WO2012002457A1 - リチウムイオン二次電池負極材料用の原料炭組成物 - Google Patents
リチウムイオン二次電池負極材料用の原料炭組成物 Download PDFInfo
- Publication number
- WO2012002457A1 WO2012002457A1 PCT/JP2011/064961 JP2011064961W WO2012002457A1 WO 2012002457 A1 WO2012002457 A1 WO 2012002457A1 JP 2011064961 W JP2011064961 W JP 2011064961W WO 2012002457 A1 WO2012002457 A1 WO 2012002457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- mass
- oil
- negative electrode
- ion secondary
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B55/00—Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/045—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a raw material carbon composition that is a raw material for a negative electrode material of a lithium ion secondary battery.
- Lithium ion secondary batteries are lighter and have superior input / output characteristics compared to conventional secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, and lead batteries. Is expected as a power source.
- a carbon material is used as an active material constituting an electrode of a lithium ion secondary battery, and various studies have been made on carbon materials so far to improve the performance of lithium ion secondary batteries (for example, patents). See references 1-2).
- Carbon materials used as negative electrode materials for lithium ion secondary batteries are generally roughly classified into graphite and amorphous materials.
- the graphite-based carbon material has an advantage that the energy density per unit volume is higher than that of the amorphous carbon material. Accordingly, graphite-based carbon materials are generally used as negative electrode materials in lithium ion secondary batteries for mobile phones and notebook computers that are compact but require a large charge / discharge capacity.
- Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and lithium ion insertion / extraction reaction proceeds at the edge of the hexagonal network surface during charge / discharge.
- the object of the present invention has been made in view of such circumstances, and provides a raw material carbon composition serving as a carbon material for a lithium ion secondary battery that can express high charge and discharge characteristics at high speed with good reproducibility. There is.
- the present inventors have studied a carbon material having an excellent crystal structure, paying attention to the generation mechanism of the crystal structure. For example, in needle coke, thermal decomposition and polycondensation reaction occur by treating heavy oil at high temperature to produce liquid crystal spheres called mesophase, which combine to produce large liquid crystals called bulk mesophase as intermediate products. It is manufactured through the process.
- the inventors of the present invention have conducted extensive studies on the influence of the raw material oil composition and the raw material carbon composition used for the production of the carbon material on the crystal structure.
- Graphite materials such as natural graphite, synthetic graphite, and expanded graphite for lithium ion negative electrode, carbonized mesocarbon microbeads, mesophase pitch carbon fiber, vapor grown carbon fiber, pyrolytic carbon, petroleum coke, pitch coke, and Carbon materials such as needle coke, synthetic graphite materials obtained by subjecting these carbon materials to graphitization, or mixtures thereof have been proposed but have been difficult.
- the present inventors have made it possible to selectively use a raw coal composition exhibiting specific properties in a carbonized region (1000 to 1500 ° C.), thereby at a high speed. It was found that high charge / discharge characteristics are expressed with good reproducibility.
- a raw coal composition obtained by coking a heavy oil composition containing two or more kinds of heavy oils has a true specific gravity of 1.30 or more, and the raw coal composition is not used.
- RD ⁇ 0.75 TH mass% + intercept (1)
- RD represents the true specific gravity of the carbide
- TH mass% represents the total hydrogen content (mass%) of the carbide
- the intercept ranges from 2.163 to 2.180.
- Selecting the composition of the heavy oil composition so that A method for producing a raw material carbon composition for a negative electrode material for a lithium ion secondary battery comprising at least a step of coking a heavy oil composition having a selected composition.
- the present invention also relates to a raw coal composition having a true specific gravity of 1.30 or more obtained by coking a heavy oil composition, wherein the raw coal composition is 1000 to 1500 in an inert gas atmosphere.
- RD represents the true specific gravity of the carbide
- TH mass% represents the total hydrogen content (mass%) of the carbide
- the intercept ranges from 2.163 to 2.180.
- a raw material charcoal composition for a lithium ion secondary battery negative electrode material satisfying the above is provided. Furthermore, this invention provides a lithium ion secondary battery provided with the negative electrode material using this raw material charcoal composition.
- the effect of crystallinity obtained from the correlation between the specified true specific gravity (RD) and the total hydrogen content (TH mass%) is considered to work in the same way in the raw coke before firing and the subsequent graphitization process. . It was also found that a carbon material having excellent characteristics can be selected by evaluating the crystallinity as a calcined coke even in a graphitized carbon material. According to the present invention, the crystallinity from RD / TH is measured for the entire bulk of the raw coal composition, and by appropriately adjusting this, high charge / discharge characteristics at high speed can be reproduced with good accuracy. can get.
- a raw carbon composition having a true specific gravity of 1.30 or more obtained by coking a heavy oil composition is calcined at a temperature of 1000 to 1500 ° C. in an inert gas atmosphere to obtain a carbide.
- the coking process is a process for coking the heavy oil composition, and a delayed coking method is preferred. More specifically, a heavy coal composition is heat-treated with a delayed coker under a pressurized condition to obtain a raw coal composition.
- the conditions of the delayed coker are preferably a pressure of 300 to 800 kPa and a temperature of 400 to 600 ° C.
- the inert gas which is an atmospheric gas when the raw carbon composition is calcined at 1000 to 1500 ° C., is not particularly limited, and an inert gas usually used in this field such as nitrogen or argon is used. In order to remove oxygen as much as possible, it is desirable to replace the atmospheric gas with an inert gas after reducing the pressure once.
