WO2012002389A1 - ナノファイバ - Google Patents

ナノファイバ Download PDF

Info

Publication number
WO2012002389A1
WO2012002389A1 PCT/JP2011/064809 JP2011064809W WO2012002389A1 WO 2012002389 A1 WO2012002389 A1 WO 2012002389A1 JP 2011064809 W JP2011064809 W JP 2011064809W WO 2012002389 A1 WO2012002389 A1 WO 2012002389A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiber
liquid
water
diameter portion
component
Prior art date
Application number
PCT/JP2011/064809
Other languages
English (en)
French (fr)
Inventor
東城 武彦
好美 山下
雅隆 石川
美加 執印
真之介 宇野
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP11800853.1A priority Critical patent/EP2589693B1/en
Priority to CN201180024763.4A priority patent/CN102906317B/zh
Priority to US13/703,315 priority patent/US20130125912A1/en
Publication of WO2012002389A1 publication Critical patent/WO2012002389A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/20Formation of filaments, threads, or the like with varying denier along their length
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43912Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43914Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres hollow fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • Y10T428/249995Constituent is in liquid form
    • Y10T428/249997Encapsulated liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • the present invention relates to a nanofiber and a manufacturing method thereof.
  • the present invention also relates to a nanofiber sheet.
  • Patent Document 1 a technique described in Patent Document 1 is known as a technique related to a nanofiber based on a water-soluble polymer.
  • This nanofiber is manufactured by an electrospinning method using a solution in which a water-soluble polymer is dissolved in a solvent such as water.
  • functional components such as an emulsifying component, a stabilizing component, a bactericidal component, and a moisturizing component may be added to this solution. When such a functional component is added to the solution, the functional component is contained in the nanofiber.
  • Patent Document 2 Regarding the inclusion of functional components in nanofibers, the technology described in Patent Document 2 is also known.
  • cosmetics and cosmetic ingredients are held in a network structure composed of nanofibers of a polymer compound.
  • Cosmetics and the like are encapsulated in the nanofiber.
  • a holding method a method in which cosmetics or the like is mixed in a solution containing the polymer compound constituting the nanofiber and electrospinning is employed.
  • the functional components, cosmetics, and the like are also present on the surface of the fiber, and as a result, the nanofiber tends to have a sticky feel.
  • the nanofiber tends to have a sticky feel.
  • a functional component exists in the fiber surface, degradation and modification
  • the present invention provides a nanofiber which is composed of a water-soluble polymer and has a hollow part, and the hollow part contains an oil component.
  • the present invention is also a preferred method for producing the nanofiber sheet, Provided is a nanofiber manufacturing method in which a water-soluble polymer is dissolved in an aqueous phase, and an O / W emulsion containing an oily component is contained in the oil phase, and spinning is performed by an electrospinning method. .
  • the present invention is another preferred production method of the nanofiber sheet, Using a first liquid obtained by dissolving a water-soluble polymer in water and a second liquid containing an oil component, A nanofiber manufacturing method using a double tube structure as a capillary for performing an electrospinning method, flowing a second liquid through the core of the capillary, and flowing a first liquid through a sheath to perform the electrospinning method Is to provide.
  • the present invention includes the following subjects.
  • a nanofiber composed of a water-soluble polymer and having a hollow portion, wherein the hollow portion contains an oil component.
  • the nanofiber according to [1] wherein the oil component contained in the hollow portion is liquid at normal temperature.
  • a large-diameter portion and a small-diameter portion, the hollow portion in both the large-diameter portion and the small-diameter portion, the hollow portion of the large-diameter portion and the hollow portion of the small-diameter portion, Is a nanofiber according to [1] or [2].
  • the nanofiber according to [1] or [2] which has a tubular form in which an outer diameter and an inner diameter are substantially constant.
  • the water-soluble polymer may be pullulan, hyaluronic acid, chondroitin sulfate, poly- ⁇ -glutamic acid, modified corn starch, ⁇ -glucan, glucooligosaccharide, heparin, keratosulfuric acid or other mucopolysaccharide, cellulose, pectin, xylan, lignin.
  • the oil component includes squalane, olive oil, silicone oil, macadamia nut oil or cetyl-1,3-dimethylbutyl ether used as a solvent.
  • the oily component is obtained by adding an oil-soluble component such as vitamin E, chamomile extract or rose extract as an active ingredient to the solvent.
  • the nanofiber according to [10] or [11], wherein the oil component is used alone or in combination of two or more.
  • As the oil component two types of oil components, the first oil component and the second oil component, are used, and a plurality of hollow portions are formed discontinuously over the entire length of the nanofiber.
  • the oily component uses two types of oily components, the first oily component and the second oily component, and a plurality of hollow portions are formed discontinuously throughout the entire length of the nanofiber. Among the hollow portions, the first oil component is present in a certain hollow portion and the second oil component is absent, the second oil component is present in the other hollow portion, and The nanofiber according to any one of [1] to [12], wherein the oily component 1 is not present.
  • a nanofiber sheet comprising the nanofiber according to any one of [1] to [17].
  • the nanofiber sheet according to [18] which is used for a moisturizing sheet, a decorative sheet, or a medical sheet.
  • a method for producing a nanofiber according to [1] A method for producing nanofibers, wherein an O / W emulsion in which a water-soluble polymer is dissolved in an aqueous phase and an oily component is contained in the oil phase is used for spinning by an electrospinning method.
  • a method for producing a nanofiber according to [1] Using a first liquid obtained by dissolving a water-soluble polymer in water and a second liquid containing an oil component, A nanofiber manufacturing method using a double tube structure as a capillary for performing an electrospinning method, flowing a second liquid through the core of the capillary, and flowing a first liquid through a sheath to perform the electrospinning method .
  • a nanofiber comprising a water-soluble polymer, containing a readily volatile functional agent having a vapor pressure at 20 ° C. exceeding 13.3 Pa, having a hollow part, and containing an oily component in the hollow part
  • a manufacturing method comprising: The manufacturing method of a nanofiber provided with the process of providing this easily volatile functional agent to the layer of this nanofiber.
  • a nanofiber comprising a water-soluble polymer, containing a readily volatile functional agent having a vapor pressure exceeding 13.3 Pa at 20 ° C., having a hollow part, and containing an oily component in the hollow part
  • a manufacturing method comprising: A method of producing a nanofiber, comprising the step of disposing the readily volatile functional agent in the vicinity of the nanofiber and transferring the readily volatile functional agent to the nanofiber.
  • the oil component is highly blended, the sticky feel caused by the oil component is reduced, and a nanofiber excellent in storage stability is provided.
  • FIG. 1A to 1D are schematic views showing a cross-sectional structure of a nanofiber of the present invention.
  • FIG. 2 is a schematic view showing a preferred apparatus used for performing the electrospinning method.
  • FIG. 3 is an enlarged schematic view showing the structure of the capillary in the apparatus shown in FIG. 4A is a scanning electron microscope image of the nanofiber sheet obtained in Example 1, and FIG. 4B is a fluorescence microscope image of the nanofiber sheet obtained in Example 1.
  • FIG. 5A is a reflected electron beam image of the nanofiber sheet obtained in Example 2, and FIGS. 5B and 5C are silicon and carbon distributions of the nanofiber sheet obtained in Example 2.
  • FIG. Is an X-ray elemental analysis image showing 6 is a scanning electron microscope image of the nanofiber sheet obtained in Example 3.
  • FIG. FIG. 7 is a scanning electron microscope image of the nanofiber sheet obtained in Example 4.
  • the present invention provides a dry nanofiber in which deterioration of a functional component is suppressed and is blended at a high concentration of the functional component.
  • the present invention also provides a nanofiber that can release the functional component present in the hollow part to the skin by dissolving the outer water-soluble polymer.
  • the nanofiber of the present invention is preferably 10 to 3000 nm, more preferably 100 to 2000 nm, and still more preferably 200 to 1500 nm when the thickness is expressed in terms of equivalent circle diameter.
  • the thickness of the nanofiber is observed by, for example, scanning electron microscope (SEM) observation at a magnification of 10,000 times, and defects (nanofiber lump, nanofiber intersection, polymer droplet) are observed from the two-dimensional image. Except for this, it is possible to measure by arbitrarily selecting 10 fibers, drawing a line perpendicular to the longitudinal direction of the fiber, and directly reading the fiber diameter.
  • the length of the nanofiber is not critical in the present invention, and a nanofiber having an appropriate length can be used depending on the method of manufacturing the nanofiber and the specific use of the nanofiber.
  • Nanofibers are made from water-soluble polymer compounds.
  • water-soluble polymer compound refers to a polymer compound that weighs 1 g of a polymer compound in an environment of 1 atm and 23 ° C., then immerses in 10 g of ion-exchanged water, and immerses in 24 hours.
  • water-soluble polymer compound examples include pullulan, hyaluronic acid, chondroitin sulfate, poly- ⁇ -glutamic acid, modified corn starch, ⁇ -glucan, glucooligosaccharide, heparin, keratosulfuric and other mucopolysaccharides, cellulose, pectin, xylan, lignin, Natural polymers such as glucomannan, galacturon, psyllium seed gum, tamarind seed gum, gum arabic, tragacanth gum, soy water soluble polysaccharide, alginic acid, carrageenan, laminaran, agar (agarose), fucoidan, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose Synthetic polymers such as partially saponified polyvinyl alcohol, low saponified polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, sodium polyacrylate, etc.
  • water-soluble polymer compounds can be used alone or in combination of two or more.
  • a synthetic polymer such as pullulan, partially saponified polyvinyl alcohol, low saponified polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene oxide from the viewpoint of easy preparation of nanofibers.
  • Nanofiber has a hollow part. This hollow portion is a minute space capable of holding an oily component to be described later. 1A to 1D show examples of cross-sectional shapes of nanofibers having hollow portions.
  • the nanofiber 10 shown in FIG. 1A has a large diameter portion 11 and a small diameter portion 12.
  • the large-diameter portions 11 and the small-diameter portions 12 are alternately positioned along the extending direction of the nanofiber 10.
  • the large-diameter portion 11 has a hollow portion 13 composed of a minute space therein.
  • the hollow portion 13 holds the oil component 14 as described above.
  • the narrow diameter portion 12 is solid and does not have a hollow portion.
  • the lengths of the large-diameter portion 11 and the small-diameter portion 12 along the extending direction of the nanofiber 10 are shown to be substantially the same. This is not limited to this.
  • the nanofiber 10 of the present invention is manufactured according to the electrospinning method described later, the length of the large diameter portion 11 and the length of the small diameter portion 12 according to the blending ratio of the first liquid and the second liquid described later. The ratio will be different.
  • the cross section of the large diameter portion 11 has a substantially elliptical shape, but the cross sectional shape of the large diameter portion 11 is not limited thereto.
  • the cross-sectional shape and thickness of each large diameter part 11 may be the same, or may differ.
  • the thickness of the small-diameter portion 12 is expressed uniformly, the thickness of the small-diameter portion 12 may not be uniform on the condition that it is thinner than the large-diameter portion 11. Moreover, the thickness of each small diameter part 12 may be the same, or may differ.
  • the nanofiber 10 shown in FIG. 1 (b) also has a large-diameter portion 11 and a small-diameter portion 12 like the nanofiber shown in FIG. 1 (a).
  • the nanofiber 10 of the present embodiment is different from the nanofiber shown in FIG. 1A in the structure of the small diameter portion.
  • the narrow diameter portion in the nanofiber shown in FIG. 1A is solid, whereas the narrow diameter portion 12 in the nanofiber 10 of this embodiment is tubular and has a hollow portion 15. Yes.
  • the oil component 14 is also held in the hollow portion 15 of the small diameter portion 12.
