Made of die-cast alloy product) is attached.
  • the kneading blade 101 is attached to the support shaft 100 so as not to be relatively rotatable, and moves together with the support shaft 100 attached to the dome-shaped cover 93 so as to be relatively rotatable. In other words, the kneading blade 101 is attached to the dome-shaped cover 93 so as to be relatively rotatable.
  • FIG. 8 On one side near the tip of the kneading blade 101 (assuming a portion that draws the largest circle when the kneading blade 101 is rotated about the support shaft 100), FIG. 8, FIG. 9, FIG. 10A, FIG. As shown in 11A, FIG. 11B, FIG. 12A, and FIG. 12B, a cushioning material 107 is attached.
  • the buffer material 107 is provided so as to slightly protrude from the tip of the kneading blade 101 (see, for example, FIG. 11B). In the present embodiment, it is provided so as to protrude about 3 mm (d ⁇ 3 mm).
  • the buffer material 107 is fixed in a state where the buffer material 107 is sandwiched between one surface of the kneading blade 101 and the fixing plate 108 and obtained by caulking the rivet 109 inserted from the other surface side of the kneading blade 101. ing.
  • the number of rivets 109 is two, but it goes without saying that the number is not limited.
  • the buffer material 107 is disposed so as not to directly contact the bread container 80 (inner wall) when the kneading blade 101 is in an open posture, which will be described in detail later.
  • the buffer material 107 is provided to prevent such damage.
  • the surface of the bread container 80 and the kneading blade 101 is coated with fluorine.
  • the buffer material 107 of the present embodiment is provided so that the fluorine coating is not peeled off by contact between the kneading blade 101 and the pan container 80.
  • the material constituting the cushioning material 107 is preferably a material softer than the coating material so as not to peel off the fluorine coating.
  • silicone rubber or TPE Thermoplastic Elastomers
  • the buffer material 107 also functions as a soundproofing measure, which will be described later. In the following description, the buffer material 107 may be regarded as a part of the kneading blade 101.
  • the complementary kneading blade 102 (for example, made of an aluminum alloy die cast product) is fixedly arranged on the outer surface of the dome-shaped cover 93 so as to be aligned with the kneading blade 101.
  • the complementary kneading blade 102 is not necessarily provided, but is preferably provided in order to increase the kneading efficiency in the kneading process of kneading the bread dough.
  • the kneading blade 101 rotates around the axis of the support shaft 100 together with the support shaft 100, and has two postures, a folded posture shown in FIGS. 8, 10A, 11A and 12A, and an open posture shown in FIGS. 11B and 12B. Take. In the folded position, the protrusion 101a (see FIG. 9) hanging from the lower edge of the kneading blade 101 contacts the first stopper portion 93b provided on the upper surface (outer surface) of the dome-shaped cover 93. For this reason, the kneading blade 101 cannot further rotate counterclockwise (assuming the case viewed from above) with respect to the dome-shaped cover 93. In this folded position, the tip of the kneading blade 101 protrudes slightly from the dome-shaped cover 93.
  • the complementary kneading blade 102 is aligned with the kneading blade 101 as shown in FIGS. 8 and 10A, for example.
  • the size becomes larger.
  • a first engagement body 103 a constituting a cover clutch 103 is attached to the unit shaft 91 between the crushing blade 92 and the seal cover 98.
  • a substantially rectangular (stadium-shaped) opening 103aa is formed in the first engaging body 103a made of zinc die casting, and a substantially rectangular portion in plan view on the lower side of the unit shaft 91 is fitted into the opening 103aa.
  • the first engagement body 103a is attached to the unit shaft 91 so as not to be relatively rotatable.
  • the first engaging body 103a is attached from the lower side of the unit shaft 91 prior to the crushing blade 92, and the stopper member 94 prevents the unit shaft 91 from dropping off together with the crushing blade 92.
  • the washer 104 is disposed between the first engagement body 103a and the seal cover 98 in consideration of prevention of deterioration of the first engagement body 103a.
  • the washer 104 is not necessarily provided. It does not have to be provided.
  • a second engagement body 103b constituting the cover clutch 103 is attached to the lower side of the support shaft 100 to which the kneading blade 101 is attached.
  • a substantially rectangular (stadium-shaped) opening 103ba is formed in the second engaging body 103b made of zinc die casting, and a substantially rectangular portion in plan view on the lower side of the support shaft 100 is fitted into the opening 103ba.
  • the second engagement body 103b is attached to the support shaft 100 so as not to be relatively rotatable.
  • the washer 105 is arranged on the upper side of the second engagement body 103b in consideration of prevention of deterioration of the second engagement body 103b.
  • the washer 105 is not necessarily provided.
  • the cover clutch 103 composed of the first engagement body 103a and the second engagement body 103b functions as a clutch for switching whether or not to transmit the rotational power of the blade rotation shaft 82 to the dome-shaped cover 93.
  • the cover clutch 103 is a rotation direction of the blade rotation shaft 82 when the kneading motor 50 rotates the driving shaft 11 (this rotation direction is referred to as “forward rotation”. In FIGS. 11A and 11B, the rotation is counterclockwise. 12A and 12B, the rotational power of the blade rotation shaft 82 is transmitted to the dome-shaped cover 93. Conversely, the rotation direction of the blade rotation shaft 82 when the crushing motor 60 rotates the drive shaft 11 (this rotation direction is referred to as “reverse rotation”. In FIGS.
  • FIGS. 12A and 12B are rotations. Then, the cover clutch 103 does not transmit the rotational power of the blade rotating shaft 82 to the dome-shaped cover 93.
  • the operation of the cover clutch 103 will be described in more detail.
  • the engagement portion 103bb of the second engagement body 103b is the engagement portion 103ab of the first engagement body 103a (although there are two in this embodiment). It is an angle that interferes with the rotation trajectory (see FIG. 11A). Therefore, when the blade rotation shaft 82 rotates in the forward direction, the first engagement body 103 a and the second engagement body 103 b are engaged, and the rotational power of the blade rotation shaft 82 is transmitted to the dome-shaped cover 93.
  • the dome-shaped cover 93 is formed with a window 93d that communicates the space inside the cover and the space outside the cover.
  • the window 93d is arranged at a height equal to or higher than the grinding blade 92.
  • a total of four windows 93d are arranged at intervals of 90 °, but other numbers and arrangement intervals can be selected.
  • each rib 93e extends obliquely from the vicinity of the center of the dome-shaped cover 93 to the outer peripheral annular wall with respect to the radial direction, and the four ribs 93e form a kind of bowl shape. Moreover, each rib 93e is curving so that the side which faces the bread raw material pressed toward it may become convex.
  • a guard 106 is detachably attached to the lower surface of the dome-shaped cover 93.
  • the guard 106 covers the lower surface of the dome-shaped cover 93 and prevents the user's finger from approaching the grinding blade 92.
  • the guard 106 is formed of, for example, an engineering plastic having heat resistance, and can be a molded product such as PPS (polyphenylene sulfide).
  • the guard 106 need not be provided, but is preferably provided for the purpose of ensuring the safety of the user.
  • the guard 106 there is a ring-shaped hub 106a through which a stopper member 94 fixed to the unit shaft 91 is passed. Further, at the periphery of the guard 106, there is a ring-shaped rim 106b provided concentrically outside the hub 106a.
  • the hub 106a and the rim 106b are connected by a plurality of spokes 106c.
  • the plurality of spokes 106c are arranged at a predetermined interval, and between the spokes 106c are openings 106d through which grain grains pulverized by the pulverizing blade 92 pass.
  • the opening 106d has a size that prevents a finger from passing through.
  • the guard 106 is shaped like an outer blade of a rotary electric razor, and the grinding blade 92 is shaped like an inner blade.
  • a total of four columns 106e are integrally formed at the periphery of the rim 106b at intervals of 90 °.
  • a horizontal groove 106ea having one end dead end is formed on a side surface of the pillar 106e facing the center side of the guard 106.
  • the guard 106 is attached to the dome-shaped cover 93 by engaging the grooves 106 ea with the projections 93 f formed on the outer periphery of the dome-shaped cover 93 (all four are arranged at intervals of 90 °).
  • the groove 106ea and the protrusion 93f are provided so as to constitute a bayonet coupling.
  • Each of the plurality of pillars 106e is inclined such that the side surface 106eb that is the front surface in the rotation direction is obliquely upward when the blade rotation shaft 82 rotates in the forward direction.
  • the crushing blade 92 and the kneading blade 101 are incorporated into one unit (blade unit 90), the handling thereof is convenient.
  • the user can easily pull out the blade unit 90 from the blade rotating shaft 82, and can easily clean the blade after the bread making operation.
  • the pulverizing blade 92 provided in the blade unit 90 is detachably attached to the unit shaft 91, and is easily mass-produced and has excellent maintainability such as blade replacement.
  • the bearing 95 is preferably a sealed structure so that the liquid does not enter the bearing 95.
  • the sealing means the sealing material 97 and the seal cover only on the inner surface side of the dome-shaped cover 93). 98
  • a structure for sealing the bearing 95 is obtained.
  • the automatic bread maker 1 it is possible to suppress an adverse effect on the shape of the baked bread (for example, the bottom surface of the bread is greatly recessed).
  • FIG. 13 is a block diagram showing the configuration of the automatic bread maker according to the present embodiment.
  • the control operation in the automatic bread maker 1 is performed by the control device 120.
  • the control device 120 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like. .
  • the control device 120 is preferably disposed at a position that is not easily affected by the heat of the baking chamber 30. Further, the control device 120 is provided with a time measuring function, and temporal control in the bread manufacturing process is possible.
  • the control device 120 includes the operation unit 20, the temperature sensor 15 that detects the temperature of the baking chamber 30, a kneading motor drive circuit 121, a grinding motor drive circuit 122, a heater drive circuit 123, and a first solenoid.
  • the drive circuit 124 and the second solenoid drive circuit 125 are electrically connected.
  • the kneading motor driving circuit 121 is a circuit for controlling the driving of the kneading motor 50 under a command from the control device 120.
  • the grinding motor drive circuit 122 is a circuit for controlling the driving of the grinding motor 60 under a command from the control device 120.
  • the heater drive circuit 123 is a circuit for controlling the operation of the sheathed heater 31 under a command from the control device 120.
  • the first solenoid drive circuit 124 controls the drive of the automatic charging solenoid 16 that is driven when a part of the bread ingredients is automatically charged in the course of the bread manufacturing process under the command from the control device 120. Circuit.
  • the second solenoid drive circuit 125 controls driving of a clutch solenoid 73 (see FIGS. 4A and 4B) that switches the state of the clutch 56 (see FIGS. 4A and 4B) under a command from the control device 120. Circuit.
  • the control device 120 reads a program relating to a bread manufacturing course (breadmaking course) stored in a ROM or the like based on an input signal from the operation unit 20, and a kneading blade by the kneading motor 50 via the kneading motor driving circuit 121.
  • the automatic bread maker 1 controls the operation of the movable hook 42c by the automatic closing solenoid 16 via the solenoid driving circuit 124 and the switching control of the clutch 56 by the clutch solenoid 73 via the second solenoid driving circuit 125. Execute bread manufacturing process.
  • FIG. 14 is a schematic diagram showing the flow of a rice grain bread-making course executed by an automatic bread maker. As shown in FIG. 14, in the bread making course for rice grains, the dipping process, the crushing process, the pause process, the kneading (kneading) process, the fermentation process, and the baking process are sequentially performed in this order.
  • the dipping process As shown in FIG. 14, in the bread making course for rice grains, the dipping process, the crushing process, the pause process, the kneading (kneading) process, the fermentation process, and the baking process are sequentially performed in this order.
  • the user attaches the blade unit 90 to the blade rotation shaft 82 by covering the blade rotation shaft 82 of the bread container 80 with the unit shaft 91.
  • the blade unit 90 includes the guard 106, the user's finger does not touch the crushing blade 92 during this work, and the user can work safely.
  • the user weighs rice grains, water, and seasonings (for example, salt, sugar, shortening, etc.) in predetermined amounts and puts them in the bread container 80.
  • the user weighs the bread ingredients that are automatically input during the bread manufacturing process and puts them in the container body 42a of the bread ingredient storage container 42.
  • the container lid 42b is supported by the movable hook 42c so that the opening of the container main body 42a is closed by the container cover 42b.
  • the bread raw material accommodated in the bread raw material storage container 42 gluten, dry yeast, etc. are mentioned, for example.
  • gluten for example, at least one of flour, thickener (eg, guar gum), and upper fresh powder may be stored in the bread ingredient storage container 42.
  • only dry yeast may be stored in the bread raw material storage container 42 without using gluten, wheat flour, thickener, super fresh powder or the like.
  • seasonings such as salt, sugar, and shortening are stored in the bread ingredient storage container 42 together with, for example, gluten and dry yeast so as to be automatically introduced during the bread manufacturing process. May be.
  • the bread raw material previously put into the bread container 80 is rice grains and water (in place of mere water, for example, a liquid having a taste component such as soup stock, a liquid containing fruit juice or alcohol, etc.) Become.
  • the control apparatus 120 starts control operation
  • the dipping process is started by a command from the control device 120.
  • the bread raw material previously put in the bread container 80 is set in a stationary state, and the stationary state is maintained for a predetermined time (30 minutes in the present embodiment).
  • This dipping process is a process aimed at making the rice grains easy to be pulverized to the core in the subsequent pulverization process by adding water to the rice grains.
  • the water absorption rate of rice grains varies depending on the temperature of the water. If the water temperature is high, the water absorption rate increases, and if the water temperature is low, the water absorption rate decreases. For this reason, you may make it fluctuate
  • the grinding blade 92 may be rotated at the initial stage of the dipping process, and further, the grinding blade 92 may be intermittently rotated thereafter. If it does in this way, the surface of a rice grain can be damaged, and the liquid absorption efficiency of a rice grain will be improved.
  • the crushing blade 92 is rotated at a high speed (for example, 7000 to 8000 rpm) in a mixture containing rice grains and water.
  • the control device 120 controls the crushing motor 60 to rotate the blade rotation shaft 82 in the reverse direction (clockwise rotation in FIGS. 11A and 11B, and counterclockwise rotation in FIGS. 12A and 12B). Since the cutting blade of the crushing blade 92 is moved forward in the rotation direction by the reverse rotation of the blade rotation shaft 82, a crushing function using the crushing blade 92 is obtained.
  • the control device 120 drives the clutch solenoid 73 so that the clutch 56 shuts off the power (the state shown in FIG. 4A). This is because, as described above, there is a possibility that the motor is damaged unless it is controlled in this way.
  • the dome-shaped cover 93 also starts to rotate following the rotation of the blade rotation shaft 82.
  • the rotation of the cover 93 is immediately blocked (stopped). It is preferable that the pulverizing blade 92 is rotated at a low speed in the initial stage of the pulverization process and then rotated at a high speed.
  • the rotation direction of the dome-shaped cover 93 accompanying the rotation of the blade rotation shaft 82 for rotating the grinding blade 92 is the counterclockwise direction in FIGS. 12A and 12B, and the kneading blade 101 has been folded until then (see FIG. 12A).
  • the resistance changes from the mixture containing rice grains and water to the open posture (posture shown in FIG. 12B).
  • the engagement portion 103bb of the second engagement body 103b deviates from the rotation trajectory (see the broken line in FIG. 11B) of the engagement portion 103ab of the first engagement body 103a.
  • the cover clutch 103 disconnects the blade rotation shaft 82 from the dome-shaped cover 93.
  • a part of the kneading blade 101 in the open position (more precisely, the cushioning material 107 provided on the tip side) is formed on the inner wall of the bread container 80 (specifically, the grinding efficiency is improved).
  • the rotation of the dome-shaped cover 93 is prevented (stopped) in order to abut against the bowl-shaped convex portion 80b provided on the inner wall of the bread container 80 for improvement.
  • the pulverization of the rice grains in the pulverization step is performed in a state in which water is soaked in the rice grains by the previously performed immersion step, so that the rice grains can be easily pulverized to the core.
  • the rotation of the pulverizing blade 92 in the pulverization step is intermittent. This intermittent rotation is performed, for example, in a cycle of rotating for 30 seconds and stopping for 5 minutes, and this cycle is repeated 10 times. In the last cycle, the stop for 5 minutes is not performed.
  • the rotation of the crushing blade 92 may be continuous rotation, but for the purpose of, for example, preventing the temperature of the raw material in the bread container 80 from becoming too high, it is preferable to perform intermittent rotation.
  • the pulverization of the rice grains is performed in the dome-shaped cover 93 that has stopped rotating, and therefore the possibility that the rice grains scatter outside the bread container 80 is low. Further, the rice grains entering the dome-shaped cover 93 from the opening 106d of the guard 106 in the rotation stopped state are sheared between the stationary spoke 106c and the rotating pulverizing blade 92, so that the pulverization can be performed efficiently. Further, the rib 93e provided on the dome-shaped cover 93 suppresses the flow of the mixture containing rice grains and water (flow in the same direction as the rotation of the grinding blade 92), so that the grinding can be performed efficiently.
  • the mixture containing the pulverized rice grains and water is guided in the direction of the window 93d by the rib 93e of the dome-shaped cover 93, and is discharged out of the dome-shaped cover 93 from the window 93d. Since the rib 93e of the dome-shaped cover 93 is curved so that the side facing the mixture pressing toward it is convex, the mixture hardly stays on the surface of the rib 93e and flows smoothly toward the window 93d. . Further, instead of the mixture being discharged from the inside of the dome-shaped cover 93, the mixture existing in the space above the concave portion 81 enters the concave portion 81 and passes through the opening portion 106d of the guard 106 from the concave portion 81. Enter the cover 93. Since the pulverization by the pulverization blade 92 is performed while being circulated as described above, the pulverization can be performed efficiently.
  • the crushing process is completed in a predetermined time (in this embodiment, 50 minutes).
  • the grain size of the pulverized powder may vary depending on the hardness of the rice grains and the environmental conditions.
  • the end of the pulverization process may be determined based on the magnitude of the load of the pulverization motor 60 (for example, it can be determined by the control current of the motor).
  • the connection between the main body side connecting portion 17 and the container side connecting portion 84 constituting the coupling for transmitting the rotational power of the driving shaft 11 to the blade rotating shaft 82 is disconnected. Since it is configured to be difficult, a stable crushing operation can be performed.
  • the pause process is executed according to a command from the control device 120.
  • This pause process is provided as a cooling period during which the temperature of the contents in the bread container 80 raised by the crushing process is lowered.
  • the reason for lowering the temperature is that the next kneading step is carried out at a temperature at which the yeast is active (for example, around 30 ° C.).
  • the pause process is a predetermined time (30 minutes). However, in some cases, the pause process may be performed until the temperature of the bread container 80 reaches a predetermined temperature.
  • the kneading process is started by a command from the control device 120.
  • the control device 120 drives the clutch solenoid 73 so that the clutch 56 transmits power (state shown in FIG. 4B).
  • the control device 120 controls the kneading motor 50 to rotate the blade rotation shaft 82 in the forward direction (counterclockwise rotation in FIGS. 11A and 11B and clockwise rotation in FIGS. 12A and 12B).
  • the grinding blade 92 When the blade rotation shaft 82 is rotated in the forward direction, the grinding blade 92 is also rotated in the forward direction. In this case, the pulverizing blade 92 rotates with the cutting blade behind in the rotation direction, and does not exhibit the pulverizing function. Due to the rotation of the grinding blade 92, the bread ingredients around the grinding blade 92 flow in the forward direction. Accordingly, when the dome-shaped cover 93 moves in the forward direction (clockwise in FIGS. 12A and 12B), the kneading blade 101 receives resistance from the non-flowing bread ingredients and is folded from the open position (see FIG. 12B). The angle is changed to (see FIG. 12A).
  • the engaging portion 103bb of the second engaging body 103b has an angle that interferes with the rotation trajectory (see the broken line in FIG. 11A) of the engaging portion 103ab of the first engaging body 103a.
  • the cover clutch 103 connects the blade rotation shaft 82 and the dome-shaped cover 93, and the dome-shaped cover 93 enters a state of being driven in earnest by the blade rotation shaft 82.
  • the dome-shaped cover 93 and the kneading blade 101 in the folded position rotate together with the blade rotation shaft 82 in the forward direction.
  • the rotation of the blade rotation shaft 82 at the initial stage of the kneading process is preferably intermittent rotation or low speed rotation.
  • the complementary kneading blade 102 is arranged on the extension of the kneading blade 101, so that the kneading blade 101 is enlarged and the bread raw material is pressed strongly. It is. For this reason, the dough can be kneaded firmly.
  • the rotation of the kneading blade 101 (this term is used as an expression including the complementary kneading blade 102 in the folded position, the same applies hereinafter) is very slow in the initial stage of the kneading process, and the speed is increased stepwise.
  • Control is performed by the control device 120.
  • the control device 120 drives the automatic charging solenoid 16 so that the movable hook 42c of the bread ingredient storage container 42 supports the container lid 42b. Let go. Thereby, the opening of the container main body 42a is opened, and for example, bread ingredients such as gluten and dry yeast are automatically charged into the bread container 80.
  • the bread raw material storage container 42 is provided with a coating layer inside the container body 42a and the container lid 42b to improve slipping, and is devised so that there is no uneven portion inside. Yes. Furthermore, the situation where the bread raw material is caught by the packing 42d is also suppressed by the device for arranging the packing 42d. For this reason, the automatic charging is completed with almost no bread ingredients remaining in the bread ingredient storage container 42.
  • the bread ingredients stored in the bread ingredient storage container 42 are charged while the kneading blade 101 is rotating.
  • the present invention is not limited to this, and the kneading blade 101 is stopped. You may decide to throw in in the state which is carrying out.
  • the bread ingredients stored in the bread ingredient storage container 42 are put into the bread container 80, the bread ingredients are kneaded into a dough connected to one having a predetermined elasticity by the rotation of the kneading blade 101. Go.
  • the kneading blade 101 swings the dough and knocks it against the inner wall of the bread container 80, an element of “kneading” is added to the kneading.
  • the dome-shaped cover 93 also rotates.
  • the rib 93e formed on the dome-shaped cover 93 also rotates, so that the bread material in the dome-shaped cover 93 is quickly discharged from the window 93d and the kneading blade 101 kneads the bread. Assimilate into a lump of material.
  • the guard 106 also rotates in the forward direction together with the dome-shaped cover 93.
  • the spoke 106c of the guard 106 has a shape in which the center side of the guard 106 precedes and the outer peripheral side of the guard 106 follows when rotating in the forward direction.
  • the guard 106 rotates in the forward direction to push the bread ingredients (bread dough) inside and outside the dome-shaped cover 93 outward with the spokes 106c. Thereby, the ratio of the raw material used as a waste after baking bread can be reduced.
  • the pillar 106e of the guard 106 is configured such that when the guard 106 rotates in the forward direction, a side surface 106eb that is the front surface in the rotational direction is inclined upward. For this reason, at the time of kneading, the bread material (bread dough) around the dome-shaped cover 93 is splashed upward on the side surface 106eb of the column 106e. Since the boiled bread material is assimilated into the lump (dough) of the upper bread material, the proportion of the raw material that becomes waste after baking the bread can be reduced.
  • a predetermined time (10 minutes in this embodiment) obtained experimentally as a time for obtaining bread dough having a desired elasticity is employed as the time for the kneading process.
  • the time of the kneading process is constant, the degree of bread dough may vary depending on the environmental temperature or the like. For this reason, for example, a configuration in which the end point of the kneading process is determined based on the magnitude of the load of the kneading motor 50 (for example, it can be determined by the control current of the motor) may be used.
  • the ingredients when bread containing ingredients (for example, raisins, nuts, cheese, etc.) is baked, the ingredients may be introduced during the kneading process.
  • the connection between the main body side connecting portion 17 and the container side connecting portion 84 constituting the coupling for transmitting the rotational power of the driving shaft 11 to the blade rotating shaft 82 is disconnected. Since it is configured to be difficult, stable kneading (kneading operation) can be performed.
  • the fermentation process is started by a command from the control device 120.
  • the control device 120 controls the sheathed heater 31 to maintain the temperature of the baking chamber 30 at a temperature at which fermentation proceeds (for example, 38 ° C.).
  • the bread dough is left for a predetermined time (in this embodiment, 60 minutes) in an environment where fermentation proceeds.
  • the kneading blade 101 may be rotated to perform degassing or rounding of the dough.
  • the firing process is started by a command from the control device 120.
  • the control device 120 controls the sheathed heater 31 to increase the temperature of the baking chamber 30 to a temperature suitable for baking (for example, 125 ° C.). Then, the control device 120 performs control so that the bread is baked in a baking environment for a predetermined time (in this embodiment, 50 minutes).
  • the end of the firing process is notified to the user by, for example, a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
  • the user detects the completion of bread making, the user opens the lid 40 and takes out the bread container 80 to complete the bread production.
  • the bread in the bread container 80 can be taken out by, for example, directing the opening of the bread container 80 obliquely downward. Simultaneously with the removal of the bread, the blade unit 90 attached to the blade rotation shaft 82 is also removed from the bread container 80. Due to the presence of the guard 106, the user does not touch the crushing blade 92 during the bread removal operation, and the user can safely perform the bread removal operation. At the bottom of the bread, burn marks of the kneading blade 101 of the blade unit 90 and the complementary kneading blade 102 (projecting upward from the recess 81 of the bread container 80) remain. However, since the dome-shaped cover 93 and the guard 106 are accommodated in the recess 81, they are prevented from leaving a large burn mark on the bottom of the bread.
  • the second belt portion 59 is configured by two belts 59a and 59b.
  • the present invention is not limited to this configuration, and a configuration in which the number of the second belt portions 59 is three or more is also included in the present invention.
  • the two belts 59a and 59b constituting the second belt portion 59 have the same shape (size).
  • the present invention is not limited to this configuration, and a configuration in which the two belts 59a and 59b constituting the second belt portion 59 are not the same shape (such as different belt widths) is also possible. include.
  • the pulverizing blade 92 and the kneading blade 101 are included in the blade unit 90 and are integrally attached to (removed from) the blade rotation shaft 82.
  • the configuration is not limited to this, and the pulverizing blade 92 and the kneading blade 101 may be separately mounted on the blade rotation shaft 82.
  • the configuration and operation of the automatic bread maker have been described by taking as an example the case where rice grains are used as a starting material.
  • the present invention is also applicable when grain grains other than rice grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybean are used as starting materials.
  • the above-described production flow of the rice grain breadmaking course is an example, and the rice grain breadmaking course may be another production flow.
  • the pause process after the grinding process may be omitted.
  • the automatic bread maker 1 uses separate motors for the case where the grain is crushed by the pulverizing blade 92 and the case where the kneading blade 101 is rotated to knead the bread dough. It was.
  • the coupling constituted by the main body side connecting portion and the container side connecting portion of the present invention is the same when the grain is pulverized by the pulverizing blade 92 and when the kneading blade 101 is rotated to knead the bread dough.
  • the present invention can also be applied to a configuration in which the motor is used.
  • the automatic bread maker 1 of the present embodiment uses, for example, wheat flour or rice flour as a starting material. Can also be used to produce bread.
  • the grinding blade 92 is unnecessary, and therefore a bread container different from the one shown above (only the kneading blade is attached to the blade rotation shaft).
  • a conventional bread container may be used, and the coupling of the present invention can be applied to this bread container.
  • the coupling comprised by the main body side connection part and container side connection part of this invention can perform the grinding
  • the present invention is not limited to this, and the coupling constituted by the main body side connecting portion and the container side connecting portion of the present invention is, for example, an automatic bread maker that can manufacture bread only from grain flour such as wheat flour and rice flour. It goes without saying that is also applicable.
  • an automatic bread maker that consistently performs the kneading process, the fermentation process, and the baking process starting from the pulverization process has been presented. It is also possible to configure the apparatus up to the fermentation process, or an apparatus that performs only the pulverization process and the kneading process. In this case, the firing process, or the fermentation process and the firing process, are left to an external device such as an oven.
  • the automatic bread maker of the present invention can be developed not only for home use but also for business use.
  • the present invention is suitable for an automatic bread maker for home use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Baking, Grill, Roasting (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