- the true specific gravity and the total hydrogen content (TH mass%) are measured by the following methods. However, if the same evaluation is possible, other known methods may be used. In the present invention, the true specific gravity is measured according to JIS K2151.
- the total hydrogen content (TH mass%) is measured by completely burning the calcined sample at 750 ° C. in an oxygen stream, and determining the amount of water generated from the combustion gas by the coulometric titration method (Karl Fischer method). In the coulometric titration Karl Fischer method, an electrolyte containing iodide ions, sulfur dioxide, base (RN) and alcohol as main components is placed in the titration cell in advance, and the sample is placed in the titration cell.
- the amount of water By measuring the amount of electricity required to generate iodine, the amount of water can be determined. Furthermore, it converts into the amount of hydrogen from the obtained moisture content, and remove
- the crystallinity of raw coal has been evaluated by measuring the distance between layers and the size of crystallites by direct X-ray diffraction, but in the present invention, it is related to the crystallinity characteristics of calcined coke.
- the correlation between the true specific gravity (RD) of the calcined coke and the total hydrogen content (TH mass%) was found.
- the relationship between the true specific gravity (RD) of calcined coke and the value of hydrogen content (TH mass%) is as follows: starting oil (desulfurized desulfurized oil, hydrodesulfurized heavy oil, fluidized catalytic cracker residual oil (CLO), etc. ) And the blending ratios thereof were significantly different, and it was found that the crystallinity of the entire bulk could be adjusted by adjusting these.
- the raw material carbon composition of the carbon material for negative electrode of the lithium ion secondary battery of the present invention is a raw material carbon composition having a true specific gravity of 1.30 or more obtained by coking treatment of a heavy oil composition
- the characteristics of the carbon material obtained by carbonizing and / or graphitizing this raw material carbon composition ensure an orderly lithium ion diffusion path and suppress physical displacement of the hexagonal mesh plane due to lithium ion diffusion. It has a crystal structure that can be made.
- the lithium ion diffusion path is a pseudo two-dimensional space formed on adjacent stacked hexagonal planes and a three-dimensional space formed between adjacent crystallites. For this reason, it turned out that the lithium ion secondary battery in which the carbon material made from the raw material charcoal composition of the present invention is used as a negative electrode can realize extremely high charge / discharge characteristics with good reproducibility.
- the true specific gravity of the raw coal obtained by coking the heavy oil composition is suitably 1.30 or more, preferably 1.45 or less, more preferably 1.43 or less. If it is less than 1.30, the basic skeleton formation of carbon in coking is insufficient, and melting and foaming occur in the subsequent carbonization process. For this reason, the crystal structure that becomes an ordered diffusion path of lithium ions imparted in the coking process becomes messy.
- RD true specific gravity
- TH mass% total hydrogen content
- FIG. 1 shows an example of a raw coal composition in which two or more types are selected from the group consisting of desulfurized desulfurized oil, hydrodesulfurized heavy oil, and bottom oil of a fluid catalytic cracker, and the mixing ratio is adjusted.
- FIG. 1 shows true specific gravity (RD) and total hydrogen content (TH mass%) when four kinds of raw coal compositions (A, B, C, D) are fired at 1000-1500 ° C. in an inert gas atmosphere. ).
- RD true specific gravity
- TH mass% total hydrogen content
- the true specific gravity (RD) and total hydrogen content (TH mass%) of the carbide obtained after heating when calcined at a temperature of 1000 to 1500 ° C. are related to the crystal structure of the carbide, and Is less than 2.163, the crystal structure is poorly developed, there are many crystal disturbances, and an orderly lithium ion diffusion path is not ensured. Further, a lot of physical energy is required for doping lithium ions on the layer surface of the adjacent carbon hexagonal network surface, and the amount of doped lithium ions is reduced.
- the battery performance is extremely low and charging characteristics at high speed.
- the intercept exceeds 2.180, the crystal structure is excessively developed, and the growth of crystallites in the a-axis direction becomes extremely large. This is because, at low speed, the layer surface of the carbon hexagonal network surface is doped with a large amount of lithium ions, but on the other hand, the diffusion path of lithium ions is reduced. For this reason, although the conventional low speed output characteristics are excellent, the desired high speed discharge characteristics do not become high.
- the true specific gravity (RD) and the total hydrogen content (TH mass%) were examined by the same method for materials other than the raw coal composition shown in FIG. 1, both of which are on a straight line having a slope of approximately ⁇ 0.75. It was confirmed that the ride.
- Examples of other raw coal compositions include bottom oil of a residual fluid fluid catalytic cracker (RFCC), vacuum residue oil (VR), vacuum distillate oil (VD), atmospheric residue, and ethylene tar.
- the residual oil fluid catalytic cracking unit (RFCC) uses residual oil (normal pressure residual oil, etc.) as a raw material oil and selectively performs a cracking reaction using a catalyst to obtain a high-octane FCC gasoline. Is a fluid catalytic cracking device of the type.
- residual oil such as atmospheric residual oil is used in a reactor reaction temperature (ROT) range of 510 to 540 ° C. and a catalyst / oil mass ratio of 6 to 8.
- ROT reactor reaction temperature
- a bottom oil produced by changing the range is mentioned.
- the residual oil (VR) of the vacuum distillation apparatus is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil and atmospheric residual oil, and then heating the atmospheric residual oil under a reduced pressure of, for example, 10 to 30 Torr.
