WO2012003704A1 - 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂 - Google Patents

海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂 Download PDF

Info

Publication number
WO2012003704A1
WO2012003704A1 PCT/CN2010/080549 CN2010080549W WO2012003704A1 WO 2012003704 A1 WO2012003704 A1 WO 2012003704A1 CN 2010080549 W CN2010080549 W CN 2010080549W WO 2012003704 A1 WO2012003704 A1 WO 2012003704A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuberculosis
solution
microsphere
moxifloxacin
microspheres
Prior art date
Application number
PCT/CN2010/080549
Other languages
English (en)
French (fr)
Inventor
李新建
洪宏
Original Assignee
北京圣医耀科技发展有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京圣医耀科技发展有限责任公司 filed Critical 北京圣医耀科技发展有限责任公司
Priority to US13/809,361 priority Critical patent/US9028847B2/en
Publication of WO2012003704A1 publication Critical patent/WO2012003704A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to a microsphere containing an anti-tuberculosis drug and a vascular targeted embolic agent containing the microsphere, in particular to a sustained release of moxifloxacin containing as an active ingredient against tuberculosis by using sodium alginate as a carrier.
  • Microspheres and their vascular targeting embolic agents are particularly useful as a carrier.
  • the invention also relates to a preparation method of the sustained release microspheres, and the microspheres in the preparation of interventional embolization for treating tuberculosis, pulmonary tuberculosis, massive hemoptysis, tuberculosis, renal tuberculosis, thyroid tuberculosis, cervical lymphatic tuberculosis, genital tuberculosis (fallopian tube, uterus)
  • Tuberculosis is one of the major infectious diseases that seriously endanger human health. It has also become the number one killer of infectious diseases and the leading cause of death in adults. In the late 1990s, tuberculosis that had disappeared from the world due to problems such as drug-resistant bacteria has made a worldwide comeback, making it difficult to control tuberculosis.
  • the World Health Organization has preliminary statistics that 1.9 billion people worldwide are infected with tuberculosis, and tuberculosis patients have More than 20 million people, the annual incidence of 8 million, the annual average of 3 million people lost their lives. The number of people infected with tuberculosis in China is also increasing. Tuberculosis is on the rise.
  • tuberculosis patients ranks second in the world.
  • the number of tuberculosis deaths is about 150,000 per year.
  • the prevention and treatment of tuberculosis is a major issue that needs to be solved urgently. New tuberculosis drugs and new dosage forms are imminent.
  • Mycobacterium tuberculosis mainly inhabits normal cells and has certain drug resistance.
  • a certain concentration of anti-tuberculosis drugs must be reached in the cells.
  • Oral preparations of anti-tuberculosis drugs are often affected by the first-pass effect and undergo protein binding, metabolism, excretion and decomposition in the systemic circulation. Only a small amount of drugs can reach the target tissues, target organs, target cells, and the target area should be improved.
  • the concentration of the drug must increase the dose, which also increases the systemic side effects of the drug.
  • the targeted preparation has the targeted release drug, increases the lesion site and intracellular drug concentration, improves the drug effect, reduces the side effects and the like, and therefore considers that the anti-tuberculosis drug targeted preparation has clinical application value and development prospect.
  • Moxifloxacin is a fourth-generation fluoroquinolone chemically synthesized antibiotic drug produced by Bayer AG in 1999. Moxifloxacin inhibits bacterial DNA helicase A subunit and topoisomerase IV activity. It blocks the replication of DNA and exerts a bactericidal action. It mainly inhibits DNA helicase against Gram-negative bacteria, and the main target of Gram-positive bacteria is topoisomerase IV.
  • the chemical structure of moxifloxacin is characterized by the introduction of a methoxy gene at the 8-position carbon atom, which increases the drug's ability to bind bacteria and penetrate the cell membrane, and the post-antibacterial effect (PAE) is strong and long-lasting.
  • Moxifloxacin not only retains the antibacterial activity and antibacterial spectrum of quinolone drugs against Gram-negative bacteria. Moreover, the 8-methoxy gene increases its antibacterial activity and antibacterial spectrum against Gram-positive bacteria. It is very effective against atypical pathogens such as Mycoplasma pneumoniae, Chlamydia, Legionella, and has strong antibacterial activity, including significant antibacterial activity against spore- and bud-free anaerobic bacteria. Moxifloxacin pair SS-lactams, macrolides, aminoglycosides and tetracycline antibiotic-resistant bacteria Effective.
  • Moxifloxacin and these antibacterial agents are not cross-resistant, not hepatic cytochrome P-450 isoenzyme inhibitors, thus avoiding many potential drug interactions.
  • Moxifloxacin has early bactericidal activity similar to isoniazid (INH) or rifampicin. It has bactericidal activity in early and prolonged stages of tuberculosis patients, indicating good infiltration of tuberculosis lesions and rapid killing of patients with severe cavitary tuberculosis. The fast growing flora in the middle.
  • moxifloxacin Since its listing, moxifloxacin has a broad spectrum of antibacterial activity, strong antibacterial activity, wide distribution in the body, high drug concentration in the body, long half-life, good curative effect, small side effects, no cross-resistance with other antibacterial drugs, almost no photosensitivity reaction, etc.
  • the advantages are widely used in clinical practice.
  • the drug resistance rate of Mycobacterium tuberculosis has become more and more high, especially the problem of multi-drug resistance, which has become a topic of concern in the prevention and control industry, and is also the main factor affecting the efficacy of chemotherapy for tuberculosis. factor. Therefore, the selection of a suitable anti-tuberculosis dosage form is an important part of the current treatment and control of tuberculosis.
  • Tuberculosis recurrence and tuberculosis drug resistance are becoming more and more serious. Although the cause is complicated, one of the most important factors is the long course of treatment. The patient can not take regular medication to the end of the treatment. This is a common problem in tuberculosis treatment in all countries of the world. Under the premise of ensuring the therapeutic effect, reducing the dose of the drug and prolonging the interval between drugs, the problem of drug compliance will be effectively solved.
  • a biocompatible, natural polymer material sodium alginate as a carrier
  • moxifloxacin as a model drug and an adsorbent for cross-linking. Screening, in vitro release experiments and in vivo studies yielded long-acting release biodegradable microsphere vascular embolization formulations.
  • the main anti-tuberculosis drugs are oral and injectable, and the efficacy of the injection is not ideal.
  • the use of anti-tuberculosis drugs is greatly limited by the inability to obtain effective drug concentrations at the site of the lesion and the apparent systemic toxicity and drug resistance during application.
  • a small number of embolization plus drug perfusion therapies also have the following drawbacks: the drug cannot be released relatively uniformly, and when the local perfusion drug concentration is too high, the shock wave effect of the drug may cause local tissue necrosis or damage.
  • the anti-tuberculosis drug microsphere vascular embolization agent is a new dosage form.
  • the deposition of microspheres in the lungs can delay the release of the drug, and can protect the drug from enzymatic hydrolysis, prolong the residence time of the drug in the lungs, and the incidence of side reactions. Low, well tolerated and safe.
  • there is no cross-linking of sodium alginate and adsorbent to moxifloxacin to make anti-tuberculosis vascular embolization agent there is no cross-linking of sodium alginate and adsorbent to moxifloxacin to make anti-tuberculosis vascular embolization agent, and it is applied to tuberculosis, tuberculosis, massive hemoptysis, tuberculosis, tuberculous bronchoconstriction, multidrug-resistant cavitation.
  • Renal tuberculosis Renal tuberculosis, thyroid tuberculosis, genital tuberculosis (fallopian tubes, endometrium, testis, epididymis), cervical lymphatic tuberculosis, pericardial tuberculosis, chest tuberculosis, other parts of the body, tuberculosis and other patients with embolization treatment reports.
  • Moxifloxacin is a fourth-generation fluoroquinolone chemical antibiotic that is less soluble in water and organic solvents. Oral and injection preparations are often used clinically, and there are defects of small oral absorption and low injection dose. The lesion site cannot obtain an effective drug concentration, and can not be released relatively uniformly, and is also likely to cause adverse reactions.
  • the present invention provides a sodium alginate cross-linked moxifloxacin sustained-release microsphere, characterized in that the microsphere comprises a drug carrier, an adsorbent, an anti-tuberculosis drug active ingredient, a reinforcing agent and a curing agent, the carrier
  • the adsorbent is human albumin or bovine serum albumin
  • the active ingredient of the antituberculosis drug is moxifloxacin
  • the reinforcing agent is gelatin or hyaluronic acid
  • the divalent metal cation calcium salt or strontium salt is a curing agent.
  • the sustained release microspheres are stored in a vegetable oil or liquid paraffin as a preservation solution, and the microspheres have a particle size of 50 to 100 ⁇ m, 50 to 150 ⁇ m, 50 to 200 ⁇ m, 100 to 300 ⁇ m, and 150 to 450 ⁇ m. 300 to 500 ⁇ m, 500 to 700 ⁇ m, 700 to 900 ⁇ m or 900 to 1250 ⁇ m.
  • the above sustained release microspheres are formed into dried powdery particles having a particle size ranging from 10 to 50 ⁇ m. 25 to 50 ⁇ m, 50 to 100 ⁇ m, 100 to 350 ⁇ m, 300 to 550 ⁇ m or 500 to 750 ⁇ m.
  • the weight ratio of sodium alginate to moxifloxacin in the sustained release microsphere of the present invention is preferably from 1 to 75:0.25 to 12.5.
  • the invention also provides a method for preparing the above sustained release microspheres, comprising the following steps:
  • the moxifloxacin is prepared by dissolving and adsorbing the adsorbent prepared in the step 2), and obtaining a moxifloxacin solution, that is, a drug solution, wherein the mass percentage of the moxifloxacin and the adsorbent is 1.6 to 4%;
  • the divalent metal cation calcium salt or strontium salt is formulated into an aqueous solution having a concentration by volume of 1 to 15% by mass to obtain a solidified liquid; wherein the cationic calcium salt is preferably selected from the group consisting of calcium chloride and calcium lactate, and the cerium salt is preferably chlorine.
  • microspheres or microgel beads prepared above are placed in a reinforcing solution, stirred, and the supernatant is discarded to obtain microspheres or microgel beads, that is, slow release of moxifloxacin crosslinked by sodium alginate. Microspheres.
  • the sodium alginate cross-linked moxifloxacin sustained-release microspheres obtained in the above step 9) are stored in a vegetable oil or liquid paraffin oil as a preservation solution.
  • the vegetable oil may be selected from soybean oil for injection, tea oil, corn oil, rapeseed oil, cottonseed oil, and the like.
  • the sodium alginate cross-linked moxifloxacin sustained-release microspheres obtained in the above step 9) are dried to obtain powdery particles, that is, dry balls.
  • powdery particles that is, dry balls.
  • freeze drying or oven drying is used.