 自動製パン器1は、パン容器80の底部に設けられる第1の回転軸82と、本体10内に設けられ、収容部30に収容されたパン容器80の第1の回転軸82に動力伝達可能に連結される第2の回転軸11と、本体10内に設けられるモータ50と、モータ50の出力軸51の回転力を第2の回転軸11に伝達する動力伝達部PT1と、を備え、動力伝達部PT1には、並列する複数のベルト59a、59bを介して第2の回転軸11に動力伝達可能に連結される第3の回転軸57が含まれる。

Description

自動製パン器
 本発明は、主として一般家庭で使用される自動製パン器に関する。
 市販の家庭用自動製パン器は、パン原料を入れるパン容器をそのまま焼き型としてパンを製造する仕組みのものが一般的である(例えば、特許文献1参照)。このような自動製パン器では、まず、パン原料が入れられたパン容器が本体内の焼成室に入れられる。そして、パン容器内のパン原料がパン容器内に設けられる混練ブレードでパン生地に練り上げられる(練り工程)。その後、練り上げられたパン生地を発酵させる発酵工程が行われ、パン容器が焼き型として使用されてパンが焼き上げられる(焼成工程)。
 このような自動製パン器を用いてパンの製造が行われる場合、これまでは、パン原料として、小麦や米などの穀物を製粉した粉(小麦粉、米粉等)や、そのような製粉した粉に各種の補助原料が混ぜられたミックス粉が必要とされた。しかしながら、一般家庭においては、米粒に代表されるように、粉の形態ではなく粒の形態で穀物が所持されることがある。このために、自動製パン器が穀物粒から直接パンを製造する仕組みを有すれば、非常に便利である。このようなことを念頭において、本出願人らは、穀物粒を出発原料としてパンを製造するパンの製造方法を開発している(特許文献2参照)。
 このパンの製造方法では、まず、穀物粒と液体とが混合され、この混合物の中で粉砕ブレードが回転されて穀物粒が粉砕される(粉砕工程)。そして、粉砕工程を経て得られたペースト状の粉砕粉を含むパン原料が、混練ブレードを用いてパン生地に練り上げられる(練り工程)。その後、練り上げられたパン生地を発酵させる発酵工程が行われ、続いてパンを焼き上げる焼成工程が行われる。
特開2000-116526号公報 特開2010-35476号公報
 本出願人らは、上述の穀物粒を出発原料としてパンを製造する方法を実行可能な、新しい仕組みを備えた自動製パン器の開発に取り組んでいる。この新しい仕組みを備えた自動製パン器は、低コスト化や小型化の要求を満たして上述のパンの製造工程が実行できるのは勿論のこと、組み立て性が良いことも望まれた(第1の課題)。
 また、上述の新しい仕組みを備えた自動製パン器では、焼成室内に収容されて焼き型として使用されるパン容器内で穀物粒を粉砕することが検討されている。具体的には、パン容器の底部に配置される1つのブレード回転軸の回転によって粉砕ブレード及び混練ブレードが回転される構成が検討されている。この構成では、パン容器が本体(焼成室)に収容された場合に、ブレード回転軸にモータの回転を伝達するためのカップリングが必要となる。このカップリングは、例えば、原動軸(本体内に配置され、モータの駆動で回転する回転軸)の上端に設けられる本体側接続部と、ブレード回転軸の下端に設けられる容器側接続部と、で構成することができる。
 しかしながら、上述のカップリングが採用される自動製パン器では、穀物粒を粉砕する粉砕工程やパン生地を練り上げる練り工程において、パン容器に不要な力が加わって、例えばパン容器が上側に浮き上がってしまうことがある。この結果、2つの接続部間の連結が外れて回転軸を安定して回転させることができないといった事態が起こる場合がある。
 粉砕工程では粉砕効率を良くする等の目的でブレード回転軸が高速回転されるために、練り工程と同様にパン容器に不要な力が加わって前述の浮き上がり等が発生し易い。このため、粉砕工程と練り工程とを実施する新しい仕組みを備えた自動製パン器では、2つの接続部間の連結外れが生じる可能性が高く、その対策が必要となる。
 このため、例えばパン容器が焼成室に収容される際に、パン容器と本体との間で公知のバヨネット結合が得られるように構成し、粉砕工程等においてパン容器に不要な力が加わってもパン容器が動かない(例えば浮き上がらない)ようにすることが考えられる(バヨネット結合については例えば特許文献2参照)。この構成が採用される場合には、通常、パン容器が焼成室に収容される際のパン容器のひねり方向は、ブレード回転軸の回転によってパン容器が外れないように、ブレード回転軸(混練ブレードが取り付けられる)を回転させる方向に合わせられる。
 しかし、1つのブレード回転軸の回転によって粉砕ブレード及び混練ブレードを回転する構成を採用するにあたって、本出願人は、粉砕ブレードを回転させる場合と、混練ブレードを回転させる場合とで逆回転となる構成の採用を考えている。この場合、上述のバヨネット結合が採用されても、粉砕工程と練り工程のうち、いずれか一方においてカップリングの連結が不安定となるといった問題が残る(第2の課題)。
 以上の点に鑑みて、本発明の目的は、穀物粒を出発原料としてパンを製造可能な自動製パン器に好適な技術であって、自動製パン器の組み立て性を向上する技術を提供することである。また、本発明の他の目的は、モータの回転動力をカップリングによってパン容器の回転軸に伝達する構成を備え、カップリングによる動力伝達を安定して行える自動製パン器を提供することである。更に、本発明の他の目的は、穀物粒からパンを焼き上げられる便利な仕組みを備えた自動製パン器を安定して動作させられるようにすることである。
 上記目的を達成するために本発明の自動製パン器は、パン原料が投入されるパン容器を収容する収容部を有する本体と、前記パン容器の底部に設けられる第1の回転軸と、前記本体内に設けられ、前記収容部に収容された前記パン容器の前記第1の回転軸に動力伝達可能に連結される第2の回転軸と、前記本体内に設けられるモータと、前記モータの出力軸の回転力を前記第2の回転軸に伝達する動力伝達部と、を備え、前記動力伝達部には、並列する複数のベルトを介して前記第2の回転軸に動力伝達可能に連結される第3の回転軸が含まれる。
 上記構成の自動製パン器は、前記動力伝達部において、前記モータの出力軸のトルクが増加されて前記第3の回転軸に伝達される場合に、特に好適である。このような構成が採用された場合、第2の回転軸と第3の回転軸とを連結するベルトの幅が狭い(細い)と、高トルクに耐えられず、第2の回転軸と第3の回転軸とを連結するベルトがスリップしてしまうことがある。このスリップを防ぐために、ベルトの幅を広く(太く)することが考えられる。しかしながら、この場合、単純にベルトの幅が広くされると、ベルトのテンション(張力)が大きくなり過ぎて、ベルトの取付作業が困難となってしまう。この点、本構成は、並列する複数のベルトを用いて第2の回転軸と第3の回転軸とを動力伝達可能に連結する構成であり、各ベルトの幅が狭くでき、ベルトの取付作業が困難とならない。
 なお、前述のスリップを防ぐために、ベルトが巻回されるプーリの径を大きくすることも考えられる。しかしながら、このような構成は自動製パン器の大型化に繋がる可能性があり、プーリの径はできるだけ小さくしておくのが好ましい。そして、このようにプーリの大型化を避けつつ、ベルトのスリップを防ぎたい場合に、本構成は好適である。
 また、上記構成の自動製パン器においては、前記モータは、前記パン容器内でパン生地を練り上げる際に使用される混練モータであり、前記動力伝達部は、前記混練モータ用の動力伝達部であって、前記モータの出力軸と前記第2の回転軸との連結状態を切り替えるクラッチを含み、前記パン容器内で穀物粒を粉砕する際に使用される粉砕モータと、前記粉砕モータの出力軸の回転力を前記第2の回転軸に伝達する前記粉砕モータ用の動力伝達部と、を更に備える、こととするのが好ましい。
 穀物粒を出発原料としてパンを製造する場合、穀物粒を粉砕する粉砕工程では粉砕用のブレード(第1の回転軸の回転と共に回転される)を高速回転することが望まれる。一方、パン生地を練り上げる練り工程では、混練用のブレード(第1の回転軸の回転と共に回転される)を低速・高トルクで回転することが望まれる。この点、本構成は、粉砕工程と練り工程で、モータを使い分ける構成であり、穀物粒を出発原料としてパンを製造するのに好適である。また、本構成では混練モータ用の動力伝達部にクラッチを導入しているために、粉砕時と混練時とで第2の回転軸が共用される構成にもかかわらず、高速回転用の粉砕モータを駆動する際に粉砕モータに大きな負荷が加わって故障するといった事態を防げる。
 上記構成の自動製パン器において、前記第2の回転軸及び前記第3の回転軸には、それぞれ、前記複数のベルトが巻回されるプーリが取り付けられており、前記プーリのそれぞれには、前記第2の回転軸及び前記第3の回転軸の回転方向に沿った複数の係合溝が形成されており、前記複数のベルトのそれぞれには、前記係合溝に係合する係合山が複数形成されているのが好ましい。
 本構成によれば、各回転軸に取り付けられるプーリに係合溝が設けられ、複数のベルトの各々に前記係合溝に係合する係合山が設けられた構成が採用されている。このために、プーリとベルトとの間で大きな摩擦力を得ることができる。その結果、本構成では、プーリとベルトとの間でスリップが発生し難くなり、更には、複数のベルトの幅、及び、プーリの幅を狭小化することが可能である。
 上記構成の自動製パン器において、前記第2の回転軸及び前記第3の回転軸には、それぞれ、前記複数のベルトが巻回されるプーリが取り付けられており、前記プーリのそれぞれには、前記複数のベルト間に所定の間隔を付与するフランジ部が形成されているのが好ましい。本構成によれば、第2の回転軸及び第3の回転軸が回転される際に、ベルト同士が干渉する事態を避けられる。その結果、例えば、モータの駆動時に異音が発生することを抑制できる。
 上記目的を達成するために本発明の自動製パン器は、パン原料が投入されるパン容器を収容する収容部を有する本体と、前記本体内に設けられるモータと、前記パン容器の底部に設けられる第1の回転軸と、前記モータの回転動力を前記収容部に収容された前記パン容器の前記第1の回転軸に伝達するために、前記収容部の底部に設けられる本体側接続部と、前記第1の回転軸の前記パン容器の底部から外部に突出する側の先端部に設けられ、前記パン容器が前記収容部に収容されることによって前記本体側接続部とともにカップリングを構成する容器側接続部と、を備え、前記本体側接続部は、ベースと該ベースから突出する突出部とを有し、前記容器側接続部は、前記第1の回転軸に対して略垂直な方向に延びる腕部を有し、前記モータの駆動により前記第1の回転軸が回転されている状態において、前記突出部と前記腕部とは、前記突出部に対して前記腕部の方が下となる部分が生じるように係合する。
 本構成においては、パン容器に設けられる回転軸(第1の回転軸)が回転されている状態でパン容器に不要な力が加わってパン容器が浮き上がろうとしても、容器側接続部の腕部が本体側接続部の突出部に引っ掛かるために、前述の浮き上がりが生じ難くなっている。このために、本構成の自動製パン器では、パン容器の浮き上がりによってカップリングの連結(突出部と腕部との係合)が外れるといった事態を抑制できる。
 上記構成の自動製パン器の具体的な構成として、前記突出部と前記腕部とのうち、いずれか一方は凸部を、他方は凹部を有するように設け、前記モータの駆動により前記第1の回転軸が回転されている状態において、前記突出部と前記腕部とは、前記凸部と前記凹部とが嵌め合って係合することとしてもよい。
 上記構成の自動製パン器において、前記パン容器の底部外面側には、前記第1の回転軸及び前記容器側接続部を囲むように配置されて外面に第1の係合部を有する筒状体が設けられており、前記収容部の底部には、前記本体側接続部の周りに第2の係合部が設けられており、前記収容部に収容された前記パン容器は、前記第1の係合部と前記第2の係合部との係合によって、前記第1の回転軸と略垂直な平面方向の位置決めがなされるのが好ましい。
 本構成によれば、第1の係合部と第2の係合部との係合によって、パン容器は回転軸(第1の回転軸)と略垂直な平面方向(例えば水平方向)の位置決めがなされることになる。このために、パン容器に設けられる回転軸が回転されている状態でパン容器に不要な力が加わっても、パン容器はほとんど回転されない。したがって、本構成の自動製パン器では、回転軸が回転している状態でパン容器に不要な力が加わってもパン容器はほとんど動かず(浮き上がりもほとんど生じない)、カップリングによる動力伝達が安定したものとなることを期待できる。
 上記構成の自動製パン器において、前記パン容器を前記収容部に収容する際に前記腕部が前記突出部に当接した場合に、前記ベースを回転させる力が発生するように、前記突出部には傾斜面が形成されているのが好ましい。本構成によれば、パン容器を収容部(例えば焼成室)に収容する場合に、腕部が突出部に当接しても、そのまま押し込んでパン容器をセットすることが可能になる。このため、本構成によればユーザにとって使い勝手がよい自動製パン器の提供が可能になる。
 上記構成の自動製パン器において、穀物粒を粉砕するための粉砕ブレードと、パン生地を練り上げるための混練ブレードとが、前記第1の回転軸の回転によって回転可能であることとしてもよい。このような構成では、粉砕工程及び練り工程が行われることになるために、カップリングによって安定した動力伝達が行われる構成の要求が強くなる。この点、本構成では、上述のようにパン容器の浮き上がり等を抑制可能となっており、この要求を満たすことが可能である。なお、本構成の自動製パン器は、これ一台で、製パン工程の途中でブレード交換することなく、穀物粒からパンを焼き上げることも可能であり、ユーザにとって非常に便利な仕組みの自動製パン器を提供できる。
 上記構成の自動製パン器において、前記モータには、前記混練ブレードを低速回転するために設けられる第1のモータと、前記粉砕ブレードを高速回転するために設けられる第2のモータと、が含まれることとしてもよい。粉砕工程時の粉砕ブレードの回転(高速回転)と、練り工程時の混練ブレードの回転(高トルク、低速回転)とは質の異なる回転が要求される。このために、粉砕ブレードと混練ブレードとを備える自動製パン器は、本構成のように、各ブレードを回転させるためのモータは異なるものとするのが好ましい。
 上記構成の自動製パン器において、前記第1の回転軸の回転方向は、前記粉砕ブレードを用いて穀物粒を粉砕する場合と、前記混練ブレードを用いてパン生地を練り上げる場合とで逆回転となるように設けられ、前記第1の回転軸がいずれの方向に回転されている場合においても、前記突出部と前記腕部とは、前記突出部に対して前記腕部の方が下となる部分が生じるように係合するのが好ましい。
 本構成のように、粉砕ブレードを用いる場合と混練ブレードを用いる場合とで回転軸の回転方向を変える構成を採用することにより、穀物粒を効率良く粉砕して、穀物粒からパンを製造できる便利な仕組みを備えた自動製パン器を低コストで提供可能となる。そして、本構成では、回転軸がいずれの方向に回転する場合でもパン容器の浮き上がりを抑制でき、穀物粒からパンを焼き上げられる便利な仕組みを備えた自動製パン器を安定して動作させることが可能になる。
 本発明によると、穀物粒を出発原料としてパンを製造可能な自動製パン器の組み立て性を向上することが可能である。また、本発明によると、モータの回転動力をカップリングによってパン容器の回転軸に伝達する構成を備え、カップリングによる動力伝達を安定して行える自動製パン器を提供できる。また、本発明によれば、穀物粒からパンを焼き上げられる便利な仕組みを備えた自動製パン器を安定して動作させることが可能となる。このため、本発明によれば、家庭でのパン製造をより身近なものとして、家庭でのパン作りが盛んになることが期待できる。
本実施形態の自動製パン器の外観構成を示す概略斜視図 本実施形態の自動製パン器の本体内部の構成を説明するための模式図 本実施形態の自動製パン器を、本体カバーを外して斜め下から見た場合の概略斜視図 本実施形態の自動製パン器が備える第1の動力伝達部に含まれるクラッチについて説明するための図で、クラッチが動力遮断を行う状態を示す図 本実施形態の自動製パン器が備える第1の動力伝達部に含まれるクラッチについて説明するための図で、クラッチが動力伝達を行う状態を示す図 本実施形態の自動製パン器が備える第2の中継回転軸用プーリの構成を示す概略側面図 本実施形態の自動製パン器が備える第2のベルト部を構成するベルトの構造を説明するための図で、ベルトをプーリと対向する面側から見た場合の概略平面図 本実施形態の自動製パン器が備える第2のベルト部を構成するベルトの構造を説明するための図で、図6AのB-B位置で切った概略断面図 本実施形態の自動製パン器における、パン容器が収容された焼成室及びその周辺の構成を模式的に示す図 本実施形態の自動製パン器が備えるブレードユニットの構成を示す概略斜視図 本実施形態の自動製パン器が備えるブレードユニットの構成を示す概略分解斜視図 本実施形態の自動製パン器が備えるブレードユニットの構成を示す概略側面図 図10AのA-A位置における断面図 本実施形態の自動製パン器が備えるブレードユニットを下から見た場合の概略平面図で、混練ブレードが折り畳み姿勢にある場合の図 本実施形態の自動製パン器が備えるブレードユニットを下から見た場合の概略平面図で、混練ブレードが開き姿勢にある場合の図 本実施形態の自動製パン器が備えるパン容器を上から見た場合の図で、混練ブレードが折り畳み姿勢にある場合の図 本実施形態の自動製パン器が備えるパン容器を上から見た場合の図で、混練ブレードが開き姿勢にある場合の図 本実施形態の自動製パン器の構成を示すブロック図 本実施形態の自動製パン器によって実行される米粒用製パンコースの流れを示す模式図 本実施形態の自動製パン器における、パン容器が焼成室に入れられる前の状態を示す概略平面図 本実施形態の自動製パン器が有するパン容器支持部内に設けられる本体側接続部を拡大して示した概略斜視図 本実施形態の自動製パン器が備えるパン容器を下側から見た場合の概略平面図 本実施形態の自動製パン器が備える本体側接続部と容器側接続部との関係について説明するための図で、台座を取り除いたパン容器も含めて両者の関係を示す概略斜視図 本実施形態の自動製パン器が備える本体側接続部と容器側接続部との関係について説明するための図で、両者の関係を示す概略平面図
