WO2012002341A1 - 給気冷却器をそなえたガスエンジン - Google Patents

給気冷却器をそなえたガスエンジン Download PDF

Info

Publication number
WO2012002341A1
WO2012002341A1 PCT/JP2011/064720 JP2011064720W WO2012002341A1 WO 2012002341 A1 WO2012002341 A1 WO 2012002341A1 JP 2011064720 W JP2011064720 W JP 2011064720W WO 2012002341 A1 WO2012002341 A1 WO 2012002341A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
supply
supercharger
premixed
Prior art date
Application number
PCT/JP2011/064720
Other languages
English (en)
French (fr)
Inventor
秀樹 西尾
鈴木 元
裕一 清水
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11800805.1A priority Critical patent/EP2587042B1/en
Priority to NO11800805A priority patent/NO2587042T3/no
Priority to US13/701,190 priority patent/US9217398B2/en
Priority to KR1020127025377A priority patent/KR101340229B1/ko
Priority to CN201180027018.5A priority patent/CN102918253B/zh
Publication of WO2012002341A1 publication Critical patent/WO2012002341A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0468Water separation or drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0284Arrangement of multiple injectors or fuel-air mixers per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M33/00Other apparatus for treating combustion-air, fuel or fuel-air mixture
    • F02M33/02Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel
    • F02M33/04Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel returning to the intake passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • F02M21/047Venturi mixer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas engine having a supply air cooler that effectively uses natural gas, biogas, or methane-containing gas discharged from a coal mine as an intake gas or fuel.
  • methane CH 4 has a greenhouse effect 21 times that of carbon dioxide CO 2 , and the release of methane CH 4 into the atmosphere cannot be ignored.
  • methane CH 4 when mining coal, a large amount of methane CH 4 of 10 to 40 Nm 3 (equivalent to pure methane) per ton of coal is released into the atmosphere from the coal mine.
  • Methane CH 4 -containing gas discharged from the coal mine mine is mixed in the lime layer, and recovered methane-containing gas CMM (Coal Mine Methane, methane concentration 30 to 50 wt. And a ventilated methane-containing gas VAM (Ventilation Air Methane, methane concentration of 0.3 to 0.7% by weight) discharged from the tunnel and face for ventilation.
  • CMM Coal Mine Methane, methane concentration 30 to 50 wt.
  • VAM Vententilation Air Methane, methane concentration of 0.3 to 0.7% by weight
  • Patent Document 1 discloses a gas turbine in which a gas having a methane concentration lower than a flammable limit can be used as a fuel, such as landfill gas generated at a landfill site for garbage or the coal mine exhaust gas. .
  • Patent Document 2 discloses a power generation gas engine that uses a methane-containing gas discharged from a coal mine as a fuel.
  • a gas engine power generation facility that discloses the outline of the underground mine in detail will be described with reference to FIG.
  • FIG. 4 schematically shows a gas engine power generation facility 200 provided in the coal mine and in the vicinity of the coal mine.
  • the coal mine has a coal layer C 0 and a mined coal layer C 1 formed in layers.
  • a ventilation hole 206 is provided to communicate the inside of the coal mine mine with the outside.
  • a degassing boring hole 208 is formed in the mined coal bed C 1 at the face 204 in the coal mine mine, and the methane-containing gas CMM discharged from the degassing boring hole 208 is discharged from a pipe line 210 disposed in the ventilation hole 206. It is sent to the gas engine power generation facility 200 by the vacuum pump 211. Further, the ventilated methane-containing gas VAM discharged from the coal mine through the arousing hole 206 is sent to the gas engine power generation facility 200 through the pipe line 212. Electric power E and steam S generated by the operation of the gas engine power generation facility 200 are sent to the coal mine utility facility 202 or other customers.
  • a gas engine using methane gas as a fuel has an advantage that environmental pollution is extremely small because the emission after combustion is only water H 2 O and carbon dioxide CO 2, and an internal combustion engine that is expected to be widely used in the future It is.
  • low-calorie gas such as methane gas
  • the amount of fuel supplied from the fuel gas supply solenoid valve provided in each cylinder is insufficient, so it is necessary to compensate for the shortage in the air supply system.
  • pre-supercharger premixing in which the shortage of fuel gas is supplied before the supercharger is performed.
  • the premixed gas mixed with the fuel gas is pressurized by the supercharger and then cooled by the air supply cooler, and the water vapor contained in the air supply is condensed to form water droplets.
  • a part of the premixed gas is discharged as a drain together with the water droplets.
  • methane CH 4 has a greenhouse effect that is 21 times that of carbon dioxide CO 2 and a pressurized premixed gas is discharged, so that the supercharging efficiency and the heat engine efficiency in the internal combustion engine are reduced. I will.
  • the present invention provides a container having a capacity in which the premixed gas discharged together with the drain is at a pressure equal to or lower than the condensation point when low-calorie gas is used as fuel for the gas engine. Gas-liquid separation is performed in order to discharge moisture to the outside and return the fuel gas to the air supply system again, thereby improving the engine thermal efficiency by reusing the fuel gas contained in the air supply drain and the atmosphere of harmful gas
  • the aim is to reduce emissions.
  • the present invention achieves such an object, and a premixed gas is generated by mixing fuel gas with air on the upstream side of a supply system of a supercharger that pressurizes supply to a gas engine using gas as fuel.
