WO2012004913A1 - 放射線検出器およびそれを製造する方法 - Google Patents

放射線検出器およびそれを製造する方法 Download PDF

Info

Publication number
WO2012004913A1
WO2012004913A1 PCT/JP2011/002002 JP2011002002W WO2012004913A1 WO 2012004913 A1 WO2012004913 A1 WO 2012004913A1 JP 2011002002 W JP2011002002 W JP 2011002002W WO 2012004913 A1 WO2012004913 A1 WO 2012004913A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation detector
manufacturing
detection layer
film
polycrystalline film
Prior art date
Application number
PCT/JP2011/002002
Other languages
English (en)
French (fr)
Inventor
敏 徳田
晃一 田邊
吉牟田 利典
弘之 岸原
正知 貝野
聖菜 吉松
佐藤 敏幸
桑原 章二
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2012004913A1 publication Critical patent/WO2012004913A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14696The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Definitions

  • the present invention relates to a radiation detector having a function of detecting radiation including X-rays, ⁇ -rays, light, etc., and used in the medical field, industrial field, and nuclear field, and a method of manufacturing the same, and more particularly to radiation.
  • the present invention relates to a technique in which a sensitive detection layer is composed of a semiconductor and is composed of polycrystal.
  • a Cl doping method for CdTe or CdZnTe polycrystalline film in proximity sublimation a first material containing at least one of CdTe, ZnTe, and CdZnTe, and at least one of CdCl 2 (cadmium chloride) and ZnCl 2 (zinc chloride) are used.
  • a method of forming a polycrystalline film or a polycrystalline laminated film by vapor deposition or sublimation using a mixture with a second material containing two as a source is disclosed (for example, see Patent Document 2).
  • Non-patent Document 1 The evaluation of the grain size composition in the growth of the CdTe polycrystalline film is disclosed (for example, see Non-patent Document 1), and the spectral analysis of the CdTe polycrystalline film when doped with Cl is disclosed (for example, non-patent document 1).
  • Patent Document 2 Non-Patent Document 2 mentioned above suggests that the crystal grain size is refined by an appropriate amount of Cl doping. JP 2001-242255 A Japanese Patent No. 4269653 JOURNAL OF APPLIED PHYSICS 103, 063529 (2008) JOURNAL OF APPLIED PHYSICS 99, 053502 (2006)
  • the detection layer needs to have a thickness of several hundred ⁇ m or more.
  • the detection layer is a polycrystalline film such as CdTe, as shown in FIG. 4 of Non-Patent Document 1, generally the crystal grain size increases as the thickness of the detection layer increases. There is a tendency to grow.
  • the crystal grain size of the polycrystalline film greatly affects the characteristics (for example, spatial resolution, sensitivity, noise, etc.) of the two-dimensional radiation detector.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a radiation detector capable of improving detection characteristics and a method of manufacturing the same.
  • the radiation detector according to the present invention is a radiation detector provided with a detection layer sensitive to radiation on a substrate, wherein a polycrystalline film having an average grain size equal to or less than a pixel pitch is formed as the detection layer. It is what.
  • the radiation detector of the present invention since a polycrystalline film having an average particle size equal to or smaller than the pixel pitch is formed as a detection layer, an image having good characteristics (spatial resolution, sensitivity, etc.) between pixels. Can be obtained with a radiation detector. In addition, the temporal fluctuation can be reduced, and the detection characteristic regarding the response characteristic can be improved. As a result, detection characteristics can be improved.
  • CdTe cadmium telluride
  • ZnTe zinc telluride
  • CdZnTe cadmium zinc telluride
  • the pixel pitch is 200 ⁇ m or less
  • the thickness of the detection layer is 300 ⁇ m or more, for example, it has a sufficient capture capability for X-rays with a tube voltage of several tens of kV or more frequently used in the medical diagnostic region, and has high sensitivity and quantum detection efficiency (DQE). Is obtained.
  • the average grain size is 1 ⁇ 2 or less of the pixel pitch, it is possible to reduce the situation where the crystal grains straddle between the pixels and to further improve the detection characteristics.
  • a radiation detector having a large-area detection layer can be obtained by forming the detection layer by the proximity sublimation method.
  • the polycrystalline film is CdTe, ZnTe or CdZnTe, and the polycrystalline film is doped with 1 wtppm to 10 wtppm of Cl (chlorine). Therefore, it is possible to stably manufacture a radiation detector that can efficiently suppress the particle size and obtain an image with good characteristics (spatial resolution, sensitivity, etc.).
  • the unit of wtppm shows a mass part per million.
  • the detection characteristics can be improved.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a radiation detector according to the embodiment
  • FIG. 2 is a side view showing a schematic configuration of the radiation imaging apparatus
  • FIG. 3 is a configuration of a switching matrix substrate and peripheral circuits.
  • FIG. 4 is a schematic diagram showing a longitudinal section of the radiation imaging apparatus.
  • the radiation detector 1 includes a supporting substrate 3 that is transparent to radiation, a common electrode 5 for bias charge application formed on the lower surface thereof, an electron injection blocking layer 7 on the lower surface of the common electrode 5, A detection layer 9 that generates electron-hole pair carriers in response to incident radiation, a hole injection blocking layer 11 formed on the lower surface of the detection layer 9, and a detection electrode 13 for collecting carriers are laminated. Prepared in state. However, if there is no problem in the characteristics of the radiation detector 1, either or both of the electron injection blocking layer 7 and the hole injection blocking layer 11 may be omitted.
  • the support substrate 3 described above, the small ones are preferred absorption coefficient of radiation, for example, glass, ceramic (Al 2 O 3, AlN) , although materials such as silicon can be adopted, conductive, such as graphite substrate
  • the common electrode can be omitted by using a material. In this embodiment, as shown in the figure, radiation is incident from the support substrate 3 side, and the operation is performed with a negative bias voltage applied to the common electrode 5.
  • the detection layer 9 is preferably manufactured as described later, and is a polycrystalline film made of any one of CdTe (cadmium telluride), ZnTe (zinc telluride), CdZnTe (cadmium zinc telluride), or at least one of them. In addition, it is composed of polycrystalline stacked films 9a and 9b including one, and is further doped with Cl.
  • the common electrode 5 and the detection electrode 13 are made of a conductive material such as ITO, Au, or Pt, for example.
  • Examples of the electron injection blocking layer 7 include Sb 2 Te 3 , Sb 2 S 3 , and ZnTe films that form p-type layers, and examples of the hole injection blocking layer 11 include CdS and ZnS films that form n-type layers. Etc. are exemplified.
  • the radiation detector 1 configured as described above is configured integrally with the switching matrix substrate 15 and functions as a radiation imaging apparatus. Thereby, the carriers generated in the detection layer 9 of the radiation detector 1 are collected for each element by the switching matrix substrate 15, accumulated for each element, and read out as an electric signal.