  • the hollow portion 13 of the large diameter portion 11 and the hollow portion 15 of the small diameter portion 12 adjacent to the large diameter portion 11 communicate with each other.
  • the hollow portion 13 of the large-diameter portion 11 and the hollow portion 15 of the small-diameter portion 12 adjacent thereto do not need to communicate with each other in all the parts of the nanofiber 10.
  • the nanofiber 10 shown in FIG. 1C does not have a large diameter portion.
  • the nanofiber 10 has a tubular shape in which an outer diameter and an inner diameter are substantially constant over the entire region in the length direction, and a cylindrical hollow portion 13 is formed over the entire region in the length direction.
  • the hollow portion 13 may be formed continuously over the entire length of the nanofiber 10 or may be formed discontinuously.
  • the oil component 14 can be stored in the hollow portion 13, the oil component 14 can be highly blended in the nanofiber 10.
  • the oil component 14 can be further blended.
  • the oily component 14 is not substantially present on the surface of the nanofiber 10, or even if it is present, the amount thereof is very small, so that a sticky feel due to the oily component 14 is unlikely to occur. . That is, even when an oily component that is liquid at normal temperature (5 to 35 ° C.) is used, it is possible to highly blend the oily component while maintaining the dry feeling of the sheet.
  • the oil component may be used alone or in the form of a solution in which the oil component is dissolved in an organic solvent. Therefore, the oil component may be stored alone in the hollow portion 13, or a solution obtained by dissolving the oil component in an organic solvent may be stored in the hollow portion 13.
  • an oily component can be blended higher than the conventional nanofiber.
  • the blending ratio of the oil component can be preferably 0.5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 20 to 90% by mass.
  • the ratio of the water-soluble polymer in the nanofiber 10 is preferably 5 to 99.5% by mass, more preferably 10 to 90% by mass, and still more preferably 10 to 80% by mass.
  • the mixing ratio of the water-soluble polymer and the oil component in the nanofiber 10 can be measured by dissolving a certain amount of the nanofiber sheet in water and then centrifuging it.
  • the nanofiber 10 can be used for, for example, a moisturizing sheet, a decorative sheet, or a medical sheet, squalane, olive oil, silicone oil, macadamia nut oil, cetyl-1,3-dimethyl used as a solvent as an oil component.
  • the butyl ether can be prepared by adding oil-soluble components such as vitamin E, chamomile extract, rose extract and the like that are generally used for cosmetics and medicine as active ingredients.
  • the above oil components can be used alone or in combination of two or more.
  • the first oily component and the second oily component the first hollow component 13 has a first And a second oily component may be present.
  • the first and second oil components can be present in the embodiment shown in FIG.
  • the first oil component 14A is present in a certain hollow portion 13A among the plurality of hollow portions formed in the nanofiber 10, and the second oil component is present.
  • the second oil component 14B is present, and the first oil component is not present.
  • the nanofiber 10 of the present invention may contain a volatile functional agent in addition to the components described above.
  • a volatile functional agent 1 or more types selected from the group which consists of a fragrance
  • fragrance is a substance that can impart a fragrance (good fragrance) to a space at normal temperature and pressure, and has a fragrance function.
  • whitening component is a substance that, when used by adhering to each part of a human, can whiten the part or keep it in a youthful and healthy state, and has a whitening function.
  • the “taste adjuster” is a substance that can change the type and degree of taste, such as changing or reducing bitterness or acidity to another taste (sweetness or the like), and has a taste adjusting function.
  • These functional agents are volatile and are substances that volatilize at normal temperature and pressure.
  • the normal temperature and normal pressure usually means a state where the temperature is 23 ° C. and the atmospheric pressure is 101.325 kPa.
  • These volatile functional agents are present with the water soluble polymer if it is water soluble.
  • the volatile functional agent is oil-soluble, it is present in the same hollow portion in the nanofiber together with the oil component described above, or as shown in FIG. 1 (d), the hollow portion in which the oil component is present It exists in a different hollow part. Regardless of whether the volatile functional agent is water-soluble or oil-soluble, the volatile functional agent can be present on the surface of the nanofiber and in the vicinity thereof.
  • the volatile functional agent preferably has a vapor pressure at 20 ° C. of 13.3 Pa or less, more preferably 0.0013 to 10.7 Pa, and still more preferably 0.0133 to 6.7 Pa. Since the vapor pressure at 20 ° C. of the volatile functional agent is within such a range, the nanofiber 10 can exhibit a useful function due to the action of the volatile functional agent at room temperature and normal pressure.
  • the volatile functional agent is a fragrance
  • the nanofiber 10 containing the fragrance is perfumed so as to be able to release a fragrance into the space at room temperature and normal pressure.
  • a feeling of feeling, cleanliness, a feeling of relaxation, etc. can be felt, and further effects such as deodorization and anesthetic effect (analgesic) can be achieved.
  • a volatile functional agent having a vapor pressure at 20 ° C. exceeding 13.3 Pa (hereinafter also referred to as an easily volatile functional agent) is too volatile, so that a nanofiber is produced by an electrospinning method described later.
  • an electrospinning is performed by adding an easily volatile functional agent to a raw material liquid that is a raw material of the nanofiber, the easily volatile functional agent is volatilized in the process of electrospinning, and the resulting nanofibers are obtained.
  • Sufficient volatile functional agent does not remain in the fiber, and there is a possibility that useful functions expected by using the volatile functional agent (for example, fragrance function when the volatile functional agent is a fragrance) may not be exhibited. .
  • the function of the easily volatile functional agent can be contained in the nanofiber by devising the timing of addition of the volatile functional agent as well (see production methods A and B described later).
  • As the vapor pressure of the volatile functional agent a value in a database provided by RFIM (Research Institute for Fragrance Materials) is used.
  • the content of the volatile functional agent in the nanofiber 10 is preferably set to 0.001 to 30% by mass, particularly 0.01 to 5% by mass. By setting the content of the volatile functional agent within this range, it is possible to more surely obtain a nanofiber capable of performing a useful function by the volatile functional agent such as aroma release, and use of the volatile functional agent. The amount can be reduced and the manufacturing cost can be reduced.
  • the nanofiber 10 of the present invention is suitably used in the form of a sheet including the nanofiber 10.
  • the sheet containing the nanofiber 10 of the present invention (hereinafter, this sheet is referred to as “nanofiber sheet”) may be composed only of the nanofiber 10 of the present invention, or may contain other fibers.
  • nanofibers other than the nanofiber 10 of the present invention general natural fibers, and synthetic fibers can be used.
  • a laminated sheet obtained by laminating one or more other fiber sheets and / or films on the fiber sheet containing the nanofiber 10 of the present invention is also included in the nanofiber sheet of the present invention.
  • the nanofibers are bonded at their intersection or the nanofibers are intertwined. Thereby, the nanofiber sheet can maintain a sheet-like form by itself. Whether the nanofibers are bonded or intertwined depends on the method of manufacturing the nanofiber sheet.
  • the thickness of the nanofiber sheet is set to an appropriate range according to its specific application.
  • the thickness is preferably set to 50 nm to 1 mm, particularly 500 nm to 500 ⁇ m.
  • the thickness of the nanofiber layer 11 can be measured by using a contact-type film thickness meter Lightmatic VL-50A manufactured by Mitutoyo Corporation.
  • the nanofiber sheet of the present invention can be used by adhering to, for example, human skin, skin of non-human mammals, plant surfaces such as teeth, branches and leaves.
  • the nanofiber sheet is brought into contact with the surface of the object while the surface of the nanofiber sheet or the object to be adhered is wet with a liquid material such as water or an aqueous liquid containing water.
  • a liquid material such as water or an aqueous liquid containing water.
  • the nanofiber sheet adheres well to the surface of the object due to the action of surface tension.
  • the water-soluble polymer constituting the nanofiber is dissolved in the liquid by the action of the liquid. By this dissolution, the hollow portion 13 in the nanofiber collapses, and the oily component stored therein flows out.
  • the oily component that flows out covers the surface of an object such as human skin and penetrates into the object.
  • an object such as human skin
  • the oily component that has flowed out of the nanofiber due to the collapse of the hollow portion 13 covers the surface of the skin and the skin. Penetration into the inside and the efficacy derived from the oily component is expressed.
  • the oily component covers the surface of an object such as human skin, the evaporation of water vapor from the object is suppressed, and the surface of the object can be easily kept wet.
  • the functional agent when the functional agent is contained in the nanofiber, it can be expected that the functional agent easily penetrates into the object.
  • the water-soluble polymer constituting the nanofibers is effectively prevented from being dried and formed into a film by the oily component, and the effect of effectively reducing the sensation of the object due to the film formation is also achieved. I can expect.
  • the oil component acts as a plasticizer for the film-formed water-soluble polymer, the effect of maintaining transparency and imparting flexibility to the film-formed water-soluble polymer can also be expected.
  • liquid materials may be applied or sprayed on the surface.
  • a substance containing water and having a viscosity of about 5000 mPa ⁇ s or less at the temperature during use is used.
  • examples of such a liquid material include water, an aqueous solution, and an aqueous dispersion.
  • emulsified liquids such as O / W emulsions and W / O emulsions, aqueous liquids thickened with thickeners, and the like are also included.
  • a lotion or a cream can be used as a liquid for moistening the surface of the skin that is the object.
  • the degree of wetness of the surface of the object or the surface of the nanofiber sheet by application or spraying of the liquid material is small enough to sufficiently develop the surface tension of the liquid material and dissolve the water-soluble polymer compound. It is enough.
  • the size of the nanofiber sheet when the size is, for example, a square of 3 cm ⁇ 3 cm, a liquid substance having an amount of about 0.01 ml is present on the surface of the object, so A fiber sheet can be easily attached to the surface.
  • the hollow part 13 can be disintegrated by dissolving the water-soluble polymer contained in the nanofiber 10.
  • the nanofiber sheet is preferably manufactured by using an electrospinning method (electrospinning method, ESD) as shown in FIG.
  • An apparatus 30 for carrying out the electrospinning method shown in the figure includes a syringe 31, a high voltage source 32, and a conductive collector 33.
  • the syringe 31 includes a cylinder 31a, a piston 31b, and a capillary 31c.
  • the inner diameter of the capillary 31c is about 10 to 1000 ⁇ m.
  • the cylinder 31a is filled with a raw material liquid that is a raw material of the nanofiber.
  • the high voltage source 32 is a DC voltage source of 10 to 30 kV, for example.
  • the positive electrode of the high voltage source 32 is electrically connected to the raw material liquid in the syringe 31.
  • the negative electrode of the high voltage source 32 is grounded.
  • the conductive collector 33 is a metal plate, for example, and is grounded.
  • the distance between the tip of the capillary 31c in the syringe 31 and the conductive collector 33 is set to about 30 to 300 mm, for example.
  • the discharge rate of the raw material liquid from the capillary 31c is preferably 0.1 to 10 ml / h, more preferably 0.1 to 4 ml / h.
  • the apparatus 30 shown in FIG. 2 can be operated in the atmosphere. There is no particular limitation on the operating environment, and the temperature can be 20 to 40 ° C. and the humidity can be 10 to 50% RH.
  • this raw material liquid is obtained by mixing a 1st liquid and a 2nd liquid.
  • the first liquid is an aqueous solution in which a water-soluble polymer is dissolved in water.
  • the second liquid is an O / W emulsion in which an oily component is contained in the aqueous phase.
  • the concentration of the water-soluble polymer in the first liquid is preferably 3 to 30% by mass, particularly 10 to 25% by mass, because the viscosity of the raw material liquid can be made suitable.