 以下、本発明の自動製パン器の実施形態について、図面を参照しながら詳細に説明する。なお、本明細書に登場する具体的な時間や温度等はあくまでも例示であり、それらは本発明の内容を限定するものではない。
(自動製パン器の構成)
 図1は、本実施形態の自動製パン器の外観構成を示す概略斜視図である。図1に示すように、略直方体形状に設けられる自動製パン器1の本体10(その外殻は例えば金属や合成樹脂等によって形成される)の上面の一部には、操作部20が設けられている。この操作部20は、操作キー群と、時間、操作キー群によって設定された内容、エラー等を表示する表示部と、によって構成されている。操作キー群には、例えば、スタートキー、取り消しキー、タイマーキー、予約キー、パンの製造コース(米粒を出発原料に用いてパンを製造するコース、米粉を出発原料に用いてパンを製造するコース、小麦粉を出発原料に用いてパンを製造するコース等)を選択する選択キー等が含まれる。表示部は、例えば、液晶表示パネル等によって構成される。
 本体10内部には、詳細は後述するパン容器80が収容される焼成室30(本発明の収容部の一例)が設けられている。この焼成室30は、例えば板金からなる底壁30a及び4つの側壁30b(後述の図7も参照)で構成された平面形状略矩形の箱形状の部屋であり、その上面は開口している。この焼成室30は、本体10上部に設けられる蓋40によって開閉可能となっている。蓋40は、図示しない蝶番軸で本体10の背面側に取り付けられており、その蝶番軸を支点として回動することで、焼成室30の開閉が可能になっている。なお、図1は、この蓋40が開かれた状態を示している。
 この蓋40には、焼成室30内を覗けるように、例えば耐熱ガラスからなる覗き窓41が設けられている。また、蓋40には、パン原料収納容器42が取り付けられている。このパン原料収納容器42は、パンの製造工程の途中で一部のパン原料を自動投入することを可能にしている。パン原料収納容器42は、平面形状略長方形の箱形状の容器本体42aと、容器本体42aに対して回動可能に設けられて、容器本体42aの開口を開閉する容器蓋42bとを備えている。また、パン原料収納容器42は、容器蓋42bを外面(下面)側から支えて容器本体42aの開口が閉じられた状態を維持可能であると共に、外部からの力によって動かされて容器蓋42bとの係合が解除される可動フック42cも備えている。
 操作部20下部側の本体10内には自動投入用ソレノイド16(後述の図13参照)が設けられており、この自動投入用ソレノイド16が駆動すると、そのプランジャーが、蓋40に隣接する本体壁面10aに設けられる開口10bから突出するようになっている。そして、この突出したプランジャーによって可動する可動部材(図示せず)が可動フック42cを動かし、容器蓋42bと可動フック42cとの係合が外れて容器蓋42bが回動する。その結果、容器本体42aの開口が開かれた状態になる。なお、図1においては、容器本体42aの開口が開かれた状態が示されている。
 容器本体42a及び容器蓋42bは、容器内に収納される粉体パン原料(例えばグルテンやドライイースト等)が容器内に残留し難いように、アルミニウム等の金属で設けられるのが好ましい。そして、それらの内面は、シリコン系やフッ素系等のコーティング層で覆われるのが好ましく、更には凹凸がなるべく設けられず、滑らかに形成されるのが好ましい。
 また、米粒等の穀物粒を粉砕する際に発生する蒸気等が容器本体42a内に入り込むと、パン原料が容器内面に付着し易くなって好ましくない。このために、容器本体42a内に前述の蒸気等が入り込まないように、容器本体42aの開口側縁には鍔部(フランジ部)が設けられて、この鍔部と容器蓋42bとの間にはパッキン(シール部材)42dが介在するようになっている。
 図2は、本実施形態の自動製パン器の本体内部の構成を説明するための模式図である。図2は、自動製パン器1を上側から見た場合を想定しており、図の下側が自動製パン器1の正面側、図の上側が背面側である。図2に示すように、自動製パン器1には、焼成室30の右横に練り工程で用いられる低速・高トルクタイプの混練モータ50が固定配置され、焼成室30の後ろ側に粉砕工程で用いられる高速回転タイプの粉砕モータ60が固定配置されている。混練モータ50及び粉砕モータ60はいずれも竪軸である。なお、混練モータ50は本発明の第1のモータの一例であり、粉砕モータ60は本発明の第2のモータの一例である。
 混練モータ50の上面から突出する出力軸51には、出力軸用プーリ52が固定される。この出力軸用プーリ52は、第1のベルト部53によって、その径が出力軸用プーリ52よりも大きく形成されるとともに第1の中継回転軸54の上部側に固定される第1の中継回転軸用プーリ55に連結されている。なお、第1の中継回転軸54は、混練モータ60よりも背面側に配置され、本体10内部に回転可能に支持されている。
 第1の中継回転軸54の下部側には、その回転中心が第1の中継回転軸54とほぼ同一となるように第2の中継回転軸57が設けられている(後述の図3、図4A及び図4Bも参照)。なお、第2の中継回転軸57も、本体10内部に回転可能に支持されている。また、第1の中継回転軸54と第2の中継回転軸57との間には、動力伝達と動力遮断を行うクラッチ56が設けられている(後述の図3、図4A及び図4Bも参照)。このクラッチ56の構成については後述する。
 第2の中継回転軸57の下部側には第2の中継回転軸用プーリ58が固定されている(後述の図3、図4A及び図4Bも参照)。第2の中継回転軸用プーリ58は、第2のベルト部59によって、焼成室30の下部側に設けられるとともに原動軸11(詳細は後述する)に固定される原動軸用プーリ12に連結されている(後述の図3、図4A及び図4Bも参照)。なお、第2の中継回転軸用プーリ58と原動軸用プーリ12とは、ほぼ同一の径を有する。
 混練モータ50自身が低速・高トルクタイプであり、その上、出力軸用プーリ52の回転が第1の中継回転軸用プーリ55によって減速回転される(例えば1/5の速度に減速される)。このため、クラッチ56が動力伝達を行う状態で混練モータ50を駆動すると、混練モータ50の出力軸51のトルクが増加されて原動軸11に伝達され、原動軸11は低速(例えば180rpm程度)・高トルクで回転する。
 なお、出力軸用プーリ52、第1のベルト部53、第1の中継回転軸54、第1の中継回転軸用プーリ55、クラッチ56、第2の中継回転軸57、第2の中継回転軸用プーリ58、第2のベルト部59、及び原動軸用プーリ12は、混練モータ50の出力軸51の回転力を原動軸11に伝達する動力伝達部を構成する。この動力伝達部は、本発明の混練モータ用の動力伝達部の一例である。以下では、この混練モータ用の動力伝達部のことを、第1の動力伝達部PT1と表現することがある。また、原動軸11は本発明の第2の回転軸の一例であり、第2の中継回転軸57は本発明の第3の回転軸の一例である。
 粉砕モータ60の下面から突出する出力軸61には、出力軸用プーリ62が固定されている。この出力軸用プーリ62は、第3のベルト部63によって、原動軸11に固定される原動軸用プーリ12に連結されている。なお、原動軸用プーリ12は、第2のベルト部59と第3のベルト部63とで共用されている。第2のベルト部59の方が第3のベルト部63よりも下部側に配置されている(後述の図4A及び図4Bも参照)。また、出力軸用プーリ62と原動軸用プーリ12とは、ほぼ同一の径を有する。
 粉砕モータ60には高速回転可能なものが選定される。そして、出力軸用プーリ62の回転は原動軸用プーリ12においてほぼ同一速度で維持されるために、粉砕モータ60の高速回転により、原動軸11は高速回転(例えば7000~8000rpm)を行う。
 なお、出力軸用プーリ62、第3のベルト部63、及び原動軸用プーリ12は、粉砕モータ60の出力軸61の回転力を原動軸11に伝達する動力伝達部を構成する。この動力伝達部は、本発明の粉砕モータ用の動力伝達部の一例である。以下では、この粉砕モータ用の動力伝達部のことを、第2の動力伝達部PT2と表現することがある。第2の動力伝達部PT2は、クラッチを有さない構成であり、粉砕モータ60の出力軸61と原動軸11とを常時動力伝達可能に連結する。
 ここで、第1の動力伝達部PT1の構成について、主に図3、図4A及び図4Bを参照しながら更に詳しく説明する。図3は、本実施形態の自動製パン器を、本体カバーを外して斜め下から見た場合の概略斜視図である。図4A及び図4Bは、本実施形態の自動製パン器が備える第1の動力伝達部に含まれるクラッチについて説明するための図である。図4A及び図4Bは、図2の矢印X方向に沿って見た場合を想定した図である。なお、図4Aはクラッチ56が動力遮断を行う状態を示し、図4Bはクラッチ56が動力伝達を行う状態を示す。
 まず、第1の動力伝達部PT1に備えられるクラッチ56(本発明のクラッチに該当)の構成について詳細に説明する。図4A及び図4Bに示すように、クラッチ56は、第1のクラッチ部材561と第2のクラッチ部材562とを有する。そして、第1のクラッチ部材561に設けられる爪561aと、第2のクラッチ部材562に設けられる爪562aとが噛み合う場合(図4Bの状態)に、クラッチ56は動力伝達を行う。また、2つの爪561a、562bが噛み合わない場合(図4Aの状態)に、クラッチ56は動力遮断を行う。すなわち、クラッチ56は噛み合いクラッチとなっている。
 なお、本実施形態では、2つのクラッチ部材561、562のそれぞれには、周方向(第1のクラッチ部材561を下から平面視した場合、或いは、第2のクラッチ部材562を上から平面視した場合を想定)にほぼ等間隔に並ぶ6つの爪561a、562aが設けられているが、この爪の数は適宜変更してもよい。また、爪561a、562aの形状は、好ましい形状を適宜選択すればよい。
 第1のクラッチ部材561は、抜け止め対策を施された上で、第1の中継回転軸54に、その軸方向(図4A及び図4Bにおいて上下方向)に摺動可能、且つ、相対回転不能に取り付けられている。第1の中継回転軸54の第1のクラッチ部材561の上部側には、バネ71が遊嵌されている。このバネ71は、第1の中継回転軸54に設けられるストッパ部54aと第1のクラッチ部材561とに挟まれるように配置されており、第1のクラッチ部材561を下側に向けて付勢している。一方、第2のクラッチ部材562は、第2の中継回転軸57の上端に固定されている。
 クラッチ56における、動力伝達状態と動力遮断状態との切り替えは、下位置と上位置とに選択配置可能なアーム部72を用いて行われる。アーム部72は、その一部が第1のクラッチ部材561の下側に配置され、第1のクラッチ部材561の外周側と当接可能となっている。
 アーム部72の駆動は、クラッチ用ソレノイド73を用いて行われる。クラッチ用ソレノイド73は、永久磁石73aを備え、いわゆる自己保持型のソレノイドとなっている。クラッチ用ソレノイド73のプランジャー73bは、アーム部72のプランジャー固定用の取付部72aに固定される。このために、電圧の印加によりハウジング73cからの突出量が変動するプランジャー73bの動きに合わせてアーム部72が動く。
 アーム部72が下位置(図4Bの状態)から上位置(図4Aの状態)に移動すると、第1のクラッチ部材561は、アーム部72に押されてバネ71の付勢力に抗して上方向に移動する。アーム部72が上位置にある場合には、第1のクラッチ部材561と第2のクラッチ部材562とは噛み合わない。すなわち、アーム部72が上位置にある場合には、クラッチ56は動力遮断を行う。クラッチ56が動力遮断を行う状態では、混練モータ50の出力軸51と原動軸11とは非連結状態となる。
 一方、アーム部72が上位置から下位置に移動すると、第1のクラッチ部材561はバネ71の付勢力によって押される形で下方向に移動する。アーム部72が下位置にある場合には、第1のクラッチ部材561と第2のクラッチ部材562とは噛み合う。すなわち、アーム部72が下位置にある場合には、クラッチ56は動力伝達を行う。クラッチ56が動力伝達を行う状態では、混練モータ50の出力軸51と原動軸11とは連結状態となる。
 粉砕モータ60を駆動する際に、クラッチ56が動力伝達を行う状態(図4Bの状態)であると、原動軸11を高速回転させる回転動力が混練モータ50の出力軸51に伝達される(図2参照)。この場合、粉砕モータ60が例えば8000rpmで回転されるとすると、第1のプーリ52と第2のプーリ55との半径比(例えば1:5)によって、混練モータ50の出力軸51を40000rpmで回転させる力が必要になる。その結果、粉砕モータ60に非常に大きな負荷が加わるために、粉砕モータ60が破損する可能性がある。このため、粉砕モータ60を駆動する際には、原動軸11を高速回転させる回転動力が混練モータ50の出力軸51に伝達されないようにする必要がある。そこで、自動製パン器1は、上述のように、動力伝達と動力遮断を行うクラッチ56を第1の動力伝達部PT1に含む構成となっている。
 なお、クラッチ56が焼成室30の下に配置される構成を採用すると、自動製パン器1の高さが高くなりやすい。このために、自動製パン器1では、第1の動力伝達部PT1に、第2の中継回転軸57、第2の中継軸回転用プーリ58、第2のベルト部59、及び原動軸用プーリ12を含む構成として、その高さが高くなり過ぎるのを抑制している。
 また、上述のように自動製パン器1においては、第2の動力伝達部PT2にはクラッチが設けられない構成としているが、これは次の理由による。すなわち、混練モータ50を駆動しても原動軸11は低速回転(例えば180rpm等)されるのみである。このため、原動軸11を回転させる回転動力が粉砕モータ60の出力軸61に伝達されるようになっていても、混練モータ50に大きな負荷が加わることはない。そして、このように第2の動力伝達部PT2にクラッチが設けられない構成を敢えて採用することで、自動製パン器1の製造コストが抑制される。ただし、第2の動力伝達部PT2にクラッチが設けられる構成を採用しても、勿論構わない。
 次に、第1の動力伝達部PT1に備えられる第2のベルト部59について詳細に説明する。上述のように、混練モータ50の出力軸51のトルクは、第1の中継回転軸用プーリ55の存在により、トルクアップされた状態で第1及び第2の中継回転軸54、57に伝達される。一方で、第2の中継回転軸用プーリ58と原動軸用プーリ12とは、自動製パン器1が大型化しないように、第1の中継回転軸用プーリ55よりも、そのサイズ(直径)が小さく構成されている。このために、第2のベルト部59の幅(プーリの幅も)を十分に広くしないと、高トルクに耐えられず、第2のベルト部59においてスリップ(滑り)が発生する。
 しかしながら、第2のベルト部59の構成として、幅の広い1本のベルトからなる構成が採用されると、ベルトのテンションが非常に大きくなる。すなわち、この幅の広いベルトが第2の中継回転軸用プーリ58及び原動軸用プーリ12に巻回される際には、非常に大きな力が必要となる。その結果、自動製パン器1の組み立て作業が非常に大変なものとなってしまう。
 そこで、図3、図4A及び図4Bに示すように、自動製パン器1では、第2のベルト部59が並列する2つのベルト59a、59b(本発明の複数のベルトに該当)からなる構成が採用されている。これにより、各ベルト59a、59bの幅は、1本のベルトのみで構成する場合(上述した問題を有する構成が採用される場合)の半分として、上述のスリップが発生しない構成を実現できる。2つのベルト59a、59bは、同一素材、且つ、同一形状とするのが好ましい。これにより、生産効率の向上が図れる。また、2つのベルト59a、59bは、例えばゴム等の伸縮性を有する素材で形成される。
 なお、第1のベルト部53及び第3のベルト部63においては、元々スリップがほとんど生ぜず、ベルト幅を太くする必要が生じていないため、本実施形態の自動製パン器1では、ベルトの数は1本とされている。ただし、場合によっては、これらのベルト部53、56でもベルトの数を複数としてもよい。
 図5は、本実施形態の自動製パン器が備える第2の中継回転軸用プーリの構成を示す概略側面図である。図5に示すように、第2の中継回転軸用プーリ58は、回転方向に沿って途切れることなく形成される断面視略V字状の係合溝EGが、上下方向に複数(本実施形態では6つ)並んだ構成となっている。また、第2の中継回転軸用プーリ58の中央部には、フランジ部FPが形成されている。
 なお、原動軸用プーリ12も、この第2の中継回転軸用プーリ58と同様に、係合溝EG及びフランジ部FPを有する。ただし、原動軸用プーリ12は、第3のベルト部63と共有されるために、第2の中継回転軸用プーリ58よりも上下方向の幅(高さ)が大きくなっており、係合溝EGの数、及び、フランジ部FPが設けられる位置(原動軸用プーリ12の中央部ではない)が異なる。
 図6A及び図6Bは、本実施形態の自動製パン器が備える第2のベルト部を構成するベルトの構造を説明するための図で、図6Aはベルトをプーリと対向する面側から見た場合の概略平面図、図6Bは図6AのB-B位置で切った概略断面図である。図6A及び図6Bに示すように、2つのベルト59a、59bは、いずれも、プーリ58、12と対向する面に、断面視略V字状の複数(本実施形態では3つ)の係合山EMが等間隔で形成されている。
 第2の中継回転軸用プーリ58及び原動軸用プーリ12に第2のベルト部59が取り付けられる場合には、フランジ部FPを挟んで上側と下側に、ベルト59a、59bが順番に巻回される。そして、この際、ベルト59a、59bの係合山EMがプーリ58、12の係合溝EGに嵌り込むように、ベルト59a、59bは取り付けられる。2つのベルト59a、59bは同時に巻回されるのではなく、1本ずつ、別々に巻回されるために、第2のベルト部59の取付作業は非常に楽になる。