  • the switching matrix substrate 15 has a capacitor 17 as a charge storage capacitor and a thin film transistor 19 as a switching element corresponding to the detection element 1a in FIG.
  • FIG. 3 shows a 3 ⁇ 3 (pixel) matrix configuration, but in actuality, it has more pixels such as 1024 ⁇ 1024.
  • the detailed structure of the switching matrix substrate 15 is as shown in FIG. That is, on the upper surface of the insulating substrate 21, the ground-side electrode 17 a of the capacitor 17, the connection-side electrode 17 b of the capacitor 17 via the insulating film 23 on the gate electrode 19 a of the thin-film transistor 19, and the source electrode 19 b of the thin-film transistor 19.
  • the drain electrode 19c is laminated. Further, the upper surface is covered with a protective insulating film 25.
  • connection side electrode 17b and the source electrode 19b are formed simultaneously and are electrically connected.
  • a plasma SiN film can be adopted.
  • the radiation detector 1 and the switching matrix substrate 15 are aligned, and the detection electrode 13 and the connection-side electrode 17b of the capacitor 17 are aligned.
  • an anisotropic conductive film (ACF), an anisotropic conductive paste, etc. In a state of interposing between them, they are bonded by heating and pressure bonding. As a result, the radiation detector 1 and the switching matrix substrate 15 are bonded and integrated. At this time, the detection electrode 13 and the connection-side electrode 17b are electrically connected by the interposed conductor portion 27.
  • the switching matrix substrate 15 includes a read drive circuit 29 and a gate drive circuit 31.
  • the read drive circuit 29 is connected to a vertical read wiring 30 that connects the drain electrodes 19 c of the thin film transistors 19 in the same column.
  • the gate drive circuit 31 is connected to a horizontal readout wiring 32 that connects the gate electrodes 19a of the thin film transistors 19 in the same row.
  • a preamplifier is connected to each readout wiring 30 in the readout drive circuit 29.
  • FIG. 5 is a schematic diagram illustrating a state of one step of forming a detection layer on the radiation detector according to the example.
  • the common electrode 5 of the radiation detector 1 is formed on one side of the support substrate 3 by a method such as sputtering or vapor deposition. This is not necessary when using a conductive material such as a graphite substrate.
  • the electron injection blocking layer 7 is laminated on the lower surface of the common electrode 5 by a method such as proximity sublimation, sputtering, or vapor deposition.
  • the detection layer 9 is formed on the lower surface of the electron injection blocking layer 7 by using, for example, the “proximity sublimation method” shown in FIG.
  • the support substrate 3 is placed in the vapor deposition chamber 33. Since the lower susceptor 35 for placing the source S is provided in the vapor deposition chamber 33, the support substrate 3 is placed with the vapor deposition surface facing downward via the spacer 37. Heaters 39 are provided at the upper and lower portions of the vapor deposition chamber 33.
  • the vacuum pump 41 is operated to bring the inside of the vapor deposition chamber 33 into a reduced-pressure atmosphere, and then the source S is heated by the upper and lower heaters 39. Further, the gas is supplied into the vapor deposition chamber 33 from outside the vapor deposition chamber 33 while controlling the flow rate of a Cl-containing gas such as HCl (hydrogen chloride).
  • a Cl-containing gas such as HCl (hydrogen chloride).
  • the detection layer 9 is formed.
  • the detection layer 9 is formed as a thick film having a thickness of about 600 ⁇ m, the surface is flattened by polishing or the like for integrated bonding to the switching matrix substrate 15 and finished to a thickness of about 400 ⁇ m.
  • Cd (cadmium) simple substance Te (tellurium) simple substance
  • Zn (zinc) simple substance CdTe (cadmium telluride), ZnTe (zinc telluride), CdZnTe (telluride)
  • the mixture is sintered in advance by heating in a normal pressure inert atmosphere before film formation.
  • CdTe containing CdCl 2 is first set as the source S and processed while supplying a Cl-containing gas from the outside, then the source S is replaced with ZnTe containing CdCl 2, and the same process is performed again. .
  • a CdTe film containing Cl is formed on the first layer 9a of the detection layer 9, and a ZnTe film containing Cl is formed on the second layer 9b.
  • the detection layer 9 may be composed of only one layer.
  • the detection layer 9 is formed, if necessary, CdCl 2 and ZnCl 2 are further filled in the lower susceptor 35 as a source S, and the surface of the detection layer 9 is additionally doped by heat treatment. .
  • the detection layer 9 is doped with Cl by performing a heat treatment in a state where a powder containing at least one of CdCl 2 and ZnCl 2 or a sintered body thereof is disposed to face each other.
  • the heat treatment atmosphere at this time preferably includes at least one of N 2 , O 2 , H 2 , and a rare gas (He, Ne, Ar) maintained at 1 atm. Further, the heat treatment atmosphere at this time includes at least one of N 2 , O 2 , H 2 , and a rare gas (He, Ne, Ar) maintained at 1.3 ⁇ 10 ⁇ 4 to 0.5 atm. preferable.
  • the leakage current can be further reduced when Cl is additionally doped after the detection layer 9 is formed. Further, if the temperature is the same, more Cl can be supplied, and processing can be performed in a short time.
  • the source may not be set on the lower susceptor 35, and Cl may be additionally doped by heating while supplying a gas containing Cl atoms to the detection layer 9. By additionally doping Cl in this way, the grain boundary is suitably protected.
  • a semiconductor layer for the hole injection blocking layer 11 is laminated on the surface of the detection layer 9 by electrodeposition, sputtering, vapor deposition, or the like.
  • the hole injection blocking layer 11 is patterned and formed separately for each pixel as necessary. However, the patterning is unnecessary if the hole injection blocking layer 11 has a high resistance and there is no adverse effect such as a decrease in spatial resolution due to adjacent pixel leakage.
  • the detection electrode 13 is formed by patterning.
  • the radiation detector 1 is formed by the above process.
  • the switching matrix substrate 15 and the radiation detector 1 are integrated to complete the radiation imaging apparatus.
  • conductive bump electrodes such as carbon are formed by screen printing on the pixel electrode (detection electrode 13 in this case) on the surface of either the switching matrix substrate 15 or the radiation detector 1, and both are pasted by a press machine. A method of joining together is possible.
  • a conductive bump electrode may be formed at a location corresponding to the pixel without forming the pixel electrode, and the two may be bonded together.
  • an additional source here, a Cl-containing gas of HCl
  • a Cl-containing gas of HCl a Cl-containing gas of HCl
  • the detection layer 9 is obtained.
  • the detection layer 9 of the polycrystalline film is doped with 1 wtppm to 10 wtppm of Cl.
  • FIG. 6 is experimental data showing the relationship between crystal grain size and pixel variation in sensitivity.