  • the first liquid is obtained by adding a water-soluble polymer in a heated state or a non-heated state with water or an aqueous liquid in which a small amount of a water-soluble organic solvent is mixed in water, and stirring and mixing. .
  • the second liquid can be obtained by adopting a known emulsification method.
  • a known emulsification method methods such as natural emulsification, phase inversion emulsification and forced emulsification can be employed.
  • the amount of the emulsifier used for emulsification is preferably 0.001 to 20% by mass, particularly 0.004 to 7% by mass, based on the mixed mass of the first liquid and the second liquid.
  • emulsifier various surfactants can be used.
  • a nonionic surfactant such as polyethylene glycol monoalkylate, polyethylene glycol dialchelate, ethylene glycol dialchelate, or polyoxyethylene hydrogenated castor oil from the viewpoint of reducing irritation to the skin.
  • an emulsifier is added to the oil phase containing the oil component and heated to a predetermined temperature.
  • a phase inversion is caused by stirring while gradually adding an aqueous phase heated to a predetermined temperature to obtain an O / W emulsion.
  • the mass ratio of the aqueous phase is preferably 55 to 98 mass%, particularly preferably 60 to 97 mass%, and the mass ratio of the oil phase is 2 to It is preferably 45% by mass, particularly 3 to 40% by mass.
  • the nanofiber shown in FIG. 1A When the nanofiber shown in FIG. 1A is manufactured by adopting the method (I), all the oily components are present in each hollow portion 13.
  • the nanofiber shown in FIG. 1A is manufactured by adopting the method (II), among the plurality of hollow portions formed in the nanofiber 10, the first oil component is contained in a certain hollow portion. Present and no other oil component is present, the second oil component is present in another hollow portion, and no other oil component is present (see FIG. 1 (d)). ).
  • the nanofiber 10 having the structure shown in FIGS. 1A and 1B can be obtained by performing an electrospinning method using the raw material liquid composed of the O / W emulsion.
  • the present inventors consider that the reason is as follows. That is, when the solution is discharged, a phase composed of a water-soluble polymer solution containing a large amount of water as a volatile component tends to exist in the outermost layer, and a phase composed of an oil component with little solvent volatilization tends to exist inside. It is.
  • a first liquid composed of an aqueous solution in which a water-soluble polymer is dissolved in water, and an oily component or an oily component in an organic solvent.
  • dissolves is used.
  • the capillary 31c in the apparatus shown in FIG. 2 a double tube structure having an inner tube 40 and an outer tube 41 as shown in FIG. 3 is used, the second liquid is allowed to flow in the core portion, and the sheath portion is used.
  • the electrospinning method may be performed by flowing the first liquid. In this case, by appropriately balancing the discharge amount of the first liquid and the discharge amount of the second liquid, it is possible to successfully obtain a nanofiber having a target structure.
  • the functional agent described above when the functional agent is water-soluble, the functional agent can be contained in the first liquid. In that case, the functional agent is present together with the water-soluble polymer in the nanofiber.
  • the volatile functional agent is oil-soluble, the following method (i) or (ii) can be employed. (I) A method of preparing a raw material liquid by preparing a second liquid containing a volatile functional agent together with an oil component in an oil phase in an O / W emulsion, and mixing the second liquid with the first liquid.
  • a third liquid consisting of an O / W emulsion containing a volatile functional agent in the oil phase is prepared, A method of preparing a raw material liquid by mixing the second liquid and the third liquid with the first liquid.
  • the second liquid does not contain a volatile functional agent.
  • the third liquid contains no oil component.
  • an oil component and a volatile functional agent are present in all the hollow portions 13.
  • an oil component is present in a certain hollow portion among the plurality of hollow portions formed in the nanofiber 10.
  • the volatile functional agent is not present, the volatile functional agent is present in another hollow portion, and the oil component is not present (see FIG. 1D).
  • the volatile functional agent when using a volatile functional agent having high volatility, for example, when using the above-described easily volatile functional agent, the volatile functional agent is added to the nanofiber by devising the addition timing thereof. It is possible to grant. Specifically, according to the production methods A and B described below, it is possible to produce nanofibers provided with a readily volatile functional agent.
  • Manufacturing method A According to the above-described method, the method includes a step of manufacturing a nanofiber having a hollow portion (nanofiber manufacturing step), and a step of applying a solution containing a readily volatile functional agent to the nanofiber (solution applying step). Nanofiber manufacturing method.
  • Manufacturing method B According to the above-described method, a step of manufacturing a nanofiber having a hollow portion (nanofiber manufacturing step), and a step of placing a volatile functional agent in the vicinity of the nanofiber and leaving it for a predetermined time (easily volatile) A method for producing nanofibers comprising a functional agent transfer step).
  • the solution containing an easily volatile functional agent used in the solution application step of production method A is obtained by dissolving or dispersing an easily volatile component in a solvent.
  • a solvent those which do not affect the nanofiber (the water-soluble polymer constituting the nanofiber) are preferable.
  • an organic solvent is used.
  • a method for applying a solution containing a readily volatile functional agent to nanofibers include a method of spraying a solution onto nanofibers, a method of immersing nanofibers in the solution, and the like.
  • the readily volatile functional agent transfer step of the production method B is a step of transferring the volatilized easily volatile functional agent to the nanofiber by bringing the nanofiber and the easily volatile functional agent close to each other without contacting them.
  • the nanofiber and the volatile functional agent When the nanofiber and the volatile functional agent are brought into contact with each other, the water-soluble polymer constituting the nanofiber may be dissolved or swollen, and the form of the nanofiber may be collapsed. This can be prevented by bringing them close to each other.
  • the readily volatile functional agent disposed in proximity to the nanofibers may be exposed to the outside or may be contained in a breathable bag or the like. When the readily volatile functional agent is accommodated, the nanofiber and the easily volatile functional agent are reliably prevented from coming into contact with each other.
  • the time for which the volatile functional agent is allowed to stand in the vicinity of the nanofiber can be appropriately set according to the type of the volatile functional agent. In general, the more volatile functional agent, the shorter the time to be left.
  • the formed nanofibers are deposited on the plate-like conductive collector 33.
  • a conductive rotating drum is used, and the periphery of the rotating drum is rotated. Nanofibers may be deposited on the surface.
  • Example 1 (1) Preparation of first solution Pullulan (produced by Hayashibara Shoji) was used as the water-soluble polymer. This was dissolved in water to obtain an aqueous solution having a concentration of 20%. This was used as the first liquid. The first liquid was heated to 80 ° C.
  • Electrospinning method Using the raw material liquid obtained above, an electrospinning method is performed by the apparatus shown in FIG. 2, and the surface of the polyethylene terephthalate film (thickness: 25 ⁇ m) disposed on the surface of the conductive collector 33 is nano-sized. A fiber sheet was formed.
  • the conditions of the electrospinning method were as follows. ⁇ Applied voltage: 25 kV ⁇ Capillary-collector distance: 185mm ⁇ Raw material discharge rate: 1ml / h -Environment: 25 ° C, 50% RH
  • the proportion of each component in the obtained nanofiber sheet was 75.82% for pullulan, 24.11% for oily component, and 0.07% for surfactant.
  • the thickness of this nanofiber sheet was 30 ⁇ m when measured with a Lightmatic VL-50A (Mitutoyo Corporation).
  • the scanning electron microscope image of this nanofiber sheet is shown in FIG. From this observation result, the fiber diameter of the small-diameter portion of the nanofiber was 504 nm.
  • FIG. 4B shows a fluorescence microscopic image of the nanofiber sheet obtained by adding an oily fluorescent agent (Nile Red) to the second liquid and performing the electrospinning method under the same conditions.
  • a black part is a part in which the fluorescent agent exists.
  • the nanofiber in the nanofiber sheet obtained in this example has a large diameter portion and a small diameter portion.
  • the large-diameter portion has a hollow portion, and the oil component is stored in the hollow portion. That is, it can be seen that the nanofiber of this example has the structure shown in FIG.
  • Example 2 (1) Preparation of 1st liquid It carried out similarly to Example 1.
  • FIG. (2) Preparation of second liquid Silicone oil was used as the oil component.
  • polyoxyethylene hydrogenated castor oil (Emanon (registered trademark) CH60 manufactured by Kao Corporation), which is a nonionic surfactant, was added.
  • the concentration of this nonionic surfactant was 0.3%.
  • 0.95 ml of this silicone oil was heated to 80 ° C., 4.00 ml of water heated to 80 ° C. was gradually added thereto and mixed to effect phase inversion emulsification. This obtained the 2nd liquid which consists of O / W emulsion.
  • the reflected electron beam image of this nanofiber sheet is shown to Fig.5 (a).
  • the fiber diameter of the small-diameter portion of the nanofiber was 490 nm.
  • the distribution of silicon and carbon in the observation visual field shown in FIG. 5A was analyzed by EDX.
  • the results are shown in FIGS. 5 (b) and (c).
  • FIG. 5A it can be seen that the nanofiber in the nanofiber sheet obtained in this example has a large diameter portion and a small diameter portion.
  • the large-diameter portion has a hollow portion, and the oil component is stored in the hollow portion. That is, it can be seen that the nanofiber of this example has the structure shown in FIG.
  • Example 3 (1) Preparation of 1st liquid It carried out similarly to Example 1.
  • FIG. (2) Preparation of second liquid Chamomile extract was used as an oily component.
  • polyoxyethylene hydrogenated castor oil (Emanon (registered trademark) CH60 manufactured by Kao Corporation), which is a nonionic surfactant, was added.
  • the concentration of this nonionic surfactant was 0.3%.
  • 1.72 ml of this solution was heated to 80 ° C., and 2.06 ml of water heated to 80 ° C. was gradually added thereto and mixed to effect phase inversion emulsification. This obtained the 2nd liquid which consists of O / W emulsion.
  • the scanning electron mirror image of this nanofiber sheet is shown in FIG.
  • the nanofiber in the nanofiber sheet obtained in this example has a large diameter portion and a small diameter portion. From this observation result, the fiber diameter of the small diameter portion of the nanofiber was 270 nm.
  • This nanofiber has a higher blending ratio of the oil component than the nanofiber shown in FIG. 4 (a) and the interval between adjacent large diameter portions is narrow, so that a hollow portion is formed in the small diameter portion. It is considered that the oily component is also contained in the part.
  • Example 4 Pullulan (manufactured by Hayashibara Shoji) was used as the water-soluble polymer, and this was dissolved in water to obtain an aqueous solution having a concentration of 20%. This was used as the first liquid.
  • As the second liquid chamomile extract as an oily component was used.
  • the electrospinning method was performed by the apparatus 30 shown in FIG. A capillary 31c having the structure shown in FIG. The second liquid was passed through the core of the capillary 31c, and the first liquid was passed through the sheath.
  • the conditions of the electrospinning method were as follows. A nanofiber sheet was obtained in the same manner as Example 1 except for these.
  • the ratio of each component in the obtained nanofiber sheet was 80% for pullulan and 20% for oily component.
  • the thickness of this nanofiber sheet was 30 ⁇ m when measured with a Lightmatic VL-50A (Mitutoyo Corporation).
  • a scanning electron mirror image of the nanofiber sheet is shown in FIG. From this observation result, the fiber diameter of the nanofiber was 1312 nm.
  • the nanofiber in the nanofiber sheet obtained in this example has the structure shown in FIG.
  • DHC oil blotting paper was applied to the surface of the sheet and cast film cut out to about 3 cm square and then peeled off, and the color change of the oil blotting paper was visually confirmed.
  • the nanofiber sheet of each example has a reduced stickiness because the oily component is not exposed on the fiber surface, and is easily dissolved by contact with water. And it turns out that an oil-based component flows out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Cosmetics (AREA)
  • Artificial Filaments (AREA)