 プーリ58、12に係合溝EGが設けられ、ベルト59a、59bに係合溝EGに係合する係合山EMが設けられた構成が採用されているために、プーリ58、12とベルト59a、59bとの間で大きな摩擦力が生じる。このために、プーリ58、12とベルト59a、59bとの間でスリップ(滑り)が発生し難くなり、更には、ベルト59a、59b(プーリ58、12も)の幅を狭小化することも可能になっている。なお、場合によっては、本実施形態の構成に代えて、プーリ58、12に係合溝EGを設けず、ベルト59a、59bに係合山EMを設けない(平ベルトとする)構成が採用されてもよい。
 また、フランジ部FPが設けられているために、2つのベルト59a、59b間に所定の間隔が付与される。このため、原動軸11及び第2の中継回転軸57が回転される際に2つのベルト59a、59bが干渉する事態を避けられる。その結果、モータ50、60の駆動時に異音が発生すること等を抑制できる。なお、このフランジ部FPは、場合によっては設けなくてもよい。
 図7は、本実施形態の自動製パン器における、パン容器が収容された焼成室及びその周辺の構成を模式的に示す図である。図7は、自動製パン器1を正面側から見た場合の構成を想定しており、焼成室30及びパン容器80の構成は概ね断面図で示されている。なお、パン原料が投入されるとともにパン焼き型として使用されるパン容器80は、焼成室30に対して出し入れ自在となっている。
 図7に示すように、焼成室30の内部には、シーズヒータ31(加熱手段の一例)が焼成室30に収容されたパン容器80を包囲するように配置されている。このシーズヒータ31を用いることにより、パン容器80内のパン原料(生地となっているものも含まれる)の加熱が可能になる。
 焼成室30の底壁30aの略中心にあたる箇所には、パン容器80を支持するパン容器支持部14(例えばアルミニウム合金のダイキャスト成型品からなる)が固定されている。このパン容器支持部14は、焼成室30の底壁30aから窪むように形成され、その窪みの形状は上から見た場合に略円形となっている。このパン容器支持部14の中心には、上述の原動軸11が底壁30aに対して略垂直となるように支持されている。原動軸11の上端には、本体側接続部17が固定されている。
 パン容器80は例えばアルミニウム合金のダイキャスト成型品(その他、板金等で構成しても構わない)であり、バケツのような形状をしており、開口部側縁に設けられる鍔部80aに手提げ用のハンドル(図示せず)が取り付けられている。パン容器80の水平断面は四隅を丸めた矩形である。また、パン容器80の底部には、詳細は後述するブレードユニット90の一部を収容する平面視略円形状の凹部81が形成されている。
 パン容器80の底部中心には、垂直方向に延びるブレード回転軸82(本発明の第1の回転軸の一例)が、シール対策を施された状態で回転可能に支持されている。このブレード回転軸82の下端(パン容器80の底部から外部側に突き出ている)には、容器側接続部84が固定されている。
 また、パン容器80の底部外面側には、ブレード回転軸82を取り囲むように筒状の台座83(本発明の筒状体の一例)が設けられている。パン容器80は、この台座83がパン容器支持部14に受け入れられた状態で、焼成室30内に収容されるようになっている。なお、台座83は、パン容器80とは別に形成してもよいし、パン容器80と一体的に形成してもよい。
 ここで、図15A、図15B、図16、図17A及び図17Bを参照しながら、パン容器80が焼成室30に収容された状態における、パン容器80とパン容器支持部14(焼成室30の底部に設けられる)との関係について、更に詳細に説明する。
 図15A及び図15Bは、本実施形態の自動製パン器が備える焼成室の底部の構成を説明するための図で、図15Aはパン容器が焼成室に入れられる前の自動製パン器(蓋が開けられている)の構成を示す概略平面図、図15Bはパン容器支持部内に設けられる本体側接続部を拡大して示した概略斜視図である。図16は、本実施形態の自動製パン器が備えるパン容器を下側から見た場合の概略平面図である。図17A及び図17Bは、本実施形態の自動製パン器が備える本体側接続部と容器側接続部との関係について説明するための図で、図17Aは台座を取り除いたパン容器も含めて両者の関係を示す概略斜視図、図17Bは両者の関係を示す概略平面図である。
 図15A及び図15Bに示すように、パン容器支持部14の内壁には、周方向にその中心位置が略等間隔に並ぶ、4つの係合溝14a(本発明の第2の係合部の一例)が形成されている。また、図16に示すように、パン容器80の台座83の外面には、周方向にその中心位置が略等間隔に並ぶ、4つの係合突起83a(本発明の第1の係合部の一例)が形成されている。
 パン容器80は、台座83の係合突起83aがパン容器支持部14の係合溝14aに嵌り込むように位置調整してから下げることによってパン容器支持部14に取り付けられる。すなわち、パン容器支持部14に取り付けられたパン容器80は、係合溝14aと係合突起83aによって、水平方向(ブレード回転軸82と略垂直な平面方向)の位置決めがなされた状態となっており、パン容器80は焼成室30内でほとんど回転できないようになっている。
 なお、係合突起83aの周方向の幅は、対応する係合溝14aの周方向の幅とほぼ同サイズ(係合溝14aより若干小さい)となるように形成されている。また、4つの係合溝14a及び4つの係合突起83aの周方向のサイズはいずれも同じとしてもよいが、本実施形態においては、隣り合う係合溝14a、及び、隣り合う係合突起83aの周方向の幅は異なるものとなっており、1つ飛ばしで同一のサイズとなっている。これは、焼成室30に収容されるパン容器80を、本来の方向から90°回転した方向(誤った方向)にセットしないようにするためである。
 また、係合溝14a及び係合突起83aは位置決めできるように設けられればよく、その数やサイズは適宜変更可能である。更に、パン容器支持部14の内壁に係合突起、パン容器80の台座83に係合溝を設ける構成(本実施形態とは逆の構成)等としても構わない。
 図15A及び図15B(図7も参照)に示すように、パン容器支持部14の内部には、係合溝14aに取り囲まれるように、原動軸11の上端に固定される本体側接続部17が設けられている。本体側接続部17は、略円盤状の第1のベース17aと、第1のベース17aの上面外周寄りに設けられる同一形状の2つの突出部17bとを有している。2つの突出部17bは、第1のベース17aの中心(原動軸11)を基準として略対称配置されている。突出部17bは、その両側面に凹部17cが形成されている。
 図16、図17A及び図17B(図7も参照)に示すように、ブレード回転軸82の下端(パン容器80の底部から外面側に突き出ている側の先端部)には容器側接続部84が固定されている。後述の内容から明らかになるように、容器側接続部84は、本体側接続部17とともに原動軸11の回転動力(換言すればモータ50、60の回転動力)をブレード回転軸82に伝達するカップリングを構成する。
 容器側接続部84は、略円盤状の第2のベース84aと、第2のベース84aから水平方向(ブレード回転軸83に対して略垂直方向)に延びる2つの腕部84bとを有している。2つの腕部84bは、第2のベース84aの中心(ブレード回転軸83)を基準として略対称となるように設けられている。断面視略かまぼこ状に設けられる腕部84bの両側面には、凸部84cが形成されている。
 パン容器80がパン容器支持部14に取り付けられた時点(パン容器80が焼成室30に収容された時点)において、本体側接続部17の突出部17bと容器側接続部84の腕部84bとは必ずしも係合状態とはならないが、原動軸11が回転することにより、図17A及び図17Bに示すように、両者は係合状態となる。この係合状態では、腕部84bの凸部84cが、突出部17bの凹部17cに嵌り込んだ状態となる。
 このために、ブレード回転軸82の回転中にパン容器80が上向き(浮き上がる方向)に力を受けても、腕部84b(の一部)が突出部17bに引っ掛かってパン容器80は浮き上がらない。また、パン容器80は、上述の係合溝14aと係合突起83aとで水平面内で回転しないように固定されている。このため、本実施形態の自動製パン器1では、本体側接続部17と容器側接続部84とで構成されるカップリングによって、原動軸11の回転動力をブレード回転軸82に安定して伝達することが可能となっている。
 ところで、後述のように本実施形態の自動製パン器1では、粉砕工程と練り工程で原動軸11の回転方向を逆とする構成を採用している。この点、本実施形態では、突出部17bの両側面に凹部17cを、腕部84bの両側面に凸部84cを設ける構成となっているために、原動軸11がいずれの方向に回転しても、突出部17bと腕部84bとは、凸部84cが凹部17cに嵌り込んだ状態で係合する。なお、図17Aと図17Bとでは、この点をわかり易くするために、原動軸11の回転方向が違う場合を想定して描いている。図17Aは、上から見た場合に原動軸11が時計方向R1に回転する場合を想定しており、図17Bは、上から見た場合に原動軸11が反時計方向R2に回転する場合を想定している。
 なお、突出部17bの上面には傾斜面17d(図15B及び図17B参照)が形成されている。これは以下の理由による。すなわち、パン容器80を焼成室30に収容する際に、腕部84bが突出部17bにぶつかる場合がある。この点、本実施形態においては、突出部17bに当接した腕部84bは、傾斜面17dの存在により、本体側接続部17を構成する第1のベース17aに回転方向の力を加えることになる。このため、単にパン容器80を下に押し込むだけで第1のベース17aが回転して、突出部17bと腕部84bとの衝突状態が解消され、パン容器80をパン容器支持部14に適切に取り付けることができる。
 また、本実施形態では、突出部17bに凹部17c、腕部84bに凸部84cを形成する構成とした。しかし、本発明はこの構成に限定されない。要は、突出部17bと腕部84bとが、突出部17bに対して腕部84bの方が下となる部分が生じるように重なり合っていればよく、突出部17bに凸部、腕部84bに突出部17bの凸部に嵌合する凹部を設ける構成としても構わない。
 また、突出部17bと腕部84bとの数及び配置は、本実施形態の構成に限定されず、カップリングとしての機能が得られる範囲で適宜変更して構わない。更に、本実施形態では、腕部84bが第2のベース84aから延出する構成となっているが、ブレード回転軸82から直接延出する構成であっても構わない。
 図7に戻ってブレード回転軸82のパン容器80内部に突出する部分には、その上からブレードユニット90が着脱可能に取り付けられるようになっている。このブレードユニット90の構成について、図8、図9、図10A、図10B、図11A、図11B、図12A及び図12Bを参照しながら説明する。
 なお、図8は、本実施形態の自動製パン器が備えるブレードユニットの構成を示す概略斜視図である。図9は、本実施形態の自動製パン器が備えるブレードユニットの構成を示す概略分解斜視図である。図10A及び図10Bは、本実施形態の自動製パン器が備えるブレードユニットの構成を示す図で、図10Aは概略側面図、図10Bは図10AのA-A位置における断面図である。図11A及び図11Bは、本実施形態の自動製パン器が備えるブレードユニットを下から見た場合の概略平面図で、図11Aは混練ブレードが折り畳み姿勢にある場合の図、図11Bは混練ブレードが開き姿勢にある場合の図である。図11A及び図11Bにおいては、後述のガードが取り外された状態を示している。図12A及び図12Bは、本実施形態の自動製パン器が備えるパン容器を上から見た場合の図である。図12Aは混練ブレードが折り畳み姿勢にある場合の図、図12Bは混練ブレードが開き姿勢にある場合の図である。
 ブレードユニット90は、大きくは、ユニット用シャフト91と、ユニット用シャフト91に相対回転不能に取り付けられる粉砕ブレード92と、ユニット用シャフト91に相対回転可能且つ粉砕ブレード92を上から覆うように取り付けられる平面視略円形のドーム状カバー93と、ドーム状カバー93に相対回転可能に取り付けられる混練ブレード101と、ドーム状カバー93に取り付けられ、粉砕ブレード92を下から覆うガード106と、を備える構成となっている(例えば、図8、図9、図10A及び図10B参照)。
 なお、ブレードユニット90がブレード回転軸82に取り付けられた状態において、粉砕ブレード92は、パン容器80の凹部81底面より少し上の箇所に位置する。また、粉砕ブレード92及びドーム状カバー93のほぼ全体は凹部81に収容される(例えば図7参照)。
 ユニット用シャフト91は、例えばステンレス鋼板等の金属によって形成される略円柱状の部材であり、一方端(下端)に開口が設けられ、その内部は中空となっている。すなわち、ユニット用シャフト91は、下端からブレード回転軸82を挿入できるように、挿入孔91cが形成された構成となっている(例えば図10B参照)。
 また、ユニット用シャフト91の側壁の下部側(開口側)には、ユニット用シャフト91の回転中心を挟んで対称配置される一対の切り欠き部91aが形成されている(例えば図9参照。ただし、図9では一対の切り欠き部91aの一方のみが示される)。切り欠き部91aの形状は側面視略矩形状であり、詳細には一方端(上端)が丸みを帯びている。切り欠き部91aは、ブレード回転軸82を水平に貫くピン821(図10B参照)に係合させるために設けられている。ブレード回転軸82のピン821と、切り欠き部91aとが係合することによって、ユニット用シャフト91はブレード回転軸82に相対回転不能に取り付けられた状態になる。
 図10Bに示すように、ブレード回転軸82(破線で示す)の上端面(略円形状)の中央部に設けられる凸部82bと係合するように、ユニット用シャフト91の内部側の上面中央部には凹部91bが形成されている。これにより、ユニット用シャフト91とブレード回転軸82との中心を合わせた状態で、ブレードユニット90はブレード回転軸82に容易に取り付けることができる。このために、ブレード回転軸82を回転させた場合に、不要なガタツキが発生することが抑制される。本実施形態では、ブレード回転軸82側に凸部82b、ユニット用シャフト91側に凹部91bを設ける構成としたが、これとは逆に、ブレード回転軸82側に凹部、ユニット用シャフト91側に凸部が設けられる構成としても構わない。
 穀物粒粉砕用の粉砕ブレード92は、例えばステンレス鋼板を加工することによって形成される。この粉砕ブレード92は、例えば図9に示すように、第1の切削部921と、第2の切削部922と、第1の切削部921と第2の切削部922とを連結する連結部923と、を備える。連結部923の中央部には、平面視略矩形状(スタジアム形状)の開口923aが形成されている。この開口923aにユニット用シャフト91の下部側が嵌め込まれる形で、粉砕ブレード92はユニット用シャフト91に取り付けられる。
 なお、ユニット用シャフト91の下部側には、側面の一部(切り欠き部91aが設けられる位置近傍)を削って平坦面が形成されている。これにより、ユニット用シャフト91を下から平面視した場合に、ユニット用シャフト91の下部側は、連結部923に設けられる開口923aとほぼ同形状(略矩形状)となっている。ユニット用シャフト91の下部側を平面視した場合の面積は、開口923aより、ほんの僅かだけ小さくなっている。このような形状を採用しているために、粉砕ブレード92はユニット用シャフト91に相対回転不能に取り付けられる。粉砕ブレード92の下部側には抜け止め用のストッパ部材94がユニット用シャフト91に嵌め込まれるために、粉砕ブレード92がユニット用シャフト91から脱落することはない。
 粉砕ブレード92を囲んで覆い隠すように配置されるドーム状カバー93は、例えばアルミニウム合金のダイキャスト成型品からなり、その内面側には、ベアリング95(本実施形態では転がり軸受けを使用している)を収容する凹状の収容部931(図10B参照)が形成されている。換言すると、この収容部931を形成するために、ドーム状カバー93は、それを外面から見た場合に、中央部に略円柱状の凸部93aが形成された構成となっている。なお、凸部93aには開口が形成されておらず、収容部931に収容されるベアリング95はその側面及び上面が収容部931の壁面に囲い込まれた状態となっている。
 ベアリング95は上下に抜け止めリング96a、96bが配置された状態で、その内輪95aがユニット用シャフト91に相対回転不能に取り付けられている(内輪95a内側の貫通孔にユニット用シャフト91が圧入されている)。また、ベアリング95は、その外輪95bの外壁が収容部931の側壁に固定されるように、収容部931に圧入されている。このベアリング95(内輪95aが外輪95bに対して相対回転する)の介在によって、ドーム状カバー93はユニット用シャフト91に相対回転可能に取り付けられている。
 また、ドーム状カバー93の収容部931には、外部からベアリング95内に異物(例えば穀物粒の粉砕時に用いられる液体や粉砕により得られたペースト状物等)が入り込まないように、例えばシリコン系或いはフッ素系の材料によって形成されるシール材97及び、このシール材97を保持する金属製のシールカバー98が、ベアリング95の下部側から圧入されている。シールカバー98は、ドーム状カバー93への固定が確実となるように、リベット99によってドーム状カバー93に固着されている。このリベット99による固定は行わなくてもよいが、確実な固定を得るために、本実施形態のように構成するのが好ましい。なお、シール材97及びシールカバー98はシール手段として機能する。
 ドーム状カバー93の外面には、凸部93aに隣接する箇所に垂直方向に延びるように配置される支軸100(図9参照)により、平面形状「く」の字形の混練ブレード101(例えばアルミニウム合金のダイキャスト成型品からなる)が取り付けられている。混練ブレード101は、支軸100に相対回転不能に取り付けられており、ドーム状カバー93に相対回転可能に取り付けられる支軸100と動きを共にする。換言すると、混練ブレード101は、ドーム状カバー93に対して相対回転可能に取り付けられた構成となっている。