  • the CdZnTe film A is a film (average particle size ⁇ 75 ⁇ m) in which Cl is actively doped (film Cl concentration: 3.1 wtppm) and crystal grains are refined by the method shown in this embodiment.
  • the CdZnTe film B is a film having a coarse crystal grain (grain size: 200 ⁇ m to 300 ⁇ m) formed without intentionally doping conventional Cl (film Cl concentration: 0.5 wtppm).
  • FIG. 6 shows each film characteristic (FIG. 6A is a sectional morphology, FIG. 6B is an XRD spectrum, and FIG. 6C is an input / output characteristic for each pixel).
  • the CdTeZn film B grows, the crystal grain size increases and the XRD spectrum also shows a single orientation. Note that the (511) crystal plane has a twin relationship with the (111) crystal plane and does not exhibit multi-orientation. On the other hand, the CdTeZn film A maintains a fine grain size even when the film grows, and the XRD spectrum also shows typical multi-orientation.
  • the radiation detector using the CdTeZn film B has a large sensitivity variation between pixels, whereas the radiation detector using the CdTeZn film A suppresses the sensitivity variation between pixels. It has been confirmed that a relatively uniform image is obtained (the image is not shown).
  • the pattern is formed on the switching matrix substrate 15 so that the pixel pitch is 200 ⁇ m. Therefore, as described in the above experimental data, when the detection layer 9 is doped with 3.1 wtppm of Cl, the average particle size is less than 75 ⁇ m, which is equal to or less than the pixel pitch of 200 ⁇ m, and further 1 ⁇ 2 of the pixel pitch of 200 ⁇ m. It becomes as follows.
  • the radiation detector 1 described above since a polycrystalline film having an average particle size equal to or smaller than the pixel pitch is formed as a detection layer, an image with good characteristics (spatial resolution, sensitivity, etc.) between the pixels is displayed on the radiation detector 1. Can be obtained. In addition, the temporal fluctuation can be reduced, and the detection characteristic regarding the response characteristic can be improved. As a result, detection characteristics can be improved.
  • the polycrystalline film is CdTe (cadmium telluride), ZnTe (zinc telluride) or CdZnTe (cadmium zinc telluride).
  • the pixel pitch is 200 ⁇ m or less, it is possible to acquire an image (high-definition image) having a high spatial resolution of 200 ⁇ m or less.
  • the thickness of the detection layer 9 is 300 ⁇ m or more, for example, the detection layer 9 has a sufficient capturing ability for X-rays having a tube voltage of several tens of kV or more frequently used in the medical diagnosis region, and has high sensitivity / quantum detection efficiency (DQE). ) Is obtained.
  • the average grain size is 1 ⁇ 2 or less of the pixel pitch as in the present embodiment, it is possible to reduce the situation where the crystal grains straddle between the pixels and to further improve the detection characteristics.
  • the detection layer 9 is formed by the proximity sublimation method, the radiation detector 1 having the detection layer 9 having a large area can be obtained.
  • the polycrystalline film is CdTe, ZnTe, or CdZnTe.
  • a first material containing at least one of CdZnTe cadmium zinc telluride
  • a polycrystalline film or a polycrystalline laminated film is formed by vapor deposition or sublimation
  • an additional source here, Cl-containing gas of HCl
  • Cl (chlorine) alone or a Cl compound different from the source is supplied (this is referred to as “second”.
  • the process is also called a “process”), and a polycrystalline film or a polycrystalline laminated film is grown by heating.
  • the source used in the first process described above includes a first material described above and at least one of CdCl 2 (cadmium chloride) and ZnCl 2 (zinc chloride).
  • a polycrystalline film or a multilayer film of a polycrystalline film is formed by vapor deposition or sublimation using a source made of a mixture of the first material and the second material. is doing.
  • the crystal grains are small as shown in FIG. 6, and the crystal grains are large in a portion where Cl is not doped, so that the crystal grains cannot be made uniform. . If the crystal grains cannot be made uniform, uniform characteristics (for example, leakage current and sensitivity) cannot be obtained in each pixel, and temporal fluctuations also increase. These become noise sources, making sensitivity correction difficult and deteriorating image characteristics (detection efficiency).
  • uniform characteristics for example, leakage current and sensitivity
  • a second material typified by CdCl 2 (cadmium chloride) and ZnCl 2 (zinc chloride) is used so that Cl is supplied until the end of the film formation process. It is also possible to increase the ratio. However, no matter how much the ratio of the second material is increased, the experimental data in FIG. 7 reveals that the second material disappears first during the film formation.
  • Figure 7 shows experimental data showing temporal changes in pressure for each component in the chamber when using only CdCl 2 as the source
  • FIG. 8 HCl as a further additional source with CdCl 2 as a source
  • an additional source here, a Cl-containing gas of HCl
  • Cl is continuously supplied from the start of the first process or from the middle to the end of the process. Therefore, CdTe, ZnTe, or CdZnTe can be uniformly doped with Cl in the thickness direction from the start of the first film formation process or from the middle to the end of the film formation process (detection layer 9).
  • the radiation detector 1 with favorable radiation detection characteristics (sensitivity, response characteristics, etc.) can be manufactured while keeping the leakage current low. As a result, the crystal grains can be made uniform and the detection characteristics can be made uniform.
  • the source used in the first process is a mixture of the first material described above and a second material containing at least one of CdCl 2 (cadmium chloride) and ZnCl 2 (zinc chloride).
  • a polycrystalline film or a polycrystalline laminated film is formed by vapor deposition or sublimation using a source made of a mixture of the first material and the second material.
  • the detection layer formed of a polycrystalline film or a polycrystalline laminated film by vapor deposition or sublimation. Is formed in the first process, Cl is simultaneously contained in the detection layer.
  • CdTe, ZnTe, or CdZnTe can be uniformly doped with Cl in the thickness direction from the beginning to the end of film formation.
  • a radiation detector having good radiation detection characteristics can be manufactured while keeping the leakage current low. As a result, the crystal grains can be made uniform and the detection characteristics can be made uniform.
  • the second process may be performed by supplying the additional source simultaneously with the start of the first process, or the second process may be performed by supplying the additional source in the middle of the first process.
  • the second process may be carried out by supplying an additional source at a point in time or slightly before the point in time when Cl is not supplied during film formation.
  • the source S includes at least Cd (cadmium) simple substance, Te (tellurium) simple substance, Zn (zinc) simple substance, CdTe (cadmium telluride), ZnTe (zinc telluride), CdZnTe (cadmium zinc telluride).
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the radiation to be detected is not particularly limited as exemplified by X-rays, ⁇ -rays, light, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