Abstract

 ナノファイバ(10)は、水溶性高分子から構成され、かつ中空部(13)を有し、中空部(13)に油性成分(14)が含まれている。このナノファイバ(10)は、細径部(12)と太径部(11)とを有し、該太径部(11)に中空部(13)を有していることが好適である。太径部(11)及び細径部(12)の双方に中空部(13)を有し、太径部(11)の中空部(13)と細径部(12)の中空部(13)とが連通していることも好適である。

Description

ナノファイバ
 本発明は、ナノファイバ及びその製造方法に関する。また本発明はナノファイバシートに関する。
 水溶性高分子を基材とするナノファイバに関する技術としては、例えば特許文献1に記載のものが知られている。このナノファイバは、水溶性高分子を水などの溶媒に溶解した溶液を用い、電界紡糸法によって製造されるものである。この溶液には乳化成分、安定化成分、殺菌成分、保湿成分等の機能性成分を添加してもよいと、同文献には記載されている。前記溶液に、かかる機能性成分が添加された場合には、該機能性成分がナノファイバ中に含まれることになる。
 ナノファイバに機能性成分を含有させることに関しては、特許文献2に記載の技術も知られている。同文献には、高分子化合物のナノファイバからなる網目状構造体に、化粧料や化粧料成分を保持させることが記載されている。化粧料等は、ナノファイバ内に内包される。保持の方法としては、ナノファイバを構成する高分子化合物が含まれている溶液に化粧料等を混ぜて、電界紡糸する方法が採用されている。
国際公開第2009/031620号パンフレット 特開2008-179629号公報
 前記の各特許文献に記載のナノファイバでは、前記の機能性成分や化粧料等が繊維の表面にも存在しているので、それに起因してナノファイバがべとついた感触を呈しやすい。また、機能性成分等をナノファイバに高配合することには限りがある。また機能性成分が繊維表面にあることから、劣化や変性が起こり、そのことに起因して保存性能が劣ることが予想される。
 本発明は、水溶性高分子から構成され、かつ中空部を有するナノファイバであって、該中空部に油性成分が含まれているナノファイバを提供するものである。
 また本発明は、前記のナノファイバシートの好適な製造方法であって、
 水溶性高分子が水相に溶解しており、かつ油相中に油性成分が含まれているO/Wエマルションを用い、電界紡糸法によって紡糸を行うナノファイバの製造方法を提供するものである。
 また本発明は、前記のナノファイバシートの別の好適な製造方法であって、
 水溶性高分子が水に溶解してなる第1液と、油性成分を含む第2液とを用い、
 電界紡糸法を行うためのキャピラリとして二重管構造のものを用い、該キャピラリの芯部に第2液を流し、かつ鞘部に第1液を流して電界紡糸法を行うナノファイバの製造方法を提供するものである。
 本発明は、以下の主題を含むものである。
[1]水溶性高分子から構成され、かつ中空部を有するナノファイバであって、該中空部に油性成分が含まれているナノファイバ。
[2]前記中空部に含まれる油性成分が常温で液体である[1]に記載のナノファイバ。
[3]太径部と細径部とを有し、該太径部に前記中空部を有している[1]又は[2]に記載のナノファイバ。
[4]太径部と細径部とを有し、該太径部及び該細径部の双方に前記中空部を有し、該太径部の中空部と該細径部の中空部とが連通している[1]又は[2]に記載のナノファイバ。
[5]外径及び内径がほぼ一定である管状の形態をしている[1]又は[2]に記載のナノファイバ。
[6]前記水溶性高分子が、プルラン、ヒアルロン酸、コンドロイチン硫酸、ポリ-γ-グルタミン酸、変性コーンスターチ、β-グルカン、グルコオリゴ糖、ヘパリン、ケラト硫酸等のムコ多糖、セルロース、ペクチン、キシラン、リグニン、グルコマンナン、ガラクツロン、サイリウムシードガム、タマリンド種子ガム、アラビアガム、トラガントガム、大豆水溶性多糖、アルギン酸、カラギーナン、ラミナラン、寒天(アガロース)、フコイダン、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の天然高分子、部分鹸化ポリビニルアルコール、低鹸化ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸ナトリウム等の合成高分子である[1]ないし[5]のいずれか一項に記載のナノファイバ。
[7]前記水溶性高分子が、プルラン、部分鹸化ポリビニルアルコール、低鹸化ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等の合成高分子である[1]ないし[5]のいずれか一項に記載のナノファイバ。
[8]前記水溶性高分子を、単独で又は2種以上を組み合わせて用いる[6]又は[7]に記載のナノファイバ。
[9]水溶性高分子がプルランである[1]ないし[5]のいずれか一項に記載のナノファイバ。
[10]油性成分が、溶媒として使用するスクワラン、オリーブオイル、シリコーンオイル、マカデミアナッツ油又はセチル-1,3-ジメチルブチルエーテルを含む[1]ないし[9]のいずれか一項に記載のナノファイバ。
[11]油性成分が、前記溶媒に有効成分としてビタミンE又はカミツレエキス、バラエキス等の油溶性成分を添加したものである[10]に記載のナノファイバ。
[12]油性成分を単独で又は2種以上を組み合わせて用いる[10]又は[11]に記載のナノファイバ。
[13]油性成分として、第1の油性成分及び第2の油性成分の2種の油性成分を用い、ナノファイバの長さ方向の全域にわたって不連続に複数の中空部が形成されており、各中空部に第1及び第2の油性成分の双方を存在させる[1]ないし[12]のいずれか一項に記載のナノファイバ。
[14]油性成分は、第1の油性成分及び第2の油性成分の2種の油性成分を用い、ナノファイバの長さ方向の全域にわたって不連続に複数の中空部が形成されており、複数の中空部のうち、ある中空部には第1の油性成分が存在し、かつ第2の油性成分は存在しておらず、他の中空部には第2の油性成分が存在し、かつ第1の油性成分は存在していない[1]ないし[12]のいずれか一項に記載のナノファイバ。
[15]油性成分がカミツレエキス及びセチル-1,3-ジメチルブチルエーテルである[1]ないし[9]のいずれか一項に記載のナノファイバ。
[16]油性成分がシリコーンオイルである[1]ないし[9]のいずれか一項に記載のナノファイバ。
[17]20℃における蒸気圧が13.3Pa以下である揮発性機能剤を含む[1]ないし[16]のいずれか一項に記載のナノファイバ。
[18][1]ないし[17]のいずれか一項に記載のナノファイバを含んで構成されるナノファイバシート。
[19]保湿シート、化粧シート又は医療用シートの用途に用いる[18]に記載のナノファイバシート。
[20][1]に記載のナノファイバの製造方法であって、
 水溶性高分子が水相に溶解しており、かつ油相中に油性成分が含まれているO/Wエマルションを用い、電界紡糸法によって紡糸を行うナノファイバの製造方法。
[21][1]に記載のナノファイバの製造方法であって、
 水溶性高分子が水に溶解してなる第1液と、油性成分を含む第2液とを用い、
 電界紡糸法を行うためのキャピラリとして二重管構造のものを用い、該キャピラリの芯部に第2液を流し、かつ鞘部に第1液を流して電界紡糸法を行うナノファイバの製造方法。
[22]第2液は、乳化方法で得られる[21]に記載のナノファイバの製造方法。
[23] 第2液は、乳化方法で得られ、乳化に用いられる乳化剤は、界面活性剤である[21]に記載のナノファイバの製造方法。
[24]乳化剤は、非イオン界面活性剤である[23]に記載のナノファイバの製造方法。
[25]乳化剤は、ポリエチレングリコールモノアルキレート、ポリエチレングリコールジアルキレート、エチレングリコールジアルキレート又はポリオキシエチレン硬化ひまし油である[23]に記載のナノファイバの製造方法。
[26]乳化剤は、ポリオキシエチレン硬化ひまし油である[23]に記載のナノファイバの製造方法。
[27]水溶性高分子から構成され、20℃における蒸気圧が13.3Paを超える易揮発性機能剤を含み、中空部を有し、該中空部に油性成分が含まれているナノファイバの製造方法であって、
 該易揮発性機能剤を該ナノファイバの層に付与する工程を備えたナノファイバの製造方法。
[28]水溶性高分子から構成され、20℃における蒸気圧が13.3Paを超える易揮発性機能剤を含み、中空部を有し、該中空部に油性成分が含まれているナノファイバの製造方法であって、
 該ナノファイバの近傍に該易揮発性機能剤を配置して、該易揮発性機能剤を該ナノファイバに移行させる工程を備えたナノファイバの製造方法。
 本発明によれば、油性成分が高配合されているにもかかわらず、油性成分に起因するべとついた感触が低減し、保存性に優れたナノファイバが提供される。
図1(a)ないし(d)は、本発明のナノファイバの断面構造を示す模式図である。 図2は、電界紡糸法を行うために用いられる好適な装置を示す模式図である。 図3は、図2に示す装置におけるキャピラリの構造を拡大して示す模式図である。 図4(a)は、実施例1で得られたナノファイバシートの走査型電子顕微鏡像であり、図4(b)は、実施例1で得られたナノファイバシートの蛍光顕微鏡像である。 図5(a)は実施例2で得られたナノファイバシートの反射電子線像であり、図5(b)及び(c)は実施例2で得られたナノファイバシートのケイ素及び炭素の分布を示すX線元素分析像である。 図6は、実施例3で得られたナノファイバシートの走査型電子顕微鏡像である。 図7は、実施例4で得られたナノファイバシートの走査型電子顕微鏡像である。
 本発明は、機能性成分の劣化が抑制され、該機能性成分の高濃度で配合されたドライなナノファイバを提供するものである。また本発明は、中空部に存在する機能性成分を外側の水溶性高分子を溶解することで肌へ徐放し得るナノファイバを提供するものである。
 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。本発明のナノファイバは、その太さを円相当直径で表した場合、一般に好ましくは10~3000nm、更に好ましくは100~2000nm、一層好ましくは200~1500nmのものである。ナノファイバの太さは、例えば走査型電子顕微鏡(SEM)観察によって、10000倍に拡大して観察し、その二次元画像から欠陥(ナノ繊維の塊、ナノ繊維の交差部分、ポリマー液滴)を除き、繊維を任意に10本選び出し、繊維の長手方向に直交する線を引き、繊維径を直接読み取ることで測定することができる。ナノファイバの長さは本発明において臨界的でなく、ナノファイバの製造方法や、ナノファイバの具体的な用途に応じて、適切な長さのものを用いることができる。
 ナノファイバは、水溶性高分子化合物を原料とするものである。本明細書において「水溶性高分子化合物」とは、1気圧・23℃の環境下において、高分子化合物1g秤量したのちに、10gのイオン交換水に浸漬し、24時間経過後、浸漬した高分子化合物の0.5g以上が溶解する性質を有する高分子化合物をいう。