- the distillation oil of the vacuum distillation apparatus is the distillation oil of the vacuum distillation apparatus obtained by changing the above atmospheric residual oil in a range of 320 to 360 ° C. at a furnace outlet temperature under a reduced pressure of 10 to 30 Torr, for example. is there. Therefore, in order to prepare such a specified raw coal composition, for example, caustic heavy hydrocarbons having appropriate aromaticity and containing as little impurities as possible such as sulfur and metals are coked. Can be obtained.
- Heavy hydrocarbon with moderate aromaticity means, for example, petroleum-based desulfurized and desulfurized oil, hydrodesulfurized heavy oil, bottom oil of fluid catalytic cracking equipment, vacuum residue (VR), coal liquefaction And oil, coal solvent extraction oil, atmospheric residue oil, shell oil, tar sand bitumen, naphtha tar pitch, coal tar pitch, and heavy oil obtained by hydrorefining these.
- Desulfurized desulfurized oil is obtained by, for example, treating oil such as vacuum distillation residue oil with a solvent desulfurization apparatus using propane, butane, pentane, or a mixture thereof as a solvent, and removing the asphaltenes.
- desulfurized oil is preferably desulfurized to a sulfur content of 0.05 to 0.40 mass%.
- hydrodesulfurized oil is obtained by hydrodesulfurizing atmospheric distillation residual oil having a sulfur content of 2.0 to 5.0% by mass in the presence of a catalyst so that the hydrocracking rate is 25% or less. 0.1 to 0.6% by mass.
- the hydrodesulfurization conditions at this time are, for example, a total pressure of 180 MPa, a hydrogen partial pressure of 160 MPa, and a temperature of 380 ° C.
- Fluid catalytic cracking (FCC) equipment uses fluidized-bed fluid catalytic cracking (FCC) to obtain high-octane FCC gasoline by using reduced pressure gas oil as a feedstock and selectively performing a cracking reaction using a catalyst.
- the vacuum residual oil (VR) is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residual oil. Then, the atmospheric residual oil is heated at the furnace outlet temperature under a reduced pressure of 10 to 30 Torr, for example. It is a bottom oil of a vacuum distillation apparatus obtained by changing in the range of 320 to 360 ° C.
- a raw material oil composition is prepared by blending two or more kinds of raw material oils, the raw material composition is obtained by appropriately adjusting the blending ratio according to the properties of the raw material oil to be used.
- the raw material oil composition according to the present embodiment it becomes possible to produce a carbon material for a negative electrode of a lithium ion secondary battery particularly suitable for high-speed charge / discharge.
- the raw oil composition is separated into an aromatic component and a non-aromatic component by elution chromatography, and the composition of the raw oil composition (the content of the aromatic component, the molecular weight of the aromatic component, and the non-aromatic component By analyzing the (normal paraffin content), a raw material oil composition suitable for producing a carbon material for a lithium ion secondary battery negative electrode suitable for high-speed charge / discharge can be efficiently selected.
- the content of the aromatic component in the total mass of 100% by mass is preferably 35 to 80% by mass, and the molecular weight of the aromatic component is 250 to 1600. It is essential for the production and growth of good mesophase as a precursor of raw coke.
- the method for measuring the content of the aromatic component is based on the “elution chromatography method”.
- the “elution chromatography method” means a method for separating a feedstock composition into two components (aromatic component and non-aromatic component) in accordance with the method described in ASTM (American Society for Testing and Materials) D2549.
- n-pentane 8 g of the raw oil composition dissolved in 20 mL of n-pentane or cyclohexane is passed through a column packed with activated alumina and silica gel. Thereafter, 130 mL of n-pentane is passed through the column at a rate of 3 mL / min to elute non-aromatic components into n-pentane. Non-aromatic components eluted in n-pentane are collected and quantified.
- a and B respectively indicate the masses of the aromatic component and the non-aromatic component obtained by the separation treatment by the elution chromatography method.
- the average molecular weight of the feed oil composition is measured by a vapor pressure equilibrium method.
- the outline of the vapor pressure equilibrium method is as follows. Two thermistors are placed in a saturated vapor of a solvent maintained at a predetermined temperature, and the sample solution is dropped on one side and the solvent alone is dropped on the other side. At this time, since the vapor pressure of the sample solution is lower than that of the solvent alone, the vapor in the atmosphere around the thermistor condenses on the sample solution.
- this temperature difference is obtained as the voltage difference ( ⁇ V) of the thermistor, and the relationship between the molar concentration and the voltage difference ( ⁇ V) is obtained using a standard sample whose molecular weight is known in advance. From the calibration curve, the sample molar concentration in the sample solution is obtained, and the average molecular weight is calculated.
- cyclohexane is used as a solvent
- n-cetane molecular weight: 226.4
- Such coke does not develop a carbon layer surface even after carbonitizing graphite, and the edge surface with high reactivity becomes extremely large. If such a material is used for the negative electrode, gas is generated due to a reaction between the electrolytic solution and the carbon edge surface, which is not preferable.
- the normal paraffin contained in the raw material oil composition is effective for orienting crystals in the uniaxial direction when the mesophase is solidified in the coke production process.
- the content of normal paraffin in the total mass of 100% by mass of the raw material oil composition is preferably 3% by mass or more, and if the content of normal paraffin exceeds 45% by mass, excessive gas generation from normal paraffin results in bulk. There is a tendency to work in the direction that disturbs the orientation of the mesophase. In this case, even in the carbonization graphitization process, the alignment of the carbon layer surface is poor, so that a large amount of lithium ions cannot be taken in at the time of charging, and the charge / discharge capacity becomes small, which is not preferable.