 放射線に感応する検出層を基板に備えた放射線検出器であって、平均粒径が画素ピッチ以下の多結晶膜を検出層として形成する。膜Cl濃度が1wtppm~10wtppmの範囲で、より好ましくは3.1wtppmでCl(塩素)を積極的にドープして、例えばCdZnTe(テルル化カドミウム亜鉛)からなる多結晶膜を形成する(CdZnTe膜A)。平均粒径が画素ピッチ以下の多結晶膜を検出層として形成するので、画素間の特性(空間分解能、感度等)の良好な画像を放射線検出器にて得ることができる。また、時間的な揺らぎも小さくなり応答特性に関する検出特性も向上させることができる。その結果、検出特性を向上させることができる。

Description

放射線検出器およびそれを製造する方法
 この発明は、X線、γ線、光等を含む放射線を検出する機能を有し、医療分野、工業分野、原子力分野に使用される放射線検出器およびそれを製造する方法に係り、特に、放射線に有感な検出層が半導体で構成され、かつそれが多結晶で構成された技術に関する。
 従来、高感度な放射線検出器の材料として各種の半導体材料、特にCdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)またはCdZnTe(テルル化カドミウム亜鉛)の結晶体が研究・開発され、一部製品化されている。しかしながら、医用診断用の放射線検出器もしくは放射線撮像装置に応用するには、大面積(例えば20cm角以上)の放射線変換層を形成する必要がある。このような大面積の結晶体を形成することは、技術的にもコスト的にも現実的でなく、近接昇華法で多結晶膜または多結晶の積層膜を形成する方法が開示されている(例えば、特許文献1参照)。
 CdTeバルク単結晶を用いた小型の放射線検出器においては、リーク電流を低減させるために亜鉛(Zn)をドープし、キャリア走行性を改善し検出性能を向上させるために塩素(Cl)などのハロゲンをドープすることの有効性が知られている。近接昇華法でのCdTeまたはCdZnTe多結晶膜に対するClドープ手法として、CdTe、ZnTe、CdZnTeの少なくとも一つを含む第1の材料と、CdCl(塩化カドミウム)、ZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合物をソースとし、蒸着または昇華法により多結晶膜または多結晶の積層膜を形成する方法が開示されている(例えば、特許文献2参照)。
 なお、CdTe多結晶膜の成長における粒度組成の評価について開示されており(例えば、非特許文献1参照)、ClをドープしたときのCdTe多結晶膜の分光解析について開示されている(例えば、非特許文献2参照)。上述の非特許文献2では、適量のClドープにより、結晶粒径が微細化することが示唆されている。
特開2001-242255号公報 特許第4269653号 JOURNAL OF APPLIED PHYSICS 103, 063529 (2008) JOURNAL OF APPLIED PHYSICS 99, 053502 (2006)
 しかしながら、医用用途の高エネルギ放射線を検出層にて捕捉して検出するためには、検出層は数百μm以上の厚みが必要である。検出層がCdTeなどの多結晶膜の場合には、非特許文献1のFig.4にも示されているように、一般的に検出層の膜厚が厚くなるにともなって結晶粒径も大きく成長する傾向がある。ところが、多結晶膜の結晶粒径は、二次元の放射線検出器の特性(例えば空間分解能、感度、ノイズ等)に大きな影響を与える。
 この発明は、このような事情に鑑みてなされたものであって、検出特性を向上させることができる放射線検出器およびそれを製造する方法を提供することを目的とする。
 発明者らは、上記の問題を解決するために鋭意研究した結果、次のような知見を得た。
 すなわち、従来では、結晶粒径を大きくすることで、検出特性の向上を図っていた。しかし、結晶粒径が大きいと個々の結晶粒の結晶性の差異や結晶粒界の影響が顕著になり、画素間の特性(例えばリーク電流や感度)のバラツキが大きくなる。さらに、時間的な揺らぎも大きくなるので、これらのバラツキがノイズ源となって感度補正を困難にし、画像特性(検出効率)を劣化させる。そこで、従来のような粒径を大きくするという発想を変えて、粒径を小さくすることでバラツキを抑えて、検出特性を向上させるという知見を得た。
 このような知見に基づくこの発明は、次のような構成をとる。
 すなわち、この発明に係る放射線検出器は、放射線に感応する検出層を基板に備えた放射線検出器であって、平均粒径が画素ピッチ以下の多結晶膜を前記検出層として形成することを特徴とするものである。
 [作用・効果]この発明に係る放射線検出器によれば、平均粒径が画素ピッチ以下の多結晶膜を検出層として形成するので、画素間の特性(空間分解能、感度等)の良好な画像を放射線検出器にて得ることができる。また、時間的な揺らぎも小さくなり応答特性に関する検出特性も向上させることができる。その結果、検出特性を向上させることができる。
 上述の多結晶膜の一例は、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)またはCdZnTe(テルル化カドミウム亜鉛)である。また、画素ピッチが200μm以下の場合には、200μm以下の空間分解能の高い画像(高精彩な画像)の取得が可能になる。また、検出層の厚みが300μm以上の場合には、例えば医用診断領域で多用される管電圧数十kV以上のX線に対して十分な捕捉能力を持ち、高い感度・量子検出効率(DQE)が得られる。平均粒径が画素ピッチの1/2以下の場合には、結晶粒が画素間にまたがる事態を低減させることができ、検出特性をより一層向上させることができる。
 上述したこれらの発明に係る放射線検出器を製造する方法において、検出層を近接昇華法で形成することで、大面積の検出層を有した放射線検出器が得られる。また、上述したこれらの発明に係る放射線検出器を製造する方法において、多結晶膜は、CdTe、ZnTeまたはCdZnTeであって、この多結晶膜に1wtppm~10wtppmのCl(塩素)をドープすることで、粒径を効率よく抑制することができ、特性(空間分解能、感度等)の良好な画像が得られる放射線検出器を安定的に製造することができる。なお、wtppmの単位は、質量百万分率を示す。
 この発明に係る放射線検出器およびそれを製造する方法によれば、平均粒径が画素ピッチ以下の多結晶膜を検出層として形成するので、検出特性を向上させることができる。
実施例に係る放射線検出器の構成を示す縦断面図である。 放射線撮像装置の概略構成を示す側面図である。 スイッチングマトリックス基板および周辺回路の構成を示す回路図である。 放射線撮像装置の縦断面を示す模式図である。 実施例に係る放射線検出器に検出層を成膜する一工程の状態を示す模式図である。 結晶粒径と感度の画素バラツキとの関係を表した実験データである。 ソースとしてCdClのみを用いたときのチャンバ内の各成分毎の圧力の時間的変化を表した実験データである。 ソースとしてCdClを用いてさらに付加ソースとしてHClを用いたときのチャンバ内の各成分毎の圧力の時間的変化を表した実験データである。
 1 … 放射線検出器
 3 … 支持基板
 9 … 検出層
 以下、図面を参照してこの発明の実施例を説明する。
 図1は、実施例に係る放射線検出器の構成を示す縦断面図であり、図2は、放射線撮像装置の概略構成を示す側面図であり、図3は、スイッチングマトリックス基板および周辺回路の構成を示す回路図であり、図4は、放射線撮像装置の縦断面を示す模式図である。
 放射線検出器1は、放射線に対して透過性を有する支持基板3と、その下面側に形成されたバイアス電荷印加用の共通電極5と、この共通電極5の下面に電子注入阻止層7と、入射した放射線に感応して電子-正孔対キャリアを生成する検出層9と、この検出層9の下面に形成された正孔注入阻止層11と、キャリア収集用の検出電極13とを積層した状態で備えている。ただし、放射線検出器1の特性上問題がなければ、電子注入阻止層7、正孔注入阻止層11のいずれか、もしくは両方を省略してもよい。
 上記の支持基板3としては、放射線の吸収係数が小さなものが好ましく、例えば、ガラス、セラミック(Al,AlN)、シリコン等の材料が採用可能であるが、グラファイト基板のような導電性材料を用いることで共通電極を省略することができる。この実施例では、図に示すように放射線が支持基板3側から入射する構成となっており、共通電極5に負のバイアス電圧を印加した状態で動作させる。
 検出層9は、後述するように製造されるのが好ましく、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)、CdZnTe(テルル化カドミウム亜鉛)のいずれかからなる多結晶膜またはそれらの少なくとも一つを含む多結晶の積層膜9a,9bで構成され、さらに、Clがドーピングされている。
 共通電極5や検出電極13は、例えば、ITO、Au、Ptなどの導電材料からなる。電子注入阻止層7としては、p型層を形成するSbTe、Sb、ZnTe膜などが例示され、正孔注入阻止層11としては、n型層を形成するCdS、ZnS膜などが例示される。