 水溶性高分子化合物としては、例えばプルラン、ヒアルロン酸、コンドロイチン硫酸、ポリ-γ-グルタミン酸、変性コーンスターチ、β-グルカン、グルコオリゴ糖、ヘパリン、ケラト硫酸等のムコ多糖、セルロース、ペクチン、キシラン、リグニン、グルコマンナン、ガラクツロン、サイリウムシードガム、タマリンド種子ガム、アラビアガム、トラガントガム、大豆水溶性多糖、アルギン酸、カラギーナン、ラミナラン、寒天(アガロース)、フコイダン、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の天然高分子、部分鹸化ポリビニルアルコール、低鹸化ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸ナトリウム等の合成高分子などが挙げられる。これらの水溶性高分子化合物は単独で又は2種以上を組み合わせて用いることができる。これらの水溶性高分子化合物のうち、ナノファイバの調製が容易である観点から、プルラン、部分鹸化ポリビニルアルコール、低鹸化ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等の合成高分子を用いることが好ましい。
 ナノファイバは中空部を有している。この中空部は、後述する油性成分を保持可能な微小空間になっている。図1(a)ないし(d)には、中空部を有するナノファイバの断面形状の例が示されている。
 図1(a)に示すナノファイバ10は、太径部11と細径部12とを有している。太径部11と細径部12とは、ナノファイバ10の延びる方向に沿って交互に位置している。太径部11は、その内部に微小空間からなる中空部13を有している。この中空部13には、上述のとおり油性成分14が保持されている。一方、細径部12には中実になっており、中空部は有していない。
 図1(a)においては、ナノファイバ10の延びる方向に沿った太径部11及び細径部12の長さがほぼ同じに表されているが、太径部11及び細径部12の長さはこれに限られない。後述する電界紡糸法に従い本発明のナノファイバ10を製造する場合には、後述の第1液と第2液との配合割合に応じて、太径部11の長さと細径部12の長さの比は異なってくる。また、図1(a)においては、太径部11の断面は略楕円形の形状をしているが、太径部11の断面形状はこれに限られない。また、各太径部11の断面形状や太さは同じでもよく、あるいは異なっていてもよい。細径部12に関しては、その太さが一様に表されているが、太径部11よりも細いことを条件として、細径部12の太さは一様になっていなくてもよい。また、各細径部12の太さは同じでもよく、又は異なっていてもよい。
 図1(b)に示すナノファイバ10も、図1(a)に示すナノファイバと同様に、太径部11と細径部12とを有している。本実施形態のナノファイバ10が、図1(a)に示すナノファイバと異なる点は、細径部の構造である。図1(a)に示すナノファイバにおける細径部は中実であったのに対して、本実施形態のナノファイバ10における細径部12は管状になっており、中空部15を有している。太径部11の中空部13と同様に、細径部12の中空部15にも油性成分14が保持されている。太径部11の中空部13と、それに隣り合う細径部12の中空部15とは連通している。尤も、ナノファイバ10のすべての部位において太径部11の中空部13と、それに隣り合う細径部12の中空部15とが連通している必要はない。
 図1(c)に示すナノファイバ10は、図1(a)及び(b)に示すナノファイバとは異なり、太径部を有していない。このナノファイバ10は、その長さ方向の全域にわたって外径及び内径がほぼ一定である管状の形態をしており、筒状の中空部13が、長さ方向の全域にわたって形成されている。中空部13は、ナノファイバ10の長さ方向の全域にわたって連続して形成されていてもよく、あるいは不連続に形成されていてもよい。ナノファイバ10の外径及び内径がほぼ一定である管状の形態であると、内部に収容される油性成分の配合割合を増やすことが可能である。
 前記の各実施形態のナノファイバ10によれば、中空部13に油性成分14を貯留できるので、ナノファイバ10に油性成分14を高配合することができる。図1(b)及び(c)に示す実施形態のナノファイバ10においては、その長さ方向の全域にわたって中空部13が形成されているので、油性成分14を一層高配合することができる。しかも、ナノファイバ10の表面には油性成分14は実質的に存在していないか、又は存在していたとしてもその量はごく微量なので、油性成分14に起因するべとついた感触が生じにくい。つまり常温(5~35℃)で液体である油性成分を使用した場合でも、シートのドライ感を維持したまま、該油性成分を高配合することが可能である。
 油性成分は、それ単独で用いてもよく、あるいは油性成分が有機溶媒に溶解した溶液の状態で用いてもよい。したがって、油性成分は、それ単独で中空部13に貯留されていてもよく、あるいは油性成分を有機溶媒に溶解してなる溶液が、中空部13に貯留されていてもよい。
 上述のとおり、本発明のナノファイバ10によれば、従来のナノファイバよりも油性成分を高配合することができる。例えば油性成分の配合割合を、好ましくは0.5~95質量%、より好ましくは10~90質量%、更に好ましくは20~90質量%とすることができる。一方、ナノファイバ10における水溶性高分子の割合は、好ましくは5~99.5質量%、より好ましくは10~90質量%、更に好ましくは10~80質量%とすることができる。ナノファイバ10における水溶性高分子及び油性成分の配合割合は、一定量のナノファイバシートを水に溶解させた後、遠心分離することで測定することができる。
 油性成分としては、ナノファイバ10の具体的用途に応じて種々のものを用いることができる。ナノファイバ10を、例えば、保湿シート、化粧シート、医療用シートの用途に用いる場合には、油性成分として、溶媒として使用するスクワランやオリーブオイル、シリコーンオイル、マカデミアナッツ油、セチル-1,3-ジメチルブチルエーテルに、有効成分として一般的に化粧品や医療用に使用されるビタミンEやカミツレエキス、バラエキス等の油溶性成分を添加し調製したものを用いることができる。
 前記の油性成分は単独で又は2種以上を組み合わせて用いることができる。この場合、例えば第1の油性成分及び第2の油性成分の2種の油性成分を用いて図1(a)に示す断面構造のナノファイバを製造する場合には、各中空部13に第1及び第2の油性成分の双方を存在させることができる。別の態様として、図1(d)に示す態様で第1及び第2の油性成分を存在させることができる。図1(d)に示す態様においては、ナノファイバ10に形成された複数の中空部のうち、ある中空部13Aには第1の油性成分14Aが存在し、かつ第2の油性成分は存在しておらず、他の中空部13Bには第2の油性成分14Bが存在し、かつ第1の油性成分は存在していない。
 本発明のナノファイバ10は、上述した成分に加え、揮発性機能剤を含有していてもよい。揮発性機能剤としては、香料、美白成分及び味覚調整剤からなる群から選択される1種以上が好ましく用いられる。本明細書において、「香料」は、常温常圧で空間に芳香(良い香り)を付与しうる物質であり、芳香機能を有する。「美白成分」は、ヒトの各部に付着させて用いられた場合に、その部分を白くしあるいは若々しく健全な状態に保持しうる物質であり、美白機能を有する。また、「味覚調整剤」は、例えば苦味や酸味を他の味覚(甘味等)に変えたりあるいは低減させたりする等、味覚の種類や程度を変化させうる物質であり、味覚調整機能を有する。これらの機能剤は揮発性であり、常温常圧で揮発する物質である。常温常圧とは、通常、温度23℃、気圧101.325kPaの状態を意味する。これらの揮発性機能剤は、それが水溶性である場合には、水溶性高分子とともに存在する。揮発性機能剤が油溶性である場合には、上述した油性成分とともに、ナノファイバにおける同一の中空部に存在しているか、又は図1(d)に示すように、油性成分が存在する中空部とは別の中空部に存在している。揮発性機能剤が水溶性であるか、それとも油溶性であるかを問わず、該揮発性機能剤をナノファイバの表面及びその近傍に存在させることもできる。
 揮発性機能剤は、20℃における蒸気圧が好ましくは13.3Pa以下であり、0.0013~10.7Paであることが更に好ましく、0.0133~6.7Paであることが一層好ましい。揮発性機能剤の20℃における蒸気圧が斯かる範囲にあることで、このナノファイバ10は、常温常圧において揮発性機能剤の作用に起因する有用な機能を発揮し得る。例えば、揮発性機能剤が香料の場合、該香料を含有するナノファイバ10は、常温常圧において空間に芳香を放出し得る賦香されたものとなり、芳香の放出によって使用者に爽快感、清涼感、清潔感、リラックス感等を感じさせ、更には消臭、麻酔効果(鎮痛)等の効果を奏し得る。
 これに対し、20℃における蒸気圧が13.3Paを超える揮発性機能剤(以下、易揮発性機能剤ともいう)は、揮発性が高すぎるため、ナノファイバを後述するエレクトロスピニング法で作製する場合において、ナノファイバの原料となる原料液中に易揮発性機能剤を添加して電界紡糸を実施すると、電界紡糸の過程で易揮発性機能剤が揮発してしまい、その結果得られたナノファイバに易揮発性機能剤が十分に残らず、易揮発性機能剤の使用によって期待される有用な機能(例えば、易揮発性機能剤が香料である場合は芳香機能)が発現しないおそれがある。尤も、易揮発性機能剤についても、その添加タイミング等を工夫することで、該易揮発性機能剤の機能をナノファイバに含有させることが可能である(後述する製造方法A及びB参照)。揮発性機能剤の蒸気圧は、RFIM(Research Institute for Fragrance Materials)が提供するデータベースの値を使用する。
 本発明で用いる揮発性機能剤(香料)としては、例えば、バニリン、ジャスモン酸メチル、γ-ウンデカラクトン、フェニルエチルアルコール等が挙げられる。これらの揮発性機能剤は単独で又は2種以上を組み合わせて用いることができる。
 ナノファイバ10における揮発性機能剤の含有量は、0.001~30質量%、特に0.01~5質量%に設定することが好ましい。揮発性機能剤の含有量をこの範囲内に設定することによって、香気放出等の、揮発性機能剤による有用な機能を発揮し得るナノファイバが一層確実に得られるとともに、揮発性機能剤の使用量を低減し製造コストを下げることができる。
 本発明のナノファイバ10は、これを含むシート状の形態で好適に用いられる。本発明のナノファイバ10を含むシート(以下、このシートを「ナノファイバシート」という。)は、本発明のナノファイバ10のみから構成されていてもよく、他の繊維を含んでいてもよい。他の繊維としては、本発明のナノファイバ10以外のナノファイバや、一般的な天然繊維や合成繊維を用いることができる。また、本発明のナノファイバ10を含む繊維シートに、他の一層以上の繊維シート及び/又はフィルムを積層してなる積層シートも、本発明のナノファイバシートに包含される。
 ナノファイバシートにおいて、ナノファイバは、それらの交点において結合しているか、又はナノファイバどうしが絡み合っている。それによって、ナノファイバシートは、それ単独でシート状の形態を保持することが可能となる。ナノファイバどうしが結合しているか、あるいは絡み合っているかは、ナノファイバシートの製造方法によって相違する。