- the method for measuring the normal paraffin content is based on a gas chromatogram equipped with a capillary column. Specifically, after testing with a normal paraffin standard substance, the sample of the non-aromatic component separated by the elution chromatography method is passed through a capillary column and measured. The content based on the total mass of the raw material oil composition is calculated from this measured value.
- the raw material oil composition according to the present embodiment is coked to obtain a raw material charcoal composition, and then heat-treated and artificially graphitized as necessary, as a carbon material for a negative electrode of a lithium ion secondary battery.
- a delayed coking method is preferred as a method for coking a raw oil composition that satisfies a predetermined condition. More specifically, the raw material oil composition is heat-treated with a delayed coker under a pressurized condition to obtain a raw material charcoal composition.
- the conditions of the delayed coker are preferably a pressure of 300 to 800 kPa and a temperature of 400 to 600 ° C.
- the carbonization graphitization conditions are not particularly limited, but raw coke is calcined at 1000-1500 ° C. in a rotary kiln, shaft furnace or the like to obtain calcined coke, and then the calcined coke is heated at 2250-2800 ° C. in an Atchison furnace or the like. Graphitize.
- the above-mentioned feedstock composition can be obtained by optimizing the type of starting feedstock and the blend ratio thereof, and these can be caulked under appropriate conditions to obtain a feedstock composition having a specified intercept range. can get.
- Such heavy hydrocarbons are easily graphitizable, and in the coking process, a condensed polycyclic aromatic produced by a thermal decomposition reaction is laminated to form raw carbon containing graphite-like microcrystalline carbon. It becomes. Therefore, as described above, the raw coal obtained from such heavy hydrocarbons also has high graphitization properties. Particularly in the present invention, it is preferable that the graphite-like microcrystalline carbon is contained in the raw material carbon composition.
- the method for producing a negative electrode for a lithium ion secondary battery is not particularly limited, and examples thereof include a method of pressure-molding a mixture containing a carbon material, a binder, and optionally a conductive additive and an organic solvent according to the present embodiment. It is done. As another method, there is a method in which a carbon material, a binder, a conductive auxiliary agent and the like are slurried in an organic solvent, and the slurry is applied on a current collector and then dried.
- binder examples include polyvinylidene fluoride, polytetrafluoroethylene, SBR (styrene-butadiene rubber), and the like.
- the amount of the binder used is suitably 1 to 30 parts by mass with respect to 100 parts by mass of the carbon material, but is preferably about 3 to 20 parts by mass.
- Examples of the conductive assistant include carbon black, graphite, acetylene black, conductive indium-tin oxide, or conductive polymers such as polyaniline, polythiophene, and polyphenylene vinylene.
- the amount of the conductive aid used is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the carbon material.
- organic solvent examples include dimethylformamide, N-methylpyrrolidone, isopropanol, toluene and the like.
- Examples of the method of mixing the carbon material, the binder, and, if necessary, the conductive additive and the organic solvent include a method using a known apparatus such as a screw kneader, a ribbon mixer, a universal mixer, or a planetary mixer.
- the obtained mixture is molded by roll pressurization and press pressurization.
- the pressure at this time is preferably about 100 to 300 MPa.
- the material and shape of the current collector there are no particular limitations on the material and shape of the current collector, and for example, a strip-shaped material made of aluminum, copper, nickel, titanium, stainless steel, or the like in the form of a foil, a punched foil, or a mesh may be used. Further, a porous material such as porous metal (foamed metal) or carbon paper can be used as the current collector.
- the method of applying the negative electrode material slurry to the current collector is not particularly limited.
- well-known methods, such as a screen printing method are mentioned.
- a rolling process using a flat plate press, a calendar roll or the like is performed as necessary.
- the integration of the slurry formed into a sheet shape, a pellet shape or the like with the current collector can be performed by a known method such as a roll, a press, or a combination thereof.
- the lithium ion secondary battery according to the present embodiment is obtained, for example, by disposing a negative electrode for a lithium ion secondary battery and a positive electrode that are manufactured as described above, with a separator interposed therebetween, and injecting an electrolytic solution. be able to.
- the active material used for the positive electrode is not particularly limited.
- a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used.
- Lithium oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCo X Ni Y Mn Z O 2 , X + Y + Z 1), lithium manganese spinel (LiMn 2) O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , olivine type LiMPO 4 (M: Co, Ni, Mn, Fe), poly Examples thereof include conductive polymers such as acetylene, poly
- the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin as a main component such as polyethylene or polypropylene can be used.
- a separator when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
- electrolyte and electrolyte used for the lithium secondary battery known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used.
- organic electrolyte is preferable from the viewpoint of electrical conductivity.
- organic electrolyte examples include dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and ethylene glycol phenyl ether; N-methylformamide, N, N-dimethylformamide, N Amides such as ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide and N, N-diethylacetamide; sulfur-containing compounds such as dimethylsulfoxide and sulfolane; methyl ethyl ketone; Dialkyl ketones such as methyl isobutyl ketone; cyclic ethers such as tetrahydrofuran and 2-methoxytetrahydrofuran; ethylene carbonate DOO, butylene carbonate, diethyl carbonate, dimethyl carbonate, methylethoxy
- preferred examples include ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, vinylene carbonate, ⁇ -butyrolactone, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, and the like.
- Preferable examples include carbonate-based non-aqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or in admixture of two or more.
- Lithium salts are used as solutes (electrolytes) for these solvents.
- the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , and LiN (CF 3 SO 2 ) 2 .