 混練ブレード101の先端(支軸100を中心として混練ブレード101を回転したときに最も大きな円を描く部分を想定)側近傍の一方面には、図8、図9、図10A、図10B、図11A、図11B、図12A及び図12Bに示すように緩衝材107が取り付けられている。緩衝材107は、混練ブレード101の先端から僅かに突出するように設けられている(例えば図11B参照)。なお、本実施形態では3mm程度突出する(d≒3mm)ように設けられている。
 緩衝材107の固定は、混練ブレード101の一方面と固定用板108とで緩衝材107を挟持した状態とし、混練ブレード101の他方面側から挿入されるリベット109のカシメで得られる構成となっている。なお、本実施形態ではリベット109の数を2つとしているが、その数が限定されないのは言うまでもない。
 この緩衝材107は、混練ブレード101が詳細は後述する開き姿勢となった場合に、パン容器80(の内壁)と直接接触しないように配置されている。混練ブレード101とパン容器80とが直接接触すると、それらの間の干渉が原因となって破損が発生する可能性があり、このような破損を防止すべく緩衝材107は設けられている。
 本実施形態の自動製パン器1においては、パン容器80及び混練ブレード101の表面にはフッ素コーティングが施されている。このため、本実施形態の緩衝材107は、このフッ素コーティングが混練ブレード101とパン容器80との接触で剥がれないように設けられたものといえる。そして、この点から、緩衝材107を構成する材料としては、フッ素コーティングを剥がさないようにコーティング材よりも柔らかい材料が好ましく、例えば、シリコーンゴムやTPE(Thermoplastic Elastomers;熱可塑性エラストマ)等が用いられる。また、緩衝材107は防音対策としても機能するが、この点は後述する。なお、以下では、この緩衝材107も混練ブレード101の一部と見なして説明が行われる場合がある。
 また、本実施形態では、ドーム状カバー93の外面に、混練ブレード101に並ぶように補完混練ブレード102(例えばアルミニウム合金のダイキャスト成型品からなる)が固定配置されている。この補完混練ブレード102は、必ずしも設ける必要がないが、パン生地を練り上げる練り工程における混練効率を高めるために設けるのが好ましい。
 ここで、混練ブレード101の動作について説明する。混練ブレード101は、支軸100と共に支軸100の軸線周りに回転し、図8、図10A、図11A及び図12Aに示す折り畳み姿勢と、図11B及び図12Bに示す開き姿勢との2姿勢をとる。折り畳み姿勢では、混練ブレード101の下縁から垂下した突起101a(図9参照)がドーム状カバー93の上面(外面)に設けられた第1のストッパ部93bに当接する。このために、混練ブレード101は、それ以上ドーム状カバー93に対して反時計方向(上から見た場合を想定)の回動を行うことができない。この折り畳み姿勢では、混練ブレード101の先端がドーム状カバー93から少し突き出している。
 この姿勢(図12Aの状態)から混練ブレード101がドーム状カバー93に対して時計方向(上から見た場合を想定)に回動して図12Bに示す開き姿勢になると、混練ブレード101の先端はドーム状カバー93から大きく突き出す。この開き姿勢における混練ブレード101の開き角度は、ドーム状カバー93の内面に設けられる第2のストッパ部93c(図11B参照)によって制限される。詳細は後述する第2係合体103b(支軸100に固定される)が、ドーム状カバー93の内面に設けられる第2のストッパ部93cに当って回転できなくなった時点で、混練ブレード101は最大開き角度となる。
 なお、混練ブレード101が折り畳み姿勢となっている場合には、例えば図8や図10Aに示すように補完混練ブレード102は混練ブレード101に整列し、あたかも「く」の字形状の混練ブレード101のサイズが大型化したようになる。
 ところで、ユニット用シャフト91には、例えば図9に示すように、粉砕ブレード92とシールカバー98との間にカバー用クラッチ103を構成する第1係合体103aが取り付けられている。例えば亜鉛ダイカストからなる第1係合体103aには略矩形状(スタジアム形状)の開口103aaが形成されており、この開口103aaにユニット用シャフト91の下部側の平面視略矩形状部分が嵌め込まれることにより、第1係合体103aはユニット用シャフト91に相対回転不能に取り付けられている。この第1係合体103aは粉砕ブレード92よりも先に、ユニット用シャフト91の下側から取り付けられ、ストッパ部材94によって、粉砕ブレード92と共にユニット用シャフト91からの脱落が防止されている。なお、本実施形態では、第1係合体103aとシールカバー98との間には、第1係合体103aの劣化防止等を考慮してワッシャ104を配置する構成としているが、このワッシャ104は必ずしも設けなくてもよい。
 また、混練ブレード101が取り付けられる支軸100の下部側には、カバー用クラッチ103を構成する第2係合体103bが取り付けられている。例えば亜鉛ダイカストからなる第2係合体103bには略矩形状(スタジアム形状)の開口103baが形成されており、この開口103baに支軸100の下部側の平面視略矩形状部分が嵌め込まれることにより、第2係合体103bは支軸100に相対回転不能に取り付けられている。なお、本実施形態では、第2係合体103bの上側に、第2係合体103bの劣化防止等を考慮してワッシャ105を配置する構成としているが、このワッシャ105は必ずしも設けなくてもよい。
 第1係合体103aと第2係合体103bとで構成されるカバー用クラッチ103は、ブレード回転軸82の回転動力をドーム状カバー93に伝達するか否かを切り替えるクラッチとして機能する。カバー用クラッチ103は、混練モータ50が原動軸11を回転させるときのブレード回転軸82の回転方向(この回転方向を「正方向回転」とする。図11A及び図11Bでは反時計方向回転、図12A及び図12Bでは時計方向回転となる。)において、ブレード回転軸82の回転動力をドーム状カバー93に伝達する。逆に、粉砕モータ60が原動軸11を回転させるときのブレード回転軸82の回転方向(この回転方向を「逆方向回転」とする。図11A及び図11Bでは時計方向回転、図12A及び図12Bでは反時計方向回転となる。)においては、カバー用クラッチ103は、ブレード回転軸82の回転動力をドーム状カバー93に伝達しない。以下、このカバー用クラッチ103の動作について更に詳細に説明する。
 混練ブレード101が折り畳み姿勢にある場合(例えば図11A、図12Aの状態)、第2係合体103bの係合部103bbは第1係合体103aの係合部103ab(本実施形態では2つあるが1つでもよい)の回転軌道に干渉する角度となる(図11Aの破線参照)。このため、ブレード回転軸82が正方向回転すると、第1係合体103aと第2係合体103bは係合し、ブレード回転軸82の回転動力がドーム状カバー93に伝達される。
 一方、混練ブレード101が開き姿勢にある場合(例えば図11B、図12Bの状態)、第2係合体103bの係合部103bbは第1係合体103aの係合部103abの回転軌道から逸脱した角度となる(図11Bの破線参照)。このために、ブレード回転軸82が回転しても、第1係合体103aと第2係合体103bは係合しない。従って、ブレード回転軸82の回転動力はドーム状カバー93に伝達されない。
 例えば図8及び図9に示すように、ドーム状カバー93には、カバー内空間とカバー外空間を連通する窓93dが形成される。窓93dは粉砕ブレード92に並ぶ高さか、それよりも上の位置に配置される。なお、本実施形態では、計4個の窓93dが90°間隔で並んでいるが、それ以外の数と配置間隔を選択することもできる。
 また、ドーム状カバー93内面には、各窓93dに対応して計4個のリブ93eが形成されている(図11A及び図11B参照)。各リブ93eはドーム状カバー93の中心近傍から外周の環状壁まで半径方向に対して斜めに延び、4個合わさって一種の巴形状を構成する。また、各リブ93eは、それに向かって押し寄せるパン原料に対面する側が凸となるように湾曲している。
 また、ドーム状カバー93の下面には、ガード106が着脱可能に取り付けられている。このガード106は、ドーム状カバー93の下面を覆って粉砕ブレード92にユーザの指が接近するのを阻止する。ガード106は、例えば耐熱性を有するエンジニアリングプラスチックによって形成され、例えばPPS(ポリフェニレンサルファイド)等の成型品とできる。なお、このガード106は設けなくても構わないが、ユーザの安全を確保する目的等から、設けるのが好ましい。
 例えば図9に示すように、ガード106の中心には、ユニット用シャフト91に固定されるストッパ部材94を通すリング状のハブ106aがある。また、ガード106の周縁には、ハブ106aの外側に同心円状に設けられたリング状のリム106bがある。ハブ106aとリム106bとは複数のスポーク106cで連結される。複数のスポーク106cは所定の間隔を置いて配置され、スポーク106c同士の間は、粉砕ブレード92によって粉砕される穀物粒を通す開口部106dとなる。開口部106dは、指が通り抜けられない程度の大きさとなっている。
 ガード106のスポーク106cは、ドーム状カバー93に取り付けられた時、粉砕ブレード92と近接状態となる。そして、あたかも、ガード106が回転式電気かみそりの外刃で、粉砕ブレード92が内刃のような形になる。
 リム106bの周縁には、90°間隔で計4個(この構成に限定されないのは言うまでもない)の柱106eが一体成形されている。この柱106eのガード106中心側を向いた側面には、一端が行き止まりになった水平な溝106eaが形成される。この溝106eaと、ドーム状カバー93の外周に形成される突起93f(これも90°間隔で計4個配置されている)とを係合させることによって、ガード106はドーム状カバー93に取り付けられる。なお、詳細な説明は省略するが、溝106eaと突起93fとは、バヨネット結合を構成するように設けられている。複数の柱106eの各々は、ブレード回転軸82が正方向回転する場合に回転方向前面となる側面106ebが斜め上向きとなるように傾斜している。
 以上のように、本実施形態の自動製パン器1では、粉砕ブレード92及び混練ブレード101を1つのユニット(ブレードユニット90)に組み込む構成としているので、その取り扱いが便利である。ユーザは、ブレードユニット90をブレード回転軸82から簡単に引き抜くことが可能であり、製パン作業終了後にブレードの洗浄を手軽に行うことができる。また、ブレードユニット90が備える粉砕ブレード92は、ユニット用シャフト91に着脱可能に取り付けられるものであり、その量産が行いやすく、ブレード交換等のメンテナンス性にも優れる。
 また、本実施形態の自動製パン器1では、パン容器80に水等の液体が入れられるために、ベアリング95に液体が入り込まないように、ベアリング95は密閉構造とされるのが好ましい。この点、自動製パン器1では、ベアリング95がドーム状カバー93に設けられる凹状の収容部931に収容されているために、ドーム状カバーの内面側にのみシール手段(シール材97及びシールカバー98)を設ければ、ベアリング95を密閉する構造が得られる。このため、ベアリング95の上下にシール手段を設ける必要がなく、ベアリング95のシール構造の小型化が図れる。このため、自動製パン器1では、焼き上がったパンの形状に対する悪影響(例えば、パンの底面が大きく凹む等)を抑制することが可能になる。
 図13は、本実施形態の自動製パン器の構成を示すブロック図である。図13に示すように、自動製パン器1における制御動作は制御装置120によって行われる。制御装置120は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/O(input/output)回路部等からなるマイクロコンピュータ(マイコン)によって構成される。この制御装置120は、焼成室30の熱の影響を受け難い位置に配置するのが好ましい。また、制御装置120には、時間計測機能が備えられており、パンの製造工程における時間的な制御が可能となっている。
 制御装置120には、上述の操作部20と、焼成室30の温度を検知する温度センサ15と、混練モータ駆動回路121と、粉砕モータ駆動回路122と、ヒータ駆動回路123と、第1のソレノイド駆動回路124と、第2のソレノイド駆動回路125と、が電気的に接続されている。
 混練モータ駆動回路121は、制御装置120からの指令の下で混練モータ50の駆動を制御するための回路である。また、粉砕モータ駆動回路122は、制御装置120からの指令の下で粉砕モータ60の駆動を制御するための回路である。ヒータ駆動回路123は、制御装置120からの指令の下でシーズヒータ31の動作を制御するための回路である。第1のソレノイド駆動回路124は、制御装置120からの指令の下で、パンの製造工程の途中で一部のパン原料を自動投入する際に駆動する自動投入用ソレノイド16の駆動を制御するための回路である。第2のソレノイド駆動回路125は、制御装置120からの指令の下でクラッチ56(図4A及び図4B参照)の状態を切り替えるクラッチ用ソレノイド73(図4A及び図4B参照)の駆動を制御するための回路である。
 制御装置120は、操作部20からの入力信号に基づいてROM等に格納されたパンの製造コース(製パンコース)に係るプログラムを読み出し、混練モータ駆動回路121を介して混練モータ50による混練ブレード101及び補完混練ブレード102の回転の制御、粉砕モータ駆動回路122を介して粉砕モータ60による粉砕ブレード92の回転の制御、ヒータ駆動回路123を介してシーズヒータ31による加熱動作の制御、第1のソレノイド駆動回路124を介して自動投入用ソレノイド16による可動フック42cの動作制御、第2のソレノイド駆動回路125を介してクラッチ用ソレノイド73によるクラッチ56の切替制御を行いながら、自動製パン器1にパンの製造工程を実行させる。
(自動製パン器の動作)
 次に、以上のように構成される自動製パン器1でパンを製造する場合の動作について説明する。ここでは、自動製パン器1によって米粒を出発原料に用いてパンを製造する場合を例に、自動製パン器1の動作を説明する。
 米粒が出発原料に用いられる場合には、米粒用製パンコースが実行される。図14は自動製パン器によって実行される米粒用製パンコースの流れを示す模式図である。図14に示すように、米粒用製パンコースにおいては、浸漬工程と、粉砕工程と、休止工程と、練り(捏ね)工程と、発酵工程と、焼成工程と、がこの順番で順次に実行される。
 米粒用製パンコースを開始するにあたって、ユーザは、パン容器80のブレード回転軸82にユニット用シャフト91を被せることによって、ブレードユニット90をブレード回転軸82に取り付ける。上述のように、ブレードユニット90がガード106を備える構成であるために、この作業時にユーザの指が粉砕ブレード92に触れることがなく、ユーザは安全に作業を行える。このブレードユニット90の取り付け作業後に、ユーザは、米粒、水、調味料(例えば食塩、砂糖、ショートニング等)をそれぞれ所定量ずつ計量してパン容器80に入れる。
 また、ユーザは、パンの製造工程の途中で自動投入されるパン原料を計量してパン原料収納容器42の容器本体42aに入れる。そして、ユーザは、収納すべきパン原料を容器本体42aに収納したら、可動フック42cによって容器蓋42bを支えることにより、容器本体42aの開口が容器蓋42bによって閉じられた状態とする。
 なお、パン原料収納容器42に収納されるパン原料としては、例えば、グルテン、ドライイースト等が挙げられる。グルテンの代わりに、例えば小麦粉、増粘剤(グアガム等)及び上新粉のうちの少なくとも1つをパン原料収納容器42に収納するようにしてもよい。また、グルテン、小麦粉、増粘剤、上新粉等は用いずに、例えばドライイーストのみがパン原料収納容器42に収納されるようにしてもよい。更に、場合によっては、例えば食塩、砂糖、ショートニングといった調味料についてもパンの製造工程の途中で自動投入すべく、例えばグルテン、ドライイーストと共に、これらの原料をパン原料収納容器42に収納するようにしてもよい。この場合には、パン容器80に予め投入しておくパン原料は米粒及び水(単なる水の代わりに、例えばだし汁のような味成分を有する液体、果汁やアルコールを含有する液体等でもよい)となる。
 この後、ユーザは、パン容器80を焼成室30に入れ、更に、パン原料収納容器42を蓋40の所定位置に取り付ける。そして、ユーザは蓋40を閉じ、操作部20によって米粒用製パンコースを選択し、スタートキーを押す。これにより、制御装置120は、米粒を出発原料に用いてパンを製造する米粒用製パンコースの制御動作を開始する。
 米粒用製パンコースがスタートされると、制御装置120の指令によって浸漬工程が開始される。浸漬工程では、パン容器80に予め投入されたパン原料が静置状態とされ、この静置状態が予め定められた所定時間(本実施形態では30分)維持される。この浸漬工程は、米粒に水を含ませることによって、その後に行われる粉砕工程において、米粒を芯まで粉砕しやすくすることを狙う工程である。
 なお、米粒の吸水速度は水の温度によって変動し、水温が高いと吸水速度が高まり、水温が低いと吸水速度が低下する。このために、浸漬工程の時間は、例えば自動製パン器1が使用される環境温度等によって変動されるようにしてもよい。これにより、米粒の吸水度合いのばらつきを抑制することが可能になる。また、浸漬時間を短時間とするために、シーズヒータ31に通電して、焼成室30の温度が高められるようにしてもよい。
 また、浸漬工程の初期段階で粉砕ブレード92が回転されるようにしてもよく、更に、その後も、断続的に粉砕ブレード92が回転されるようにしてもよい。このようにすると、米粒の表面に傷をつけることができ、米粒の吸液効率が高められる。