 ナノファイバシートの厚みは、その具体的な用途に応じて適切な範囲が設定される。ナノファイバシートを、例えばヒトの肌に貼付するために用いる場合には、その厚みを50nm~1mm、特に500nm~500μmに設定することが好ましい。ナノファイバ層11の厚みは、接触式の膜厚計ミツトヨ社製ライトマチックVL-50Aを使用することによって測定することができる。
 本発明のナノファイバシートは、例えばヒトの皮膚、非ヒト哺乳類の皮膚や歯、枝や葉などの植物表面などに付着させて用いることができる。この場合、ナノファイバシート又は付着の対象物の表面を水や水を含む水性液などの液状物で湿潤させた状態下に、ナノファイバシートを対象物表面に当接させる。これによって、表面張力の作用でナノファイバシートが対象物の表面に良好に密着する。更に、液状物の作用によって、ナノファイバを構成する水溶性高分子が液状物に溶解する。この溶解によって、ナノファイバにおける中空部13が崩壊して、その内部に貯留されている油性成分が流れ出る。流れ出た油性成分は、ヒトの皮膚等の対象物の表面を被覆し、かつ該対象物の内部に浸透する。例えば油性成分として植物エキスを用い、かつナノファイバシートをヒトの皮膚に付着させた場合には、中空部13の崩壊によってナノファイバから流れ出た油性成分が、皮膚の表面を被覆し、かつ皮膚の内部に浸透して、該油性成分に由来する効能が発現する。
 特に、油性成分がヒトの皮膚等の対象物の表面を被覆することによって、該対象物からの水蒸気の蒸散が抑制され、該対象物の表面を容易に湿潤状態に保つことができる。その結果、ナノファイバ中に機能剤が含まれている場合、該機能剤が対象物の内部に浸透しやすくなる効果が期待できる。また、ナノファイバを構成する水溶性高分子が乾燥して膜化することが、油性成分によって効果的に防止され、膜化に起因する対象物へのツッパリ感が効果的に低減するという効果も期待できる。更に、膜化した水溶性高分子に対して油性成分が可塑剤として働くので、膜化した水溶性高分子に、透明性の維持と柔軟性を付与する効果も期待できる。その上、膜化した水溶性高分子が部分的に剥がれることによって生じる「ボソボソ感」や「膜化した水溶性高分子が白く浮き上がって生じる外観の悪化」を効果的に低減できるという効果も期待できる。
 対象物の表面又はナノファイバシートの表面を湿潤状態にするためには、例えば各種の液状物を該表面に塗布又は噴霧すればよい。塗布又は噴霧される液状物としては、水を含み、かつ使用時の温度において5000mPa・s程度以下の粘性を有する物質が用いられる。そのような液状物としては、例えば水、水溶液及び水分散液等が挙げられる。また、O/WエマルションやW/Oエマルション等の乳化液、増粘剤で増粘された水性液なども挙げられる。具体的には、ナノファイバシートをヒトの皮膚に付着させる場合には、対象物である皮膚の表面を湿潤させるための液体として、化粧水や化粧クリームを用いることができる。
 液状物の塗布又は噴霧によって対象物の表面又はナノファイバシートの表面を湿潤状態にする程度は、該液状物の表面張力が十分に発現し、かつ水溶性高分子化合物が溶解する程度の少量で十分である。具体的には、ナノファイバシートの大きさにもよるが、その大きさが例えば3cm×3cmの正方形の場合、0.01ml程度の量の液状物を対象物の表面に存在させることで、ナノファイバシートを容易に該表面に付着させることができる。また、ナノファイバ10に含まれる水溶性高分子を溶解させて、中空部13を崩壊させることができる。
 前記のナノファイバシートは例えば図2に示すように、電界紡糸法(エレクトロスピニング法、ESD)を用いて好適に製造される。同図に示す電界紡糸法を実施するための装置30は、シリンジ31、高電圧源32、導電性コレクタ33を備える。シリンジ31は、シリンダ31a、ピストン31b及びキャピラリ31cを備えている。キャピラリ31cの内径は10~1000μm程度である。シリンダ31a内には、ナノファイバの原料となる原料液が充填されている。高電圧源32は、例えば10~30kVの直流電圧源である。高電圧源32の正極はシリンジ31における原料液と導通している。高電圧源32の負極は接地されている。導電性コレクタ33は、例えば金属製の板であり、接地されている。シリンジ31におけるキャピラリ31cの先端と導電性コレクタ33との間の距離は、例えば30~300mm程度に設定されている。キャピラリ31cからの原料液の吐出量は、好ましくは0.1~10ml/h、更に好ましくは0.1~4ml/hとすることができる。図2に示す装置30は、大気中で運転することができる。運転環境に特に制限はなく、温度20~40℃、湿度10~50%RHとすることができる。
 前記の中空部13を有するナノファイバ10を首尾よく製造するためには、前記の原料液の調製が重要である。図1(a)及び(b)に示す実施形態のナノファイバ10を得る場合には、この原料液は第1液及び第2液を混合することで得られる。第1液は、水溶性高分子が水に溶解してなる水溶液である。第2液は、水相中に油性成分が含まれているO/Wエマルションである。両者を混合することで、水溶性高分子が水相に溶解しており、かつ油相中に油性成分が含まれているO/Wエマルションが調製される。このO/Wエマルションを原料液として用い、かつ上述した電界紡糸法を行うことで、目的とする形態を有するナノファイバ10及びナノファイバシートが得られる。
 第1液における水溶性高分子の濃度は、3~30質量%、特に10~25質量%とすることが、原料液の粘度を好適にすることができる点から好ましい。第1液は、水又は水に少量の水溶性有機溶媒が混合された水性液を加熱した状態で、又は非加熱の状態で、水溶性高分子を添加して、攪拌混合することで得られる。
 一方、第2液は、公知の乳化方法を採用することで得られる。そのような乳化方法としては、例えば自然乳化、転相乳化、強制乳化などの方法を採用することができる。乳化においては、水相と、油性成分を含む油相との質量比を、水相:油相=51:49~99:1、特に51:49~85:15とすることが、乳化を首尾良く行い得る点から好ましい。同様の理由により、乳化に用いられる乳化剤の使用量は、第1液と第2液の混合質量に対して0.001~20質量%、特に0.004~7質量%とすることが好ましい。
 乳化剤としては、各種の界面活性剤を用いることができる。特に、ポリエチレングリコールモノアルキレート、ポリエチレングリコールジアルキレート、エチレングリコールジアルキレート、ポリオキシエチレン硬化ひまし油などの非イオン界面活性剤を用いることが、肌への刺激を小さくできる点から好ましい。
 転相乳化によって第2液を調製する場合には、油性成分を含む油相に乳化剤を添加して所定温度に加熱しておく。そこへ所定温度に加熱された水相を徐々に加えながら攪拌することで転相を起こさせて、O/Wエマルションを得る。
 このようにして得られたO/Wエマルションからなる原料液においては、水相の質量比が55~98質量%、特に60~97質量%であることが好ましく、油相の質量比が2~45質量%、特に3~40質量%であることが好ましい。
 油性成分を2種以上用いる場合には、次の(I)又は(II)の方法を採用することができる。
(I)O/Wエマルジョンにおける油相中にすべての油性成分を含有させた第2液を調製し、該第2液を第1液と混合して原料液を調製する方法。
(II)各油性成分ごとにO/Wエマルジョンを調製し、複数の該O/Wエマルジョンを第1液と混合して原料液を調製する方法。
 (I)の方法を採用して図1(a)に示すナノファイバを製造する場合には、各中空部13にすべての油性成分が存在することになる。(II)の方法を採用して図1(a)に示すナノファイバを製造する場合には、ナノファイバ10に形成された複数の中空部のうち、ある中空部には第1の油性成分が存在し、かつ他の油性成分は存在しておらず、別の中空部には第2の油性成分が存在し、かつ他の油性成分は存在していない状態になる(図1(d)参照)。
 前記のO/Wエマルションからなる原料液を用い、電界紡糸法を行うことで、図1(a)及び(b)に示す構造のナノファイバ10が得られる。この理由は次のとおりであると、本発明者らは考えている。すなわち、溶液が吐出されると揮発成分である水を多く含む水溶性高分子溶液からなる相が最外層に存在しやすくなり、溶媒揮発の少ない油成分からなる相が内部に存在しやすくなるためである。
 図1(c)に示す構造のナノファイバ10を製造する場合には、水溶性高分子が水に溶解してなる水溶液からなる第1液と、油性成分からなるか又は油性成分が有機溶媒に溶解してなる第2液とを用いる。そして、図2に示す装置におけるキャピラリ31cとして、図3に示すように内管40及び外管41を備えた二重管構造のものを用い、芯部に第2液を流し、かつ鞘部に第1液を流して電界紡糸法を行えばよい。この場合、第1液の吐出量と第2液の吐出量を適切にバランスさせることで、目的とする構造のナノファイバを首尾良く得ることができる。
 先に述べた揮発性機能剤を用いる場合には、該機能剤が水溶性である場合には、該機能剤は第1液中に含有させることができる。その場合、該機能剤は、ナノファイバにおいて、水溶性高分子とともに存在することになる。揮発性機能剤が油溶性である場合には、次の(i)又は(ii)の方法を採用することができる。
(i)O/Wエマルジョンにおける油相中に油性成分とともに揮発性機能剤を含有させた第2液を調製し、該第2液を第1液と混合して原料液を調製する方法。
(ii)油相中に油性成分を含有するO/Wエマルジョンからなる第2液とは別に、油相中に揮発性機能剤を含有するO/Wエマルジョンからなる第3液を調製し、第2液及び第3液を第1液と混合して原料液を調製する方法。この場合、第2液には揮発性機能剤は含まれていない。また第3液には油性成分は含まれていない。
 (i)の方法を採用して図1(a)に示すナノファイバを製造する場合には、すべての中空部13に油性成分及び揮発性機能剤が存在することになる。(ii)の方法を採用して図1(a)に示すナノファイバを製造する場合には、ナノファイバ10に形成された複数の中空部のうち、ある中空部には油性成分が存在し、かつ揮発性機能剤は存在しておらず、別の中空部には揮発性機能剤が存在し、かつ油性成分は存在していない状態になる(図1(d)参照)。
 ところで、揮発性が高い揮発性機能剤を用いる場合、例えば先に述べた易揮発性機能剤を用いる場合には、その添加タイミング等を工夫することで、該易揮発性機能剤をナノファイバに付与することが可能である。具体的には、以下に述べる製造方法A及びBによれば、易揮発性機能剤が付与されたナノファイバを製造することが可能である。
 製造方法A:上述の方法に従い、中空部を有するナノファイバを製造する工程(ナノファイバ製造工程)、及び該ナノファイバに易揮発性機能剤を含む溶液を付与する工程(溶液付与工程)を備えたナノファイバの製造方法。
 製造方法B:上述の方法に従い、中空部を有するナノファイバを製造する工程(ナノファイバ製造工程)、及び該ナノファイバの近傍に易揮発性機能剤を配置して所定時間放置する工程(易揮発性機能剤移行工程)を備えたナノファイバの製造方法。
 製造方法Aの溶液付与工程で用いられる、易揮発性機能剤を含む溶液は、溶媒に易揮発性成分を溶解又は分散させて得られるものである。該溶媒としては、ナノファイバ(ナノファイバを構成する水溶性高分子)に影響を与えないものが好ましく、例えば有機溶媒が用いられる。ナノファイバに易揮発性機能剤を含む溶液を付与する方法としては、溶液をナノファイバに噴霧する方法、該溶液中にナノファイバを浸漬する方法等が挙げられる。