 上記のような構成の放射線検出器1は、図2に示すように、スイッチングマトリックス基板15と一体的に構成されて放射線撮像装置として機能する。これにより、放射線検出器1の検出層9で生成されたキャリアがスイッチングマトリックス基板15により素子別に収集され、素子毎に蓄積されて電気信号として読み出される。
 スイッチングマトリックス基板15は、図3に示すように、図1における検出素子1aに対応して、電荷蓄積容量であるコンデンサ17と、スイッチング素子としての薄膜トランジスタ19とが形成されている。なお、説明の都合上、図3では、3×3(画素)のマトリックス構成としているが、実際には1024×1024等のさらに多くの画素を備えている。
 スイッチングマトリックス基板15の詳細な構造は、図4に示すようなものである。すなわち、絶縁性基板21の上面には、コンデンサ17の接地側電極17aと、薄膜トランジスタ19のゲート電極19aの上に絶縁膜23を介してコンデンサ17の接続側電極17bと、薄膜トランジスタ19のソース電極19bおよびドレイン電極19cが積層形成されている。さらに、その上面には、保護用の絶縁膜25で覆われた状態となっている。
 また、接続側電極17bとソース電極19bは、同時形成されて導通されている。絶縁膜23と絶縁膜25としては、例えば、プラズマSiN膜が採用可能である。放射線検出器1とスイッチングマトリックス基板15とを位置合わせして、検出電極13とコンデンサ17の接続側電極17bとの位置を合わせ、例えば、異方導電性フィルム(ACF)や異方導電性ペースト等を間に介在させた状態で、加熱・加圧接着して貼り合わせる。これにより放射線検出器1とスイッチングマトリックス基板15とが貼り合わされて一体化される。このとき検出電極13と接続側電極17bとは、介在導体部27によって導通されている。
 さらに、スイッチングマトリックス基板15は、読み出し駆動回路29と、ゲート駆動回路31とを備えている。読み出し駆動回路29は、列が同一の薄膜トランジスタ19のドレイン電極19cを結ぶ縦方向の読み出し配線30に接続されている。ゲート駆動回路31は、行が同一の薄膜トランジスタ19のゲート電極19aを結ぶ横方向の読み出し配線32に接続されている。なお、図示省略しているが、読み出し駆動回路29内では、各読み出し配線30に対してプリアンプが接続されている。
 なお、上記とは異なり、スイッチングマトリックス基板15に読み出し駆動回路29およびゲート駆動回路31が一体的に集積されたものも用いられる。
 次に、上記の放射線検出器1の製造方法の詳細について、図5を参照して説明する。図5は、実施例に係る放射線検出器に検出層を成膜する一工程の状態を示す模式図である。
 放射線検出器1の共通電極5を、例えば、スパッタリング・蒸着等の方法で支持基板3の片面に形成する。グラファイト基板のような導電性材料を用いる場合には不要である。次に、共通電極5の下面に、電子注入阻止層7を近接昇華法・スパッタリング・蒸着等の方法で積層形成する。そして、電子注入阻止層7の下面に、例えば、図5に示す「近接昇華法」を用いて検出層9を形成する。
 具体的には、蒸着チャンバ33内に支持基板3を載置する。蒸着チャンバ33内には、ソースSを置くための下部サセプタ35が配備されているので、スペーサ37を介して蒸着面を下方に向けた状態で支持基板3を載置する。蒸着チャンバ33の上下部には、ヒータ39が配備されており、真空ポンプ41を動作させて蒸着チャンバ33内を減圧雰囲気にした後、上下部のヒータ39によりソースSを加熱する。さらに、蒸着チャンバ33の外部からHCl(塩化水素)などのCl含有ガスの流量を制御しながら、蒸着チャンバ33内に供給する。これによってソースSが昇華しつつ、外部から供給されたClが取り込まれ、支持基板3の下面に所望量(1wtppm~10wtppm)のClがドープされたCdTe、ZnTeまたはCdZnTeの多結晶膜が付着して検出層9が形成される。なお、ここで検出層9を、600μm程度の厚膜として形成した後、スイッチングマトリックス基板15への一体化接合のために表面を研磨などによって平坦化し、400μm程度の厚みに仕上げる。
 下部サセプタ35にセットするソースSとしては、Cd(カドミウム)の単体、Te(テルル)の単体、Zn(亜鉛)の単体、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)、CdZnTe(テルル化カドミウム亜鉛)の少なくとも一つを含む第1の材料と、CdCl(塩化カドミウム)またはZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合体が挙げられる。また、混合体を、成膜の前に常圧不活性雰囲気中で予め加熱することで、焼結化しておく。
 例えば、ソースSとして、CdClを含むCdTeをまずセットして、Cl含有ガスを外部から供給しつつ処理した後、ソースSを、CdClを含むZnTeに交換した後、同様の再び処理を行う。これにより検出層9の第1層9aにClを含むCdTe膜が形成され、第2層9bにClを含むZnTe膜が形成される。なお、検出層9は、一層だけで構成してもよい。
 検出層9を形成した後に、必要に応じてさらに、ソースSとして、CdCl、ZnClを下部サセプタ35に充填し、加熱処理することで、検出層9の表面にClを追加的にドープする。具体的に、CdCl、ZnClの少なくとも一つを含む粉末またはその焼結体を対向配置した状態で熱処理を施すことにより、検出層9にClをドープする。
 このときの熱処理雰囲気は、1気圧に保持したN、O、H、希ガス(He、Ne、Ar)の少なくとも一つを含むことが好ましい。また、このときの熱処理雰囲気は、1.3×10-4~0.5気圧に保持したN、O、H、希ガス(He、Ne、Ar)の少なくとも一つを含むことが好ましい。
 このような雰囲気にすることにより、低温で処理することができるので、検出層9の形成後にClを追加的にドープする場合にはリーク電流をより一層低減させることができる。また、温度を同じにすれば、より多くのClを供給することができ、短時間で処理が可能である。また、ソースを下部サセプタ35にセットせず、Cl原子を含むガスを検出層9に供給しつつ加熱することによりClを追加的にドープしてもよい。このように追加的にClをドープすることで、結晶粒界の保護が好適に行われる。
 次に、電析・スパッタリングや蒸着等により、検出層9の表面に正孔注入阻止層11用の半導体層を積層形成する。正孔注入阻止層11を、必要に応じてパターニングして画素毎に分離形成する。ただし、正孔注入阻止層11が高抵抗で隣接画素リークによる空間解像度低下などの弊害がなければ、パターニングについては不要である。同様にして、検出電極13用の金属膜を積層形成した後、パターニングして検出電極13を形成する。以上の過程により放射線検出器1が形成される。
 そして、上述したようにスイッチングマトリックス基板15と放射線検出器1とを一体化して放射線撮像装置が完成する。一つの手法として、スイッチングマトリックス基板15または放射線検出器1のいずれかの表面の画素電極(ここでは検出電極13)にスクリーン印刷でカーボンなどの導電性バンプ電極を形成し、両者をプレス機で貼り合わせ接合する方法が可能である。なお、画素電極を形成せずに画素に対応する箇所に導電性バンプ電極を形成し、両者を貼り合わせてもよい。
 上述の製造方法で得られた放射線検出器1では、ソースとは別の付加ソース(ここではHClのCl含有ガス)を成膜の初期から終了時までドープするので、結晶粒が均一化された検出層9が得られる。この多結晶膜の検出層9に1wtppm~10wtppmのClをドープしている。
 <実験データの比較>
 本実施例の手法によって得られた結晶を実験によって確認している。実験データの比較について図6を参照して説明する。図6は、結晶粒径と感度の画素バラツキとの関係を表した実験データである。
 CdZnTe膜Aは、本実施例で示す手法によりClを積極的にドープ(膜Cl濃度3.1wtppm)し、結晶粒を微細化した膜(平均粒径<75μm)である。CdZnTe膜Bは、従来のClを故意にドープ(膜Cl濃度0.5wtppm)せずに成膜し、結晶粒の粗い膜(粒径200μm~300μm)である。各々の膜特性(図6(a)は断面モフォロジー、図6(b)はXRDスペクトル、図6(c)は画素毎の入出力特性)を図6に示す。
 図6(a)の断面モフォロジーからも明らかなように、CdZnTe膜AではClによって結晶粒が均一化され、平均粒径が75μm未満であることが確認されている。一方、図6(a)の断面モフォロジーでは、Clを故意にドープしていないので、成膜初期の基板界面にしかClは供給されずに、界面付近での結晶粒と界面以外の結晶粒とのバラツキが大きく、かつ界面以外の結晶粒では粒径が明らかに大きく、粒径が200μm~300μmとバラツキがあるのが確認されている。
 CdTeZn膜Bが膜の成長とともに結晶粒径も大きく成長してXRDスペクトルも単一配向を示している。なお、(511)結晶面は(111)結晶面と双晶の関係にあり、多配向を示すものでない。これに対して、CdTeZn膜Aは膜が成長しても微細粒径を維持しており、XRDスペクトルも典型的な多配向を示している。