- polymer solid electrolyte examples include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
- the structure of the lithium ion secondary battery using the carbon material according to the present embodiment as a negative electrode material is not particularly limited.
- a positive electrode and a negative electrode, and a separator provided as necessary are wound in a flat spiral shape.
- a wound electrode plate group is formed, or these are laminated in a flat plate shape to form a laminated electrode plate group, and these electrode plate groups are enclosed in an exterior body.
- Lithium ion secondary batteries are used as, for example, paper-type batteries, button-type batteries, coin-type batteries, stacked batteries, cylindrical batteries, and the like.
- the lithium ion secondary battery using the carbon material for the negative electrode of the lithium ion secondary battery according to the present embodiment is superior in high-speed charge / discharge characteristics as compared with a lithium ion secondary battery using a conventional carbon material, and is used for automobiles.
- it can be used for hybrid vehicles, plug-in hybrid vehicles, and electric vehicles.
- Examples 1 to 4 and Comparative Examples 1 to 6 (1) Production of raw coal composition
- Eight types of raw oil compositions were prepared by blending various heavy oils. More specifically, the raw oil compositions of Examples 1 to 4 are petroleum heavy
- the raw oil composition was prepared by mixing the desulfurized dewaxed oil and the bottom oil of the hydrodesulfurized heavy oil fluid catalytic cracker at different blend ratios. This raw material oil composition was caulked in an autoclave under a pressure of 0.8 MPa at a temperature of 530 ° C. for 3 hours to obtain a raw material charcoal composition.
- Example 1 The raw material oil composition of Example 1 is 50% by volume of desulfurized dewaxed oil, 30% by volume of hydrodesulfurized heavy oil, 20% by volume of bottom oil of a fluid catalytic cracker, and Example 2 is 50% of desulfurized dewaxed oil. Volume%, hydrodesulfurized heavy oil 20 volume%, bottom oil of fluid catalytic cracker 30 volume%, Example 3 is desulfurized desulfurized oil 50 volume%, hydrodesulfurized heavy oil 10 volume%, fluid contact The bottom oil of the cracker was adjusted to 40% by volume, Example 4 was adjusted to 50% by volume of desulfurized and desulfurized oil, 40% by volume of hydrodesulfurized heavy oil, and 10% by volume of the bottom oil of the fluid catalytic cracker.
- Comparative Example 1 the same raw material composition as in Example 1 was used, and this raw material oil composition was caulked at 480 ° C. for 2 hours in an autoclave under 0.8 MPa pressure to obtain a raw material carbon composition.
- Comparative Example 2 the same raw material composition as in Example 2 was used, and this raw material oil composition was caulked at 490 ° C. for 2 hours in an autoclave under a pressure of 0.8 MPa to obtain a raw material carbon composition.
- the raw material oil compositions of Comparative Examples 3 to 6 were prepared by mixing with naphthatar, petroleum heavy distillate oil, and high-sulfur vacuum residue oil at different blend ratios and coking under the same conditions as in the examples. The raw material charcoal composition was obtained.
- Comparative Example 3 The raw material oil composition of Comparative Example 3 is 50% by volume of naphthatar, 10% by volume of Southern decompression distillate, 40% by volume of Middle Eastern decompression residual oil, and Comparative Example 4 is 30% by volume of naphthatar, Southern decompression distillation. 20% by volume of oil output, 50% by volume of Middle Eastern decompression residue oil, Comparative Example 5 is 10% by volume of naphthatar, 10% by volume of Southern decompression residue oil, 80% by volume of Middle Eastern decompression residue oil, Comparative Example No. 6 was adjusted to 20% by volume of the southern decompression distillate oil and 80% by volume of the Middle Eastern decompression residue oil.
- Each raw carbon composition (raw coke) was calcined at 1000 ° C. for 1 hour to obtain calcined coke. Further, the calcined coke was graphitized at 2400 ° C. for 5 minutes to obtain a carbon material for a negative electrode of a lithium ion secondary battery.
- the true specific gravity (RD) of the raw coal compositions according to Examples 1 to 4 is 1.30 or more, and the true specific gravity (RD) of the carbide obtained after heating when calcined at a temperature of 1000 to 1500 ° C. and total hydrogen
- the lithium ion secondary battery using the carbon material produced from the raw material coal composition according to Examples 1 to 4 as the negative electrode was produced from the raw material carbon composition according to Comparative Examples 1 to 6.
- both the charge capacity and discharge capacity under high-speed charge / discharge conditions (10C) were excellent in a well-balanced manner.
- the true specific gravity (RD) of the raw coal compositions of Comparative Examples 1 and 2 is as low as less than 1.30, which satisfies the conditions of the above-mentioned intercept. However, these are due to foaming in the subsequent carbonization process. Became messy, and the charge / discharge characteristics at high speed were inferior.