 製造方法Bの易揮発性機能剤移行工程は、ナノファイバと易揮発性機能剤とを接触させずに互いに近接させることによって、揮発した易揮発性機能剤をナノファイバに移行させる工程である。ナノファイバと易揮発性機能剤とを接触させると、ナノファイバを構成する水溶性高分子が溶解又は膨潤し、ナノファイバの形態が崩壊するおそれがあるが、ナノファイバと易揮発性機能剤とを近接させることでそれを防止することができる。ナノファイバに近接配置される易揮発性機能剤は、外部に露出した状態であってもよく、あるいは通気性を有する袋等に収容された状態であってもよい。易揮発性機能剤が収容された状態であると、ナノファイバと易揮発性機能剤とが誤って接触することが確実に防止される。ナノファイバの近傍で易揮発性機能剤を放置する時間は、易揮発性機能剤の種類等に応じて適宜設定することができる。一般に、揮発性の高い機能剤ほど、放置する時間が短くなる。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態においては、ナノファイバの製造方法として、電界紡糸法を採用した場合を例にとり説明したが、ナノファイバの製造方法はこれに限られない。
 また、図2に示す電界紡糸法においては、形成されたナノファイバが板状の導電性コレクタ33上に堆積されるが、これに代えて導電性の回転ドラムを用い、回転する該ドラムの周面にナノファイバを堆積させるようにしてもよい。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
(1)第1液の調製
 水溶性高分子としてプルラン(林原商事製)を用いた。これを水に溶解させて濃度20%の水溶液を得た。これを第1液として用いた。第1液は80℃に加熱しておいた。
(2)第2液の調製
 油性成分としてカミツレエキスとセチル-1,3-ジメチルブチルエーテル(花王(株)製のASE166K)の混合物を用いた。この溶液におけるカミツレエキスの濃度は4.20%であった。この溶液に、非イオン界面活性剤であるポリオキシエチレン硬化ヒマシ油(花王(株)製エマノーン(登録商標)CH60)を添加した。この非イオン界面活性剤の濃度は0.3%であった。この溶液0.95mlを80℃に加熱し、そこへ80℃に加熱した4.00mlの水を徐々に添加して混合して転相乳化させた。これによってO/Wエマルションからなる第2液を得た。
(3)原料液の調製
 第1液と第2液とを質量比で3:1の割合で混合して攪拌し、O/Wエマルションからなる原料液を得た。この原料液における各成分の濃度は、プルラン15.00%、水80.20%、油性成分4.78%、非イオン界面活性剤0.013%であった。
(4)電界紡糸法
 前記で得られた原料液を用い、図2に示す装置によって電界紡糸法を行い、導電性コレクタ33の表面に配置されたポリエチレンテレフタレートフィルム(厚み:25μm)の表面にナノファイバシートを形成した。電界紡糸法の条件は以下のとおりとした。
・印加電圧:25kV
・キャピラリ-コレクタ間距離:185mm
・原料液吐出量:1ml/h
・環境:25℃、50%RH
(5)評価
 得られたナノファイバシートにおける各成分の割合は、プルランが75.82%、油性成分が24.11%、界面活性剤が0.07%であった。このナノファイバシートの厚みをライトマチックVL-50A((株)ミツトヨ)で測定したところ30μmであった。また、このナノファイバシートの走査型電子顕微鏡像を図4(a)に示す。本観察結果より、ナノファイバの細径部の繊維径は504nmであった。更に、第2液に油性の蛍光剤(ナイルレッド)を添加して同条件で電界紡糸法を行い得られたナノファイバシートの蛍光顕微鏡像を図4(b)に示す。図4(b)中、黒い部分が、蛍光剤が存在している部分である。
 図4(a)から明らかなように、本実施例で得られたナノファイバシートにおけるナノファイバは、太径部及び細径部を有することが判る。また図4(b)から明らかなように、太径部に中空部を有し、該中空部に油性成分が貯留されていることが判る。つまり本実施例のナノファイバは、図1(a)に示す構造のものであることが判る。
  〔実施例2〕
(1)第1液の調製
 実施例1と同様とした。
(2)第2液の調製
 油性成分としてシリコーンオイルを用いた。このシリコーンオイルに、非イオン界面活性剤であるポリオキシエチレン硬化ヒマシ油(花王(株)製エマノーン(登録商標)CH60)を添加した。この非イオン界面活性剤の濃度は0.3%であった。このシリコーンオイル0.95mlを80℃に加熱し、そこへ80℃に加熱した4.00mlの水を徐々に添加して混合して転相乳化させた。これによってO/Wエマルションからなる第2液を得た。
(3)原料液の調製
 第1液と第2液とを質量比で3:1の割合で混合して攪拌し、O/Wエマルションからなる原料液を得た。この原料液における各成分の濃度は、プルラン15%、水80.2%、油性成分4.787%、非イオン界面活性剤0.013%であった。
(4)電界紡糸法
 実施例1と同様とした。
(5)評価
 得られたナノファイバシートにおける各成分の割合は、プルランが75.82%、油性成分が24.11%、界面活性剤が0.07%であった。このナノファイバシートの厚みをライトマチックVL-50A((株)ミツトヨ)で測定したところ30μmであった。また、このナノファイバシートの反射電子線像を図5(a)に示す。本観察結果より、ナノファイバの細径部の繊維径は490nmであった。更に、図5(a)に示す観察視野におけるケイ素及び炭素の分布をEDXによって分析した。その結果を図5(b)及び(c)に示す。図5(a)から明らかなように、本実施例で得られたナノファイバシートにおけるナノファイバは、太径部及び細径部を有することが判る。また図5(b)及び(c)から明らかなように、太径部に中空部を有し、該中空部に油性成分が貯留されていることが判る。つまり本実施例のナノファイバは、図1(a)に示す構造のものであることが判る。
  〔実施例3〕
 (1)第1液の調製
 実施例1と同様とした。
 (2)第2液の調製
 油性成分としてカミツレエキスを用いた。この溶液に、非イオン界面活性剤であるポリオキシエチレン硬化ヒマシ油(花王(株)製エマノーン(登録商標)CH60)を添加した。この非イオン界面活性剤の濃度は0.3%であった。この溶液1.72mlを80℃に加熱し、そこへ80℃に加熱した2.06mlの水を徐々に添加して混合して転相乳化させた。これによってO/Wエマルションからなる第2液を得た。
 (3)原料液の調製
 第1液と第2液とを質量比で81:19の割合で混合して攪拌し、O/Wエマルションからなる原料液を得た。この原料液における各成分の濃度は、プルラン16.22%、水75.16%、油性成分8.59%、非イオン界面活性剤0.03%であった。これ以外は実施例1と同様にしてナノファイバシートを得た。得られたナノファイバシートにおける各成分の割合は、プルランが65.3%、油性成分が34.58%、界面活性剤が0.12%であった。このナノファイバシートの厚みをライトマチックVL-50A((株)ミツトヨ)で測定したところ30μmであった。また、このナノファイバシートの走査型電子鏡像を図6に示す。同図から明らかなように、本実施例で得られたナノファイバシートにおけるナノファイバは、太径部及び細径部を有することが判る。本観察結果より、ナノファイバの細径部の繊維径は270nmであった。このナノファイバは、図4(a)に示すナノファイバよりも、油性成分の配合割合が高く、かつ隣り合う太径部の間隔が狭いので、細径部にも中空部が形成され、該中空部にも油性成分が含まれていると考えられる。
  〔実施例4〕
 水溶性高分子としてプルラン(林原商事製)を用い、これを水に溶解させ濃度20%の水溶液を得た。これを第1液として用いた。第2液として、油性成分としてのカミツレエキスを用いた。これらの液を用い、図2に示す装置30によって電界紡糸法を行った。この装置30におけるキャピラリ31cとして、図3に示す構造のものを用いた。このキャピラリ31cにおける芯部には第2液を流し、鞘部には第1液を流した。電界紡糸法の条件は以下のとおりとした。これら以外は実施例1と同様にしてナノファイバシートを得た。
・印加電圧:25kV
・キャピラリ-コレクタ間距離:220mm
・第1液吐出量:0.1ml/h
・第2液吐出量:2ml/h
・環境:25℃、50%RH
 得られたナノファイバシートにおける各成分の割合は、プルランが80%、油性成分が20%であった。このナノファイバシートの厚みをライトマチックVL-50A((株)ミツトヨ)で測定したところ30μmであった。また、このナノファイバシートの走査型電子鏡像を図7に示す。本観察結果より、ナノファイバの繊維径は1312nmであった。同図から明らかなように、本実施例で得られたナノファイバシートにおけるナノファイバは、図1(c)に示す構造のものであることが判る。
  〔比較例1〕
 濃度15%のプルラン溶液中へカミツレエキスを投入し、プルラン16.22%、水75.17%、油性成分8.59%にてスターラーで攪拌したがカミツレエキスとプルラン溶液が分離してしまい均一な溶液を得ることができず、エレクトロスピニング法を行うことができなかった。
  〔比較例2〕
 実施例1の方法で調製した溶液を、シャーレ上に滴下し乾燥させ、30μmのキャストフィルムを得た。
  〔比較例3〕
 実施例2の方法で調製した溶液を、シャーレ上に滴下し乾燥させ、30μmのキャストフィルムを得た。
  〔比較例4〕
 実施例3の方法で調製した溶液を、シャーレ上に滴下し乾燥させ、30μmのキャストフィルムを得た。
  〔使用感の評価〕
 実施例1ないし4で得られたナノファイバシート及び比較例2ないし4で得られたキャストフィルムについて、株式会社DHC製の油とり紙による油性成分吸収の有無を目視で観察した。具体的には、これらのシート及びキャストフィルムにあぶらとり紙を押しつけ、次いで剥がした後の色の変化を目視で観察した。また、これらのシート及びキャストフィルムをヒトの皮膚に付着させたときの溶解性を評価した。それらの結果を以下の表1に示す。評価方法は以下に示すとおりである。
  〔油とり紙による油性成分吸収の有無〕
 約3cm平方に切り出したシート及びキャストフィルムの表面に、株式会社DHC製あぶらとり紙をあてた後に剥がし、あぶらとり紙の色の変化を目視で確認した。
  〔ヒトの皮膚に付着させたときの溶解性〕
 肌上に0.03gの化粧水を滴下し約20mmφに塗り拡げた後、15mm平方に切り出したシート及びキャストフィルムを乗せた直後の該シート及び該キャストフィルムの溶解性を目視で確認し、下記の基準で評価を行った。
○:直ちに溶解し、ピンセットで掴むことができない。
×:一部溶解するがシート状で残っている箇所があり、ピンセットで掴むことができる。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、各実施例のナノファイバシートは、油性成分が繊維表面に露出していないためべたつき感が低減したものであり、かつ水に接触することで容易に溶解して、油性成分が流れ出すものであることが判る。