 画素毎の入出力特性データから、CdTeZn膜Bを用いた放射線検出器では画素間の感度バラツキが大きいのに対して、CdTeZn膜Aを用いた放射線検出器では画素間の感度バラツキが抑えられ、比較的に均一な画像が得られていることが確認されている(画像については図示省略)。
 なお、本実施例では、画素ピッチは200μmとなるようにスイッチングマトリックス基板15にパターン形成している。したがって、上述の実験データで述べたように、検出層9に3.1wtppmのClをドープしたときには、平均粒径が75μm未満となり、200μmの画素ピッチ以下、さらには200μmの画素ピッチの1/2以下となる。
 上述の放射線検出器1によれば、平均粒径が画素ピッチ以下の多結晶膜を検出層として形成するので、画素間の特性(空間分解能、感度等)の良好な画像を放射線検出器1にて得ることができる。また、時間的な揺らぎも小さくなり応答特性に関する検出特性も向上させることができる。その結果、検出特性を向上させることができる。
 本実施例では、多結晶膜は、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)またはCdZnTe(テルル化カドミウム亜鉛)である。また、画素ピッチが200μm以下の場合には、200μm以下の空間分解能の高い画像(高精彩な画像)の取得が可能になる。また、検出層9の厚みが300μm以上の場合には、例えば医用診断領域で多用される管電圧数十kV以上のX線に対して十分な捕捉能力を持ち、高い感度・量子検出効率(DQE)が得られる。また、本実施例のように平均粒径が画素ピッチの1/2以下の場合には、結晶粒が画素間にまたがる事態を低減させることができ、検出特性をより一層向上させることができる。
 本実施例では、検出層9を近接昇華法で形成しているので、大面積の検出層9を有した放射線検出器1が得られる。上述したように多結晶膜は、CdTe、ZnTeまたはCdZnTeであって、この多結晶膜に1wtppm~10wtppmのCl(塩素)をドープすることで、粒径を効率よく抑制することができ、特性(空間分解能、感度等)の良好な画像が得られる放射線検出器を安定的に製造することができる。
 <第1の材料および第2の材料からなるソースと付加ソースについて>
 ところで、本実施例の放射線検出器1を製造するのにあたって、Cd(カドミウム)の単体、Te(テルル)の単体、Zn(亜鉛)の単体、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)、CdZnTe(テルル化カドミウム亜鉛)の少なくとも一つを含む第1の材料をソースとし、蒸着または昇華法により多結晶膜または多結晶の積層膜を形成し(これを「第1過程」とも呼ぶ)、その第1過程の開始あるいは過程の途中で、ソースとは別のCl(塩素)の単体またはCl化合物からなる付加ソース(ここではHClのCl含有ガス)を供給して(これを「第2過程」とも呼ぶ)、加熱して多結晶膜または多結晶の積層膜を成長させている。より好ましくは、本実施例のように、上述の第1過程で用いられるソースとして、上述の第1の材料と、CdCl(塩化カドミウム)、ZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合物であって、第1過程では、第1の材料と第2の材料との混合物からなるソースを用いて、蒸着または昇華法により多結晶膜または多結晶の積層膜を形成している。
 このようにClの単体またはCl化合物からなる付加ソースを別途に供給したのには理由がある。すなわち、従来のように上述の特許文献2のClドープ手法では、CdClやZnClなどのCl化合物がCdTeやZnTeやCdZnTeよりも低融点・高蒸気圧で、先に消耗してしまう。したがって、成膜途中で塩素(Cl)が供給されなくなり、成膜初期の基板界面付近にしかClをドープすることができないという問題点が明らかになった。
 Clがドープされた基板界面付近には、図6に示すように結晶粒が小さく、Clがドープされない箇所では結晶粒が大きくなって、結晶粒を均一化することができないことが確認されている。結晶粒が均一化できないと、各画素内で均一な特性(例えばリーク電流や感度)が得られず、さらに時間的な揺らぎも大きくなる。これらがノイズ源となって感度補正を困難にし、画像特性(検出効率)を劣化させる。
 そこで、上述の特許文献2の請求項3のように上述のソースで蒸着または昇華法により多結晶膜または多結晶の積層膜を形成した後に、Clを追加ドープすることが提案されている。しかし、この場合にはClを追加ドープすることで結晶粒を保護することはできるが、大きく成長した粒径自体を小さくすることはできずに、結晶粒の均一化を依然として図ることはできない。
 また、成膜途中でClが供給されなくなるのを鑑みて、成膜工程の最後までClが供給されるようにCdCl(塩化カドミウム)、ZnCl(塩化亜鉛)に代表される第2の材料の割合を増やすことも考えられる。しかし、いくら第2の材料の割合を増加させようとも、成膜途中で先に第2の材料がなくなってしまうことが図7の実験データにより明らかになった。
 図7は、ソースとしてCdClのみを用いたときのチャンバ内の各成分毎の圧力の時間的変化を表した実験データであり、図8は、ソースとしてCdClを用いてさらに付加ソースとしてHClを用いたときのチャンバ内の各成分毎の圧力の時間的変化を表した実験データである。
 この実験データでは、図7のようにソースのみで近接昇華法で多結晶膜または多結晶の積層膜を形成すると、チャンバ内の各成分のうち、HCl(塩化水素)の成分(Cl,H)が時間とともに下がってくることがわかる。一方、図8のようにソースとは別のCl化合物としてHClを付加ソースとして供給した場合には、チャンバ内の各成分のうち、HClの成分は時間が経過しても下がらないことがわかる。
 このような理由により、第1の材料からなるソースとは別の付加ソース(ここではHClのCl含有ガス)を第1過程の開始あるいは過程の途中で供給する(第2過程)。付加ソースにはClが含まれているので、第1過程の開始あるいは過程の途中から終了時までClが供給され続ける。したがって、CdTe、ZnTeまたはCdZnTeの多結晶または多結晶の積層膜(検出層9)に成膜の第1過程の開始あるいは過程の途中から終了時まで厚み方向にClを均一にドープすることができる。そして、リーク電流を低く保ちながら放射線の検出特性(感度、応答特性等)が良好な放射線検出器1を製造することができる。その結果、結晶粒を均一化するとともに、検出特性を均一化することができる。
 本実施例では、上述の第1過程で用いられるソースは、上述の第1の材料と、CdCl(塩化カドミウム)、ZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合物であって、上述の第1過程では、第1の材料と第2の材料との混合物からなるソースを用いて、蒸着または昇華法により多結晶膜または多結晶の積層膜を形成している。この場合には、第1の材料と第2の材料との混合体からなるソースにはClが含まれているので、蒸着または昇華により多結晶膜または多結晶の積層膜で構成される検出層が第1過程で形成される際に、同時にClが検出層に含まれる。第1過程の途中でソースからClが供給されなくなったとしても、ソースとは別の付加ソース(HClのCl含有ガス)を第1過程の開始あるいは過程の途中で供給する。したがって、CdTe、ZnTeまたはCdZnTeの多結晶または多結晶の積層膜に成膜の初期から終了時まで厚み方向にClを均一にドープすることができる。そして、リーク電流を低く保ちながら放射線の検出特性(感度、応答特性等)が良好な放射線検出器を製造することができる。その結果、結晶粒を均一化するとともに、検出特性を均一化することができる。
 なお、第1過程の開始と同時に付加ソースを供給して第2過程を行ってもよいし、第1過程の途中で付加ソースを供給して第2過程を行ってもよい。成膜途中でClが供給されなくなる時点を見計らって、その時点あるいは少し前の時点で付加ソースを供給して第2過程を行えばよい。
 なお、ソースSは、Cd(カドミウム)の単体、Te(テルル)の単体、Zn(亜鉛)の単体、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)、CdZnTe(テルル化カドミウム亜鉛)の少なくとも一つを含む第1の材料と、CdCl(塩化カドミウム)、ZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合物であったが、Clを含有せずに第1の材料のみをソースSとしてもよい。この場合には、ClあるいはCl化合物を付加ソースとして供給することで、実施例と同等の効果を奏する。
 さらに、図7および図8の実験データでも述べたように、ソースとは別のCl化合物としてHClを付加ソースとして供給した場合には、チャンバ内の各成分のうち、HClの成分は時間が経過しても下がらない。したがって、成膜途中でClがチャンバ内で消耗されることなく付加ソースによってClが供給され続けていることが図8の実験データから確認されている。
 この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、検出の対象となる放射線は、X線、γ線、光等に例示されるように特に限定されない。
 (2)上述した実施例の製造方法に限定されない。