- the true specific gravity (RD) of the raw coal compositions according to Comparative Examples 3 to 6 was 1.30 or more, but the above-mentioned defined intercept did not satisfy the conditions of 2.163 to 2.180.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Coke Industry (AREA)
Abstract
Description
RD=-0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163~2.180の範囲である。)
となるように、上記重質油組成物の組成を選択する工程と、
選択された組成を有する重質油組成物をコーキング処理する工程と
を少なくとも含むリチウムイオン二次電池負極材用の原料炭組成物の製造方法を提供する。
また、本発明は、重質油組成物をコーキング処理して得られた真比重1.30以上を有する原料炭組成物であって、該原料炭組成物を不活性ガス雰囲気下、1000~1500℃の温度でか焼して得られる炭化物が、下記式(1)
RD=-0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163~2.180の範囲である。)
を満足するリチウムイオン二次電池負極材用の原料炭組成物を提供する。
さらに、本発明は、この原料炭組成物を用いた負極材を備えるリチウムイオン二次電池を提供する。
本発明によれば、RD/THからの結晶性は、原料炭組成物のバルク全体を測定しているものであり、これを適切に調整することで、高速での高い充放電特性を再現良く得られる。
コーキング処理は、重質油組成物をコークス化する処理であり、ディレードコーキング法が好ましい。より具体的には、加圧条件下、ディレードコーカーによって重質油組成物を熱処理して原料炭組成物を得る。ディレードコーカーの条件は圧力300~800kPa、温度400~600℃であることが好ましい。
原料炭組成物を1000~1500℃でか焼する際の雰囲気ガスである不活性ガスは特に限定されず、窒素やアルゴン等の通常この分野で使用される不活性ガスが使用される。酸素を極力除くために、一旦減圧した後、雰囲気ガスを不活性ガスに置換することが望ましい。
本発明では、真比重は、JIS K2151に準拠して測定する。
全水素含有量(TH質量%)の測定は、か焼した試料を酸素気流中750℃で完全燃焼させ、燃焼ガスより生成した水分量を電量滴定法(カール・フィッシャー法)で求める。電量滴定式のカール・フィッシャー法では、予め滴定セルにヨウ化物イオン、二酸化硫黄、塩基(RN)及びアルコールを主成分とする電解液を入れておき、滴定セルに試料を入れることで試料中の水分は、(2)式の反応をする。
H2O+I2+SO2+CH3OH+3RN
→ 2RN・HI+RN・HSO4CH3 (2)
この反応に必要なヨウ素は、ヨウ化物イオンを電気化学的に反応(2電子反応)させること(下記式(3))により得ており、
2I- + 2e → I2 (3)
水1モルとヨウ素1モルとが反応することから、水1mgを滴定するのに必要な電気量がファラデーの法則により以下の通り求められる。
(2×96478)/(18.0153×103)=10.71 クーロン
ここで、定数96478はファラデー常数、18.0153は水の分子量である。
ヨウ素の発生に要した電気量を測定することで、水分量が求められる。
さらに得られた水分量から、水素量に換算し、これを測定に供した試料質量で除することにより、全水素含有量(TH質量%)を算出する。
RD=-0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163~2.180の範囲である。)
を満たす。この原料炭組成物を炭素化及び/又は黒鉛化して得られた炭素材料の特徴は、整然としたリチウムイオンの拡散経路が確保され、且つリチウムイオンの拡散に伴う六角網平面の物理的変位を抑制することが可能な結晶組織を有することにある。なお、リチウムイオンの拡散経路とは、隣接積層した六角網平面に形成される擬二次元空間と、隣接する結晶子間に形成された三次元空間である。このため、本発明の原料炭組成物を原料とした炭素材料が負極として使用されたリチウムイオン二次電池は、極めて高い充放電特性を再現良く実現することが可能となることが分かった。
図1に示すように、いずれの場合も-0.75の傾きを有する直線に乗ることが分かる。これらの重相関係数(R)は、表1に示すように、0.93以上で信頼性の高いものであった。
ここで、1000~1500℃の温度でか焼した場合の加熱後にえられる炭化物の真比重(RD)と全水素含有量(TH質量%)は、炭化物の結晶構造と関連するものであり、切片が2.163未満では、結晶構造の発達が乏しく、結晶の乱れが多く存在し、整然としたリチウムイオンの拡散経路が確保されない。また、隣接する炭素六角網面の層面にリチウムイオンがドープされるための物理的エネルギーが多く必要となり、ドープされるリチウムイオンが少なくなる。これらのため、電池性能としては、極めて低い高速での充電特性となる。
また、切片が2.180を超える場合には、結晶構造の発達が過度となり、a軸方向の結晶子の成長が極めて大きくなる。これは、低速では、炭素六角網面の層面にリチウムイオンが多くドープされ向上するものの、一方では、リチウムイオンの拡散経路を減少させる。このため、従来の低速での出力特性には優れるものの、要望される高速での放電特性は高くならない。
したがって、このような規定の原料炭組成物を調製するには、例えば、硫黄や金属等の不純物を極力含まず、かつ、適度な芳香族性を有する重質炭化水素を適切な条件でコーキングすることによって得ることができる。
脱硫脱瀝油は、例えば、減圧蒸留残渣油等の油を、プロパン、ブタン、ペンタン、又はこれらの混合物等を溶剤として使用する溶剤脱瀝装置で処理し、そのアスファルテン分を除去し、得られた脱瀝油(DAO)を、好ましくは硫黄分0.05~0.40質量%の範囲までに脱硫したものである。水素化脱硫油は、例えば、硫黄分2.0~5.0質量%の常圧蒸留残油を、触媒存在下、水素化分解率が25%以下となるように水素化脱硫し、硫黄分0.1~0.6質量%としたものである。この時の水素化脱硫条件は、例えば、全圧180MPa、水素分圧160MPa、温度380℃である。流動接触分解(FCC)装置は、原料油として減圧軽油を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解(Fluid Catalystic Cracking)する装置である。減圧残油(VR)は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残油を、例えば、10~30Torrの減圧下、加熱炉出口温度320~360℃の範囲で変化させて得られる減圧蒸留装置のボトム油である。