 上記所定時間が経過すると、制御装置120の指令によって、浸漬工程が終了され、米粒を粉砕する粉砕工程が開始される。この粉砕工程では、米粒と水とが含まれる混合物の中で粉砕ブレード92が高速回転(例えば7000~8000rpm)される。この粉砕工程では、制御装置120は、粉砕モータ60を制御してブレード回転軸82を逆方向回転(図11A及び図11Bでは時計方向回転、図12A及び図12Bでは反時計方向回転)させる。ブレード回転軸82の逆方向回転により、粉砕ブレード92の切削刃が回転方向前方となるために、粉砕ブレード92を用いた粉砕機能が得られる。
 なお、粉砕モータ60を用いて粉砕ブレード92を回転させる場合、制御装置120は、クラッチ用ソレノイド73を駆動させて、クラッチ56が動力遮断を行うようにする(図4Aの状態とする)。上述したように、このように制御しないとモータ破損の可能性があるからである。
 粉砕ブレード92を回転させるために、ブレード回転軸82が逆方向回転された場合、ドーム状カバー93もブレード回転軸82の回転に追随して回転を開始するが、次のような動作によってドーム状カバー93の回転はすぐに阻止(停止)される。なお、粉砕ブレード92は、粉砕工程の初期段階では低速で回転され、その後、高速回転されるようにするのが好ましい。
 粉砕ブレード92を回転させるためのブレード回転軸82の回転に伴うドーム状カバー93の回転方向は、図12A及び図12Bにおいて反時計方向であり、混練ブレード101は、それまで折り畳み姿勢(図12Aに示す姿勢)であった場合には、米粒と水が含まれる混合物から受ける抵抗で開き姿勢(図12Bに示す姿勢)に転じていく。
 混練ブレード101が開き姿勢になると、第2係合体103bの係合部103bbが第1係合体103aの係合部103abの回転軌道(図11Bの破線参照)から逸脱する。このために、カバー用クラッチ103は、ブレード回転軸82とドーム状カバー93との連結を切り離す。また、開き姿勢になった混練ブレード101は、図12Bに示すように、その一部(正確には、先端側に設けられる緩衝材107)がパン容器80の内側壁(詳細には粉砕効率を向上するためにパン容器80の内壁に設けられた畝状の凸部80b)に当接するために、ドーム状カバー93の回転は阻止(停止)される。
 なお、粉砕工程においては、粉砕ブレード92の回転中に振動が発生するが、緩衝材107がパン容器80と接触する構成を採用しているために、この振動によって生じる衝突音が緩和されるようになっている。
 粉砕工程における米粒の粉砕は、先に行われた浸漬工程によって米粒に水が浸み込んだ状態で実行されるために、米粒を芯まで容易に粉砕することができる。粉砕工程における粉砕ブレード92の回転は本実施形態では間欠回転とされる。この間欠回転は、例えば30秒回転して5分間停止するというサイクルで行われ、このサイクルが10回繰り返される。なお、最後のサイクルでは、5分間の停止は行わない。粉砕ブレード92の回転は連続回転としてもよいが、例えばパン容器80内の原料温度が高くなり過ぎることを防止する等の目的のために、間欠回転とするのが好ましい。
 粉砕工程においては、米粒の粉砕が回転停止したドーム状カバー93内で行われるから、米粒がパン容器80の外に飛び散る可能性が低い。また、回転停止状態にあるガード106の開口部106dからドーム状カバー93内に入る米粒は、静止したスポーク106cと回転する粉砕ブレード92との間でせん断されるので、効率良く粉砕が行える。また、ドーム状カバー93に設けられるリブ93eによって、米粒と水とが含まれる混合物の流動(粉砕ブレード92の回転と同方向の流動である)が抑制されるので、効率良く粉砕が行える。
 また、粉砕された米粒と水とを含む混合物は、ドーム状カバー93のリブ93eによって窓93dの方向に誘導されて、窓93dからドーム状カバー93の外に排出される。ドーム状カバー93のリブ93eは、それに向かって押し寄せる混合物に対向する側が凸となるように湾曲しているので、混合物はリブ93eの表面に滞留しにくく、スムーズに窓93dの方へ流れていく。更に、ドーム状カバー93内部から混合物が排出されるのと入れ替わりに、凹部81の上の空間に存在していた混合物が凹部81に入り、凹部81からガード106の開口部106dを通ってドーム状カバー93内に入いる。このような循環をさせつつ粉砕ブレード92による粉砕を行うので、効率良く粉砕できる。
 なお、自動製パン器1においては所定の時間(本実施形態では50分)で粉砕工程が終了するようにしている。しかしながら、米粒の硬さのばらつきや環境条件によって粉砕粉の粒度にばらつきが生じることがある。このため、粉砕工程の終了が、粉砕モータ60の負荷の大きさ(例えば、モータの制御電流等で判断できる)を指標に判断される構成等としても構わない。また、自動製パン器1においては、上述のように、原動軸11の回転動力をブレード回転軸82に伝達するカップリングを構成する本体側接続部17と容器側接続部84との連結が外れにくいように構成されているために、安定した粉砕動作を行える。
 粉砕工程が終了すると、制御装置120の指令によって休止工程が実行される。この休止工程は、粉砕工程によって上昇したパン容器80内の内容物の温度を下げる冷却期間として設けられている。温度を下げるのは、次に行われる練り工程が、イーストが活発に働く温度(例えば30℃前後)で実行されるようにするためである。本実施形態では、休止工程は所定時間(30分)とされているが、場合によっては、パン容器80の温度等が所定の温度となるまで、休止工程が行なわれる構成等としても構わない。
 休止工程が終了すると、制御装置120の指令によって練り工程が開始される。練り工程の開始にあたって、制御装置120はクラッチ用ソレノイド73を駆動して、クラッチ56が動力伝達を行うようにする(図4Bの状態)。そして、制御装置120は混練モータ50を制御してブレード回転軸82を正方向回転(図11A及び図11Bでは反時計方向回転、図12A及び図12Bでは時計方向回転)させる。
 ブレード回転軸82を正方向回転させると、粉砕ブレード92も正方向に回転する。この場合、粉砕ブレード92は、切削刃が回転方向後方となって回転し、粉砕機能を発揮しない。粉砕ブレード92の回転により、粉砕ブレード92の周囲のパン原料が正方向に流動する。それにつられてドーム状カバー93が正方向(図12A及び図12Bでは時計方向)に動くと、混練ブレード101は流動していないパン原料から抵抗を受けて、開き姿勢(図12B参照)から折り畳み姿勢(図12A参照)へと角度を変えて行く。これにより、第2係合体103bの係合部103bbが第1係合体103aの係合部103abの回転軌道(図11Aの破線参照)に干渉する角度となる。そして、カバー用クラッチ103がブレード回転軸82とドーム状カバー93とを連結し、ドーム状カバー93はブレード回転軸82によって本格的に駆動される態勢に入る。ドーム状カバー93と折り畳み姿勢になった混練ブレード101とは、ブレード回転軸82とともに正方向回転する。
 なお、以上に説明したカバー用クラッチ103の連結を確実に行うために、練り工程初期におけるブレード回転軸82の回転は、間欠回転或いは低速回転とするのが好ましい。また、上述のように、混練ブレード101が折り畳み姿勢になると、混練ブレード101の延長上に補完混練ブレード102が並ぶために、混練ブレード101があたかも大型化したかのようになって、パン原料は力強く押される。このため、生地の練り上げをしっかり行える。
 混練ブレード101(この用語は、折り畳み姿勢においては、補完混練ブレード102を含む表現として用いる。以下同様。)の回転は、練り工程の初期においては非常にゆっくりとされ、段階的に速度が速められるように制御装置120によって制御される。混練ブレード101の回転が非常にゆっくりである練り工程の初期段階において、制御装置120は自動投入用ソレノイド16を駆動させて、パン原料収納容器42の可動フック42cが容器蓋42bを支えた状態を解消させる。これにより、容器本体42aの開口が開かれて、例えば、グルテン、ドライイーストといったパン原料がパン容器80内に自動投入される。
 上述のように、パン原料収納容器42は、容器本体42a及び容器蓋42bの内部にコーティング層が設けられて滑りがよくなっており、また、内部に凹凸部が設けられないように工夫されている。更に、パッキン42dの配置方法の工夫により、パン原料がパッキン42dに引っ掛かるという事態も抑制されている。このために、パン原料収納容器42にはパン原料がほとんど残ることなく、自動投入が完了する。
 なお、本実施形態では、パン原料収納容器42に収納されるパン原料が、混練ブレード101が回転している状態で投入されることにしているが、これに限定されず、混練ブレード101が停止している状態で投入されることにしてもよい。ただし、本実施形態のように、混練ブレード101が回転した状態でパン原料が投入される方が、パン原料が均一に分散されるので好ましい。
 パン原料収納容器42に収納されたパン原料がパン容器80に投入された後は、混練ブレード101の回転によって、パン原料は所定の弾力を有する一つにつながった生地(dough)に練り上げられていく。混練ブレード101が生地を振り回してパン容器80の内壁にたたきつけることにより、混練に「捏ね」の要素が加わることになる。混練ブレード101の回転とともにドーム状カバー93も回転する。ドーム状カバー93が回転すると、ドーム状カバー93に形成されるリブ93eも回転するために、ドーム状カバー93内のパン原料は速やかに窓93dから排出され、混練ブレード101が混練しているパン原料の塊(生地)に同化する。
 なお、練り工程においては、ドーム状カバー93と共にガード106も正方向に回転する。ガード106のスポーク106cは、正方向回転時、ガード106の中心側が先行しガード106の外周側が後続する形状とされている。このために、ガード106は、正方向に回転することにより、ドーム状カバー93内外のパン原料(パン生地)をスポーク106cで外側に押しやる。これにより、パンを焼き上げた後に廃棄分となる原料の割合を減らすことができる。
 また、ガード106の柱106eは、ガード106が正方向に回転するときに回転方向前面となる側面106ebが、上向きに傾斜する構成となっている。このために、混練時、ドーム状カバー93の周囲のパン原料(パン生地)が柱106eの側面106ebで上方に跳ね上げられる。跳ね上げられたパン原料は、上方のパン原料の塊(生地)に同化するために、パンを焼き上げた後に廃棄分となる原料の割合を減らすことができる。
 自動製パン器1においては、練り工程の時間は、所望の弾力を有するパン生地が得られる時間として実験的に求められた所定の時間(本実施形態では10分)が採用されている。ただし、練り工程の時間が一定とされると、環境温度等によってパン生地の出来上がり具合が変動する場合がある。このため、例えば、混練モータ50の負荷の大きさ(例えば、モータの制御電流等で判断できる)を指標に、練り工程の終了時点が判断される構成等としても構わない。
 なお、具材(例えばレーズン、ナッツ、チーズ等)入りのパンが焼かれる場合には、この練り工程の途中で具材が投入されるようにすればよい。また、自動製パン器1においては、上述のように、原動軸11の回転動力をブレード回転軸82に伝達するカップリングを構成する本体側接続部17と容器側接続部84との連結が外れにくいように構成されているために、安定した練り(混練動作)を行える。
 練り工程が終了すると、制御装置120の指令によって発酵工程が開始される。この発酵工程では、制御装置120はシーズヒータ31を制御して、焼成室30の温度を、発酵が進む温度(例えば38℃)に維持する。そして、発酵が進む環境下でパン生地は所定の時間(本実施形態では60分)放置される。
 なお、場合によっては、この発酵工程の途中で、混練ブレード101を回転してガス抜きや生地を丸める処理が行われるようにしても構わない。
 発酵工程が終了すると、制御装置120の指令によって焼成工程が開始される。制御装置120はシーズヒータ31を制御して、焼成室30の温度を、パン焼きを行うのに適した温度(例えば125℃)まで上昇させる。そして、制御装置120は、焼成環境下で所定の時間(本実施形態では50分)パンを焼くように制御する。焼成工程の終了については、例えば操作部20の液晶表示パネルにおける表示や報知音等によってユーザに知らされる。ユーザは、製パン完了を検知すると、蓋40を開けてパン容器80を取り出して、パンの製造を完了させる。
 なお、パン容器80内のパンは、例えば、パン容器80の開口を斜め下に向けることで取り出すことができる。そして、このパンの取り出しと同時に、ブレード回転軸82に取り付けられたブレードユニット90もパン容器80から取り出される。ガード106の存在により、このパンの取り出し作業時にユーザは粉砕ブレード92に触れることがなく、ユーザは安全にパンの取り出し作業を行える。パンの底には、ブレードユニット90の混練ブレード101及び補完混練ブレード102(パン容器80の凹部81から上側に突き出ている)の焼き跡が残る。しかし、ドーム状カバー93とガード106が凹部81の中に収容される構成であるために、それらがパンの底に大きな焼き跡を残すようなことは抑制される。
(その他)
 以上に示した自動製パン器の実施形態は本発明の一例であり、本発明が適用される自動製パン器の構成は、以上に示した実施形態に限定されるものではない。
 例えば、以上に示した実施形態では、第2のベルト部59が2本のベルト59a、59bからなる構成とした。ただし、本発明は、この構成に限定される趣旨ではなく、第2のベルト部59が3本以上とされる構成も、本発明に含まれる。また、本実施形態では、第2のベルト部59を構成する2本のベルト59a、59bが同一形状(サイズ)である構成とした。ただし、本発明は、この構成に限定される趣旨ではなく、第2のベルト部59を構成する2本のベルト59a、59bが同一形状ではない(ベルトの幅が異なる等)構成も、本発明に含まれる。
 また、以上に示した実施形態では、粉砕ブレード92及び混練ブレード101がブレードユニット90に含まれ、ブレード回転軸82に一体的に取り付けられる(取り外される)構成とした。しかし、この構成に限らず、粉砕ブレード92及び混練ブレード101は、別々にブレード回転軸82に取り付けられる構成であっても構わない。
 また、以上に示した実施形態においては、米粒が出発原料として用いられる場合を例に、自動製パン器の構成及び動作が説明された。しかし、本発明は、例えば小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆等の米粒以外の穀物粒が出発原料として用いられる場合にも、適用可能である。
 また、以上に示した米粒用製パンコースの製造フローは例示であり、米粒用製パンコースは他の製造フローとしてもよい。一例を挙げると、粉砕工程後の休止工程は省いてもよい。
 また、以上に示した実施形態では、自動製パン器1が粉砕ブレード92によって穀物粒を粉砕させる場合と、パン生地を練り上げるために混練ブレード101を回転させる場合とで、別々のモータを使用する構成とした。しかし、本発明の本体側接続部と容器側接続部で構成されるカップリングは、粉砕ブレード92によって穀物粒を粉砕させる場合と、パン生地を練り上げるために混練ブレード101を回転させる場合とで、同一のモータが使用される構成にも適用可能である。
 また、以上においては、自動製パン器1によって、米粒を出発原料に用いてパンが製造される場合を示したが、本実施形態の自動製パン器1は、例えば小麦粉や米粉を出発原料に用いてパンを製造することもできる。そして、小麦粉や米粉を出発原料に用いてパンを製造する場合には、粉砕ブレード92は不要であるために、以上に示したのとは異なるパン容器(混練ブレードのみがブレード回転軸に取り付けられる従来型のパン容器)が用いられても構わず、このパン容器にも、本発明のカップリングは適用できる。
 また、以上においては、本発明の本体側接続部と容器側接続部で構成されるカップリングが、穀物粒を粉砕する粉砕工程を実行可能な(穀物粒を出発原料としてパンを製造できる)自動製パン器に適用される場合を示した。しかし、これに限らず、本発明の本体側接続部と容器側接続部で構成されるカップリングは、例えば、小麦粉や米粉等の穀物粉を出発原料としてのみパンを製造できる自動製パン器にも適用可能であることは言うまでもない。
 また、以上に示した実施形態では、粉砕工程から始まり、練り工程、発酵工程、焼成工程までを一貫して行う自動製パン器を提示したが、本発明の自動製パン器は、粉砕工程から発酵工程までを、あるいは粉砕工程と練り工程のみを遂行する装置として構成することも可能である。この場合、焼成工程、あるいは発酵工程と焼成工程は外部の機器、例えばオーブン、に委ねることになる。また、本発明の自動製パン器は、家庭用でなく業務用の機器として発展させることもできる。
 本発明は、家庭用の自動製パン器に好適である。
   1 自動製パン器
   10 本体
   11 原動軸(第2の回転軸)
   12 原動軸用プーリ
   14a 係合溝(第2の係合部)
   17 本体側接続部(カップリングの一部)
   17a 第1のベース(ベース)
   17b 突出部
   17c 凹部
   17d 傾斜面
   30 焼成室(収容部)
   50 混練モータ(第1のモータ)
   51 混練モータの出力軸
   56 クラッチ
   57 第2の中継回転軸(第3の回転軸)
   58 第2の中継回転軸用プーリ
   59a、59b ベルト
   60 粉砕モータ(第2のモータ)
   61 粉砕モータの出力軸
   80 パン容器
   82 ブレード回転軸(第1の回転軸)
   83 台座(筒状体)
   83a 係合突起(第1の係合部)
   84 容器側接続部(カップリングの一部)
   84b 腕部
   84c 凸部
   92 粉砕ブレード
   101 混練ブレード
   EG 係合溝
   EM 係合山
   FP フランジ部
   PT1 第1の動力伝達部(混練モータ用の動力伝達部)
   PT2 第2の動力伝達部(粉砕モータ用の動力伝達部)