Claims (13)

  1.  放射線に感応する検出層を基板に備えた放射線検出器であって、
     平均粒径が画素ピッチ以下の多結晶膜を前記検出層として形成することを特徴とする放射線検出器。
  2.  請求項1に記載の放射線検出器において、
     前記多結晶膜は、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)またはCdZnTe(テルル化カドミウム亜鉛)であることを特徴とする放射線検出器。
  3.  請求項1または請求項2に記載の放射線検出器において、
     前記画素ピッチは200μm以下であることを特徴とする放射線検出器。
  4.  請求項1から請求項3のいずれかに記載の放射線検出器において、
     前記検出層の厚みは300μm以上であることを特徴とする放射線検出器。
  5.  請求項1から請求項4のいずれかに記載の放射線検出器において、
     前記平均粒径が前記画素ピッチの1/2以下の多結晶膜を前記検出層として形成することを特徴とする放射線検出器。
  6.  放射線に感応する検出層を基板に備えた放射線検出器を製造する方法であって、
     平均粒径が画素ピッチ以下の多結晶膜を前記検出層として形成して前記放射線検出器を構成し、
     前記検出層を近接昇華法で形成することを特徴とする放射線検出器の製造方法。
  7.  放射線に感応する検出層を基板に備えた放射線検出器を製造する方法であって、
     平均粒径が画素ピッチ以下の多結晶膜を前記検出層として形成して前記放射線検出器を構成し、
     前記多結晶膜は、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)またはCdZnTe(テルル化カドミウム亜鉛)であって、
     この多結晶膜に1wtppm~10wtppmのCl(塩素)をドープすることを特徴とする放射線検出器の製造方法。
  8.  請求項7に記載の放射線検出器の製造方法において、
     前記多結晶膜を近接昇華法で形成することを特徴とする放射線検出器の製造方法。
  9.  請求項7に記載の放射線検出器の製造方法において、
     Cd(カドミウム)の単体、Te(テルル)の単体、Zn(亜鉛)の単体、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)、CdZnTe(テルル化カドミウム亜鉛)の少なくとも一つを含む第1の材料と、CdCl(塩化カドミウム)、ZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合物からなるソースを用いて蒸着または昇華法により前記多結晶膜を形成することを特徴とする放射線検出器の製造方法。
  10.  請求項9に記載の放射線検出器の製造方法において、
     前記混合物を、前記多結晶膜の形成の前に常圧不活性雰囲気中で予め加熱することで、焼結化することを特徴とする放射線検出器の製造方法。
  11.  放射線に感応する検出層を基板に備えた放射線検出器を製造する方法であって、
     平均粒径が画素ピッチ以下の多結晶膜を前記検出層として形成して前記放射線検出器を構成し、
     前記検出層の形成過程は、
     Cd(カドミウム)の単体、Te(テルル)の単体、Zn(亜鉛)の単体、CdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)、CdZnTe(テルル化カドミウム亜鉛)の少なくとも一つを含む第1の材料をソースとし、蒸着または昇華法により多結晶膜または多結晶の積層膜を形成する第1過程と、
     その第1過程の開始あるいは過程の途中で、前記ソースとは別のCl(塩素)の単体またはCl化合物を付加ソースとして供給して加熱して前記多結晶膜または多結晶の積層膜を成長させる第2過程と
     を含むことを特徴とする放射線検出器の製造方法。
  12.  請求項11に記載の放射線検出器の製造方法において、
     前記第1過程で用いられる前記ソースは、前記第1の材料と、CdCl(塩化カドミウム)、ZnCl(塩化亜鉛)の少なくとも一つを含む第2の材料との混合物であって、
     前記第1過程では、前記第1の材料と前記第2の材料との混合物からなるソースを用いて、蒸着または昇華法により多結晶膜または多結晶の積層膜を形成することを特徴とする放射線検出器の製造方法。
  13.  請求項11または請求項12に記載の放射線検出器の製造方法において、
     前記第1過程をチャンバ内で行い、
     前記付加ソースを前記チャンバ外に配置して前記チャンバ内に供給することで前記第2過程をチャンバ内で行うことを特徴とする放射線検出器の製造方法。
PCT/JP2011/002002 2010-07-06 2011-04-04 放射線検出器およびそれを製造する方法 WO2012004913A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-154050 2010-07-06
JP2010154050A JP2013178098A (ja) 2010-07-06 2010-07-06 放射線検出器およびそれを製造する方法