二種類以上の原料油をブレンドして原料油組成物を調製する場合、使用する原料油の性状に応じて配合比率を適宜調整し原料組成物を得る。
なお、芳香族成分の含有量の測定方法は、「溶出クロマトグラフィー法」による。「溶出クロマトグラフィー法」とは、ASTM(米国材料試験協会)D2549に記載の方法に準拠して原料油組成物を2成分(芳香族成分及び非芳香族成分)に分離する方法を意味する。具体的には、活性アルミナとシリカゲルを充填したカラムに、n-ペンタン又はシクロヘキサン20mLで溶解した原料油組成物8gを通す。その後、n-ペンタン130mLを3mL/分の速度でカラムに通し、n-ペンタンに非芳香族成分を溶出させる。n-ペンタンに溶出した非芳香族成分を回収して定量する。その後、溶剤であるジエチルエーテル100mL、クロロホルム100mL、エチルアルコール175mLを順次3mL/分の速度でカラムにそれぞれ通し、当該溶剤に芳香族成分を溶出させる。溶剤に溶出した芳香族成分を回収して定量する。
また、原料油組成物の全質量に対する芳香族成分及び非芳香族成分の含有量は、下記式(1)及び(2)でそれぞれ算出される値を意味する。式中、A及びBは上記溶出クロマトグラフィー法による分離処理で得られた芳香族成分及び非芳香族成分の質量をそれぞれ示す。
芳香族成分の含有量(質量%)=A/(A+B)×100・・・(1)
非芳香族成分の含有量(質量%)=B/(A+B)×100・・・(2)
原料油組成物の平均分子量は、蒸気圧平衡法により測定したものである。蒸気圧平衡法の概要は次の通りである。所定の温度に保持した溶媒の飽和蒸気中に2本のサーミスタを置き、一方に試料溶液を、他方に溶媒単体を滴下する。このとき、試料溶液は溶媒単体より蒸気圧が低いため、サーミスタ周辺雰囲気の蒸気が試料溶液上に凝縮する。このとき放出される潜熱により温度が上昇するので、この温度差をサーミスタの電圧差(ΔV)として求め、そして予め分子量既知の標準試料を用いて、モル濃度と電圧差(ΔV)の関係を求めた検量線より、試料溶液中の試料モル濃度を求め、平均分子量を算出する。本発明では、溶媒としてシクロヘキサンを用い、標準試料としてn-セタン(分子量:226.4)を用いる。
これから外れる原料油組成物は、例えば、成長する前にコークス化が進行して、モザイクと呼ばれる小さな組織のコークスが得られる。このようなコークスは炭化黒鉛化後においても、炭素層面が発達せず、反応性の高いエッジ面が極端に多くなる。このような材料を負極に用いると、電解液と炭素エッジ面との反応によるガス発生が起こり好ましくない。
なお、ノルマルパラフィンの含有量の測定方法は、キャピラリーカラムが装着されたガスクロマトグラムによる。具体的には、ノルマルパラフィンの標準物質によって検定した後、上記溶出クロマトグラフィー法によって分離された非芳香族成分の試料をキャピラリーカラムに通して測定する。この測定値から原料油組成物の全質量を基準とした含有量を算出する。
(実施例1~4及び比較例1~6)
(1)原料炭組成物の作製
各種重質油をブレンドして8種類の原料油組成物を調製し、より具体的には、実施例1~4の原料油組成物は、石油系重質油の脱硫脱瀝油に水素化脱硫重質油流動接触分解装置のボトム油をそれぞれブレンド比率を変えて混合し、原料油組成物を調整した。この原料油組成物をオートクレーブで、0.8MPa加圧下、530℃温度で3時間コーキングさせることにより原料炭組成物を得た。
実施例1の原料油組成物は、脱硫脱瀝油50容積%、水素化脱硫重質油30容積%、流動接触分解装置のボトム油を20容積%、実施例2は、脱硫脱瀝油50容積%、水素化脱硫重質油20容積%、流動接触分解装置のボトム油を30容積%、実施例3は、脱硫脱瀝油50容積%、水素化脱硫重質油10容積%、流動接触分解装置のボトム油を40容積%、実施例4は、脱硫脱瀝油50容積%、水素化脱硫重質油40容積%、流動接触分解装置のボトム油を10容積%とし調整した。
比較例3~6の原料油組成物は、ナフサタールや石油系重質留出油、高硫黄減圧残渣油を用いてそれぞれブレンド比率を変えて混合し調製し、実施例と同じ、条件でコーキングさせることにより原料炭組成物を得た。比較例3の原料油組成物は、ナフサタール50容積%、南方系減圧留出油を10容積%、中東系減圧残渣油を40容積%、比較例4は、ナフサタール30容積%、南方系減圧留出油を20容積%、中東系減圧残渣油を50容積%、比較例5は、ナフサタール10容積%、南方系減圧留出油を10容積%、中東系減圧残渣油を80容積%、比較例6は、南方系減圧留出油を20容積%、中東系減圧残渣油を80容積%、とし調整した。
(a)負極の作製
活物質としてリチウムイオン二次電池負極用炭素材料の微粒子、導電材としてアセチレンブラック(AB)、バインダーとしてポリフッ化ビニリデン(PVDF)を80:10:10(質量比)の割合でN-メチル-2-ピロリドン中で混合し、スラリーを作製した。該スラリーを銅箔上に塗布し、ホットプレートで10分間乾燥した後、ロールプレスでプレス成形した。
(b)評価用電池の作製
負極として上記の組成物(30×50mm)、正極としてニッケル酸リチウム(30×50mm)、電解液としてエチレンカーボネート(EC)/メチルエチルカーボネート(MEC)混合液(EC/MEC質量比:3/7、溶質:LiPF6(1M体積モル濃度)、及びセパレータとしてポリエチレン微孔膜を用いた。
(c)高速充放電レート特性の評価
作成した電池の高速充放電特性の測定結果を表3に示した。なお、本評価におけるCレートは10Cとした。利用率%は、10Cでの充放電容量を1Cでの充放電容量で除して求めた。
RD=-0.75TH質量%+切片 ・・・(1)
で表され、この時の切片が2.163~2.180の条件を満たす(図1と表1~2参照)。
比較例1~2の原料炭組成物の真比重(RD)は1.30未満と低く、上記の規定の切片の条件を満たすが、これらは、後の炭素化過程での発泡により、結晶組織が乱雑となり、高速での充放電特性が劣るものとなった。
比較例3~6に係る原料炭組成物の真比重(RD)は1.30以上であったが、上記規定の切片が2.163~2.180の条件を満たさなかった。
Claims (4)
- 二種類以上の重質油を含む重質油組成物をコーキング処理して得られた原料炭組成物が、1.30以上の真比重を有し、該原料炭組成物を不活性ガス雰囲気下、1000~1500℃の温度でか焼して得られる炭化物が、下記式(1)
RD=-0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163~2.180の範囲である。)
となるように、上記重質油組成物の組成を選択する工程と、
選択された組成を有する重質油組成物をコーキング処理する工程と