  • the high-voltage electrostatic multi-head microsphere generating device used in the step 8) of the above method comprises: a high-voltage static electricity generating device; a propelling pump; a spray head; a sterile container; positive and negative electrodes; ; lifting device.
  • the high-voltage static electricity generating device has a plurality of positive and negative electrodes; the propelling pump is connected to the sterile syringe and the spray head; the positive electrode is connected to the spray head; and the negative electrode is connected with the stainless steel wire immersed in the solidified liquid
  • the stainless steel wire is connected to the aseptic container; the stainless steel wire has a lifting device at a distance below the sterile container.
  • the present invention employs a gelatin solution to add a film to the microbeads; in order to prevent the water-soluble drug from being released from the microspheres during storage (leakage), the present invention employs vegetable oil (or liquid). Paraffin wax saves and acts as a water-in-oil, thus avoiding the loss of the drug before application; the invention adopts high-voltage electrostatic ball-forming technology to avoid the use of organic solvent, is beneficial to improve the stability of the drug, and can adjust the voltage
  • the microsphere (capsule) particle size is controlled, the operation is simple, the condition is mild, and the toxic organic solvent and glutaraldehyde used in the prior art can be avoided, and the product is environmentally friendly.
  • the invention adopts alginic acid as a drug carrier cross-linking agent, the anti-tuberculosis drug moxifloxacin is a medicinal active ingredient, and albumin is used as an adsorbent to link moxifloxacin and sodium alginate in a divalent metal cation (calcium ion or strontium).
  • a divalent metal cation calcium ion or strontium
  • the microspheres are made into microspheres and then wrapped with gelatin to solve the problem of excessive release of water-soluble drugs.
  • the wet gel drugs are preserved by high temperature sterilization of vegetable oil or liquid paraffin.
  • the microspheres prevent moxifloxacin from being released when not in use.
  • the invention changes the dosage form and the administration route of the moxifloxacin anti-tuberculosis drug, achieves the effect of high efficiency, low toxicity and safe and effective clinical application.
  • the invention combines the anti-tuberculosis drug moxifloxacin with the adsorbent human or bovine serum albumin, dissolves them in proportion, adsorbs them together, and crosslinks with the sodium alginate carrier, passes through the high-voltage electrostatic multi-head microsphere generator, in the second price Under the action of metal cations (calcium ions or strontium ions), the anti-tuberculosis drug moxifloxacin is encapsulated in the microspheres. In order to prevent the release of the anti-tuberculosis drug moxifloxacin in the preservation solution, gelatin is further added to the microspheres. The film is then placed in a high temperature sterilized vegetable oil or liquid paraffin to preserve the wet gel drug microspheres to prepare a sodium alginate microsphere vascular targeting embolic agent containing moxifloxacin.
  • the present invention also relates to a vascular targeted embolic agent characterized by containing the above-mentioned sodium alginate cross-linked moxifloxacin sustained-release microspheres.
  • the invention further relates to the use of the above-described sodium alginate cross-linked moxifloxacin sustained release microspheres for the preparation of a vascular targeting embolic agent.
  • the vascular targeted embolic agent can be used for treating tuberculosis, for example, for interventional embolization for tuberculosis, tuberculosis, massive hemoptysis or tuberculosis; for treating renal tuberculosis, thyroid tuberculosis, cervical lymph node tuberculosis, pericardial tuberculosis, chest wall tuberculosis and/or pleura Tuberculosis; used to treat tubal tuberculosis, endometrial tuberculosis, testicular tuberculosis or epididymal tuberculosis.
  • the invention has the following advantages: 1. Select high-pressure electrostatic multi-head microsphere generators for industrial production to produce drug microsphere vascular targeting embolic agents with controllable size and suitable for clinical use. 2, the selection of biocompatible, natural polymer material sodium alginate as a drug carrier, to obtain a long-acting release biodegradable microsphere vascular targeting embolic agent; 3. Select human serum albumin or bovine serum albumin as adsorbent to adsorb the anti-tuberculosis drug moxifloxacin.
  • the preparation of the invention By using the preparation of the invention, not only can the local drug concentration be greatly increased, the concentration of the drug in the circulatory system can be lowered, the toxicity of the drug to normal tissues can be reduced, the drug application can be greatly facilitated, the course of treatment can be reduced, the treatment time can be shortened, and the treatment time can be reduced. Complications of the drug reduce the cost of the patient and reduce drug tolerance.
  • the treatment method uses interventional radiology or bronchoscopy intervention to perform target organ angiography. According to the angiography, it is decided to select the diameter of the embolic microspheres for embolization of the target organ, especially the peripheral arterioles embolized in the target organ.
  • peripheral arteriolar vessels may be considered: (1) failure of initial treatment, treatment with retreatment of anti-tuberculosis regimen, smear positive tuberculosis after treatment, and sputum culture of Mycobacterium tuberculosis for HR two or more The anti-tuberculosis drug tolerant, that is, multidrug-resistant tuberculosis. (2) A single wall or cheese cavity with persistent positive tuberculosis, and no obvious active lesions or lesions around the cavity have been stable. (3) Individual fibrous cavity of tuberculosis, long-term treatment of sputum is not negative.
  • the microcatheter is subjected to superselective embolization, and the aseptic operation is performed, and the transcatheter is injected slowly or slowly as needed according to the specific condition under the fluoroscopy, until the flow rate of the contrast agent is significantly slowed down, that is, the embolization is completed.
  • the angiography was performed again to determine the embolization effect.
  • the alginate microsphere vascular embolization agent containing moxifloxacin antituberculosis drug is powdery granules
  • the dry ball stored in the closed container is first dissolved in physiological saline to reduce (ie, wet bulb), and then added.
  • the appropriate amount or diluted contrast agent is evenly mixed, so that the microspheres are fully suspended in the contrast agent, and then super-selectively embolized by the catheter under the monitoring of the imaging device, slowly or slowly injected into the blood vessel of the lesion site until the contrast agent flow rate is obvious. When slowed down, the embolization is completed. The angiography was performed again to determine the embolization effect.
  • the outstanding advantage of the invention is that the human or bovine serum albumin adsorbent is safe and effective, and successfully solves the problem that moxifloxacin cannot be completely dissolved in water or organic solvent, and moxifloxacin combines with albumin and water-soluble seaweed.
  • the problem that the sodium solution is mixed and cross-linked is not solved, and the phenomenon that the anti-tuberculosis drug microspheres are ideally controlled under the condition of positive and negative electric field reaction with other reagents is solved, and
  • the prepared microsphere vascular embolization agent has the characteristics of large drug loading, long residence time in the body, high bioavailability, adjustable drug release rate, targeted drug delivery, and specificity for targeting, and is used for targeting specificity.
  • Processing of glassware Dry the cleaned glassware and bake in a high temperature oven (sterilized to remove heat) for use;
  • microsphere preparation instrument The high-pressure electrostatic multi-head microsphere generator which can control the ball, has uniform size, simple operation, high output and easy mass production.
  • Preparation methods of various reagents 1 Preparation of sodium alginate solution: Weigh 8 g of sodium alginate, place it in a glassware, add physiological saline or 500 ml of water for injection while stirring to magnetically stir all sodium alginate to obtain a sodium alginate solution; 2 preparation of adsorbents Human albumin (or bovine serum albumin) in a ratio of 0.1 to 10% (mass by volume), dissolved in water for injection, to obtain an albumin solution, that is, an adsorbent; 3 Preparation of moxifloxacin solution: Weigh 12 grams of commercially available moxifloxacin, placed in the above glassware, and dissolved with 0.1 to 10% (mass by volume) of human albumin or bovine serum albumin solution in 50 ml to obtain a moxifloxacin solution; 4 gelatin fortified solution: Weigh 30 grams of gelatin into a glassware, add 500 ml of normal saline or water for injection while stirring, and stir
  • microsphere production The mixture solution is aspirated by a sterile syringe, and dropped into the above solid solution by a high-pressure electrostatic multi-head microsphere droplet generating device, and microspheres or microgels having different particle size ranges are prepared as needed, and the obtained sodium alginate is crosslinked.
  • the high-voltage electrostatic multi-head microsphere generator includes: a high-voltage static electricity generating device, a propelling pump, a spray head, a sterile container, positive and negative electrodes, various types of sterile syringes, lifting devices.
  • Each of the high-voltage electrostatic multi-head generators has positive and negative poles, and the propulsion pump is connected to a sterile syringe and a spray head, the positive electrode is connected to the spray head, and the negative electrode and the stainless steel wire immersed in the solidified liquid Connected, the stainless steel wire is connected to a sterile container having a lifting device at a distance below the sterile container.
  • the particle diameters of the microspheres or microgel beads stored in the preservation solution are 50-100 ⁇ m, 50-150 ⁇ m, 50-200 ⁇ m, 100-300 ⁇ m, 150-450 ⁇ m, 300-500 ⁇ m, 500-700 ⁇ m, 700-. 900 ⁇ m or 900 to 1250 ⁇ m. After decanting the upper layer solution of the above container, rinsing with physiological saline, and using it immediately;
  • the upper layer solution of the microspheres obtained above is decanted, and the obtained sodium alginate microspheres containing the moxifloxacin antituberculosis drug are dried (dry balls are obtained by freeze drying or oven drying) to obtain powdery particles; the powdery form
  • the particle diameter of the fine particles is in the range of 10 to 50 ⁇ m, 25 to 50 ⁇ m, 50 to 100 ⁇ m, 100 to 350 ⁇ m, 300 to 550 ⁇ m or 500 to 750 ⁇ m; it is stored in a sealed state and then reduced to a wet bulb by soaking in physiological saline for several minutes before use.
  • Example 2 Preparation of sodium alginate cross-linked moxifloxacin anti-tubercular microsphere vascular embolization agent:
  • Processing of glassware Dry the cleaned glassware and bake in a high temperature oven (sterilized to remove heat) for use;
  • microsphere preparation instrument The high-pressure electrostatic multi-head microsphere generator which can control the ball, has uniform size, simple operation, high output and easy mass production.