Claims (12)

  1.  パン原料が投入されるパン容器を収容する収容部を有する本体と、
     前記パン容器の底部に設けられる第1の回転軸と、
     前記本体内に設けられ、前記収容部に収容された前記パン容器の前記第1の回転軸に動力伝達可能に連結される第2の回転軸と、
     前記本体内に設けられるモータと、
     前記モータの出力軸の回転力を前記第2の回転軸に伝達する動力伝達部と、
     を備え、
     前記動力伝達部には、並列する複数のベルトを介して前記第2の回転軸に動力伝達可能に連結される第3の回転軸が含まれる、自動製パン器。
  2.  前記動力伝達部においては、前記モータの出力軸のトルクが増加されて前記第3の回転軸に伝達される、請求項1に記載の自動製パン器。
  3.  前記モータは、前記パン容器内でパン生地を練り上げる際に使用される混練モータであり、
     前記動力伝達部は、前記混練モータ用の動力伝達部であって、前記モータの出力軸と前記第2の回転軸との連結状態を切り替えるクラッチを含み、
     前記パン容器内で穀物粒を粉砕する際に使用される粉砕モータと、前記粉砕モータの出力軸の回転力を前記第2の回転軸に伝達する前記粉砕モータ用の動力伝達部と、を更に備える、請求項2に記載の自動製パン器。
  4.  前記第2の回転軸及び前記第3の回転軸には、それぞれ、前記複数のベルトが巻回されるプーリが取り付けられており、
     前記プーリのそれぞれには、前記第2の回転軸及び前記第3の回転軸の回転方向に沿った複数の係合溝が形成されており、
     前記複数のベルトのそれぞれには、前記係合溝に係合する係合山が複数形成されている、請求項1から3のいずれかに記載の自動製パン器。
  5.  前記第2の回転軸及び前記第3の回転軸には、それぞれ、前記複数のベルトが巻回されるプーリが取り付けられており、
     前記プーリのそれぞれには、前記複数のベルト間に所定の間隔を付与するフランジ部が形成されている、請求項1から3のいずれかに記載の自動製パン器。
  6.  パン原料が投入されるパン容器を収容する収容部を有する本体と、
     前記本体内に設けられるモータと、
     前記パン容器の底部に設けられる第1の回転軸と、
     前記モータの回転動力を前記収容部に収容された前記パン容器の前記第1の回転軸に伝達するために、前記収容部の底部に設けられる本体側接続部と、
     前記第1の回転軸の前記パン容器の底部から外部に突出する側の先端部に設けられ、前記パン容器が前記収容部に収容されることによって前記本体側接続部とともにカップリングを構成する容器側接続部と、を備え、
     前記本体側接続部は、ベースと該ベースから突出する突出部とを有し、
     前記容器側接続部は、前記第1の回転軸に対して略垂直な方向に延びる腕部を有し、
     前記モータの駆動により前記第1の回転軸が回転されている状態において、前記突出部と前記腕部とは、前記突出部に対して前記腕部の方が下となる部分が生じるように係合する、自動製パン器。
  7.  前記突出部と前記腕部とのうち、いずれか一方は凸部を、他方は凹部を有するように設けられ、
     前記モータの駆動により前記第1の回転軸が回転されている状態において、前記突出部と前記腕部とは、前記凸部と前記凹部とが嵌め合って係合する、請求項6に記載の自動製パン器。
  8.  前記パン容器の底部外面側には、前記第1の回転軸及び前記容器側接続部を囲むように配置されて外面に第1の係合部を有する筒状体が設けられており、
     前記収容部の底部には、前記本体側接続部の周りに第2の係合部が設けられており、
     前記収容部に収容された前記パン容器は、前記第1の係合部と前記第2の係合部との係合によって、前記第1の回転軸と略垂直な平面方向の位置決めがなされる、請求項6に記載の自動製パン器。
  9.  前記パン容器を前記収容部に収容する際に前記腕部が前記突出部に当接した場合に、前記ベースを回転させる力が発生するように、前記突出部には傾斜面が形成されている、請求項6に記載の自動製パン器。
  10.  穀物粒を粉砕するための粉砕ブレードと、パン生地を練り上げるための混練ブレードとが、前記第1の回転軸の回転によって回転可能である、請求項7から10のいずれかに記載の自動製パン器。
  11.  前記モータには、前記混練ブレードを低速回転するために設けられる第1のモータと、前記粉砕ブレードを高速回転するために設けられる第2のモータと、が含まれる、請求項10に記載の自動製パン器。
  12.  前記第1の回転軸の回転方向は、前記粉砕ブレードを用いて穀物粒を粉砕する場合と、前記混練ブレードを用いてパン生地を練り上げる場合とで逆回転となるように設けられ、
     前記第1の回転軸がいずれの方向に回転されている場合においても、前記突出部と前記腕部とは、前記突出部に対して前記腕部の方が下となる部分が生じるように係合する、請求項10に記載の自動製パン器。
PCT/JP2011/063637 2010-07-12 2011-06-15 自動製パン器 WO2012008256A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010157810A JP2012019819A (ja) 2010-07-12 2010-07-12 自動製パン器
JP2010-157810 2010-07-12
JP2010-236298 2010-10-21
JP2010236298A JP2012085901A (ja) 2010-10-21 2010-10-21 自動製パン器