を少なくとも含むリチウムイオン二次電池負極材用の原料炭組成物の製造方法。 - 上記重質油組成物の組成を選択する工程が、脱硫脱瀝油、水素化脱硫重質油、及び流動接触分解装置のボトム油からなる群から2種類以上を選択し、その混合比を調整することを含む請求項1に記載のリチウムイオン二次電池負極材用の原料炭組成物の製造方法。
- 重質油組成物をコーキング処理して得られた真比重1.30以上を有する原料炭組成物であって、該原料炭組成物を不活性ガス雰囲気下、1000~1500℃の温度でか焼して得られる炭化物が、下記式(1)
RD=-0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163~2.180の範囲である。)
を満足するリチウムイオン二次電池負極材用の原料炭組成物。 - 請求項3に記載の原料炭組成物を用いた負極材を備えるリチウムイオン二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137002186A KR101800490B1 (ko) | 2010-06-30 | 2011-06-29 | 리튬이온 이차전지 음극 재료용의 원료탄 조성물 |
JP2012522675A JP5657661B2 (ja) | 2010-06-30 | 2011-06-29 | リチウムイオン二次電池負極材料用の原料炭組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010150163 | 2010-06-30 | ||
JP2010-150163 | 2010-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012002457A1 true WO2012002457A1 (ja) | 2012-01-05 |
Family
ID=45402161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064961 WO2012002457A1 (ja) | 2010-06-30 | 2011-06-29 | リチウムイオン二次電池負極材料用の原料炭組成物 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5657661B2 (ja) |
KR (1) | KR101800490B1 (ja) |
WO (1) | WO2012002457A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898997B (zh) * | 2021-01-20 | 2022-04-15 | 重庆大学 | 一种利用废旧锂电池热处理产物催化生物质热解的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076209A (ja) * | 2007-09-18 | 2009-04-09 | Nippon Oil Corp | リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法 |
JP2009087871A (ja) * | 2007-10-02 | 2009-04-23 | Nippon Oil Corp | リチウムイオン二次電池負極用人造黒鉛及びその製造方法 |
-
2011
- 2011-06-29 JP JP2012522675A patent/JP5657661B2/ja active Active
- 2011-06-29 WO PCT/JP2011/064961 patent/WO2012002457A1/ja active Application Filing
- 2011-06-29 KR KR1020137002186A patent/KR101800490B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076209A (ja) * | 2007-09-18 | 2009-04-09 | Nippon Oil Corp | リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法 |
JP2009087871A (ja) * | 2007-10-02 | 2009-04-23 | Nippon Oil Corp | リチウムイオン二次電池負極用人造黒鉛及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101800490B1 (ko) | 2017-11-22 |
JP5657661B2 (ja) | 2015-01-21 |
KR20130093081A (ko) | 2013-08-21 |
JPWO2012002457A1 (ja) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5216285B2 (ja) | リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法 | |
JP5415684B2 (ja) | リチウムイオン二次電池負極用人造黒鉛及びその製造方法 | |
US8697025B2 (en) | Raw material charcoal composition for negative electrode material of lithium ion secondary battery and method for producing the same | |
JP5400064B2 (ja) | リチウムイオン二次電池負極材料用の原料油組成物 | |
JP5351410B2 (ja) | リチウムイオン二次電池負極材料 | |
JP5490636B2 (ja) | リチウムイオン二次電池負極炭素材料用の原料油組成物 | |
JP5657661B2 (ja) | リチウムイオン二次電池負極材料用の原料炭組成物 | |
JP5528923B2 (ja) | リチウムイオン二次電池負極材料用の原料炭組成物 | |
JP5952807B2 (ja) | リチウムイオン二次電池の負極用炭素材料の原料炭組成物の製造方法 | |
JP5498279B2 (ja) | リチウムイオン二次電池負極炭素材料用の原料油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11800919 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012522675 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137002186 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11800919 Country of ref document: EP Kind code of ref document: A1 |