  • Preparation methods of various reagents 1 Preparation of sodium alginate solution: Weigh 10 g of sodium alginate, placed in a glassware, and stir with physiological saline or 500 ml of water for injection to stir all sodium alginate to obtain sodium alginate solution; 2 preparation of adsorbents The human albumin (or bovine serum albumin) is dissolved in water for injection in a ratio of 0.1 to 10% (mass by volume); the adsorbent, that is, the albumin solution; 3 Preparation of anti-tuberculosis drug moxifloxacin solution: Weigh 14 grams of commercially available moxifloxacin, place it in the above glassware, and stir it with 0.1-10% (mass by volume) of human albumin or bovine serum albumin solution to obtain anti-tuberculosis drug moxifloxacin solution.
  • microsphere production The mixture solution is aspirated by a sterile syringe, and dropped into the above solid solution by a high-pressure electrostatic multi-head microsphere droplet generating device, and microspheres or microgels having different particle size ranges are prepared as needed, and the obtained sodium alginate is crosslinked.
  • the high-voltage electrostatic multi-head microsphere generator includes: a high-voltage static electricity generating device, a propelling pump, a spray head, a sterile container, positive and negative electrodes, various types of sterile syringes, lifting devices.
  • Each of the high-voltage electrostatic multi-head generators has positive and negative poles, and the propulsion pump is connected to a sterile syringe and a spray head, the positive electrode is connected to the spray head, and the negative electrode and the stainless steel wire immersed in the solidified liquid Connected, the stainless steel wire is connected to a sterile container having a lifting device at a distance below the sterile container.
  • the particle diameters of the microspheres or microgel beads stored in the preservation solution are 50-100 ⁇ m, 50-150 ⁇ m, 50-200 ⁇ m, 100-300 ⁇ m, 150-450 ⁇ m, 300-500 ⁇ m, 500-700 ⁇ m, 700-. 900 ⁇ m or 900 to 1250 ⁇ m. After decanting the upper layer solution of the above container, rinsing with physiological saline, and using it immediately;
  • the upper layer solution of the microspheres obtained above is decanted, and the obtained sodium alginate microspheres containing the moxifloxacin antituberculosis drug are dried (dry balls are obtained by freeze drying or oven drying) to obtain powdery particles; the powdery form Particle size range from 10 to 50 ⁇ m 25 to 50 ⁇ m or 50 to 100 ⁇ m; 100 to 350 ⁇ m, 300 to 550 ⁇ m or 500 to 750 ⁇ m; sealed and stored in a physiological saline solution for several minutes before use to reduce to a wet bulb.
  • Example 3 Preparation of sodium alginate cross-linked moxifloxacin anti-tubercular microsphere vascular embolization agent:
  • Processing of glassware Dry the cleaned glassware and bake in a high temperature oven (sterilized to remove heat) for use;
  • microsphere preparation instrument The high-pressure electrostatic multi-head microsphere generator which can control the ball, has uniform size, simple operation, high output and easy mass production.
  • Preparation methods of various reagents 1 Preparation of sodium alginate solution: Weigh 15 g of sodium alginate, placed in a glassware, and stirred with physiological saline or 500 ml of water for injection to stir magnetically to dissolve all sodium alginate to obtain a sodium alginate solution; 2 preparation of adsorbents The human albumin (or bovine serum albumin) is dissolved in water for injection in a ratio of 0.1 to 10% (mass by volume); the adsorbent, that is, the albumin solution; 3 Preparation of anti-tuberculosis drug moxifloxacin solution: Weigh 10 g of commercially available moxifloxacin, place it in the above glassware, and dissolve it with 0.1 to 10% (mass by volume) of human albumin or bovine serum albumin solution in 50 ml to obtain anti-tuberculosis drug moxifloxacin solution.
  • microsphere production The mixture solution is aspirated by a sterile syringe, and dropped into the above solid solution by a high-pressure electrostatic multi-head microsphere droplet generating device, and microspheres or microgels having different particle size ranges are prepared as needed, and the obtained sodium alginate is crosslinked.
  • the high-voltage electrostatic multi-head microsphere generator includes: a high-voltage static electricity generating device, a propelling pump, a spray head, a sterile container, positive and negative electrodes, various types of sterile syringes, lifting devices.
  • Each of the high-voltage electrostatic multi-head generators has positive and negative poles, and the propulsion pump is connected to a sterile syringe and a spray head, the positive electrode is connected to the spray head, and the negative electrode and the stainless steel wire immersed in the solidified liquid Connected, the stainless steel wire is connected to a sterile container having a lifting device at a distance below the sterile container.
  • the particle diameters of the microspheres or microgel beads stored in the preservation solution are 50-100 ⁇ m, 50-150 ⁇ m, 50-200 ⁇ m, 100-300 ⁇ m, 150-450 ⁇ m, 300-500 ⁇ m, 500-700 ⁇ m, 700-. 900 ⁇ m or 900 to 1250 ⁇ m. After decanting the upper layer solution of the above container, rinsing with physiological saline, and using it immediately;
  • the upper layer solution of the microspheres obtained above is decanted, and the obtained sodium alginate microspheres containing the moxifloxacin antituberculosis drug are dried (dry balls are obtained by freeze drying or oven drying) to obtain powdery particles; the powdery form Particle size range from 10 to 50 ⁇ m 25 to 50 ⁇ m or 50 to 100 ⁇ m; 100 to 350 ⁇ m, 300 to 550 ⁇ m or 500 to 750 ⁇ m; sealed and stored in a physiological saline solution for several minutes before use to reduce to a wet bulb.
  • the effect of the microspheres is better, and then the appropriate amount of contrast agent is mixed, and the lesion is slowly injected into the lesion through the catheter under fluoroscopy until the flow rate of the contrast agent is significantly slowed down, that is, the embolization is completed.
  • the angiography was performed again to determine the embolization effect.
  • the results of clinical experiments show that the solvent used in the present invention is safe and effective, and the catheter is inserted into the target blood vessel.
  • the drug-loaded microspheres and the contrast agent are mixed by a syringe, and the injection catheter is not condensed and the tube is not blocked.
  • the drug microspheres have a suitable particle size (usually 500-700 ⁇ m or 700-900 ⁇ m)
  • the microspheres have better effects), have good biocompatibility, are non-toxic and harmless to the human body, have no immunogenicity, and have affinity for the drugs contained therein. The toxic and side effects are small, the drug concentration is large, and the utilization rate is high.
  • Example 4 Preparation of sodium alginate cross-linked moxifloxacin anti-tuberculosis microsphere vascular embolization agent:
  • Processing of glassware Dry the cleaned glassware and bake in a high temperature oven (sterilized to remove heat) for use;
  • microsphere preparation instrument The high-pressure electrostatic multi-head microsphere generator which can control the ball, has uniform size, simple operation, high output and easy mass production.
  • Preparation methods of various reagents 1 Preparation of sodium alginate solution: Weigh 20 g of sodium alginate, placed in a glassware, and stir with physiological saline or 500 ml of water for injection to stir magnetically to dissolve all sodium alginate to obtain a sodium alginate solution; 2 preparation of adsorbents The human albumin (or bovine serum albumin) is dissolved in water for injection in a ratio of 0.1 to 10% (mass by volume); the adsorbent, that is, the albumin solution; 3 Preparation of anti-tuberculosis drug moxifloxacin solution: Weigh 22 grams of commercially available moxifloxacin, place it in the above glassware, and stir it with 0.1-10% (mass by volume) of human albumin or bovine serum albumin solution to obtain anti-tuberculosis drug moxifloxacin solution.
  • microsphere production The mixture solution is aspirated by a sterile syringe, and dropped into the above solid solution by a high-pressure electrostatic multi-head microsphere droplet generating device, and microspheres or microgels having different particle size ranges are prepared as needed, and the obtained sodium alginate is crosslinked.
  • the high-voltage electrostatic multi-head microsphere generator includes: a high-voltage static electricity generating device, a propelling pump, a spray head, a sterile container, positive and negative electrodes, various types of sterile syringes, lifting devices.
  • Each of the high-voltage electrostatic multi-head generators has positive and negative poles, and the propulsion pump is connected to a sterile syringe and a spray head, the positive electrode is connected to the spray head, and the negative electrode and the stainless steel wire immersed in the solidified liquid Connected, the stainless steel wire is connected to a sterile container having a lifting device at a distance below the sterile container.
  • the particle diameters of the microspheres or microgel beads stored in the preservation solution are 50-100 ⁇ m, 50-150 ⁇ m, 50-200 ⁇ m, 100-300 ⁇ m, 150-450 ⁇ m, 300-500 ⁇ m, 500-700 ⁇ m, 700-. 900 ⁇ m or 900 to 1250 ⁇ m. After decanting the upper layer solution of the above container, rinsing with physiological saline, and using it immediately;
  • the upper layer solution of the microspheres obtained above is decanted, and the obtained sodium alginate microspheres containing the moxifloxacin antituberculosis drug are dried (dry balls are obtained by freeze drying or oven drying) to obtain powdery particles; the powdery form Particle size range from 10 to 50 ⁇ m 25 to 50 ⁇ m or 50 to 100 ⁇ m; 100 to 350 ⁇ m, 300 to 550 ⁇ m or 500 to 750 ⁇ m; sealed and stored in a physiological saline solution for several minutes before use to reduce to a wet bulb.
  • tuberculosis Patients with other tuberculosis outside the lungs, such as: renal tuberculosis, thyroid tuberculosis, cervical lymphatic tuberculosis, genital tuberculosis (fallopian tube, endometrium, testis, epididymis), pericardial tuberculosis, chest wall tuberculosis, using interventional radiology or bronchoscopy intervention Application of pleural tuberculosis and other tuberculosis in the body.
  • tuberculosis such as: renal tuberculosis, thyroid tuberculosis, cervical lymphatic tuberculosis, genital tuberculosis (fallopian tube, endometrium, testis, epididymis), pericardial tuberculosis, chest wall tuberculosis, using interventional radiology or bronchoscopy intervention Application of pleural tuberculosis and other tuberculosis in the body
  • the catheter was inserted into the blood supply artery of the target organ, and angiography was performed. According to the angiography, the appropriate particle size range of the above-mentioned alginate microspheres containing moxifloxacin was selected. Cross-linking moxifloxacin microspheres (wet bulbs) with sodium alginate and washing the microspheres three times with physiological saline (usually 300-500 ⁇ m) The effect of the microspheres is better. Then, the appropriate amount of contrast agent is mixed, and the lesion is slowly injected into the lesion through the catheter under fluoroscopy until the flow rate of the contrast agent is significantly slowed down, that is, the embolization is completed.
  • the angiography was performed again to determine the embolization effect.
  • the results of clinical experiments show that the solvent used in the present invention is safe and effective, and the local drug concentration is increased while reducing the total amount of drugs and reducing the occurrence of systemic side effects; after the biodegradable drug-loaded microspheres are implanted with tuberculosis, the drug release can be close to zero level. The release rate keeps the drug concentration steady, does not produce a burst effect, and the microspheres do not need to be surgically removed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种海藻酸钠交联的莫西沙星缓释微球、其制备方法、包含该微球的血管靶向栓塞剂以及所述微球在制备血管靶向栓塞剂中的用途。所述微球包括莫西沙星、药物载体、吸附剂、加强剂和固化剂,其中所述药物载体为海藻酸钠,吸附剂为人血白蛋白或牛血清白蛋白,加强剂为明胶或透明质酸,固化剂为二价金属阳离子钙盐或钡盐。

Description

海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂 技术领域
本发明涉及一种含抗结核药物的微球和含有所述微球的血管靶向栓塞剂,特别是一种以海藻酸钠为载体交联的含莫西沙星作为抗结核有效成分的缓释微球及其血管靶向栓塞剂。本发明还涉及所述缓释微球的制备方法,以及所述微球在制备介入栓塞治疗肺结核、肺结核大咯血、肺结核空洞、肾结核、甲状腺结核、颈淋巴结核、生殖器结核(输卵管,子宫内膜、睾丸、附睾)、心包结核、胸壁结核、胸膜结核和体内其他结核的药物的应用。
背景技术
结核病是严重危害人类生命健康的主要传染性疾病之一,也成为传染性疾病中的第一号杀手和成人的首要死因。20世纪90年代后期,由于耐药菌等问题使已经销声匿迹的结核病在全世界范围卷土重来,给结核病的控制增加了难度,世界卫生组织初步统计全球有19亿人受到结核杆菌的感染,结核病人已达2000多万人,每年新发病达800万,年均300万人由此而丧生。中国受结核菌感染者也在不断增加,结核病呈上升趋势,结核病人数居世界第2位,每年因结核病死亡的人数约有15万,结核病的防治是迫切需要解决的重大课题,研究和开发抗结核新药和新剂型迫在眉睫。
结核分枝杆菌主要寄生于正常细胞内并有一定的耐药性,要杀灭细胞内的结核菌必须在细胞内达到一定的抗结核药物浓度。而抗结核药物的口服制剂常先受到首过效应的影响并在全身循环中经过蛋白结合、代谢、排泄及分解等过程,只有少量药物才能达到靶组织、靶器官、靶细胞,要提高靶区的药物浓度就必须增加剂量,从而也增加了药物的全身毒副作用。而靶向制剂具有定向释放药物,增加病变部位及细胞内药物浓度,提高药效,降低毒副作用等特点,因此认为抗结核药物靶向制剂有临床的应用价值和发展前景。
莫西沙星(Moxifloxacin)属第四代氟喹诺酮类化学合成抗菌素药物,由德国拜耳公司1999年推出的产品,莫西沙星是通过抑制细菌DNA螺旋酶A亚单位和拓扑异构酶Ⅳ的活性,阻断DNA的复制而发挥杀菌作用,其对革兰氏阴性菌,主要抑制DNA螺旋酶,而对革兰氏阳性菌的主要作用靶点是拓扑异构酶Ⅳ。莫西沙星的化学结构特点是在8位碳原子引人了甲氧基因,使其增加了药物对细菌的结合能力和细胞膜的穿透破坏能力,而且抗菌后效应(PAE)强大而持久。
莫西沙星不但保留有喹喏酮类药物对革兰氏阴性菌抗菌活性和抗菌谱。而且8—甲氧基因增加了其对革兰氏阳性菌的抗菌活性和抗菌谱。对非典型病原菌如肺炎支原体、衣原体、军团菌非常有效,对厌氧菌的活力强,包括对有芽孢和无芽胞的厌氧菌都具有显著的抗菌活性。莫西沙星对 ß -内酰胺类,大环内脂类,氨基糖肽类和四环素类抗生素耐药的细菌亦 有效。莫西沙星和这些抗菌药物无交叉耐药性,不是肝细胞色素P-450同工酶抑制剂,因此避免了许多潜在的药物相互作用。莫西沙星具有与异烟肼(INH)或利福平相似的早期杀菌活性,对肺结核患者的早期及延长早期有杀菌活性,表明能良好渗入结核病变,能迅速杀灭重症空洞性肺结核患者痰中的快生长菌群。
莫西沙星自从上市以来,以其抗菌谱广,抗菌力强,体内分布广,体内药物浓度高,半衰期长,疗效好,副作用小,与其他抗菌药物无交叉耐药性,几乎无光敏反应等优点而得到临床广泛应用。随着抗结核药物在临床上的广泛应用,结核分枝杆菌的耐药率已愈来愈高,尤其是多重耐药性问题,已成为防痨界关注的课题,也是影响结核病化疗效果的主要因素。因此选择合适的抗结核剂型是当前治疗和控制结核病的重要部分。
结核病复发和结核菌耐药现象日益严重,尽管产生原因复杂,但其中一个十分重要的因素是治疗疗程长,患者不能规律足量用药至疗程结束,这是全世界各国结核病治疗普遍面对的问题,在保证治疗效果的前提下,减少药物剂量,延长药物间隔时间,药物依从性的问题会得到有效的解决。为了能够获得在体内发挥长效作用的抗结核药物制剂,我们选择了生物相容性好,天然高分子材料海藻酸钠作为载体,以莫西沙星为模型药物和吸附剂进行交联,通过处方筛选,体外释放实验和体内研究获得长效释药可生物降解微球血管栓塞制剂。
国内对载抗结核药物微球的研究只有零星报道,多以口服或注射用药。国外对载抗结核药微球的系统研究报道主要集中在美国、日本和印度的研究小组,研究涉及不同的载体,不同的药物,不同的微球粒径以及不同的给药途径。之前也有学者致力于抗结核缓释系统的研究,主要是口服剂、吸入剂、注射剂以及皮下埋植剂。
目前临床上抗结核药物主要为口服和注射制剂,并且注射剂的疗效也不够理想。由于不能于病灶部位获得有效药物浓度,而且在应用过程中有明显的全身毒性和耐药性产生,极大地限制了抗结核药物的应用。少数所采用的栓塞加药物灌注疗法也存在如下缺陷:药物不能相对均匀的持续释放,当局部灌注药物浓度过高时,其药物的冲击波疗效可能产生局部组织坏死或损伤。
抗结核药物微球血管栓塞剂是一种新剂型,微球沉积于肺部可以延缓药物的释放,且可保护药物不受酶水解破坏,可延长药物在肺部的滞留时间,副反应发生率低,耐受性好,安全性高。目前国内外尚无有关将海藻酸钠和吸附剂交联莫西沙星制成抗结核病血管栓塞剂,并应用于肺结核,肺结核大咯血,肺结核空洞,肺结核性支气管狭窄,耐多药性空洞性肺结核,肾结核,甲状腺结核,生殖器结核(输卵管,子宫内膜、睾丸、附睾),颈淋巴结核,心包结核,胸壁结核全身其他部位结核等病人的介入栓塞治疗的报道。
莫西沙星属第四代氟喹诺酮类化学抗菌素药物,在水和有机溶剂中溶解性较差。临床上多采用口服和注射制剂,有口服吸收量小、注射剂量低的缺陷,病灶部位不能获得有效的药物浓度,也不能相对均匀地持续释放,还易引发不良反应。
技术解决方案
本发明提供了一种海藻酸钠交联莫西沙星的缓释微球,其特征在于所述的微球包括药物载体、吸附剂、抗结核药物活性成分、加强剂和固化剂,所述载体为海藻酸钠,吸附剂为人血白蛋白或牛血清白蛋白,抗结核药物活性成分为莫西沙星,加强剂为明胶或透明质酸,二价金属阳离子钙盐或钡盐为固化剂。
在一个实施方案中,上述的缓释微球储存在作为保存液的植物油或液体石蜡中,微球粒径规格为:50~100µm、50~150µm、50~200µm、100~300µm、150~450µm、300~500µm、500~700µm、700~900µm或900~1250µm。
在另一个实施方案中,上述的缓释微球制成干燥的粉末状颗粒,其粒径范围为10~50µm 、25~50µm、50~100µm、100~350µm、300~550µm或500~750µm。
上述本发明的缓释微球中海藻酸钠与莫西沙星的重量比优选为1~75∶0.25~12.5。
本发明还提供了一种制备上述缓释微球的方法,其包括下述步骤:
1)将海藻酸钠用生理盐水或注射用水按质量体积百分比为0.5~15%比例溶解,得海藻酸钠溶液,即,载体溶液;
2)将人血白蛋白或牛血清白蛋白用注射用水按质量体积百分比0.1~10%比例溶解,得白蛋白溶液,即,吸附剂;
3) 将莫西沙星用步骤2)配制的吸附剂研磨搅拌溶解并吸附,得莫西沙星溶液,即,药物溶液,其中莫西沙星与所述吸附剂的按质量体积百分比为1.6~4%;
4)将二价金属阳离子钙盐或钡盐配制成质量体积百分比1~15%浓度的水溶液,得固化液;其中阳离子钙盐优选选自氯化钙和乳酸钙,所述钡盐优选为氯化钡;
5)将所得固化液中加入无水乙醇和注射用水,固化液:无水乙醇:注射用水的体积比为:2∶1∶2,得含有无水乙醇的固化液;
6)取明胶或透明质酸用注射用水溶解,得质量体积百分比0.1-10%的明胶或透明质酸溶液,即,加强溶液;
7)将药物溶液和载体溶液按比例合并,它们的体积比为:1∶1~30,磁力搅拌均匀,得制备溶液;
8)将上述所得制备溶液通过高压静电多头微球发生装置,喷雾微滴,分散于固化液中,待沉淀完全后去除上清液,得含莫西沙星的海藻酸钠交联的微球或微胶珠;
9)将上述制得的带微球或微胶珠放入加强溶液中,搅拌,弃去上清,得带药微球或微胶珠,即,海藻酸钠交联的莫西沙星缓释微球。
在一个实施方案中,上述步骤9)得到的海藻酸钠交联的莫西沙星缓释微球保存在作为保存液的植物油或液体石蜡油中。所述的植物油可选自供注射用的大豆油、茶油、玉米油、菜籽油、棉籽油等。
或者,在另一个实施方案中,上述步骤9)得到的海藻酸钠交联的莫西沙星缓释微球干燥,得粉末状颗粒,即,干球。例如,用冷冻干燥或烘箱干燥法。
在一个具体实施方案中,上述方法的步骤8)所用的高压静电多头微球发生装置包括:高压静电发生装置;推进泵;喷射头;无菌容器;正负电极;各种型号的无菌注射器;升降装置。所述高压静电发生装置上有多个正负电极;所述推进泵与无菌注射器和喷射头相连;所述正极与喷射头相连;所述负极与浸在所述固化液中的不锈钢钢丝相连接;所述不锈钢钢丝与无菌容器相连;所述不锈钢钢丝与无菌容器下方有调节距离的升降装置。
在将制备溶液制作微球时,接通高压静电多头微球发生仪电源后,使每组正负极间产生高电场,当推进泵以恒定速度将海藻酸钠和吸附的药物混合溶液推出时,电场力克服了海藻酸钠溶液固有的黏滞力和表面张力,使其含药的聚合物溶液分散成一定粒径的雾滴喷射至固化液中,迅速交联成海藻酸钙微球(微胶珠)。为防止水溶性药物过早地释放本发明采用了明胶溶液在微胶珠外又加了一层膜;为防止保存期水溶性药物从微球中释放(漏出)本发明采用了植物油(或液体石蜡)保存,起到了油包水的作用,从而避免了应用前药物的丢失;本发明采用高压静电成球(囊)技术避免使用有机溶剂,有利于提高药物的稳定性,并可通过调节电压调控微球(囊)粒径,操作简便,条件温和,能避免现有技术中使用的有毒的有机溶剂和戊二醛,产品环保。
本发明采用海藻酸为药物载体交联剂,抗结核药物莫西沙星为药物活性成分,用白蛋白作为吸附剂把莫西沙星和海藻酸钠相连接,在二价金属阳离子(钙离子或钡离子)的作用下制作成微球,制成微球后再用明胶包裹,解决了水溶性药物释放过快的问题,在保存方面用高温灭菌后的植物油或液体石蜡保存湿的凝胶药物微球,使莫西沙星在不用时不释放出来。本发明改变了莫西沙星抗结核药物的剂型和投药途径,达到高效、低毒,临床应用安全有效的效果。
本发明将抗结核药物莫西沙星与吸附剂人或牛血清白蛋白研磨溶解,按比例混合后吸附在一起,再于海藻酸钠载体交联,通过高压静电多头微球发生仪,在二价金属阳离子(钙离子或钡离子)的作用下,把抗结核药物莫西沙星包裹在微球里,为防止抗结核药物莫西沙星释放在保存液里,进一步采取了明胶在微球外加一层薄膜,然后再放入用高温灭菌后的植物油或液体石蜡保存湿的凝胶药物微球,制成含莫西沙星的海藻酸钠微球血管靶向栓塞剂。
本发明还涉及一种血管靶向栓塞剂,其特征在于含有上述海藻酸钠交联的莫西沙星缓释微球。
本发明还涉及上述海藻酸钠交联的莫西沙星缓释微球在制备血管靶向栓塞剂中的用途。所述的血管靶向栓塞剂可用于治疗结核病,例如用于介入栓塞治疗肺结核、肺结核大咯血或肺结核空洞;用于治疗肾结核、甲状腺结核、颈淋巴结核、心包结核、胸壁结核和/或胸膜结核;用于治疗输卵管结核、子宫内膜结核、睾丸结核或附睾结核。
有益效果
本发明具有以下优点:
1、选择产业化生产的高压静电多头微球发生仪,生产出大小可控,适合临床上不同用途的药物微球血管靶向栓塞剂;
2、选择生物相容性好,天然高分子材料海藻酸钠作为药物载体,获得长效释药可生物降解微球血管靶向栓塞剂;
3、选择人血清白蛋白或牛血清白蛋白作为吸附剂,很好地吸附抗结核药莫西沙星。
通过使用本发明的制剂,不仅能够极大地提高局部的药物浓度,降低药物在循环系统中的浓度,降低药物对正常组织的毒性,还能够极大地方便药物应用,减少疗程,缩短治疗时间,减少药物的并发症,降低病人的费用,减少药物耐受。其治疗方法采用介入放射或支气管镜介入的方法,进行靶器官动脉造影,根据造影所见,决定选用栓塞微球的直径,进行靶器官栓塞治疗,尤其是栓塞于靶器官的末梢小动脉血管,对肺结核患者可考虑末梢小动脉血管的有:(1)初治失败,又经复治抗结核方案治疗,疗程结束后涂片结核阳性,且痰培养结核分枝杆菌对HR两种或更多的抗结核药物耐受者,即耐多药结核。(2)痰结核菌持续阳性的单个簿壁或干酪空洞,且空洞周围无明显活动性病灶或病灶已较稳定者。(3)肺结核的单个纤维空洞,久治痰菌不阴转者。(4)久治不愈痰菌持续阳性的支气管结核。(5)肺结核大咯血的介入栓塞治疗。(6)肺外其他结核的介入治疗,如:肾结核、甲状腺结核、颈淋巴结结核、心包结核、胸壁结核、胸膜结核、生殖器结核(输卵管、子宫内膜、睾丸、附睾)等。
本发明使用时,优选微导管进行超选择栓塞,采用无菌操作,透视下经导管视具体情况缓慢或缓慢多次注入,直到造影剂流速明显减慢时,即完成栓塞。再次行动脉造影判定栓塞效果。使用时,若含莫西沙星抗结核药物的海藻酸钠微球血管栓塞剂是粉末状颗粒,则先将保存在密闭容器中干球溶于在生理盐水中还原(即湿球),再加入适量或稀释后的造影剂混合均匀,使微球充分悬浮于造影剂中,再在影像设备监视下通过导管超选择性栓塞在病变部位的血管内缓慢或缓慢多次注入,直到造影剂流速明显减慢时,即完成栓塞。再次行动脉造影判定栓塞效果。
本发明的突出优点是:采用的人或牛血清白蛋白吸附剂安全有效,成功地解决了莫西沙星不能完全溶解于水或有机溶剂的问题,莫西沙星与白蛋白结合再和水溶性海藻酸钠溶液混合交联不沉的难题,以及解决了在正负电场作用的条件下与其它试剂反应包裹形不成药物微球的现象,制得的抗结核药物微球粒径理想可控,且制得的微球血管栓塞剂具有载药量大,在体内滞留时间长,生物利用度高,释药速度可调节,能实现药物的靶向传输,具有靶向专一性的特点,用于介入栓塞治疗肺结核、肺结核大咯血、肺结核空洞、肾结核、甲状腺结核、颈淋巴结核、生殖器结核、(输卵管,子宫内膜、睾丸、附睾)心包结核、胸壁结核、胸膜结核和体内其他结核等方面的应用。
本发明的实施方式
下面通过实施例对本发明作进一步说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1 制备海藻酸钠交联莫西沙星抗结核微球血管栓塞剂:
1、玻璃器皿的处理:
将清洗干净的玻璃器皿凉干,放在高温烤箱内烘烤(除菌去热源)待用;
2、微球制备仪的选择:
选用制球可控,大小均匀,操作简便,产量高,易大量生产的高压静电多头微球发生仪。
3、各种试剂的配制方法:
①制备海藻酸钠溶液:
称取8克海藻酸钠,置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml磁力搅拌至海藻酸钠全部溶解,得海藻酸钠溶液;
②配制吸附剂
将人血白蛋白(或牛血清白蛋白)按比例0.1~10%(质量体积百分比),用注射用水溶解, 得白蛋白溶液,即,吸附剂;
③配制莫西沙星溶液:
称取12克市售莫西沙星,置于上述玻璃器皿内,用0.1~10%(质量体积百分比)的人血白蛋白或牛血清白蛋白溶液50ml搅拌溶解,得莫西沙星溶液;
④明胶强化溶液:
称取30克的明胶置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml,磁力搅拌至明胶全部溶解,得明胶强化溶液;
⑤配制含无水乙醇固化溶液:
称取氯化钙或氯化钡或乳酸钙200克置于玻璃器皿内,边搅拌边加入注射用水4000ml,磁力搅拌至钙全部溶解后加入1000ml无水乙醇,得含无水乙醇固化溶液;
⑥保存溶液:
用购置的供注射用的大豆油(或供注射用的茶油、玉米油、花生油、菜籽油、棉籽油等)或液体石蜡为保存溶液;
⑦配制混合溶液:
将上述制备的海藻酸钠溶液和莫西沙星溶液搅拌均匀得混合溶液;
4、微球制作
用无菌注射器吸取上述混合液,通过高压静电多头微球液滴发生装置滴入上述固化液溶液中,根据需要制得粒径范围不同大小的微球或微胶珠,所得海藻酸钠交联莫西沙星的微球或微胶珠沉入容器下面。
所述高压静电多头微球发生仪包括:高压静电发生装置,推进泵,喷射头,无菌容器,正负电极,各种型号的无菌注射器,升降装置。所述高压静电多头发生仪上每组有正负两极,所述推进泵与无菌注射器和喷射头相连,所述正极与喷射头相连,所述负极与浸在所述固化液中的不锈钢钢丝相连接,所述不锈钢钢丝与无菌容器相连,所述不锈钢钢丝与无菌容器下方有调节距离的升降装置。
所述储存在保存液中的微球或微胶珠的粒径分别为:50~100µm、50~150µm、50~200µm、100~300µm、150~450µm、300~500µm、500~700µm、700~900µm或900~1250µm。将上述容器的上层溶液倾析后,用生理盐水冲洗后,即时使用;
将上述所得微球的上层溶液倾析,所得含莫西沙星抗结核药物的海藻酸钠微球经干燥后(用冷冻干燥或烘箱干燥法制得干球),得粉末状颗粒;所述粉末状微粒的粒径范围为10~50µm、25~50µm、50~100µm、100~350µm、300~550µm或500~750µm;密闭保存,使用前用生理盐水浸泡数分钟还原成湿球。
采用介入放射或支气管镜介入的方法,治疗肺结核患者,将导管插入靶器官段开口,在X线监视下引入导丝,当导管嵌入血管腔后行动脉造影,根据造影所见,连续摄片证实,固定导管前端,退出导丝,保留导管,选用上述海藻酸钠交联的莫西沙星微球的适当粒径范围;将海藻酸钠交联莫西沙星微球(湿球),用生理盐水冲洗微球三遍,一般用500~700µm 的微球效果更好,再加入适量的造影剂混均,透视下经导管缓慢注入病灶部位,直到造影剂流速明显减慢时,即完成栓塞。再次行动脉造影判定栓塞效果。
实施例2:制备海藻酸钠交联莫西沙星抗结核微球血管栓塞剂:
1、玻璃器皿的处理:
将清洗干净的玻璃器皿凉干,放在高温烤箱内烘烤(除菌去热源)待用;
2、微球制备仪的选择:
选用制球可控,大小均匀,操作简便,产量高,易大量生产的高压静电多头微球发生仪。
3、各种试剂的配制方法:
①制备海藻酸钠溶液:
称取10克海藻酸钠,置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml磁力搅拌至海藻酸钠全部溶解,得海藻酸钠溶液;
②配制吸附剂
将人血白蛋白(或牛血清白蛋白)按比例0.1~10%(质量体积百分比),用注射用水溶解;得吸附剂,即白蛋白溶液;
③配制抗结核药物莫西沙星药液:
称取14克市售莫西沙星,置于上述玻璃器皿内,用0.1~10%(质量体积百分比)的人血白蛋白或牛血清白蛋白溶液50ml搅拌溶解,得抗结核药物莫西沙星溶液;
④配制明胶强化溶液:
称取26克的明胶置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml,磁力搅拌至明胶全部溶解,得明胶强化溶液;
⑤配制含无水乙醇固化溶液:
称取氯化钙或氯化钡或乳酸钙200克置于玻璃器皿内,边搅拌边加入注射用水4000ml,磁力搅拌至钙全部溶解后加入1000ml无水乙醇,得含无水乙醇固化溶液;
⑥保存溶液:
用购置的供注射用的大豆油(或供注射用的茶油、玉米油、花生油、菜籽油、棉籽油等)或液体石蜡为保存溶液;
⑦配制混合溶液:
将上述制备的海藻酸钠溶液和配制的抗结核药物莫西沙星溶液搅拌均匀得混合溶液;
4、微球制作
用无菌注射器吸取上述混合液,通过高压静电多头微球液滴发生装置滴入上述固化液溶液中,根据需要制得粒径范围不同大小的微球或微胶珠,所得海藻酸钠交联莫西沙星的微球或微胶珠沉入容器下面。
所述高压静电多头微球发生仪包括:高压静电发生装置,推进泵,喷射头,无菌容器,正负电极,各种型号的无菌注射器,升降装置。所述高压静电多头发生仪上每组有正负两极,所述推进泵与无菌注射器和喷射头相连,所述正极与喷射头相连,所述负极与浸在所述固化液中的不锈钢钢丝相连接,所述不锈钢钢丝与无菌容器相连,所述不锈钢钢丝与无菌容器下方有调节距离的升降装置。
所述储存在保存液中的微球或微胶珠的粒径分别为:50~100µm、50~150µm、50~200µm、100~300µm、150~450µm、300~500µm、500~700µm、700~900µm或900~1250µm。将上述容器的上层溶液倾析后,用生理盐水冲洗后,即时使用;
将上述所得微球的上层溶液倾析,所得含莫西沙星抗结核药物的海藻酸钠微球经干燥后(用冷冻干燥或烘箱干燥法制得干球),得粉末状颗粒;所述粉末状微粒的粒径范围为10~50µm 、25~50µm或50~100µm;100~350µm、300~550µm或500~750µm;密闭保存,使用前用生理盐水浸泡数分钟还原成湿球。
采用介入放射或支气管镜介入的方法,治疗肺结核空洞患者,将导管插入靶器官段开口,在X线监视下引入导丝,当导管嵌入血管腔后行动脉造影,根据造影所见,连续摄片证实,固定导管前端,退出导丝,保留导管,选用上述海藻酸钠交联的莫西沙星微球的适当粒径范围;将海藻酸钠交联莫西沙星微球(湿球),用生理盐水冲洗微球三遍,一般用700~900µm 的微球效果更好,再加入适量的造影剂混均,透视下经导管缓慢注入病灶部位,直到造影剂流速明显减慢时,即完成栓塞。再次行动脉造影判定栓塞效果。
临床实验结果显示,本发明药物微球用于栓塞末梢小动脉血管,栓塞后不会产生潜在侧支循环血管两端的压力差,不易形成继发性的侧支循环,并能将药物运送到靶器官和靶细胞,应用后可以在病变部位高度集中,正常部位只有最少的药物,提高了治疗效果,减少全身性的毒副作用,有效地切断了结核部位的主要血供,并阻断了血流对药物的冲刷作用,延长了药物作用的持续时间,达到治疗目的。
实施例3:制备海藻酸钠交联莫西沙星抗结核微球血管栓塞剂:
1、玻璃器皿的处理:
将清洗干净的玻璃器皿凉干,放在高温烤箱内烘烤(除菌去热源)待用;
2、微球制备仪的选择:
选用制球可控,大小均匀,操作简便,产量高,易大量生产的高压静电多头微球发生仪。
3、各种试剂的配制方法:
①制备海藻酸钠溶液:
称取15克海藻酸钠,置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml磁力搅拌至海藻酸钠全部溶解,得海藻酸钠溶液;
②配制吸附剂
将人血白蛋白(或牛血清白蛋白)按比例0.1~10%(质量体积百分比),用注射用水溶解;得吸附剂,即白蛋白溶液;
③配制抗结核药物莫西沙星药液:
称取10克市售莫西沙星,置于上述玻璃器皿内,用0.1~10%(质量体积百分比)的人血白蛋白或牛血清白蛋白溶液50ml搅拌溶解,得抗结核药物莫西沙星溶液;
④配制明胶强化溶液:
称取20克的明胶置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml,磁力搅拌至明胶全部溶解,得明胶强化溶液;
⑤配制含无水乙醇固化溶液:
称取氯化钙或氯化钡或乳酸钙200克置于玻璃器皿内,边搅拌边加入注射用水4000ml,磁力搅拌至钙全部溶解后加入1000ml无水乙醇,得含无水乙醇固化溶液;
⑥保存溶液:
用购置的供注射用的大豆油(或供注射用的茶油、玉米油、花生油、菜籽油、棉籽油等)或液体石蜡为保存溶液;
⑦配制混合溶液:
将上述制备的海藻酸钠溶液和配制的抗结核药物莫西沙星溶液搅拌均匀得混合溶液;
4、微球制作
用无菌注射器吸取上述混合液,通过高压静电多头微球液滴发生装置滴入上述固化液溶液中,根据需要制得粒径范围不同大小的微球或微胶珠,所得海藻酸钠交联莫西沙星的微球或微胶珠沉入容器下面。
所述高压静电多头微球发生仪包括:高压静电发生装置,推进泵,喷射头,无菌容器,正负电极,各种型号的无菌注射器,升降装置。所述高压静电多头发生仪上每组有正负两极,所述推进泵与无菌注射器和喷射头相连,所述正极与喷射头相连,所述负极与浸在所述固化液中的不锈钢钢丝相连接,所述不锈钢钢丝与无菌容器相连,所述不锈钢钢丝与无菌容器下方有调节距离的升降装置。
所述储存在保存液中的微球或微胶珠的粒径分别为:50~100µm、50~150µm、50~200µm、100~300µm、150~450µm、300~500µm、500~700µm、700~900µm或900~1250µm。将上述容器的上层溶液倾析后,用生理盐水冲洗后,即时使用;
将上述所得微球的上层溶液倾析,所得含莫西沙星抗结核药物的海藻酸钠微球经干燥后(用冷冻干燥或烘箱干燥法制得干球),得粉末状颗粒;所述粉末状微粒的粒径范围为10~50µm 、25~50µm或50~100µm;100~350µm、300~550µm或500~750µm;密闭保存,使用前用生理盐水浸泡数分钟还原成湿球。
采用介入放射或支气管镜介入的方法,治疗肺结核大咯血患者,将导管插入靶器官供血动脉,行动脉造影,根据造影所见,选用上述含莫西沙星的海藻酸钠微球的适当粒径范围。将海藻酸钠交联莫西沙星微球(湿球),用生理盐水洗微球三遍,一般用500~700µm或700~900µm 的微球效果更好,再加入适量的造影剂混均,透视下经导管缓慢注入病灶部位,直到造影剂流速明显减慢时,即完成栓塞。再次行动脉造影判定栓塞效果。
临床实验结果显示,本发明采用的溶剂安全有效,将导管插入靶血管,造影后用注射器将带药微球和造影剂混合,缓缓注入导管不凝聚,不堵管。所述药物微球粒径合适(一般用500~700µm或700~900µm 的微球效果更好),生物相容性好,对人体无毒无害,无免疫原性,对所载药物具有亲和力等优点。毒副作用小,药物浓度大,利用率高。
实施例4:制备海藻酸钠交联莫西沙星抗结核微球血管栓塞剂:
1、玻璃器皿的处理:
将清洗干净的玻璃器皿凉干,放在高温烤箱内烘烤(除菌去热源)待用;
2、微球制备仪的选择:
选用制球可控,大小均匀,操作简便,产量高,易大量生产的高压静电多头微球发生仪。
3、各种试剂的配制方法:
①制备海藻酸钠溶液:
称取20克海藻酸钠,置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml磁力搅拌至海藻酸钠全部溶解,得海藻酸钠溶液;
②配制吸附剂
将人血白蛋白(或牛血清白蛋白)按比例0.1~10%(质量体积百分比),用注射用水溶解;得吸附剂,即白蛋白溶液;
③配制抗结核药物莫西沙星药液:
称取22克市售莫西沙星,置于上述玻璃器皿内,用0.1~10%(质量体积百分比)的人血白蛋白或牛血清白蛋白溶液50ml搅拌溶解,得抗结核药物莫西沙星溶液;
④配制明胶强化溶液:
称取22克的明胶置于玻璃器皿内,边搅拌边加入生理盐水或注射用水500ml,磁力搅拌至明胶全部溶解,得明胶强化溶液;
⑤配制含无水乙醇固化溶液:
称取氯化钙或氯化钡或乳酸钙200克置于玻璃器皿内,边搅拌边加入注射用水4000ml,磁力搅拌至钙全部溶解后加入1000ml无水乙醇,得含无水乙醇固化溶液;
⑥保存溶液:
用购置的供注射用的大豆油(或供注射用的茶油、玉米油、花生油、菜籽油、棉籽油等)或液体石蜡为保存溶液;
⑦配制混合溶液:
将上述制备的海藻酸钠溶液和配制的抗结核药物莫西沙星溶液搅拌均匀得混合溶液;
4、微球制作
用无菌注射器吸取上述混合液,通过高压静电多头微球液滴发生装置滴入上述固化液溶液中,根据需要制得粒径范围不同大小的微球或微胶珠,所得海藻酸钠交联莫西沙星的微球或微胶珠沉入容器下面。
所述高压静电多头微球发生仪包括:高压静电发生装置,推进泵,喷射头,无菌容器,正负电极,各种型号的无菌注射器,升降装置。所述高压静电多头发生仪上每组有正负两极,所述推进泵与无菌注射器和喷射头相连,所述正极与喷射头相连,所述负极与浸在所述固化液中的不锈钢钢丝相连接,所述不锈钢钢丝与无菌容器相连,所述不锈钢钢丝与无菌容器下方有调节距离的升降装置。
所述储存在保存液中的微球或微胶珠的粒径分别为:50~100µm、50~150µm、50~200µm、100~300µm、150~450µm、300~500µm、500~700µm、700~900µm或900~1250µm。将上述容器的上层溶液倾析后,用生理盐水冲洗后,即时使用;
将上述所得微球的上层溶液倾析,所得含莫西沙星抗结核药物的海藻酸钠微球经干燥后(用冷冻干燥或烘箱干燥法制得干球),得粉末状颗粒;所述粉末状微粒的粒径范围为10~50µm 、25~50µm或50~100µm;100~350µm、300~550µm或500~750µm;密闭保存,使用前用生理盐水浸泡数分钟还原成湿球。
采用介入放射或支气管镜介入的方法,治疗肺外其它结核的患者,如:肾结核、甲状腺结核、颈淋巴结核、生殖器结核(输卵管,子宫内膜、睾丸、附睾)、心包结核、胸壁结核、胸膜结核和体内其他结核等方面的应用。
将导管插入靶器官供血动脉,行动脉造影,根据造影所见,选用上述含莫西沙星的海藻酸钠微球的适当粒径范围。将海藻酸钠交联莫西沙星微球(湿球),用生理盐水洗微球三遍,(一般用300~500µm 的微球效果更好),再加入适量的造影剂混均,透视下经导管缓慢注入病灶部位,直到造影剂流速明显减慢时,即完成栓塞。再次行动脉造影判定栓塞效果。临床实验结果显示,本发明采用的溶剂安全有效,增加局部药物浓度的同时减少用药的总量,降低全身毒副作用的发生;生物降解带药微球植入结核后,药物的释放可接近零级释放速率,保持药物浓度平稳,不会产生突释效应,并且微球不需再次手术取出。
本领域普通技术人员可以理解:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种海藻酸钠交联的莫西沙星缓释微球,其特征在于所述的微球包括药物载体、吸附剂、抗结核药物活性成分、加强剂和固化剂,所述载体为海藻酸钠,吸附剂为人血白蛋白或牛血清白蛋白,抗结核药物活性成分为莫西沙星,加强剂为明胶或透明质酸,二价金属阳离子钙盐或钡盐为固化剂。
  2. 根据权利要求1所述的缓释微球,其特征在于所述微球储存在作为保存液的植物油或液体石蜡中时,微球粒径规格为:50~100µm、50~150µm、50~200µm、100~300µm、150~450µm、300~500µm、500~700µm、700~900µm或900~1250µm。
  3. 根据权利要求1所述的缓释微球,其特征在于所述微球是干燥的粉末状颗粒,其粒径范围为10~50µm 、25~50µm、50~100µm、100~350µm、300~550µm或500~750µm。
  4. 根据权利要求1所述的缓释微球,其特征在于海藻酸钠与莫西沙星的重量比为1~75∶0.25~12.5。
  5. 一种制备根据权利要求1所述缓释微球的方法,其特征是包括下述步骤,
    1)将海藻酸钠用生理盐水或注射用水按质量体积百分比为0.5~15%比例溶解,得海藻酸钠溶液,即,载体溶液;
    2)将人血白蛋白或牛血清白蛋白用注射用水按质量体积百分比0.1~10%比例溶解,得白蛋白溶液,即,吸附剂;
    3)将莫西沙星用步骤2)配制的吸附剂研磨搅拌溶解并吸附,得莫西沙星溶液,即,药物溶液,其中莫西沙星与吸附剂的用量按质量体积百分比为1.6~4%;
    4)将二价金属阳离子钙盐或钡盐配制成质量体积百分比1~15%浓度的水溶液,得固化液;
    5)将所得固化液中加入无水乙醇和注射用水,固化液:无水乙醇:注射用水的体积比为:2∶1∶2,得含有无水乙醇的固化液;
    6)取明胶或透明质酸用注射用水溶解,得质量体积百分比0.1-10%的明胶或透明质酸溶液,即,加强溶液;
    7)将药物溶液和载体溶液按比例合并,它们的体积比为:1∶1~30,磁力搅拌均匀,得制备溶液;
    8)将上述所得制备溶液通过高压静电多头微球发生装置,喷雾微滴,分散于固化液中,待沉淀完全后去除上清液,得含莫西沙星的海藻酸钠交联的微球或微胶珠;
    9)将上述制得的微球或微胶珠放入加强溶液中,搅拌,弃去上清液,得带药微球或微胶珠,即,海藻酸钠交联的莫西沙星缓释微球。
  6. 根据权利要求5所述的方法,其特征在于步骤9)得到的带药微球或微胶珠保存在植物油或液体石蜡油中。
  7. 根据权利要求5所述的方法,其中所述的阳离子钙盐选自氯化钙和乳酸钙,所述钡盐为氯化钡。
  8. 根据权利要求5-7任一项所述的方法,其中步骤8)所用的高压静电多头微球发生装置包括:高压静电发生装置;推进泵;喷射头;无菌容器;正负电极;各种型号的无菌注射器;升降装置。所述高压静电发生装置上有多个正负电极;所述推进泵与无菌注射器和喷射头相连;所述正极与喷射头相连;所述负极与浸在所述固化液中的不锈钢钢丝相连接;所述不锈钢钢丝与无菌容器相连;所述不锈钢钢丝与无菌容器下方有调节距离的升降装置。
  9. 一种血管靶向栓塞剂,其特征在于含有根据权利要求1-4任一项所述的缓释微球。
  10. 根据权利要求1-4任一项所述的微球在制备血管靶向栓塞剂中的用途。
  11. 根据权利要求10所述的用途,其中所述血管靶向栓塞剂用于治疗结核病。
  12. 根据权利要求10所述的用途,其中所述血管靶向栓塞剂用于治疗肾结核、甲状腺结核、颈淋巴结核、心包结核、胸壁结核和/或胸膜结核。
  13. 根据权利要求10所述的用途,其中所述血管靶向栓塞剂用于治疗输卵管结核、子宫内膜结核、睾丸结核或附睾结核。
  14. 根据权利要求10所述的用途,其中所述血管靶向栓塞剂用于介入栓塞治疗肺结核、肺结核大咯血或肺结核空洞。
PCT/CN2010/080549 2010-07-09 2010-12-30 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂 WO2012003704A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/809,361 US9028847B2 (en) 2010-07-09 2010-12-30 Sodium alginate crosslinked slow-release moxifloxacin microsphere, the preparation method and the use thereof, and target vascular occlusive agent of the microsphere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010222446.0 2010-07-09
CN201010222446.0A CN102309458B (zh) 2010-07-09 2010-07-09 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂

Publications (1)

Publication Number Publication Date
WO2012003704A1 true WO2012003704A1 (zh) 2012-01-12

Family

ID=45423281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080549 WO2012003704A1 (zh) 2010-07-09 2010-12-30 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂

Country Status (3)

Country Link
US (1) US9028847B2 (zh)
CN (1) CN102309458B (zh)
WO (1) WO2012003704A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105816920A (zh) * 2016-03-29 2016-08-03 江南大学 一种改性海藻酸钠栓塞微球的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111803698B (zh) * 2014-02-14 2022-05-27 波士顿科学国际有限公司 具有治疗剂释放的快速降解栓塞颗粒
CN103977316A (zh) * 2014-05-28 2014-08-13 宋秀花 一种治疗空洞型肺结核咯血的中药
WO2017030876A1 (en) 2015-08-14 2017-02-23 Clearh2O, Inc. High throughput process for delivering semi-firm gel for poultry
CN108727675B (zh) * 2017-04-14 2020-05-19 北京化工大学 一种防污复合材料及制备方法
KR20200125582A (ko) * 2018-03-02 2020-11-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 알루미나의 보호액, 보호방법 및 이것을 이용한 알루미나층을 가지는 반도체 기판의 제조방법
CN112791228A (zh) * 2019-11-13 2021-05-14 太阳雨林(厦门)生物医药有限公司 一种用于肺结核咯血的缓释栓塞微球
CN112972753A (zh) * 2019-12-02 2021-06-18 太阳雨林(厦门)生物医药有限公司 一种用于治疗慢性炎症引起的支气管扩张性咯血的缓释栓塞微球
CN113018268B (zh) * 2019-12-25 2024-02-02 鲁南制药集团股份有限公司 一种注射用德拉沙星葡甲胺冻干制剂及其制备方法
CN117815434B (zh) * 2024-03-05 2024-05-24 山东第二医科大学 一种氧化再生纤维素栓塞微球及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850035A (zh) * 2006-05-22 2006-10-25 济南康泉医药科技有限公司 一种局部应用的抗生素的缓释制剂
CN1879607A (zh) * 2005-06-03 2006-12-20 北京圣医耀科技发展有限责任公司 一种含水溶性药物的海藻酸钠微球血管栓塞剂和制备及应用
CN101254169A (zh) * 2006-04-04 2008-09-03 济南康泉医药科技有限公司 含抗结核病药物的缓释剂
US20090162440A1 (en) * 2007-12-19 2009-06-25 Beijing Shengyiyao Science & Technology Development Co., Ltd. Sodium alginate microsphere vascular embolus containing water-soluble drug and preparation and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1051520A (en) * 1911-07-05 1913-01-28 Carl Schindler High-per-cent. salvarsan emulsion.
WO2007008752A2 (en) * 2005-07-07 2007-01-18 Farnam Companies, Inc. Sustained release pharmaceutical compositions for highly water soluble drugs
BRPI0503681A (pt) * 2005-08-19 2007-04-10 Fundacao Oswaldo Cruz compostos azóis usados como agentes tuberculostáticos e leishmanicidas, composições farmacêuticas contendo os mesmos, uso das respectivas composições farmacêuticas no tratamento ou inibição de doenças, bem como método de tratamento ou inibição de doenças
NZ576929A (en) * 2006-11-13 2012-07-27 Cipla Ltd Crystalline anhydrous form C of moxifloxacin hydrochloride
US8545841B2 (en) * 2008-01-05 2013-10-01 University Of Florida Research Foundation, Inc. Methods and compositions for the treatment of cancers and pathogenic infections
US20100247666A1 (en) * 2009-03-24 2010-09-30 Macleod Steven K Method for Preparing Suspensions of Low-Solubility Materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1879607A (zh) * 2005-06-03 2006-12-20 北京圣医耀科技发展有限责任公司 一种含水溶性药物的海藻酸钠微球血管栓塞剂和制备及应用
CN101254169A (zh) * 2006-04-04 2008-09-03 济南康泉医药科技有限公司 含抗结核病药物的缓释剂
CN1850035A (zh) * 2006-05-22 2006-10-25 济南康泉医药科技有限公司 一种局部应用的抗生素的缓释制剂
US20090162440A1 (en) * 2007-12-19 2009-06-25 Beijing Shengyiyao Science & Technology Development Co., Ltd. Sodium alginate microsphere vascular embolus containing water-soluble drug and preparation and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105816920A (zh) * 2016-03-29 2016-08-03 江南大学 一种改性海藻酸钠栓塞微球的制备方法
CN105816920B (zh) * 2016-03-29 2018-10-23 江南大学 一种改性海藻酸钠栓塞微球的制备方法

Also Published As

Publication number Publication date
CN102309458B (zh) 2016-02-03
US20130156827A1 (en) 2013-06-20
US9028847B2 (en) 2015-05-12
CN102309458A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012003704A1 (zh) 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂
Yang et al. A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion
AU2016200707B2 (en) Nanoparticle formulations with enhanced mucosal penetration
JP2017025071A (ja) 塞栓剤からの薬物送達
WO2010124654A1 (zh) 含抗血管瘤药物海藻酸钠微球血管栓塞剂及制备方法和应用
WO2005092295A1 (en) Gastroresistant pharmaceutical dosage form comprising n-(2-(2-phthalimidoethoxy)-acetyl)-l-alanyl-d-glutamic acid (lk-423)
CN112168954A (zh) 一种用于女性改善阴道环境以及预防宫颈病变的缓释凝胶和制备方法
US20230172859A1 (en) Drug-loaded microbead compositions, embolization compositions and associated methods
JP5750680B2 (ja) 5α−アンドロスタン−3β,5,6β−トリオール注射剤及びその調製方法
Czosseck et al. Porous scaffold for mesenchymal cell encapsulation and exosome-based therapy of ischemic diseases
Caili et al. Antibacterial microspheres with a bionic red-blood-cell like hollow structure and superior swelling recovery capacity for efficient traumatic hemostasis
US8481075B2 (en) Preparation and application of biodegradable-material-made microsphere vascular embolus containing liposome-encapsulated cytokines
CN103990185A (zh) 一种卡拉胶和明胶微球栓塞剂及其制备方法
CN106729741A (zh) 可控药物释放速度的丝素蛋白纳米微球制备方法和应用
WO2021169075A1 (zh) 一种集可注射与抗菌于一体的双功能水凝胶及其制备方法和用途
JP7454288B2 (ja) 新規な獣用子宮注入剤の調製方法
JP4937999B2 (ja) 婦人科薬剤含有アルギン酸ナトリウムミクロスフェア血管塞栓剤およびその調製
WO2023206055A1 (zh) 丝素蛋白的改性及应用
CN115569111A (zh) 包含间充质干细胞和水凝胶的组合物及其应用
TWI482632B (zh) 醫藥用載體及使用該載體的藥物結構
US20220202773A1 (en) Material and method for treating cancer
CN102670611B (zh) 抗结核药物三联复方微球血管靶向栓塞缓释剂及其制备方法和用途
CN104324032A (zh) 抗结核药物三联复方微球血管靶向栓塞缓释剂及其制备方法和用途
CN107875436A (zh) 一种负载小苏打粉末的液体栓塞剂的组合物及其用途
WO2021042778A1 (zh) 一种治疗肿瘤的温敏型凝胶药物组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13809361

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10854363

Country of ref document: EP

Kind code of ref document: A1