Publications (1)

Publication Number Publication Date
WO2012008256A1 true WO2012008256A1 (ja) 2012-01-19

Family

ID=45469266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063637 WO2012008256A1 (ja) 2010-07-12 2011-06-15 自動製パン器

Country Status (2)

Country Link
TW (1) TW201204300A (ja)
WO (1) WO2012008256A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105768945A (zh) * 2014-12-15 2016-07-20 佛山市顺德区美的电热电器制造有限公司 用于面包机的面包桶及具有其的面包机
CN105795961A (zh) * 2014-12-31 2016-07-27 佛山市顺德区美的电热电器制造有限公司 面食加工机以及面包桶
EP3446566A1 (en) * 2017-08-24 2019-02-27 Panasonic Intellectual Property Management Co., Ltd. Automatic bread maker

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185909A (ja) * 1984-10-03 1986-05-01 東芝熱器具株式会社 食品調理機
US4613086A (en) * 1982-09-13 1986-09-23 Granum Michael J Food processing machine
JPH02309919A (ja) * 1989-05-25 1990-12-25 Toshiba Corp パン製造機
JPH0359006U (ja) * 1989-10-06 1991-06-10
JPH07227361A (ja) * 1994-02-17 1995-08-29 Kunimori Kagaku:Kk 電動調理装置の駆動機構
JPH1075895A (ja) * 1996-09-02 1998-03-24 Zojirushi Corp 自動製パン機
JP2000296498A (ja) * 1999-04-13 2000-10-24 Matsuda Kikai Kogyo Kk すりおろし装置
JP2001238800A (ja) * 2000-02-28 2001-09-04 Zojirushi Corp ホームベーカリー
JP2009287607A (ja) * 2008-05-27 2009-12-10 Tsubakimoto Sprocket Co 中間フランジを有するプーリ
JP2010035476A (ja) * 2008-08-05 2010-02-18 Sanyo Electric Co Ltd パン製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613086A (en) * 1982-09-13 1986-09-23 Granum Michael J Food processing machine
JPS6185909A (ja) * 1984-10-03 1986-05-01 東芝熱器具株式会社 食品調理機
JPH02309919A (ja) * 1989-05-25 1990-12-25 Toshiba Corp パン製造機
JPH0359006U (ja) * 1989-10-06 1991-06-10
JPH07227361A (ja) * 1994-02-17 1995-08-29 Kunimori Kagaku:Kk 電動調理装置の駆動機構
JPH1075895A (ja) * 1996-09-02 1998-03-24 Zojirushi Corp 自動製パン機
JP2000296498A (ja) * 1999-04-13 2000-10-24 Matsuda Kikai Kogyo Kk すりおろし装置
JP2001238800A (ja) * 2000-02-28 2001-09-04 Zojirushi Corp ホームベーカリー
JP2009287607A (ja) * 2008-05-27 2009-12-10 Tsubakimoto Sprocket Co 中間フランジを有するプーリ
JP2010035476A (ja) * 2008-08-05 2010-02-18 Sanyo Electric Co Ltd パン製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105768945A (zh) * 2014-12-15 2016-07-20 佛山市顺德区美的电热电器制造有限公司 用于面包机的面包桶及具有其的面包机
CN105795961A (zh) * 2014-12-31 2016-07-27 佛山市顺德区美的电热电器制造有限公司 面食加工机以及面包桶
EP3446566A1 (en) * 2017-08-24 2019-02-27 Panasonic Intellectual Property Management Co., Ltd. Automatic bread maker

Also Published As

Publication number Publication date
TW201204300A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2011105237A1 (ja) 自動製パン器
JP2012090924A (ja) 自動製パン器
WO2012008256A1 (ja) 自動製パン器
WO2011105238A1 (ja) 自動製パン器
JP2011167385A (ja) 自動製パン器
JP2012019818A (ja) 自動製パン器
JP2012102780A (ja) 噛み合いクラッチ及びそれを用いる自動製パン器
JP5516330B2 (ja) 自動製パン器
WO2012056763A1 (ja) 自動製パン器
WO2012056764A1 (ja) 自動製パン器
JP2012045290A (ja) 自動製パン器
JP2012105690A (ja) 自動製パン器
JP5516325B2 (ja) 自動製パン器
WO2012053247A1 (ja) パン原料収納容器及びそれを備えた自動製パン器
WO2011102306A1 (ja) 自動製パン器
JP2012081051A (ja) 自動製パン器
WO2012042981A1 (ja) 自動製パン器
JP2012075444A (ja) 自動製パン器
JP2012019819A (ja) 自動製パン器
JP5477250B2 (ja) 自動製パン器
JP2011167407A (ja) 自動製パン器
JP6075265B2 (ja) 自動製パン機
JP2012085927A (ja) 自動製パン器
WO2012008263A1 (ja) 自動製パン器
JP2012085901A (ja) 自動製パン器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806587

Country of ref document: EP

Kind code of ref document: A1