Claims (8)

  1.  水溶性高分子から構成され、かつ中空部を有するナノファイバであって、該中空部に油性成分が含まれているナノファイバ。
  2.  前記中空部に含まれる油性成分が常温で液体である請求項1記載のナノファイバ。
  3.  太径部と細径部とを有し、該太径部に前記中空部を有している請求項1又は2記載のナノファイバ。
  4.  太径部と細径部とを有し、該太径部及び該細径部の双方に前記中空部を有し、該太径部の中空部と該細径部の中空部とが連通している請求項1又は2記載のナノファイバ。
  5.  外径及び内径がほぼ一定である管状の形態をしている請求項1又は2記載のナノファイバ。
  6.  請求項1ないし5のいずれか一項に記載のナノファイバを含んで構成されるナノファイバシート。
  7.  請求項1記載のナノファイバの製造方法であって、
     水溶性高分子が水相に溶解しており、かつ油相中に油性成分が含まれているO/Wエマルションを用い、電界紡糸法によって紡糸を行うナノファイバの製造方法。
  8.  請求項1記載のナノファイバの製造方法であって、
     水溶性高分子が水に溶解してなる第1液と、油性成分を含む第2液とを用い、
     電界紡糸法を行うためのキャピラリとして二重管構造のものを用い、該キャピラリの芯部に第2液を流し、かつ鞘部に第1液を流して電界紡糸法を行うナノファイバの製造方法。
PCT/JP2011/064809 2010-06-29 2011-06-28 ナノファイバ WO2012002389A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11800853.1A EP2589693B1 (en) 2010-06-29 2011-06-28 Nanofiber
CN201180024763.4A CN102906317B (zh) 2010-06-29 2011-06-28 纳米纤维
US13/703,315 US20130125912A1 (en) 2010-06-29 2011-06-28 Nanofiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010148076A JP5666837B2 (ja) 2010-06-29 2010-06-29 ナノファイバシート
JP2010-148076 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012002389A1 true WO2012002389A1 (ja) 2012-01-05

Family

ID=45402096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064809 WO2012002389A1 (ja) 2010-06-29 2011-06-28 ナノファイバ

Country Status (5)

Country Link
US (1) US20130125912A1 (ja)
EP (1) EP2589693B1 (ja)
JP (1) JP5666837B2 (ja)
CN (1) CN102906317B (ja)
WO (1) WO2012002389A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926016A (zh) * 2012-10-31 2013-02-13 西南科技大学 一种静电纺丝制备改性魔芋葡甘露聚糖纤维的方法
CN103445973A (zh) * 2013-09-09 2013-12-18 中山大学 一种纳米纤维美白祛斑面膜贴

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968522B1 (fr) * 2010-12-09 2013-01-04 Oreal Procede cosmetique de modification de l'apparence du contour de l'oeil.
JP5909685B2 (ja) * 2012-05-30 2016-04-27 パナソニックIpマネジメント株式会社 ナノファイバシート、キャパシタ用セパレータ、キャパシタ、およびキャパシタ用セパレータの製造方法
WO2014098764A1 (en) * 2012-12-21 2014-06-26 Conifer Living Formulas Pte Ltd Topical treatment delivery system
JP2014129314A (ja) * 2012-12-30 2014-07-10 Shinshu Univ シート状パック基材、シート状パック及びシート状パック基材の製造方法
JP2014129313A (ja) * 2012-12-30 2014-07-10 Shinshu Univ 発熱性美容パック
AU2014357817B2 (en) 2013-12-02 2019-02-14 Bovin, Nikolai Functionalizing nanofibres
JP6315659B2 (ja) * 2013-12-10 2018-04-25 花王株式会社 ナノファイバ積層シート
DE102014209606B4 (de) * 2014-05-20 2018-11-29 Itv Denkendorf Produktservice Gmbh Fäden mit variierendem Fadendurchmesser sowie Herstellungsverfahren für solche Fäden
CN108368653B (zh) * 2015-10-16 2021-11-30 阿文提特种材料公司 具有对齐的分段纤维的非织造物
JP6852981B2 (ja) * 2015-10-30 2021-03-31 花王株式会社 水中油型乳化組成物
CA3026108A1 (en) 2016-06-10 2017-12-14 Clarity Cosmetics Inc. Non-comedogenic hair and scalp care formulations and method for use
CN109891009A (zh) * 2016-06-23 2019-06-14 香港大学 用于制造微纤维、线和丝的腔-微纤维、方法和装置
CN107587267A (zh) * 2016-07-06 2018-01-16 南京理工大学 一种用于油水乳状液分离纳米纤维膜及其制备方法
TWI735777B (zh) 2017-04-19 2021-08-11 日商花王股份有限公司 於皮膚表面形成被覆膜之方法
KR101944956B1 (ko) * 2017-11-17 2019-04-17 연세대학교 산학협력단 에센셜 오일을 함유하는 복합나노섬유 및 그의 제조방법
CN107938151A (zh) * 2017-12-27 2018-04-20 江南大学 高抗压缩耐疲劳轻质经编间隔织物
US11339503B2 (en) * 2019-02-13 2022-05-24 Rensselaer Polytechnic Institute Methods and systems for producing beaded polymeric fibers with advanced thermoregulating properties
CN110448471A (zh) * 2019-08-22 2019-11-15 苏州绿叶日用品有限公司 一种纳米纤维美白面膜及其制备方法
EP4053312A1 (en) * 2019-10-28 2022-09-07 Kao Corporation Method for manufacturing fiber deposition body, method for manufacturing film, and method for attaching film
EP4053313A1 (en) * 2019-10-28 2022-09-07 Kao Corporation Fiber deposit production method, membrane production method, and membrane adhesion method
CN113950336A (zh) * 2020-02-07 2022-01-18 花王株式会社 皮肤外用组合物
JP6997890B2 (ja) * 2020-02-07 2022-01-18 花王株式会社 皮膚外用組成物
GB202113926D0 (en) * 2021-09-29 2021-11-10 Uea Enterprises Ltd Dry creams and topical delivery systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197179A (ja) * 2006-01-27 2007-08-09 Toyobo Co Ltd 溝付きボビンおよびパッケージ
JP2008179629A (ja) 2006-12-27 2008-08-07 Snt Co 化粧用シート
JP2008531860A (ja) * 2005-02-24 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア コロイド状分散液のエレクトロスピニングによるナノ繊維およびメソ繊維の製造方法
WO2009031620A1 (ja) 2007-09-05 2009-03-12 Taiyokagaku Co., Ltd. 水溶性電界紡糸シート
WO2009133059A2 (en) * 2008-05-02 2009-11-05 Evonik Degussa Gmbh Nanofiber matrices formed from electrospun hyperbranched polymers
JP2009545307A (ja) * 2006-08-03 2009-12-24 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電界紡糸されたマイクロファイバ及びナノファイバ内に組み込まれた添加剤を送出するように改善された喫煙物品及び関連する方法
WO2010074212A1 (ja) * 2008-12-26 2010-07-01 花王株式会社 ナノファイバシート
JP2010229560A (ja) * 2009-03-25 2010-10-14 Teijin Ltd 無機ナノ粒子−マトリックス材料繊維状複合体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081732A1 (en) * 2000-10-18 2002-06-27 Bowlin Gary L. Electroprocessing in drug delivery and cell encapsulation
JP2006123360A (ja) * 2004-10-29 2006-05-18 Oji Paper Co Ltd 積層体およびその製造方法
US7856989B2 (en) * 2004-12-30 2010-12-28 Philip Morris Usa Inc. Electrostatically produced fast dissolving fibers
US7575707B2 (en) * 2005-03-29 2009-08-18 University Of Washington Electrospinning of fine hollow fibers
CN1807707B (zh) * 2006-01-13 2010-04-14 清华大学 一种微纳米尺度下核壳结构复合纤维的制备方法及其应用
CN100999827A (zh) * 2006-12-19 2007-07-18 张爱华 一种通过乳液中空超细纤维的制备方法
US8353811B2 (en) * 2007-05-30 2013-01-15 Phillip Morris Usa Inc. Smoking articles enhanced to deliver additives incorporated within electroprocessed microcapsules and nanocapsules, and related methods
US8974814B2 (en) * 2007-11-12 2015-03-10 California Institute Of Technology Layered drug delivery polymer monofilament fibers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531860A (ja) * 2005-02-24 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア コロイド状分散液のエレクトロスピニングによるナノ繊維およびメソ繊維の製造方法
JP2007197179A (ja) * 2006-01-27 2007-08-09 Toyobo Co Ltd 溝付きボビンおよびパッケージ
JP2009545307A (ja) * 2006-08-03 2009-12-24 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電界紡糸されたマイクロファイバ及びナノファイバ内に組み込まれた添加剤を送出するように改善された喫煙物品及び関連する方法
JP2008179629A (ja) 2006-12-27 2008-08-07 Snt Co 化粧用シート
WO2009031620A1 (ja) 2007-09-05 2009-03-12 Taiyokagaku Co., Ltd. 水溶性電界紡糸シート
WO2009133059A2 (en) * 2008-05-02 2009-11-05 Evonik Degussa Gmbh Nanofiber matrices formed from electrospun hyperbranched polymers
WO2010074212A1 (ja) * 2008-12-26 2010-07-01 花王株式会社 ナノファイバシート
JP2010229560A (ja) * 2009-03-25 2010-10-14 Teijin Ltd 無機ナノ粒子−マトリックス材料繊維状複合体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2589693A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926016A (zh) * 2012-10-31 2013-02-13 西南科技大学 一种静电纺丝制备改性魔芋葡甘露聚糖纤维的方法
CN103445973A (zh) * 2013-09-09 2013-12-18 中山大学 一种纳米纤维美白祛斑面膜贴

Also Published As

Publication number Publication date
EP2589693A1 (en) 2013-05-08
JP5666837B2 (ja) 2015-02-12
EP2589693A4 (en) 2014-05-14
CN102906317B (zh) 2016-02-03
EP2589693B1 (en) 2017-10-04
JP2012012714A (ja) 2012-01-19
US20130125912A1 (en) 2013-05-23
CN102906317A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2012002389A1 (ja) ナノファイバ
WO2012002391A1 (ja) ナノファイバ積層シート
EP3177329B1 (en) System for the immediate release of active agents
Osanloo et al. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review
JP5580670B2 (ja) ナノファイバ積層シート
WO2012002390A1 (ja) ナノファイバ積層シート
KR101123137B1 (ko) 2층상 화장수 제조 방법
EP1301180A2 (de) Lösung, dispersion oder emulsion bildende folien-dermatika
EP3076945A1 (fr) Microcapsules lipidiques comprenant de preference un retinoide et composition les contenant, leur procede de preparation et leur utilisation en dermatologie
KR101944956B1 (ko) 에센셜 오일을 함유하는 복합나노섬유 및 그의 제조방법
JP6480059B2 (ja) 皮膚表面に被膜を形成する方法
CN110545796A (zh) 用于活性化合物的局部递送系统
KR102399486B1 (ko) 미세먼지 차단용 바이오셀룰로오스 미세섬유 수분산체 네트워크 조성물
JP2021515812A (ja) 抗真菌液剤およびフットワイプ
Moghaddam et al. Physico-chemical properties of hybrid electrospun nanofibers containing polyvinylpyrrolidone (PVP), propolis and aloe vera
JP2015113293A (ja) ナノファイバ積層シート
Atik et al. Particle morphology and antimicrobial properties of electrosprayed propolis
Mehta et al. Engineering optimisation of commercial facemask formulations capable of improving skin moisturisation
US20210268054A1 (en) Electrospun fibers containing nanodispersions and their use for the treatment of wounds
JPH09143275A (ja) 卵殻膜微細粉末、並びにその吸油能を利用した各種機能剤
Zarenezhad et al. A fast-degradable nano-dressing with potent antibacterial effect
KR20110036801A (ko) 2층상 화장수
WO2020050152A1 (ja) 組成物
WO2020050155A1 (ja) 組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024763.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800853

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011800853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800853

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703315

Country of ref document: US