Publications (1)

Publication Number Publication Date
WO2012004913A1 true WO2012004913A1 (ja) 2012-01-12

Family

ID=45440909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002002 WO2012004913A1 (ja) 2010-07-06 2011-04-04 放射線検出器およびそれを製造する方法

Country Status (2)

Country Link
JP (1) JP2013178098A (ja)
WO (1) WO2012004913A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051174A1 (ja) * 2011-10-05 2013-04-11 株式会社島津製作所 放射線検出器およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910432B1 (en) * 2019-07-23 2021-02-02 Cyber Medical Imaging, Inc. Use of surface patterning for fabricating a single die direct capture dental X-ray imaging sensor
KR102329731B1 (ko) * 2019-12-12 2021-11-23 한국원자력연구원 질화갈륨계 반도체 중성자 검출기 및 이를 이용한 중성자 검출 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102602A (ja) * 1999-09-30 2001-04-13 Shimadzu Corp アレイ型検出装置、およびその製造方法
JP2003277197A (ja) * 2002-03-19 2003-10-02 Nikko Materials Co Ltd CdTe単結晶およびCdTe多結晶並びにその製造方法
JP2004172377A (ja) * 2002-11-20 2004-06-17 Shimadzu Corp 放射線検出器及び放射線撮像装置
JP2007103846A (ja) * 2005-10-07 2007-04-19 Toshiba Corp 放射線検出器
WO2009101670A1 (ja) * 2008-02-12 2009-08-20 Shimadzu Corporation 放射線検出器の製造方法及び、放射線検出器並びに放射線撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102602A (ja) * 1999-09-30 2001-04-13 Shimadzu Corp アレイ型検出装置、およびその製造方法
JP2003277197A (ja) * 2002-03-19 2003-10-02 Nikko Materials Co Ltd CdTe単結晶およびCdTe多結晶並びにその製造方法
JP2004172377A (ja) * 2002-11-20 2004-06-17 Shimadzu Corp 放射線検出器及び放射線撮像装置
JP2007103846A (ja) * 2005-10-07 2007-04-19 Toshiba Corp 放射線検出器
WO2009101670A1 (ja) * 2008-02-12 2009-08-20 Shimadzu Corporation 放射線検出器の製造方法及び、放射線検出器並びに放射線撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051174A1 (ja) * 2011-10-05 2013-04-11 株式会社島津製作所 放射線検出器およびその製造方法
JPWO2013051174A1 (ja) * 2011-10-05 2015-03-30 株式会社島津製作所 放射線検出器の製造方法

Also Published As

Publication number Publication date
JP2013178098A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP4106397B2 (ja) 光または放射線検出器の製造方法
US9985150B2 (en) Radiation detector and method of manufacturing the same
JP4734597B2 (ja) 放射線検出器の製造方法及び、放射線検出器並びに放射線撮像装置
JP4269653B2 (ja) 放射線検出器の製造方法
CN102460215B (zh) 放射线检测器的制造方法、放射线检测器以及放射线摄像装置
JP5567671B2 (ja) 放射線検出器の製造方法
WO2012004913A1 (ja) 放射線検出器およびそれを製造する方法
JP5812112B2 (ja) 放射線検出器およびその製造方法
JP6061129B2 (ja) 放射線検出器の製造方法
JP2012194046A (ja) 放射線検出器の製造方法
JP5621919B2 (ja) 放射線検出器の製造方法および放射線検出器
JP5664798B2 (ja) 放射線検出器とその製造方法
WO2013051174A1 (ja) 放射線検出器およびその製造方法
WO2013088625A1 (ja) 放射線検出器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP