WO2023206055A1 - 丝素蛋白的改性及应用 - Google Patents

丝素蛋白的改性及应用 Download PDF

Info

Publication number
WO2023206055A1
WO2023206055A1 PCT/CN2022/089182 CN2022089182W WO2023206055A1 WO 2023206055 A1 WO2023206055 A1 WO 2023206055A1 CN 2022089182 W CN2022089182 W CN 2022089182W WO 2023206055 A1 WO2023206055 A1 WO 2023206055A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk fibroin
wound dressing
calcium
burn wound
solution
Prior art date
Application number
PCT/CN2022/089182
Other languages
English (en)
French (fr)
Inventor
彭琴
邱菊辉
钱智勇
Original Assignee
深圳湾实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳湾实验室 filed Critical 深圳湾实验室
Priority to PCT/CN2022/089182 priority Critical patent/WO2023206055A1/zh
Publication of WO2023206055A1 publication Critical patent/WO2023206055A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins

Definitions

  • nanozymes such as carbon, cerium oxide, platinum, redox polymers, and polyphenol nanoparticles can scavenge excess reactive oxygen species and treat related diseases caused by oxidative stress.
  • This type of nanozyme has the same reactive oxygen species scavenging ability as natural enzymes, has a broad-spectrum antioxidant effect, and can still efficiently, stably and quickly remove excess reactive oxygen species even in harsh disease environments.
  • nanozymes can cause cytotoxicity and inflammation due to their nanometer size, and their metabolic processes in animals are still unknown, posing potential biosafety risks.
  • Silk fibroin is a natural polymer fiber protein extracted from silk. Its content accounts for about 70% to 80% of silk. It contains 18 kinds of amino acids, of which glycine, alanine and serine account for more than 80% of the total composition. Silk fibroin has good biosafety and biodegradability. It is a biomaterial approved by the FDA and has great potential for clinical transformation. Many studies have shown that silk fibroin can be degraded by enzymes in the body into amino acids for reuse by the body.
  • the modified silk fibroin extracted in the present invention can be used as an antioxidant to remove excessive reactive oxygen species in the microenvironment of damaged organs; it can also be used as a raw material to be processed into various devices required for tissue engineering. These devices containing modified silk fibroin have broad spectrum, It has the function of stably and efficiently scavenging excess reactive oxygen species, and at the same time has good biosafety and degradability, and is in great clinical demand.
  • the present invention provides a new therapeutic strategy for the clinical treatment of acute and chronic inflammatory diseases caused by oxidative stress.
  • the present invention modifies silk fibroin and prepares it into a burn dressing for use in burn treatment.
  • the burn dressing has the functions of promoting wound healing, retaining moisture, maintaining electrolyte balance and hemostasis, and can not only provide similar cells
  • the extracorporeal matrix (ECM) can also quickly cover the wound to prevent bacteria and other pathogens from invading the wound.
  • ECM extracorporeal matrix
  • This kind of burn dressing should have good burn wound safety. It can maintain the tissue microenvironment required by the burn wound by reducing the oxidative stress reaction of the wound, thereby promoting the autolysis and debridement of necrotic eschar tissue and preventing Wound necrosis promotes cell proliferation and migration.
  • the dressing has rich sources of raw materials and facilitates large-scale production.
  • One of the objects of the present invention is to provide modified silk fibroin with a high-strength broad-spectrum antioxidant effect.
  • the modified silk fibroin has a high-strength broad-spectrum antioxidant effect and can remove excessive reactive oxygen species in the microenvironment of damaged organs. Accelerates the repair of organs damaged by acute and chronic inflammation caused by oxidative stress.
  • Modified silk fibroin with high-intensity broad-spectrum antioxidant effect characterized in that the modified silk fibroin is a silk fibroin with calcium partially or completely removed.
  • the second object of the present invention is to provide a reagent for modifying silk fibroin, which can partially or completely remove calcium in silk fibroin fibers and/or silk fibroin.
  • amino acids that can chelate with calcium include glutamic acid, alanine, aspartic acid, phenylalanine, asparagine, arginine, threonine, tyrosine, Any one or more of tryptophan, glycine, serine, valine, histidine, isoleucine, cysteine and their derivatives.
  • the EDTA and its derivatives are any one or more of aqueous solutions of EDTA and its derivatives, macromolecules modified by EDTA and its derivatives, and polymers modified by EDTA and its derivatives
  • EGTA AM and its derivatives are any one or more of aqueous solutions of EGTA AM and its derivatives, macromolecules modified by EGTA AM and its derivatives, and polymers modified by EGTA AM and its derivatives
  • the BAPTA and its derivatives are any one or more of aqueous solutions of BAPTA and its derivatives, macromolecules modified by BAPTA and its derivatives, and polymers modified by BAPTA and its derivatives.
  • the neutral salt solution is any one or more of lithium bromide solution, calcium chloride ternary solution, lithium thiocyanate solution, and zinc chloride solution.
  • the third object of the present invention is to provide a method for using reagents to enhance the broad-spectrum antioxidant effect of silk fibroin.
  • the calcium chelating agent is then used to partially or completely remove the calcium in the silk fibroin and/or silk fibroin fibers.
  • the lithium bromide solution is used to dissolve the silk fibroin fiber to obtain a high-strength broad-spectrum antioxidant silk fibroin solution
  • the fourth object of the present invention is to provide a method for preparing modified silk fibroin, which method has simple procedures, saves costs, facilitates quality control, and can be produced on a large scale.
  • the preparation method of modified silk fibroin specifically includes the following steps:
  • S1 Dissolve silk fibroin fiber with the calcium chloride ternary solution and/or lithium bromide solution, and obtain a silk fibroin solution through desalination;
  • S2 Add the calcium chelating agent to the silk fibroin solution obtained in S1 to fully react, and obtain a low-calcium or calcium-free silk fibroin solution after desalination treatment.
  • the desalination method is dialysis; the temperature condition for the neutral salt solution to dissolve the silk fibroin fiber is preferably 80°C; after adding the calcium chelating agent, the reaction time is 0.1 to 24 hours.
  • the calcium chloride ternary liquid described in S1 is prepared from calcium chloride, absolute ethanol and water in a molar ratio of 1:1 to 5:1 to 20.
  • concentration of the lithium bromide solution described in S1 is 1-20M.
  • the calcium chelating agent described in S2 is EDTA or its derivatives, with a concentration of 0.1 to 500mM.
  • modified silk fibroin in the preparation of drugs and devices for treating or detecting acute and chronic inflammatory diseases caused by oxidative stress.
  • the device is a wearable device.
  • a preparation containing a pharmaceutically acceptable carrier prepared from modified silk fibroin.
  • preparations are sprays, hydrogels, stents, and drug carriers.
  • a fifth object of the present invention is to provide a composition for preparing burn wound dressings. Imbalanced reactive oxygen species alter cell function, lead to abnormal signaling pathways, induce inflammation and scar contracture, and antioxidant treatment can minimize damage in burn pathophysiology, such as tissue lipid peroxidation, tissue necrosis, and reduce mortality. .
  • Option 1 A composition for preparing a burn wound dressing, the composition is composed of silk fibroin and a skeleton in a mass ratio of 1:2 to 10; the skeleton is a chitosan-water-absorbent polymer skeleton; the shell Polysaccharide and water-absorbing polymer are composed in a mass ratio of 1:0.1 to 5.
  • Option 2 A composition for preparing a burn wound dressing.
  • the composition is composed of silk fibroin, skeleton and active iodine in a mass ratio of 1:0.5 to 2:0.1 to 10; the skeleton is composed of chitosan and water-absorbing iodine.
  • the polymer is composed according to a mass ratio of 1:0.1 to 5; the active iodine is composed of elemental iodine and iodine sustained-release materials.
  • the silk fibroin is natural silk fibroin and/or modified silk fibroin; the modified silk fibroin is selected from the group consisting of silk fibroin with partial or complete calcium removal, heat-treated silk fibroin and its derivatives. Any one or more of the following: ultraviolet irradiated silk fibroin and its derivatives, organic solvent-treated silk fibroin and its derivatives.
  • the water-absorbing polymer is selected from natural water-absorbing polymers and/or synthetic water-absorbing polymers.
  • the natural water-absorbing polymer is selected from collagen, gelatin, cellulose and their derivatives
  • the synthetic water-absorbing polymer is selected from Polyethylene glycol, polyacrylamide, sodium polyacrylate or polyvinyl alcohol.
  • the polyethylene glycol is preferably one or more of PEG-400, PEG-600, PEG-1500, PEG-4000, PEG-6000, and PEG-20000.
  • the chitosan is selected from the group consisting of acid-soluble chitosan, and/or water-soluble chitosan, and/or anhydride-modified chitosan calcined wound, and/or high deacetylation degree chitosan, and /or chitosan modified with acid anhydride compounds.
  • the sustained-release material of elemental iodine described in Scheme 2 is selected from polymer materials and/or small molecule materials.
  • the polymer materials include starch, cellulose and its derivatives, polyvinylpyrrolidone, and polyethylene glycol.
  • Small molecule materials include ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin.
  • the antibacterial agent is selected from nanometer non-metal antibacterial materials, nanometal antibacterial materials, quaternary ammonium salt antibacterial materials or oxidizing materials; the nanometer non-metal antibacterial materials include nanometer ferric oxide, nanometer zinc oxide and nanometer antibacterial materials. Titanium dioxide, the nano-metal antibacterial materials include nano-gold, nano-silver and nano-zinc, the quaternary ammonium salt antibacterial materials include chitosan quaternary ammonium salts and guanidine salts, and the oxidizing material includes elemental iodine.
  • the sixth object of the present invention is to provide a preparation composition for preparing a burn wound dressing containing the composition described in Scheme 1 or the composition described in Scheme 2.
  • a preparation composition for preparing a burn wound dressing containing the composition described in Scheme 1 is composed of silk fibroin, skeleton and auxiliary materials in a mass ratio of 1:2 to 10: 0.1 to 5; the auxiliary materials are Plasticizers and/or emulsifiers.
  • the preparation composition is composed of silk fibroin, skeleton, active iodine and auxiliary materials in a mass ratio of 1:0.5 to 2:0.1 to 10; Excipients are plasticizers and/or emulsifiers.
  • the plasticizer is selected from glycerin, propylene glycol or sorbitol.
  • the emulsifier is selected from polyoxyethylene ether, ethylene oxide block copolymer, polyol fatty acid ester or polyvinyl alcohol.
  • the seventh object of the present invention is to provide a method for preparing a burn wound dressing using the composition described in Scheme 1 or its preparation composition.
  • the preparation method of the burn wound dressing does not require a separation and purification process, which saves costs and facilitates quality control. , and is conducive to large-scale production. .
  • a method for preparing a burn wound dressing using the composition described in Scheme 1 or the above preparation composition specifically includes the following steps:
  • S3 is included after S2: the product obtained from S2 is modified with stearic acid.
  • the S1 is to prepare the above-mentioned modified silk fibroin, heating at a temperature of 60°C to 120°C and a time of 1 to 12 hours, and cooling for later use;
  • the S2 is to mix the result of S1 with the above-mentioned skeleton and auxiliary materials, then stir and emulsify, pour into a grinding tool, freeze at -4°C for 4 to 24 hours, -20°C for 6 to 12 hours, and freeze at -80°C for 6 to It can be obtained by freeze-drying under the condition of 12h.
  • S3 is to completely swell the burn wound dressing obtained in S2 in water, drop stearic acid solution on its surface, rinse with absolute ethanol, and place it at -20°C for 2 hours and -70°C for 6 hours. Then freeze-dry it.
  • S1 added a calcium chelating agent or an amino acid that can chelate with calcium during the preparation process;
  • the calcium chelating agent is EDTA and its derivatives, EGTA AM and its derivatives, BAPTA and its derivatives;
  • the amino acids that can chelate with calcium include glutamic acid, alanine, aspartic acid, phenylalanine, asparagine, arginine, threonine, tyrosine, and tryptophan Any one or more of acid, glycine, serine, valine, histidine, isoleucine and cysteine and their derivatives.
  • the eighth object of the present invention is to provide a burn wound dressing obtained by the above method for preparing a burn wound dressing.
  • the burn wound dressing has a broad-spectrum antioxidant effect and can promote the healing of chronic refractory wounds in an oxidative stress microenvironment. It has the characteristics of moisturizing, high strength, breathability, barrier and easy to peel off.
  • a burn wound dressing obtained by the above method for preparing a burn wound dressing obtained by the above method for preparing a burn wound dressing.
  • the burn wound dressing has a porous structure, with a porosity of 55% to 80% and a pore size of 0.5mm to 2mm.
  • the mass of the sample, the unit is g; M2 is the mass of the sample after absorbing the liquid, the unit is g.
  • the water absorption rate of the burn wound dressing in different media is: the water absorption rate in deionized water is 15-19; the water absorption rate in saline is 13-16; the water absorption rate in phosphate buffer is 11-14; The water absorption rate in cell culture medium is 8 to 13; the water absorption rate in serum is 4 to 9.
  • the burn wound dressing has been subjected to freeze-drying treatment, low-temperature treatment, high-temperature treatment, alcohol modification and/or radiation irradiation.
  • the ninth object of the present invention is to provide a method for adsorbing liquids, which provides a new idea for effectively adsorbing liquids.
  • the method is to use the above-mentioned burn wound dressing to absorb liquid, and the liquid enters the pore structure of the burn wound dressing, thickening and gelling the pore walls of the burn wound dressing to eliminate the lumen.
  • the tenth object of the present invention is to provide a method for blocking microorganisms, which provides a new idea for effectively blocking microorganisms.
  • Microorganisms are blocked by using the above-mentioned liquid-absorbing method, and the above-mentioned liquid is adsorbed by the above-mentioned liquid-absorbing method.
  • the pore wall of the above-mentioned burn wound dressing is thickened and gelled to eliminate the lumen, thereby isolating the microorganisms.
  • the eleventh object of the present invention is to provide a method for preparing a burn wound dressing using the composition described in Scheme 2 or its preparation composition. This method of preparing a biological dressing does not require a separation and purification process, which saves costs and facilitates quality control. It is also conducive to large-scale production.
  • a method for preparing a burn wound dressing using the composition described in Scheme 2 or its preparation composition specifically includes the following steps:
  • S3 is included after S2: the product obtained from S2 is modified with stearic acid.
  • the S2 is obtained by mixing the resultant of S1 with the skeleton and auxiliary materials, stirring and emulsifying, and then placing it at 4°C for 1 hour, at -20°C for 4 hours, and at -70°C for 6 hours.
  • the S3 is to completely swell the product of S2 in water, drop stearic acid solution on its surface, rinse with absolute ethanol, place it at -20°C for 2h, and place it at -70°C for 6h before freeze-drying. , that’s it.
  • S1 added calcium chelating agents or amino acids that can chelate calcium during the preparation process;
  • the calcium chelating agents are EDTA and its derivatives, EGTA AM and its derivatives, BAPTA and its derivatives ;
  • the amino acids that can chelate with calcium include glutamic acid, alanine, aspartic acid, phenylalanine, asparagine, arginine, threonine, tyrosine, and tryptophan Any one or more of acid, glycine, serine, valine, histidine, isoleucine and cysteine and their derivatives.
  • the twelfth object of the present invention is to provide a burn wound dressing obtained by the above method for preparing a burn wound dressing.
  • the burn wound dressing has a broad-spectrum antioxidant effect and can promote the healing of chronic refractory wounds in an oxidative stress microenvironment. , which combines the characteristics of moisture retention, high strength, breathability, barrier properties and ease of removal.
  • a burn wound dressing obtained by the above method for preparing a burn wound dressing obtained by the above method for preparing a burn wound dressing.
  • the burn wound dressing has a porous structure, its porosity is 55% to 80%, and its pore size is 0.5 to 2mm.
  • the mass of the sample, the unit is g; M2 is the mass of the sample after absorbing the liquid, the unit is g.
  • the water absorption rate of the burn wound dressing in different media is: the water absorption rate in deionized water is 14-16; the water absorption rate in saline is 12-14; the water absorption rate in phosphate buffer is 9-11 ; The water absorption rate in cell culture medium is 7 to 10; the water absorption rate in serum is 5 to 7.
  • the burn wound dressing has been subjected to freeze-drying treatment, low-temperature treatment, high-temperature treatment, alcohol modification and/or radiation irradiation.
  • the thirteenth object of the present invention is to provide a method for absorbing liquid using the above-mentioned burn wound dressing, which method provides a new idea for effectively absorbing liquid.
  • a method of adsorbing liquids The above-mentioned burn wound dressing is used to adsorb liquid.
  • the liquid enters the pore structure of the burn wound dressing, thickening and gelling the pore walls of the burn wound dressing to eliminate the lumen.
  • the fourteenth object of the present invention is to provide a method for blocking microorganisms, which provides a new idea for effectively blocking microorganisms.
  • Microorganisms are blocked by using the above-mentioned liquid-absorbing method, and the above-mentioned liquid is adsorbed by the above-mentioned liquid-absorbing method.
  • the pore wall of the above-mentioned burn wound dressing is thickened and gelled to eliminate the lumen, thereby isolating the microorganisms.
  • the silk fibroin prepared in the present invention can be processed into various devices required for tissue engineering, which can be used to accelerate the repair of damaged tissue and eliminate excessive reactive oxygen species at the damaged site, making it a huge advantage in the field of tissue engineering.
  • the burn wound dressing provided by the present invention can closely fit the wound surface, seal the wound surface, block harmful particles from contacting the wound surface, and will not adhere to the wound tissue. It is suitable for large-area burns, large-area wounds or deep burn wounds.
  • the burn wound dressing provided by the present invention is prepared by freeze-drying method, without the need for separation and purification process, which not only saves costs, facilitates quality control, but also facilitates large-scale production.
  • Example 4 Some preferred conditions for preparing silk fibroin
  • the low-calcium or calcium-free silk fibroin solution samples prepared in Examples 1-3 were subjected to a broad-spectrum antioxidant performance test.
  • the specific method is: react sample 1 prepared in Example 1, sample 2 prepared in Example 2, sample 3 prepared in Example 3, glutathione and water with superoxide anion, hydroxyl free and H 2 O 2 respectively, Then use the superoxide anion test kit, hydroxyl radical test kit and hydrogen peroxide quantitative analysis kit to test the ability of each of the five groups of samples to remove superoxide anion, hydroxyl free and H 2 O 2 .
  • the evaluation of the antioxidant effect of the samples is recorded in Table 2.
  • Dichlorodihydrofluorescein is used as a cellular reactive oxygen species indicator probe. The stronger the green fluorescence, the higher the intracellular reactive oxygen species content. Dichlorofluorescein emits strong green fluorescence when cells are stimulated with hydrogen peroxide.
  • step 2) Add 1 mL of glycerin to the solution obtained in step 1), stir mechanically for 10 minutes, add 10 mL of 5% gelatin solution, and stir mechanically for 10 min to form a white emulsion. Add 10 mL of 2% chitosan solution to the above white emulsion and stir mechanically for 30 min. spare;
  • step 3 Pour the white emulsion prepared in step 2) into a 100 ⁇ 150mm container, place it at 4°C for 1 hour, -20°C for 4 hours, and -70°C for 6 hours. After freeze-drying in a freeze dryer, CTS-GEL/SF dressing is obtained for later use. ;
  • step 2) Add 1 mL of glycerin to the solution obtained in step 1), stir mechanically for 10 minutes, add 10 mL of 5% polyethylene glycol (PEG) solution, and stir mechanically for 10 min to form a white emulsion. Add 10 mL of 2% chitosan solution to the above. Stir the white emulsion mechanically for 30 minutes and set aside;
  • PEG polyethylene glycol
  • step 3 Pour the white emulsion prepared in step 2) into a 100 ⁇ 150mm container, place it at 4°C for 1 hour, -20°C for 4 hours, and -70°C for 6 hours. After freeze-drying in a freeze dryer, CTS-PEG/SF dressing is obtained for later use. ;
  • step 3 Dissolve 1g of the product obtained in step 1) in 5 mL of deionized water, add it to the product obtained in step 2), stir mechanically for 10 minutes, pour into a 100 ⁇ 150mm container, place at 4°C for 1h, -20°C for 4h, -70 Leave it at °C for 6 hours, freeze-dry it in a freeze dryer, and obtain CTS-PVA/SF/CD-I sponge for later use;
  • the general structure of the burn wound dressing prepared in Examples 6-9 was observed using Sample 1 as a representative, and a scanning electron microscope was used to observe the microstructure.
  • the samples are all interconnected porous channel structures. Its porosity is between 55% and 80%. After the interpenetrating pore structure comes into contact with body fluids, the pore structure quickly sucks the body fluid into the pores, and the water-absorbing polymer quickly gels. On the one hand, the pore wall thickens and gels after absorbing water, and the lumen becomes empty. On the other hand, it can Effectively blocks airborne microorganisms from infecting wounds.
  • Example 7 Sample 15 ⁇ 1.43 14 ⁇ 1.82 12 ⁇ 1.83 9 ⁇ 1.78 5 ⁇ 2.33
  • Example 8 Sample 17 ⁇ 1.74 15 ⁇ 1.48 13 ⁇ 1.91 10 ⁇ 2.54 7 ⁇ 1.73
  • Example 9 Sample 18 ⁇ 2.31 16 ⁇ 1.55 14 ⁇ 2.12 12 ⁇ 1.93 8 ⁇ 2.32
  • mice male, each weighing approximately 18g ⁇ 2g, were randomly divided into 6 groups (20 mice in each group).
  • the mice were anesthetized by intraperitoneal injection of sodium pentobarbital (20 mg/kg), the fur was removed, and a ⁇ 1cm full-thickness skin lesion was made on the back of each mouse. Cover the wound surface tightly with the samples of Examples 5-8 of the present invention and sterile gauze respectively, and replace them twice a week.
  • the wound healing effect of the burn wound dressing of the present invention was evaluated through the repair of infected wounds in BALB/c mice.
  • step 3 Dissolve 1g of the product obtained in step 1) in 5 mL of deionized water, add it to the product obtained in step 2), stir mechanically for 10 minutes, pour into a 100 ⁇ 150mm container, place at 4°C for 1h, -20°C for 4h, -70 Leave it at °C for 6 hours, freeze-dry it in a freeze dryer, and obtain CTS-PVA/SF/CD-I sponge for later use;
  • step 3 Dissolve 1g of the product obtained in step 1) in 5 mL of deionized water, add it to the product obtained in step 2), stir mechanically for 10 minutes, pour into a 100 ⁇ 150mm container, place at 4°C for 1h, -20°C for 4h, -70 Leave it at °C for 6 hours, freeze-dry it in a freeze dryer, and obtain CTS-PVA/SF/PP-I sponge for later use;
  • the biological dressing samples prepared in Examples 14-17 are elastic, curlable, and have no peculiar smell. Taking burn wound dressing sample 5 as a representative, the general structure was observed, and a scanning electron microscope was used to observe the microstructure.
  • the sample has an interconnected porous channel structure with a porosity between 60% and 80%.
  • the pore structure quickly sucks the body fluid into the pores, and the water-absorbing polymer quickly gels.
  • the pore walls thicken and gel after absorbing water, the lumen becomes narrower, and the wall becomes viscoelastic. increase; on the other hand, the rapidly gelling dressing begins to slowly release active iodine, which plays a broad-spectrum antibacterial role and promotes healing.
  • the burn wound dressing sample 5 prepared in Example 14 its water absorption ratio in different media: the water absorption ratio in deionized water is 14-16; the water absorption ratio in saline is 12-14; in phosphate buffer solution The water absorption rate is 9 to 11; the water absorption rate in cell culture medium is 7 to 10; the water absorption rate in serum is 5 to 7.
  • the burn wound dressing prepared in Examples 14-15 was tested for its iodine sustained-release function. Accurately weigh 0.1g of the samples in Examples 5-8, respectively, and immerse them in physiological saline at 37°C for 2h, 4h, and 8h. , 12h, 24h, 36h, 48h, 60h and 72h were used to detect the iodine content released by the physiological saline using an inductively coupled plasma spectrometer. The results are shown in Table 8.
  • Table 10 shows the killing effect of 6 dressings on 6 strains (Candida albicans, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus aureus resistant strains and Pseudomonas aeruginosa resistant strains) .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

一种丝素蛋白的改性及应用。将丝素蛋白或丝素纤维中的钙部分去除或完全去除,得到具备广谱抗氧化作用的改性丝素蛋白。改性丝素蛋白的制备方法:用所述中性盐溶液氯化钙三元液和/或者溴化锂溶液溶解丝素纤维,经过除盐得到丝素蛋白溶液;将所述螯合剂加入上述丝素蛋白溶液中充分反应,并除盐处理后得到低钙或者无钙的丝素蛋白溶液。改性后的丝素蛋白具有广谱、稳定和高效清除过量活性氧的作用,将其制备成烧伤敷料应用于烧伤治疗中,具有促进伤口愈合、保持水分、维持电解质平衡和止血等功效。同时为临床上氧化应激导致的急性和慢性炎症疾病的治疗提供了新的治疗策略。

Description

丝素蛋白的改性及应用 技术领域
本发明属于生物医用技术领域,具体涉及的是丝素蛋白的改性及应用。
背景技术
炎症与氧化应激密切相关,清除过量活性氧被认为是治疗炎症疾病的可行策略。采用N-乙酰半胱氨酸等抗氧化药物清除过量活性氧,治疗急性肝损伤、肝纤维化、急性肾损伤等炎症性疾病,然而这类药物存在生物利用度差、稳定性差和疗效差的缺点。
随着纳米医学的进步,许多研究表明碳、氧化铈、铂、氧化还原聚合物以及多酚纳米颗粒等纳米酶可以清除过量活性氧,治疗氧化应激导致的相关疾病。此类纳米酶具有与天然酶相当的活性氧清除能力,具有广谱抗氧化作用,即便在恶劣疾病环境中仍然能够高效、稳定和快速的清除过量活性氧。然而,此类纳米酶由于其纳米尺寸而导致细胞毒性和炎症,且在动物体内的代谢过程尚且未知,存在潜在的生物安全性的风险。
丝素蛋白是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的70%~80%,含有18种氨基酸,其中甘氨酸、丙氨酸和丝氨酸约占总组成的80%以上。丝素蛋白具有良好的生物安全性和生物可降解性,是被FDA批准使用的生物材料,临床转化潜力巨大。许多研究表明丝素蛋白可以被体内酶降解成氨基酸再次被机体利用。
研究发现,丝素蛋白经螯合剂处理后,抗氧化能力增强,具有良好的广谱抗氧化作用。本发明提取的改性丝素蛋白可以作为抗氧化剂使用,清除损伤器官微环境过量活性氧;也可以作为原材料加工成组织工程需要各种器件,这些含有改性丝素蛋白的器件具有广谱、稳定和高效清除过量活性氧的功能,同时具备良好的生物安全性和可降解性,临床需求极大。本发明为临床上氧化应激导致的急性和慢性炎症疾病的治疗提供了新的治疗策略。
与此同时,本发明对丝素蛋白进行改性,并制备成烧伤敷料应用于烧伤治疗中,该烧伤敷料具有促进伤口愈合、保持水分、维持电解质平衡和止血等功效,不仅可以提供类似的细胞外基质(ECM),还可以迅速覆盖伤口,防止细菌和其他病原体入侵伤口。最重要的是,这种烧伤敷料应具有良好的烧创伤安全性,可以 通过降低创面氧化应激反应,维持烧伤创面所需的组织微环境,从而促进坏死焦痂组织的自溶清创,防止伤口坏死,促进细胞增殖和迁移,敷料的原材料来源丰富,便于规模化生产。
公开号为CN110483630A的发明专利公开了一种改性丝素蛋白冻干粉的制备方法,该专利通过加热、加碱的方式制备改性丝素蛋白,然而该方法制得的改性丝素蛋白抗氧化能力有限,不具有广谱、稳定和高效清除过量活性氧的功能。
公开号为JP2015165919A的发明专利公开了一种伤口覆盖材料。该发明的目的是提供一种具有一定的生物相容性和保水性以及较高强度的伤口敷料。其利用丝素蛋白多孔体所具有的吸收渗液能力,对皮肤的刺激性小以及透气性的特点解决了伤口组织液渗漏引发的问题,但对于烧创伤诱导的氧化应激反应仍不能有效解决。
发明内容
为解决上述问题,本发明对丝素蛋白进行改性,得到的改性丝素蛋白具有高强度广谱抗氧化作用,可以清除损伤器官微环境过量活性氧,加速修复因氧化应激导致的急性和慢性炎症损伤器官。
本发明的目的之一在于提供的是具有高强度广谱抗氧化作用的改性丝素蛋白,该改性丝素蛋白具有高强度广谱抗氧化作用,可以清除损伤器官微环境过量活性氧,加速修复因氧化应激导致的急性和慢性炎症损伤器官。
为实现上述目的,本发明采用以下技术方案:
具有高强度广谱抗氧化作用的改性丝素蛋白,其特征在于,所述改性丝素蛋白为部分去除钙或完全去除钙的丝素蛋白。
去除丝素蛋白中的钙离子,可以提高丝素蛋白的抗氧化作用,从而有效清除羟基自由基、过氧化氢、超氧阴离子和单线态氧。
本发明的目的之二在于提供用于改性丝素蛋白的试剂,该试剂可以将丝素纤维和/或丝素蛋白中的钙部分去除或者完全去除。
为实现上述目的,本发明采用以下技术方案:
用于改性丝素蛋白的试剂,其特征在于,所述试剂为钙的螯合剂或能与钙发生螯合作用的氨基酸。
进一步,所述钙的螯合剂为EDTA及其衍生物、EGTA AM及其衍生物、BAPTA 及其衍生物。
进一步,所述能与钙发生螯合作用的氨基酸包括谷氨酸、丙氨酸、天冬氨酸、苯丙氨酸、天冬酰胺氨酸、精氨酸、苏氨酸、酪氨酸、色氨酸、甘氨酸、丝氨酸、缬氨酸、组氨酸、异亮氨酸和半胱氨酸及其衍生物中的任一种或几种。
更进一步,所述EDTA及其衍生物为EDTA及其衍生物水溶液、EDTA及其衍生物改性的大分子、EDTA及其衍生物改性的高分子中的任一种或几种;所述EGTA AM及其衍生物为EGTA AM及其衍生物水溶液、EGTA AM及其衍生物改性的大分子、EGTA AM及其衍生物改性的高分子中的任一种或几种;所述BAPTA及其衍生物为BAPTA及其衍生物水溶液、BAPTA及其衍生物改性的大分子、BAPTA及其衍生物改性的高分子中的任一种或几种。
更进一步,所述氨基酸为氨基酸的水溶液、氨基酸改性大分子、氨基酸改性高分子中的任一种或几种。
进一步,所述试剂还包括中性盐溶液。
更进一步,所述中性盐溶液为溴化锂溶液、氯化钙三元液、硫氰酸锂溶液、氯化锌溶液中的任一种或几种。
本发明的目的之三在于提供一种运用试剂提升丝素蛋白广谱抗氧化作用的方法。
为实现上述目的,本发明采用以下技术方案:
运用试剂提升丝素蛋白广谱抗氧化作用的方法,用所述钙的螯合剂将丝素蛋白和/或丝素纤维中的钙部分去除或者完全去除,所述丝素蛋白来源于蚕茧、生丝或熟丝中的任一种或几种。
进一步,用所述钙的螯合剂将丝素蛋白和/或丝素纤维中的钙部分去除或者完全去除,再用所述中性盐溶液充分反应;
或用所述中性盐溶液与丝素蛋白和/或丝素纤维充分反应后,再用所述钙的螯合剂将丝素蛋白和/或丝素纤维中的钙部分去除或者完全去除。
进一步,用所述钙的螯合剂处理丝素纤维后,用所述溴化锂溶液溶解丝素纤维获得的高强度广谱抗氧化作用丝素蛋白溶液;
或用所述溴化锂溶液溶解丝素纤维制备的丝素蛋白溶液,再用所述钙的螯合剂 处理溴化锂提取的丝素蛋白溶液;
或用所述氯化钙三元液溶解丝素纤维制备的丝素蛋白溶液,再用所述钙的螯合剂处理氯化钙提取的丝素蛋白溶液。
本发明的目的之四在于提供的是改性丝素蛋白的制备方法,该方法工序简单,节约成本,方便质控,可以大规模生产。
为实现上述目的,本发明采用以下技术方案:
改性丝素蛋白的制备方法,具体包括以下步骤:
S1:用所述氯化钙三元液和/或溴化锂溶液溶解丝素纤维,经过除盐得到丝素蛋白溶液;
S2:将所述钙的螯合剂加入S1所得的丝素蛋白溶液中充分反应,除盐处理后得到低钙或者无钙的丝素蛋白溶液。
其中,除盐方法为透析法;中性盐溶液溶解丝素纤维的温度条件优选为80℃;加入钙的螯合剂后,反应时间为0.1~24h。
进一步,S1中所述氯化钙三元液为氯化钙、无水乙醇和水以摩尔比为1:1~5:1~20的比例配制而成。
进一步,S1中所述溴化锂溶液浓度为1-20M。
进一步,S2所述钙的螯合剂为EDTA或其衍生物,浓度为0.1~500mM。
进一步,改性丝素蛋白在制备治疗或检测氧化应激导致的急性和慢性炎症疾病中的药物和设备中的应用。
更进一步,所述设备为可穿戴设备。
进一步,含有改性丝素蛋白制备的药学上可接受的载体的制剂。
更进一步,所述制剂为喷剂、水凝胶、支架、药物载体。
本发明的目的之五在于提供的是用于制备烧创伤敷料的组合物。不平衡的活性氧改变细胞功能,导致信号传导通路异常,诱发炎症和瘢痕挛缩,而抗氧化剂治疗可以最大限度地减少烧伤病理生理学方面的损害,比如组织脂质过氧化,组织坏死,降低死亡率。
为实现上述目的,本发明采用以下技术方案:
方案一:用于制备烧创伤敷料的组合物,所述组合物由丝素蛋白和骨架按照1:2~10的质量比组成;所述骨架为壳聚糖-吸水聚合物骨架;所述壳聚糖和吸水聚合物 按照1:0.1~5的质量比组成。
方案二:用于制备烧创伤敷料的组合物,所述组合物由丝素蛋白、骨架和活力碘按照1:0.5~2:0.1~10的质量比组成;所述骨架由壳聚糖和吸水聚合物按照1:0.1~5的质量比组成;所述活力碘由单质碘和碘的缓释材料组成。
进一步,所述丝素蛋白为天然丝素蛋白和/或改性丝素蛋白;所述改性丝素蛋白选自部分去除或完全去除钙的丝素蛋白、加热处理的丝素蛋白及其衍生物、紫外照射的丝素蛋白及其衍生物、有机溶剂处理的丝素蛋白及其衍生物中的任一种或几种。
进一步,所述吸水聚合物选自天然吸水聚合物和/或人工合成吸水聚合物,所述天然吸水聚合物选自胶原、明胶、纤维素及其衍生物,所述工合成吸水聚合物选自聚乙二醇、聚丙烯酰胺、聚丙烯酸钠或聚乙烯醇。
进一步,所述聚乙二醇优选PEG-400,PEG-600,PEG-1500,PEG-4000,PEG-6000,PEG-20000中的一种或几种。
进一步,所述壳聚糖选自酸溶性壳聚糖、和/或水溶性壳聚糖、和/或酐类改性壳聚糖衍烧创伤、和/或高脱乙酰度壳聚糖、和/或经过酸酐类化合物修饰的壳聚糖。
进一步,方案二所述单质碘的缓释材料选自聚合物材料和/或小分子材料,所述聚合物材料包括淀粉、纤维素及其衍生物、聚乙烯吡咯烷酮、聚乙二醇,所述小分子材料包括α-环糊精、β-环糊精和γ-环糊精。
更进一步,所述抗菌剂选自纳米非金属抗菌材料、纳米金属抗菌材料、季铵盐类抗菌材料或氧化性材料;所述纳米非金属抗菌材料包括纳米四氧化三铁、纳米氧化锌和纳米二氧化钛,所述纳米金属抗菌材料包括纳米金、纳米银和纳米锌,所述季铵盐类抗菌材料包括壳聚糖季铵盐类和胍盐类,所述氧化性材料包括单质碘。
本发明的目的之六在于提供的是含有方案一所述组合物或方案二所述组合物的制备烧创伤敷料的制剂组合物。
为实现上述目的,本发明采用以下技术方案:
含有方案一所述组合物的制备烧创伤敷料的制剂组合物,所述制剂组合物由丝素蛋白、骨架和辅料按照1:2~10:0.1~5的质量比组成;所述辅料为增塑剂和/或乳化剂。
含有方案二所述组合物的制备烧创伤敷料的制剂组合物,所述制剂组合物由丝素蛋白、骨架、活力碘和辅料按照1:0.5~2:0.1~10的质量比组成;所述辅料为增塑 剂和/或乳化剂。
进一步,所述增塑剂选自甘油、丙二醇或山梨醇。
进一步,所述乳化剂选自聚氧乙烯醚、环氧乙烷嵌段共聚物、多元醇脂肪酸酯或聚乙烯醇。
本发明的目的之七在于提供的是用方案一所述组合物或其制剂组合物制备烧创伤敷料的方法,该烧创伤敷料采用的制备方法中间无须分离纯化过程,既节约成本,方便质控,又利于大规模生产。。
为实现上述目的,本发明采用以下技术方案:
用方案一所述组合物或上述制剂组合物制备烧创伤敷料的方法,具体包括以下步骤:
S1:制备丝素蛋白;
S2:将S1所得物与骨架和辅料混合。
进一步,在S2之后还包括S3:将S2所得物用硬脂酸改性。
进一步,所述S1为制备上述改性丝素蛋白,在温度为60℃~120℃,时间为1~12h的条件下进行加热,冷却备用;
进一步,所述S2为将S1所得物与上述骨架和辅料混合,然后搅拌乳化,倒入磨具中,在-4℃冷冻4~24h,-20℃冷冻6~12h,-80℃冷冻6~12h的条件下用冻干,即得。
进一步,所述S3为将S2获得的烧创伤敷料在水中完全溶胀后,用硬脂酸溶液滴在其表面,后用无水乙醇冲洗,-20℃放置2h,-70℃条件下放置6h后再冻干,即得。
进一步,S1在制备过程中加入了钙的螯合剂或能与钙发生螯合作用的氨基酸;所述钙的螯合剂为EDTA及其衍生物、EGTA AM及其衍生物、BAPTA及其衍生物;所述能与钙发生螯合作用的氨基酸包括谷氨酸、丙氨酸、天冬氨酸、苯丙氨酸、天冬酰胺氨酸、精氨酸、苏氨酸、酪氨酸、色氨酸、甘氨酸、丝氨酸、缬氨酸、组氨酸、异亮氨酸和半胱氨酸及其衍生物中的任一种或几种。
本发明的目的之八在于提供的是用上述制备烧创伤敷料的方法获得的烧创伤敷料,该烧创伤敷料具有广谱抗氧化作用,能促进氧化应激微环境下慢性难愈合创面的愈合,集聚保湿性、高强度、透气性、阻隔性以及易揭性等特点。
为实现上述目的,本发明采取以下技术方案:
用上述制备烧创伤敷料的方法获得的烧创伤敷料。
进一步,所述烧创伤敷料为多孔结构,其孔隙率为55%~80%,其孔径大小为0.5mm~2mm。
进一步,所述烧创伤敷料的吸水倍率为15~20倍;其吸水倍率可用如下公式计算:Q=(M2-M1)/M1;Q为吸水倍率,单位为g/g;M1为吸液前试样质量,单位为g;M2为吸液后试样质量,单位为g。
更进一步,所述烧创伤敷料在不同介质中的吸水倍率为:在去离子水中的吸水倍率15~19;在盐水中吸水倍率13~16;在磷酸缓冲液中的吸水倍率11~14;在细胞培养液中的吸水倍率8~13;在血清中的吸水倍率4~9。
进一步,所述烧创伤敷料经过冻干处理、低温处理、高温处理、醇类改性修饰和/或射线辐照。
本发明的目的之九在于提供一种吸附液体的方法,该方法为有效吸附液体提供了一种新思路。
为实现上述目的,本发明采取以下技术方案:
所述方法为用上述烧创伤敷料对液体进行吸附,所述液体进入所述烧创伤敷料的孔隙结构,使所述烧创伤敷料孔道壁增厚并凝胶化使管腔变无。
本发明的目的之十在于提供一种阻隔微生物的方法,该方法为有效阻隔微生物提供了一种新思路。
为实现上述目的,本发明采取以下技术方案:
用含有上述吸附液体的方法的对微生物进行阻隔,用上述吸附液体的方法对上述液体进行吸附,上述烧创伤敷料孔道壁增厚并凝胶化使管腔变无后将微生物隔绝在外。
本发明的目的之十一在于提供的是用方案二所述组合物或其制剂组合物制备烧创伤敷料的方法,该制备生物敷料的方法中间无须分离纯化过程,既节约成本,方便质控,又利于大规模生产。
为实现上述目的,本发明采取以下技术方案:
用方案二所述组合物或其制剂组合物制备烧创伤敷料的方法,具体包括以下步骤:
S1:制备改性丝素蛋白和活力碘;
S2:将S1所得物与骨架和辅料混合。
进一步,在S2之后还包括S3:将S2所得物用硬脂酸改性。
进一步,所述S2为将S1所得物与骨架和辅料混合,搅拌乳化后在4℃放置1h,-20℃放置4h,-70℃放置6h条件下冻干,即得。
进一步,所述S3为将S2所得物在水中完全溶胀后,用硬脂酸溶液滴在其表面,后用无水乙醇冲洗,-20℃放置2h,-70℃条件下放置6h后再冻干,即得。
更进一步,S1在制备过程中加入了钙的螯合剂或能和钙发生螯合作用的氨基酸;所述钙的螯合剂为EDTA及其衍生物、EGTA AM及其衍生物、BAPTA及其衍生物;所述能和钙发生螯合作用氨基酸包括谷氨酸、丙氨酸、天冬氨酸、苯丙氨酸、天冬酰胺氨酸、精氨酸、苏氨酸、酪氨酸、色氨酸、甘氨酸、丝氨酸、缬氨酸、组氨酸、异亮氨酸和半胱氨酸及其衍生物中的任一种或几种。
本发明的目的之十二在于提供的是用上述制备烧创伤敷料的方法获得的烧创伤敷料,该烧创伤敷料具有广谱抗氧化作用,能促进氧化应激微环境下慢性难愈合创面的愈合,集聚保湿性、高强度、透气性、阻隔性以及易揭性等特点。
为实现上述目的,本发明采取以下技术方案:
用上述制备烧创伤敷料的方法获得的烧创伤敷料。
进一步,所述烧创伤敷料为多孔结构,其孔隙率为55%~80%,其孔径大小为0.5~2mm。
进一步,所述烧创伤敷料的吸水倍率为1~20倍;其吸水倍率可用如下公式计算:Q=(M2-M1)/M1;Q为吸水倍率,单位为g/g;M1为吸液前试样质量,单位为g;M2为吸液后试样质量,单位为g。
更进一步,所述烧创伤敷料在不同介质中的吸水倍率为:在去离子水中的吸水倍率14~16;在盐水中吸水倍率为12~14;在磷酸缓冲液中的吸水倍率为9~11;在细胞培养液中的吸水倍率为7~10;在血清中的吸水倍率为5~7。
进一步,所述烧创伤敷料经过冻干处理、低温处理、高温处理、醇类改性修饰和/或射线辐照。
本发明的目的之十三在于提供一种用上述烧创伤敷料吸附液体的方法,该方法为有效吸附液体提供了一种新思路。
为实现上述目的,本发明采取以下技术方案:
一种吸附液体的方法,用上述烧创伤敷料对液体进行吸附,所述液体进入所述烧创伤敷料的孔隙结构,使所述烧创伤敷料孔道壁增厚并凝胶化使管腔变无。
本发明的目的之十四在于提供一种阻隔微生物的方法,该方法为有效阻隔微生物提供了一种新思路。
为实现上述目的,本发明采取以下技术方案:
用含有上述吸附液体的方法的对微生物进行阻隔,用上述吸附液体的方法对上述液体进行吸附,上述烧创伤敷料孔道壁增厚并凝胶化使管腔变无后将微生物隔绝在外。
本发明的有益效果在于:
(1)本发明制备的丝素蛋白抗氧化效果显著,可以清除体内多种自由基,具有广谱抗氧化作用,可以作为广谱抗氧化剂治疗因氧化应激导致的急性和慢性炎症疾病;且本发明提供的丝素蛋白的制备方法工序简单,既节约成本,方便质控,又利于大规模生产。
(2)本发明制备的丝素蛋白可以加工成组织工程需要的各种器件,用于加速损伤组织修复,消除损伤部位的过量活性氧的能力使其在组织工程领域应用具有巨大优势。
(3)本发明提供的烧创伤敷料能降低创面氧化应激反应,恢复相关细胞的修复功能,加速创面的愈合。
(4)本发明提供的烧创伤敷料中适当比例的吸水大分子或聚合物具有一定的吸水锁水作用。当敷料与体液接触时,材料自身溶胀形成凝胶状,可以有效将创面与外界隔绝,同时具有良好的透气性。该生物敷料的锁水作用使接触面保持一定的湿度,从而有利于加速上皮组织形成、减轻疼痛、分解坏死组织,并利于抗菌剂的缓慢释放。
(5)本发明提供的烧创伤敷料可与创面紧密贴合,封闭创面,阻隔有害微粒接触创面,且不会与创面组织粘连,适用于大面积烧伤、大面积创伤或深度烧创伤等情况。
(6)本发明提供的生物敷料中抗菌剂缓释载体可以长时间发挥缓释抗菌剂,减少或者阻止创面微生物生长。
(7)本发明提供的烧创伤敷料采用冻干法制备,中间无须分离纯化过程,既节约成本,方便质控,又利于大规模生产。
附图说明
图1为实施例6制备的烧创伤敷料样品1的电镜照片;
图2为实施例14制备的生物敷料的电镜照片。
具体实施方式
下面将结合具体的实施例对本发明的技术方案进行更进一步地清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例。因此,基于本发明中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的其他所有实施例都属于本发明的保护范围。
如无特殊说明,实施例中的百分数均表示溶剂的质量分数。
实施例1.制备丝素蛋白样品1
(1)丝素纤维10g,加入100mL氯化钙三元液,于80℃条件下溶解,透析3天,每天换去离子水3次,得丝素蛋白溶液;
(2)取丝素蛋白溶液20mL,加入2mL浓度为100mmol/L的EDTA水溶液反应1h,透析3天,每天换水3次,得低钙或无钙的丝素蛋白溶液,即样品1。
实施例2.制备丝素蛋白样品2
(1)丝素纤维10g,加入100mL浓度为10mol/L的溴化锂溶液,于80℃条件下溶解,透析3天,每天换去离子水3次,得丝素蛋白溶液;
(2)取丝素蛋白溶液20mL,加入浓度为100mmol/L的EDTA水溶液反应1h,透析3天,每天换水3次,得低钙或无钙的丝素蛋白溶液,即样品2。
实施例3.制备丝素蛋白样品3
(1)丝素纤维1g,加入20ml浓度为100mmol/L的EDTA水溶液反应24h,透析3天,每天换水3次;50℃烘干,得低钙或无钙的丝素纤维。
(2)取10g低钙或无钙的丝素纤维,加入100mL浓度为10mol/L的溴化锂溶液,80℃反应24h,透析3天,每天换水3次,得低钙或无钙的丝素蛋白溶液,即样品3。
实施例4.制备丝素蛋白的部分优选条件
表1
Figure PCTCN2022089182-appb-000001
实施例5.体外广谱抗氧化性能实验
将实施例1-3中制备的低钙或无钙的丝素蛋白溶液样品进行广谱抗氧化性能测试。具体方法为:将实施例1制备的样品1、实施例2制备的样品2、实施例3制备的样品3、谷胱甘肽和水分别与超氧阴离子、羟基自由和H 2O 2反应,然后用超氧阴离子测试试剂盒、羟基自由基测试试剂盒和过氧化氢定量分析试剂盒检验5组样品各自清除超氧阴离子、羟基自由和H 2O 2的能力。样品抗氧化作用评价记载于表2。
表2 抗氧化作用评价
样品 羟基自由基 过氧化氢 超氧阴离子 氧化物
去离子水
谷胱甘肽 +++ + ++ ++
样品1 ++ +++ ++ +++
样品2 + ++ ++ ++
样品3 ++ ++ ++ +
注:“-”表示无抗氧化作用;“+”表示清除率10%~50%;“++”表示清除率50%~90%;“+++”表示清除率>90%。
通过表2可以看出,不同制备工艺制备出的丝素蛋白溶液清除超氧阴离子、羟基自由和H 2O 2的能力不同,但采用本发明的三种工艺制备出的3组样品均具有良好的抗氧化作用。
本专利从细胞水平检测了丝素蛋白的抗氧化能力,二氯二氢荧光素作为细胞活性氧指示探针,绿色荧光越强说明细胞内活性氧含量越高。当用过氧化氢刺激细胞时,二氯二氢荧光素发出很强的绿色荧光。
谷胱甘肽具有良好的抗氧化作用。将谷胱甘肽、实施例制备样品1、实施例制备样品2和实施例制备样品3加入细胞发现,绿色荧光含量很低,统计学结果表明实施例制备样品1、实施例制备样品2和实施例制备样品3抗氧化作用与谷胱甘肽相同,无显著性差异,详见表3。
表3
样品 胞内活性氧清除效率(%)
对照 64.54
H 2O 2 0
谷胱甘肽 81.64
实施例样品1 80.07
实施例样品2 83.75
实施例样品3 76.18
实施例6.烧创伤敷料样品1的制备
1)取20mL 4%的丝素蛋白溶液在95℃条件下加热处理2h,冷却备用;
2)在步骤1)所得溶液中加入1mL甘油,机械搅拌10min后加入10mL 5%的明胶溶液,再机械搅拌10min形成白色乳液,取10mL 2%的壳聚糖溶液加入上述白色乳液中机械搅拌30min备用;
3)将步骤2)制得的白色乳液倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干后获得CTS-GEL/SF敷料备用;
4)让CTS-GEL/SF敷料充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-GEL/SF敷料的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-GEL/SF敷料的光滑表面3次,得到CTS-GEL/SF/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例7.烧创伤敷料样品2的制备
1)取20mL 4%的丝素蛋白溶液在95℃条件下加热处理2h,冷却备用;
2)在步骤1)所得溶液中加入1mL甘油,机械搅拌10min后加入10mL 5%的聚乙二醇(PEG)溶液,再机械搅拌10min形成白色乳液,取10mL 2%的壳聚糖溶液加入上述白色乳液中机械搅拌30min备用;
3)将步骤2)制得的白色乳液倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干后获得CTS-PEG/SF敷料备用;
4)让CTS-PEG/SF敷料充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-PEG/SF敷料的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-PEG/SF敷料的光滑表面3次,得到CTS-PEG/SF/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例8.烧创伤敷料样品3的制备
1)将单质碘溶解在75%乙醇溶液中,配制成质量分数为5%的碘酒。将2%的β-环糊精加热溶解,将5%的碘酒加入到β-环糊精溶液中,超声30min。旋转蒸发仪蒸干液体,收集固体粉末备用;
2)取20mL 4%的丝素蛋白溶液经过95℃加热处理2h,加入1mL甘油,机械搅拌10min,加入10mL 5%的聚乙烯醇溶液,机械搅拌10min形成白色乳液,取10mL2%壳聚糖溶液加入上述白色乳液中,机械搅拌30min备用;
3)取步骤1)所得物1g溶解在5mL去离子水里,加入步骤2)所得物中,机械搅拌10min后倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干,获得CTS-PVA/SF/CD-I海绵备用;
4)让CTS-PVA/SF/CD-I海绵充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-PVA/SF/CD-I海绵的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-PVA/SF/CD-I敷料的光滑表面3次,得到CTS-PVA/SF/CD-I/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例9.烧创伤敷料样品4的制备
1)将单质碘溶解在75%乙醇溶液中,配制成质量分数为5%的碘酒。将5%的碘酒加入到2%的聚乙烯吡咯烷酮溶液中,超声30min。旋转蒸发仪蒸干液体,收集固体粉末备用;
2)取20mL 4%的丝素蛋白溶液经过95℃加热处理2h,加入1mL甘油,机械搅 拌10min,加入10mL 5%的聚乙烯醇溶液,机械搅拌10min形成白色乳液,取10mL2%壳聚糖溶液加入上述白色乳液中,机械搅拌30min备用;
3)取步骤1)所得物1g溶解在5mL去离子水里,加入步骤2)所得物中,机械搅拌10min后倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干,获得CTS-PVA/SF/PP-I海绵备用;
4)让CTS-PVA/SF/PP-I海绵充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-PVA/SF/PP-I海绵的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-PVA/SF/PP-I敷料的光滑表面3次,得到CTS-PVA/SF/PP-I/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例10.物理和结构表征
将实施例6-9制备的烧创伤敷料以样品1为代表,进行大体结构观察,并采用扫描电子显微镜进行微观结构观察。如图1所示,样品皆为相互连通的多孔道结构。其孔隙率在55%-80%之间。互相贯穿的孔道结构与体液接触后其孔隙结构迅速将体液吸入孔内,吸水聚合物迅速凝胶化,一方面使得孔道壁吸水后增厚并凝胶化,管腔变无,另一方面可有效阻隔空气微生物伤侵染伤口。
实施例11.物理性能表征
对实施例6-9制备的烧创伤敷料样品的溶胀性能进行测试,分别准确称取实施例6-9中的试样0.1g,将其浸于去离子水(pH=7.0)、生理盐水、磷酸缓冲液、DMEM培养基和血清液中,37℃吸水完全溶胀,吸去表面水分,称取试样吸液后质量,计算样品的吸水倍率。吸水倍率Q计算公式如下:Q=(M2-M1)/M1,Q为吸水(盐水)倍率,单位为g/g;M1为吸液前试样质量,单位为g;M2为吸液后试样质量,单位为g。
如表4所示,实施例6-9中样品1-4表现出相近的吸水性。以实施例4制备敷料为例,其在不同介质中的吸水倍率:在去离子水中的吸水倍率为14~16;在盐水中吸水倍率为12~14;在磷酸缓冲液中的吸水倍率为9~11;在细胞培养液中的吸水倍率为7~10;在血清中的吸水倍率为5~7。
表4 不同介质吸水倍率
材料 去离子水 生理盐水 PBS DMEM 血清
实施例6样品 16±1.51 14±2.14 12±2.43 10±1.73 7±2.12
实施例7样品 15±1.43 14±1.82 12±1.83 9±1.78 5±2.33
实施例8样品 17±1.74 15±1.48 13±1.91 10±2.54 7±1.73
实施例9样品 18±2.31 16±1.55 14±2.12 12±1.93 8±2.32
将实施例6-9获得的烧创伤敷料进行保湿性能检测,结果显示,实施例6-9获得的烧创伤敷料保湿时间比对照组长,保湿时间均在15小时以上。
实施例12.烧创伤敷料样品的体外广谱抗氧化性能实验
对实施例6-9制备的烧创伤敷料样品的广谱抗氧化能进行测试。
将实施例6-9中各样品分别与含有超氧阴离子、羟基自由基和H 2O 2的溶液反应,用谷胱甘肽和水作为对照。用超氧阴离子测试试剂盒、羟基自由基测试试剂盒和过氧化氢定量分析试剂盒检验6组样品分别清除超氧阴离子、羟基自由基和H 2O 2的能力。结果如表5所示,实施例6-9中各样品和谷胱甘肽有具有良好的抗氧化作用。
表5 样品的广谱抗氧化能力
Figure PCTCN2022089182-appb-000002
实施例13.全层皮肤损伤修复体内评估
深圳湾实验室动物伦理委员会批准体内动物实验。
将120只BALB/c小鼠,雄性,每只约重18g±2g,随机分为6组(每组20只小鼠)。腹腔注射戊巴比妥钠(20mg/kg)麻醉小鼠,脱除皮毛,在每只小鼠背部做成Φ1cm全层皮肤损伤。分别用本发明实施例5-8样品和无菌纱布紧密覆盖创面,每周进行2 次更换。通过BALB/c小鼠感染创面修复情况,对本发明的烧创伤敷料进行伤口愈合效应的评价。
5种敷料治疗下的创面均有不同程度的结痂,并且创面开始收缩。其中本发明实施例6制备敷料修复的创面收缩较为明显,治疗效果最佳。5个试样的治疗结果如表6所示,创伤后第3天,本发明实施例6-9样品伤口愈合分别达到51.64±1.45、45.51±2.31、46.11±1.42和43.73±1.71,纱布组仅达到26.12±2.26。实施例6-9样品治疗组创面边缘未见红肿发生,纱布组仍可见部分感染渗出物。
表6 创面愈合率
Figure PCTCN2022089182-appb-000003
通过对小鼠创伤后第7天创面的观察发现,实施例6-9样品治疗组愈合率在69.71±1.31~80.14±1.61。纱布组肉芽生长明显,仍存在部分炎性渗出物。术后第12天,实施例6样品治疗组最佳可以达到99.17±2.42,实施例7-9样品治疗组分别为95.62±2.31、93.56±1.63和94.93±1.75。
三组的愈合率具有显著的统计学差异(Table1p<0.01),结果说明实施例6-9样品治疗组最佳,纱布组较差。
实施例14.烧创伤敷料样品5的制备
1)将单质碘溶解在75%乙醇溶液中,配制成质量分数为5%的碘酒。将2%β-环糊精加热溶解,将5%碘酒加入到β-环糊精溶液中,超声30min。旋转蒸发仪蒸干液体,收集固体粉末备用;
2)取20mL 4%的丝素蛋白溶液经过95℃加热处理2h,加入1mL纯甘油,机械搅拌10min,加入10mL 5%的明胶溶液,机械搅拌10min形成白色乳液,取10mL 2%壳聚糖溶液加入上述白色乳液中,机械搅拌30min备用;
3)取步骤1)所得物1g溶解在4mL去离子水里,加入步骤2)所得物中,机械搅拌10min后倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干,获得CTS-GEL/SF/CD-I海绵备用;
4)让CTS-GEL/SF/CD-I海绵充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-GEL/SF/CD-I海绵的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-GEL/SF/CD-I敷料的光滑表面3次,得到CTS-GEL/SF/CD-I/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例15.烧创伤敷料样品6的制备
1)将单质碘溶解在75%乙醇溶液中,配制成5%的碘酒。将5%的碘酒加入到2%的聚乙烯吡咯烷酮溶液中,超声30min。旋转蒸发仪蒸干液体,收集固体粉末备用;
2)取20mL 4%的丝素蛋白溶液经过95℃加热处理2h,加入1mL甘油,机械搅拌10min,加入10mL 5%的明胶溶液,机械搅拌10min形成白色乳液,取10mL2%壳聚糖溶液加入上述白色乳液中,机械搅拌30min备用;
3)取步骤1)所得物1g溶解在5mL去离子水里,加入步骤2)所得物中,机械搅拌10min后倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干,获得CTS-GEL/SF/PP-I海绵备用;
4)让CTS-GEL/SF/PP-I海绵充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-GEL/SF/PP-I海绵的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-GEL/SF/PP-I敷料的光滑表面3次,得到CTS-GEL/SF/PP-I/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例16.烧创伤敷料样品7的制备
1)将单质碘溶解在75%乙醇溶液中,配制成质量分数为5%的碘酒。将2%的β-环糊精加热溶解,将5%的碘酒加入到β-环糊精溶液中,超声30min。旋转蒸发仪蒸干液体,收集固体粉末备用;
2)取20mL 4%的丝素蛋白溶液经过95℃加热处理2h,加入1mL甘油,机械搅拌10min,加入10mL 5%的聚乙烯醇溶液,机械搅拌10min形成白色乳液,取10mL 2%壳聚糖溶液加入上述白色乳液中,机械搅拌30min备用;
3)取步骤1)所得物1g溶解在5mL去离子水里,加入步骤2)所得物中,机械搅拌10min后倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置 6h,冻干机冻干,获得CTS-PVA/SF/CD-I海绵备用;
4)让CTS-PVA/SF/CD-I海绵充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-PVA/SF/CD-I海绵的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-PVA/SF/CD-I敷料的光滑表面3次,得到CTS-PVA/SF/CD-I/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例17.烧创伤敷料样品8的制备
1)将单质碘溶解在75%乙醇溶液中,配制成质量分数为5%的碘酒。将5%的碘酒加入到2%的聚乙烯吡咯烷酮溶液中,超声30min。旋转蒸发仪蒸干液体,收集固体粉末备用;
2)取20mL 4%的丝素蛋白溶液经过95℃加热处理2h,加入1mL甘油,机械搅拌10min,加入10mL 5%的聚乙烯醇溶液,机械搅拌10min形成白色乳液,取10mL 2%壳聚糖溶液加入上述白色乳液中,机械搅拌30min备用;
3)取步骤1)所得物1g溶解在5mL去离子水里,加入步骤2)所得物中,机械搅拌10min后倒入100×150mm容器中,4℃放置1h,-20℃放置4h,-70℃放置6h,冻干机冻干,获得CTS-PVA/SF/PP-I海绵备用;
4)让CTS-PVA/SF/PP-I海绵充分吸收去离子水,-20℃放置4h,将8mL硬脂酸溶液(40mmol/L乙醇,DCC作为脱水剂)均匀地浇在CTS-PVA/SF/PP-I海绵的光滑表面上,冷冻2小时,在20℃条件下用无水乙醇冲洗CTS-PVA/SF/PP-I敷料的光滑表面3次,得到CTS-PVA/SF/PP-I/SA敷料,裁切,包装,钴60辐照灭菌,即得。
实施例18.物理和结构表征
实施例14-17所制备的生物敷料样品有弹性,可卷曲,无异味。以烧创伤敷料样品5为代表,进行大体结构观察,并采用扫描电子显微镜进行微观结构观察。
如图2所示,样品为相互连通的多孔道结构,其孔隙率在60%-80%之间。互相贯穿的孔道结构与体液接触后其孔隙结构迅速将体液吸入孔内,吸水聚合物迅速凝胶化,一方面使得孔道壁吸水后增厚并凝胶化,管腔变窄,管壁粘弹性增加;另一方面迅速凝胶化敷料开始缓慢释放活力碘,起到广谱抗菌和促进愈合的作用。
实施例19.物理性能表征
将实施例14-17中制备的烧创伤敷料样品的溶胀性能进行测试。
对实施例14-17中制备的烧创伤敷料样品吸水倍率进行测试:分别准确称取实施例14-17中的试样0.1g,将其浸于去离子水(pH=7.0)、生理盐水、磷酸缓冲液、DMEM培养基和血清液中,37℃吸水完全溶胀,吸去表面水分,称取试样吸液后质量,计算样品的吸水倍率。吸水倍率Q计算公式如下:Q=(M2-M1)/M1,Q为吸水(盐水)倍率,单位为g/g;M1为吸液前试样质量,单位为g;M2为吸液后试样质量,单位为g。结果如表7所示,烧创伤敷料样品5-8表现出相近的吸水性。
以实施例14制备的烧创伤敷料样品5为例,其在不同介质中的吸水倍率:在去离子水中的吸水倍率为14~16;在盐水中吸水倍率为12~14;在磷酸缓冲液中的吸水倍率为9~11;在细胞培养液中的吸水倍率为7~10;在血清中的吸水倍率为5~7。
表7 不同介质吸水倍率
材料 去离子水 生理盐水 PBS DMEM 血清
实施例14样品 15±1.21 13±1.14 10±1.43 8±1.17 6±1.21
实施例15样品 17±1.31 15±1.51 13±1.12 10±1.21 7±1.46
实施例16样品 14±1.35 11±1.32 8±1.65 7±1.41 5±1.83
实施例17样品 18±1.34 16±1.68 13±1.71 11±1.54 6±1.45
将实施例14-15获得的烧创伤敷料进行保湿性能检测,其保湿时间比对照组长,保湿时间在15小时以上。
将实施例14-15制备的烧创伤敷料进行碘缓释功能测试,分别准确称取实施例5-8中的试样0.1g,37℃将其浸于生理盐水中,于2h、4h、8h、12h、24h、36h、48h、60h和72h分别用电感耦合等离子光谱发生仪检测生理盐水释放碘的含量,结果如表8所示。
表8 碘缓释功能评价
Figure PCTCN2022089182-appb-000004
Figure PCTCN2022089182-appb-000005
实施例20.体外广谱抗氧化性能实验
将实施例14-17中制备的烧创伤敷料样品其广谱抗氧化能进行测试,结果如表9所示。将实施例14-17中样品、谷胱甘肽溶液和水与含有超氧阴离子、羟基自由基和H 2O 2的溶液进行反应,用超氧阴离子测试试剂盒、羟基自由基测试试剂盒和过氧化氢定量分析试剂盒检验6组样品分别清除超氧阴离子、羟基自由基和H 2O 2的能力。实验结果表明,实施例14-17中的样品和谷胱甘肽有具有良好的抗氧化作用。
表9 样品的广谱抗氧化能力
Figure PCTCN2022089182-appb-000006
实施例21.体外广谱抗菌性能实验
将实施例14-17制备的烧创伤敷料的抗菌活性通过抑菌环法进行测试。
使用金黄色葡萄球菌、耐药型金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌、耐药型铜绿假单胞菌和白色念珠菌进行敷料的抗菌活性评估。将70μL细菌悬浮液(1×108CFU/mL)铺在LB琼脂平板上,将无菌纱布、含碘纱布、实施例14-17制备的烧创伤敷料放在琼脂表面,37℃孵育12h后,测得抑菌环的直径。表10显示了6种敷料对6种菌株(白色念珠菌,大肠杆菌,金黄色葡萄球菌,铜绿假单胞菌,金黄色葡萄球菌耐药菌株和铜绿假单胞菌耐药菌株)的杀伤作用。
表10 抗菌效果评价
Figure PCTCN2022089182-appb-000007
注:不抗菌用“-”;抗菌用“+”表示,其中抑菌圈直径大于3mm用“++”表示
实施例22.感染性伤口愈合效应体内评估
深圳湾实验室动物伦理委员会批准体内动物实验。
将120只BALB/c小鼠,雄性,每只约重18g±2g,随机分为6组(每组20只小鼠)。腹腔注射戊巴比妥钠(20mg/kg)麻醉小鼠,脱除皮毛,在每只小鼠背部做成Φ1cm全层皮肤损伤,创面上滴加浓度为1×108CFU的铜绿假单胞菌菌液,每个创面80μl,形成感染创面。分别用本发明实施例14-17中的样品、含碘纱布和无菌纱布紧密覆盖创面。每周进行2次更换。通过BALB/c小鼠感染创面修复情况,对本发明抗氧化抗菌促愈合烧创伤敷料进行伤口愈合效应的评价。6种敷料治疗下的创面均有不同程度的结痂,并且创面开始收缩。
治疗结果如表11所示,创伤后第3天,本发明实施例14-17样品伤口愈合分别达到50.42±2.23、43.32±1.21、48.56±2.13和40.52±1.34,含碘纱布和纱布组仅达到 19.34±1.32和28.23±1.08。实施例14-17样品治疗组创面边缘未见红肿发生,含碘纱布组创面边缘红肿,纱布组仍可见部分感染渗出物。通过对小鼠创伤后第7天创面的观察我们发现,实施例14-17样品治疗组愈合率在67.43±2.12~79.73±1.24。而含碘纱布与创面粘连严重,创面边缘红肿明显。纱布组肉芽生长明显,仍存在部分炎性渗出物。术后第12天,实施例14样品治疗组最佳可以达到99.01±1.31,实施例15-17样品治疗组分别为93.24±1.12、95.41±1.36和90.47±1.67,而含碘纱布组仅仅是67.02±1.41,这可能是在消除感染后,过量的碘对伤口造成损伤。
表11 感染性创面的创面愈合率
Figure PCTCN2022089182-appb-000008
结果表明,六组的愈合率具有显著的统计学差异(Table1p<0.01),实施例14-17样品治疗组最佳,纱布组次之,含碘纱布较差。其中实施例14制备的敷料修复的创面收缩较为明显,治疗效果最佳。

Claims (42)

  1. 具有高强度广谱抗氧化作用的改性丝素蛋白,其特征在于,所述改性丝素蛋白为部分去除钙或完全去除钙的丝素蛋白。
  2. 用于改性丝素蛋白的试剂,其特征在于,所述试剂为钙的螯合剂或能与钙发生螯合作用的氨基酸。
  3. 根据权利要求2所述的试剂,其特征在于,所述钙的螯合剂为EDTA及其衍生物、EGTA AM及其衍生物、BAPTA及其衍生物。
  4. 根据权利要求2所述的试剂,其特征在于,所述能与钙发生螯合作用的氨基酸包括谷氨酸、丙氨酸、天冬氨酸、苯丙氨酸、天冬酰胺氨酸、精氨酸、苏氨酸、酪氨酸、色氨酸、甘氨酸、丝氨酸、缬氨酸、组氨酸、异亮氨酸和半胱氨酸及其衍生物中的任一种或几种。
  5. 根据权利要求2所述的试剂,其特征在于,所述试剂还包括中性盐溶液。
  6. 根据权利要求5所述的试剂,其特征在于,所述中性盐溶液为溴化锂溶液、氯化钙三元液、硫氰酸锂溶液、氯化锌溶液中的任一种或几种。
  7. 运用权利要求6所述的试剂提升丝素蛋白广谱抗氧化作用的方法,其特征在于,用所述钙的螯合剂将丝素蛋白和/或丝素纤维中的钙部分去除或者完全去除,所述丝素蛋白来源于蚕茧、生丝或熟丝中的任一种或几种。
  8. 根据权利要求7所述的方法,其特征在于,用所述钙的螯合剂将丝素蛋白和/或丝素纤维中的钙部分去除或者完全去除,再用所述中性盐溶液充分反应;
    或用所述中性盐溶液与丝素蛋白和/或丝素纤维充分反应后,再用所述钙的螯合剂将丝素蛋白和/或丝素纤维中的钙部分去除或者完全去除。
  9. 根据权利要求8所述的方法,其特征在于,用所述钙的螯合剂处理丝素纤维后,用所述溴化锂溶液溶解丝素纤维获得的高强度广谱抗氧化作用丝素蛋白溶液;
    或用所述溴化锂溶液溶解丝素纤维制备的丝素蛋白溶液,再用所述钙的螯合剂处理溴化锂提取的丝素蛋白溶液;
    或用所述氯化钙三元液溶解丝素纤维制备的丝素蛋白溶液,再用所述钙的螯合剂处理氯化钙提取的丝素蛋白溶液。
  10. 权利要求1所述的改性丝素蛋白的制备方法,其特征在于,具体包括以下步骤:
    S1:用权利要求6所述氯化钙三元液和/或溴化锂溶液溶解丝素纤维,经过除盐得到丝素蛋白溶液;
    S2:将权利要求2所述钙的螯合剂加入S1所得的丝素蛋白溶液中充分反应,除盐处理后得到低钙或者无钙的丝素蛋白溶液。
  11. 根据权利要求10所述的方法,其特征在于,S1中所述氯化钙三元液为氯化钙、无水乙醇和水以摩尔比为1:1~5:1~20的比例配制而成。
  12. 根据权利要求10所述的方法,其特征在于,S1中溴化锂浓度为1-20M。
  13. 根据权利要求10所述的方法,其特征在于,S2所述钙的螯合剂为EDTA或其衍生物,浓度为0.1~500mM。
  14. 权利要求1所述的改性丝素蛋白在制备治疗或检测氧化应激导致的急性和慢性炎症疾病中的药物和设备中的应用。
  15. 根据权利要求14所述的应用,其特征在于,所述设备为可穿戴设备。
  16. 含有权利要求1所述的改性丝素蛋白制备的药学上可接受的载体的制剂。
  17. 根据权利要求16所述的制剂,其特征在于,所述制剂为喷剂、水凝胶、支架、药物载体。
  18. 用于制备烧创伤敷料的组合物,其特征在于,所述组合物由丝素蛋白和骨架按照1:2~10的质量比组成;所述骨架为壳聚糖-吸水聚合物骨架;所述壳聚糖和吸水聚合物按照1:0.1~5的质量比组成。
  19. 用于制备烧创伤敷料的组合物,其特征在于,所述组合物由丝素蛋白、骨架和活力碘按照1:0.5~2:0.1~10的质量比组成;所述骨架由壳聚糖和吸水聚合物按照1:0.1~5的质量比组成;所述活力碘由单质碘和碘的缓释材料组成。
  20. 根据权利要求18所述的组合物和/或权利要求19所述的组合物,其特征在于,所述丝素蛋白为天然丝素蛋白和/或改性丝素蛋白;所述改性丝素蛋白选自部分去除或完全去除钙的丝素蛋白、加热处理的丝素蛋白及其衍生物、紫外照射的丝素蛋白及其衍生物、有机溶剂处理的丝素蛋白及其衍生物中的任一种或几种。
  21. 根据权利要求18所述的组合物和/或权利要求19所述的组合物,其特征在于,所述吸水聚合物选自天然吸水聚合物和/或人工合成吸水聚合物,所述天然吸水聚合物选自胶原、明胶、纤维素及其衍生物,所述工合成吸水聚合物选自聚乙二醇、聚丙烯酰胺、聚丙烯酸钠或聚乙烯醇。
  22. 根据权利要求19所述的组合物,其特征在于,所述单质碘的缓释材料选自聚合物材料和/或小分子材料,所述聚合物材料包括淀粉、纤维素及其衍生物、聚乙烯吡咯烷酮、聚乙二醇,所述小分子材料包括α-环糊精、β-环糊精和γ-环糊精。
  23. 含有权利要求18所述组合物的制备烧创伤敷料的制剂组合物,其特征在于,所述制剂组合物由丝素蛋白、骨架和辅料按照1:2~10:0.1~5的质量比组成;所述辅料为增塑剂和/或乳化剂。
  24. 含有权利要求19所述组合物的制备烧创伤敷料的制剂组合物,其特征在于,所述制剂组合物由丝素蛋白、骨架、活力碘和辅料按照1:0.5~2:0.1~10的质量比组成;所述辅料为增塑剂和/或乳化剂。
  25. 用权利要求18所述的组合物或权利要求23所述的制剂组合物制备烧创伤敷料的方法,其特征在于,具体包括以下步骤:
    S1:制备丝素蛋白;
    S2:将S1所得物与骨架和辅料混合。
  26. 根据权利要求25所述的方法,其特征在于,在S2之后还包括S3:将S2所得物用硬脂酸改性。
  27. 根据权利要求25所述的方法,其特征在于,S1制备过程中加入了钙的螯合剂或能与钙发生螯合作用的氨基酸;所述钙的螯合剂为EDTA及其衍生物、EGTA AM及其衍生物、BAPTA及其衍生物;所述能与钙发生螯合作用的氨基酸包括谷氨酸、丙氨酸、天冬氨酸、苯丙氨酸、天冬酰胺氨酸、精氨酸、苏氨酸、酪氨酸、色氨酸、甘氨酸、丝氨酸、缬氨酸、组氨酸、异亮氨酸和半胱氨酸及其衍生物中的任一种或几种。
  28. 用权利要求25-27所述制备生物敷料的方法获得的烧创伤敷料。
  29. 根据权利要求28所述的烧创伤敷料,其特征在于,所述烧创伤敷料为多孔结构,其孔隙率为55%~80%,其孔径大小为0.5mm~2mm。
  30. 根据权利要求28所述的烧创伤敷料,其特征在于,所述烧创伤敷料的吸水倍率为15~20倍;其吸水倍率可用如下公式计算:Q=(M2-M1)/M1;Q为吸水倍率,单位为g/g;M1为吸液前试样质量,单位为g;M2为吸液后试样质量,单位为g。
  31. 根据权利要求30所述的烧创伤敷料,其特征在于,所述烧创伤敷料在不同介质中的吸水倍率为:在去离子水中的吸水倍率15~19;在盐水中吸水倍率13~16;在磷酸缓冲液中的吸水倍率11~14;在细胞培养液中的吸水倍率8~13;在血清中的吸水倍率4~9。
  32. 用权利要求28-31所述的烧创伤敷料吸附液体的方法,其特征在于,用所述烧创伤敷料对液体进行吸附,所述液体进入所述烧创伤敷料的孔隙结构,使所述烧创伤敷料孔道壁增厚并凝胶化使管腔变无。
  33. 含有权利要求32所述方法的对微生物进行阻隔的方法,其特征在于,用所述烧创伤敷料对所述流体进行吸附,所述烧创伤敷料孔道壁增厚并凝胶化使管腔变无后将微生物隔绝在外。
  34. 用权利要求19所述的组合物或权利要求24所述的制剂组合物制备烧创伤敷料的方法,其特征在于,具体包括以下步骤:
    S1:制备改性丝素蛋白和活力碘;
    S2:将S1所得物与骨架和辅料混合。
  35. 根据权利要求34所述的方法,其特征在于,在S2之后还包括S3:将S2所得物用硬脂酸改性。
  36. 根据权利要求34所述的方法,其特征在于,S1制备过程中加入了钙的螯合剂或能和钙发生螯合作用的氨基酸;所述钙的螯合剂为EDTA及其衍生物、EGTA AM及其衍生物、BAPTA及其衍生物;所述能和钙发生螯合作用氨基酸包括谷氨酸、丙氨酸、天冬氨酸、苯丙氨酸、天冬酰胺氨酸、精氨酸、苏氨酸、酪氨酸、色氨酸、甘氨酸、丝氨酸、缬氨酸、组氨酸、异亮氨酸和半胱氨酸及其衍生物中的任一种或几种。
  37. 用权利要求34-36所述制备烧创伤敷料的方法获得的烧创伤敷料。
  38. 根据权利要求37所述的烧创伤敷料,其特征在于,所述烧创伤敷料为多孔结构,其孔隙率为55%~80%,其孔径大小为0.5~2mm。
  39. 根据权利要求37所述的烧创伤敷料,其特征在于,所述烧创伤敷料的吸水倍率为1~20倍;其吸水倍率可用如下公式计算:Q=(M2-M1)/M1;Q为吸水倍率,单位为g/g;M1为吸液前试样质量,单位为g;M2为吸液后试样质量,单位为g。
  40. 根据权利要求39所述的烧创伤敷料,其特征在于,所述烧创伤敷料在不同介质中的吸水倍率为:在去离子水中的吸水倍率14~16;在盐水中吸水倍率为12~14;在磷酸缓冲液中的吸水倍率为9~11;在细胞培养液中的吸水倍率为7~10;在血清中的吸水倍率为5~7。
  41. 用权利要求37-40所述的烧创伤敷料吸附液体的方法,其特征在于,用所述烧创伤敷料对液体进行吸附,所述液体进入所述烧创伤敷料的孔隙结构,使所述烧创伤敷料孔道壁增厚并凝胶化使管腔变无。
  42. 含有权利要求41所述方法的对微生物进行阻隔的方法,其特征在于,用所述烧创伤敷料对所述流体进行吸附,所述烧创伤敷料孔道壁增厚并凝胶化使管腔变无后将微生物隔绝在外。
PCT/CN2022/089182 2022-04-26 2022-04-26 丝素蛋白的改性及应用 WO2023206055A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089182 WO2023206055A1 (zh) 2022-04-26 2022-04-26 丝素蛋白的改性及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089182 WO2023206055A1 (zh) 2022-04-26 2022-04-26 丝素蛋白的改性及应用

Publications (1)

Publication Number Publication Date
WO2023206055A1 true WO2023206055A1 (zh) 2023-11-02

Family

ID=88516421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089182 WO2023206055A1 (zh) 2022-04-26 2022-04-26 丝素蛋白的改性及应用

Country Status (1)

Country Link
WO (1) WO2023206055A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118141979A (zh) * 2024-05-13 2024-06-07 中山大学 抑菌喷剂敷料组合物、其制备方法和含有该抑菌喷剂敷料组合物的抑菌敷料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566086A (zh) * 2003-06-18 2005-01-19 吴琼 一种氨基酸螯合钙及其制剂和应用
CN101700409A (zh) * 2009-11-20 2010-05-05 佘振定 一种由纯天然材料制备的创伤用材料
CN110152051A (zh) * 2019-04-26 2019-08-23 非零和(北京)投资管理有限公司 一种吸水烧创伤抗菌敷料及其制备方法和用途
CN110903374A (zh) * 2019-12-20 2020-03-24 重庆医科大学 丝素蛋白提取方法、基于丝素蛋白/松萝酸的复合皮肤支架及其制备方法
CN110975000A (zh) * 2019-11-25 2020-04-10 北京航空航天大学 一种抗菌改性外泌体烧创伤促愈生物敷料的制备和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566086A (zh) * 2003-06-18 2005-01-19 吴琼 一种氨基酸螯合钙及其制剂和应用
CN101700409A (zh) * 2009-11-20 2010-05-05 佘振定 一种由纯天然材料制备的创伤用材料
CN110152051A (zh) * 2019-04-26 2019-08-23 非零和(北京)投资管理有限公司 一种吸水烧创伤抗菌敷料及其制备方法和用途
CN110975000A (zh) * 2019-11-25 2020-04-10 北京航空航天大学 一种抗菌改性外泌体烧创伤促愈生物敷料的制备和用途
CN110903374A (zh) * 2019-12-20 2020-03-24 重庆医科大学 丝素蛋白提取方法、基于丝素蛋白/松萝酸的复合皮肤支架及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAO LI-JUN; PENG YUN-WU; YIN CHUANG; SUN MIN-RUI; SHAANXI: "Studies on Polypeptide Antioxidant Activity of Natural Yellow Cocoon by Different Hydrolysis Methods", FOOD RESEARCH AND DEVELOPMENT, TIANJIN SHI SHIPIN YANJIUSUO, CN, vol. 38, no. 17, 30 September 2017 (2017-09-30), CN , pages 14 - 16 + 30, XP009549865, ISSN: 1005-6521 *
LIU ZHENZHU; LIU HONGBIN; DENG HUA; MA JUN; LI RUIXIN: "New Desalination Process Research on Soluble Silk Fibroin", SHUI-CHULI-JISHU : SHUANGYUEKAN = TECHNOLOGY OF WATER TREATMENT, HAIYANG CHUBANSHE, CN, vol. 43, no. 4, 30 April 2017 (2017-04-30), CN , pages 62 - 65, XP009549881, ISSN: 1000-3770, DOI: 10.16796/j.cnki.1000-3770.2017.04.014 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118141979A (zh) * 2024-05-13 2024-06-07 中山大学 抑菌喷剂敷料组合物、其制备方法和含有该抑菌喷剂敷料组合物的抑菌敷料

Similar Documents

Publication Publication Date Title
Xiang et al. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel
TWI563987B (zh) 水凝膠傷口敷料及於原位所生成之生物性材料以及彼等之用途
CN110152051B (zh) 一种吸水烧创伤抗菌敷料及其制备方法和用途
JP6069394B2 (ja) 医薬組成物
CN112300420B (zh) 一种可注射抗菌互穿双网络水凝胶及其制备方法和应用
EP1356831B1 (en) Microbial cellulose wound dressing for treating chronic wounds
CN110975000A (zh) 一种抗菌改性外泌体烧创伤促愈生物敷料的制备和用途
JP2010506974A5 (zh)
CN112250887B (zh) 铜金属有机骨架纳米粒子功能化水凝胶及其制备方法与应用
Wei et al. Quaternized chitosan/cellulose composites as enhanced hemostatic and antibacterial sponges for wound healing
Li et al. Multi-functional carboxymethyl chitosan/sericin protein/halloysite composite sponge with efficient antibacterial and hemostatic properties for accelerating wound healing
Cui et al. A chitosan-based self-healing hydrogel for accelerating infected wound healing
WO2023206055A1 (zh) 丝素蛋白的改性及应用
Jiang et al. Carboxymethyl chitosan-based multifunctional hydrogels incorporated with photothermal therapy against drug-resistant bacterial wound infection
Li et al. Cellulose nanofibers embedded chitosan/tannin hydrogel with high antibacterial activity and hemostatic ability for drug-resistant bacterial infected wound healing
Li et al. Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing
CA2484953C (en) Microbial cellulose wound dressing for treating chronic wounds
CN115850733B (zh) 一种可注射用纳米粘土水凝胶及其制备方法和应用
CN115105629B (zh) 一种抗菌水凝胶及其制备方法和应用
CN114748682A (zh) 用于制备烧创伤敷料的组合物及其制剂和制备方法
Li et al. Preparation of nano-silver containing black phosphorus based on quaternized chitosan hydrogel and evaluating its effect on skin wound healing
Nqoro et al. Alginate-based wound dressings for skin healing and regeneration
CN114832144A (zh) 广谱抗菌抗氧化丝素蛋白创可贴及其制备和应用
CN114831967A (zh) 广谱抗氧化丝素蛋白创口贴及其制备和应用
BG67422B1 (bg) Полицвитерйонни хидрогелове за превръзки за лечение на хронични и некротични рани

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938912

Country of ref document: EP

Kind code of ref document: A1