  • a gas engine having a charge air cooler equipped with a pre-supercharger premixing device, the gas engine being located downstream of a charge air system of the supercharger and pressurized by the supercharger.
  • a supply air cooler having a drain valve that cools the mixed gas and discharges condensed water that condenses with the cooling of the premixed gas, and is connected to the drain valve via a first conduit.
  • a gas-liquid separator for separating the premixed gas discharged together with the condensed water, and the premixed gas separated by the gas-liquid separator is supplied to the supercharger via a second conduit. It is characterized by flowing into the upstream side of the air system.
  • the premixed gas in which the fuel gas is premixed is not discharged into the atmosphere together with the condensed water, but the premixed gas and the condensed water are separated and the premixed gas is supplied to the supercharger. Since it is structured to flow into the upstream side of the air supply system, the engine thermal efficiency of the fuel gas is improved. Furthermore, since unburned fuel gas is not released into the atmosphere, it has an effect of preventing air pollution.
  • the fuel gas is a fuel having a specific gravity smaller than that of air
  • the gas-liquid separator releases the premixed gas discharged with the condensed water to an atmospheric pressure or a pressure close thereto. It is good to have a collecting part which collects the above-mentioned premixed gas in the upper part.
  • the premixed gas is released to atmospheric pressure or a pressure close thereto, so that the gas-liquid separation of the premixed gas is promoted and the premixed gas is returned to the supply system together with the fuel gas. Condensed water from the gas is eliminated, and corrosion of members constituting the air supply system can be prevented.
  • the supercharger intake temperature (Tsuc) of the premixed gas detected by a first air supply temperature sensor arranged upstream of the supercharger, and the air supply cooler Based on the second supply air temperature sensor disposed on the outlet side, the supply temperature (Ts) of the premixed gas detected by the supply air pressure sensor, and the supply air pressure (Ps), the drain A drain valve control means for controlling opening and closing of the valve may be provided.
  • the drain valve is closed to prevent unnecessary premixed gas from being discharged and to reduce the supercharging efficiency to the gas engine. It becomes possible to suppress it to the minimum.
  • the drain valve control means sets the supply air temperature (Ts) and the supply air pressure (Ps) at the outlet side of the supply air cooler by the supply air cooler and the supercharger.
  • Ts supply air temperature
  • Ps supply air pressure
  • the reference suction temperature (Tstd) of the premixed gas on the supercharger side is calculated based on the map, and the detected value of the suction temperature (Tsuc) actually detected with respect to the calculated reference suction temperature (Tstd)
  • the reference suction temperature (Tstd) of the premixed gas on the supercharger side is calculated based on the map, and is actually detected with respect to the calculated reference suction temperature (Tstd).
  • Tsuc the detected value of the suction temperature
  • controlling the opening and closing of the drain valve is effective in minimizing a decrease in supercharging efficiency to the gas engine.
  • the collection part of the gas-liquid separation device is positioned on the lower side in the direction of gravity with respect to the supply passage forming member on the upstream side of the supply system of the supercharger.
  • the premixed gas since the fuel gas has a specific gravity smaller than that of air, the premixed gas is separated by the gas-liquid separator, and further the fuel gas is separated upward, so that the separated fuel gas is supplied. Since the air naturally flows into the air supply passage of the air passage forming member, the device can be simplified and the cost can be reduced.
  • the fuel gas and the water are separated from the supply air containing the fuel gas discharged along with the condensed water condensed by the supply air cooler, and the fuel gas is returned to the supply air system.
  • the engine thermal efficiency is improved by the amount of the separated fuel gas, while the non-fuel gas is not released into the atmosphere, so that the effect of preventing air pollution can be improved.
  • the opening and closing of the drain valve of the charge air cooler it has the effect of suppressing the reduction in supercharging efficiency to the gas engine by reducing the discharge timing of the pressurized premixed gas. .
  • FIG. 1 is a schematic configuration diagram of a gas engine according to an embodiment of the present invention.
  • FIG. 2 is a drain valve opening / closing control map used in the gas engine according to the embodiment of the present invention.
  • FIG. 2A shows the relationship between the supply air dew point temperature Ts and the absolute humidity Sh with respect to the supply air pressure Ps, and
  • FIG. 3 shows a drain valve opening / closing control flowchart according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of the prior art.
  • the power generation gas engine 1 of the present embodiment is disposed in the vicinity of a coal mine, and uses methane-containing gas discharged from the coal mine premises as fuel gas and supply gas.
  • a generator 10 is connected to an output shaft 15 of a power generation gas engine 1 (hereinafter referred to as a gas engine 1).
  • An oil bath filter 61 is disposed on the upstream side of the air supply system of the air supply pipe 6 that is an intake passage forming member connected to the gas engine 1. Ventilated methane-containing gas VAM and outside air discharged for ventilation from the mine shaft and face face discharged from the coal mine yard are introduced into the oil bath filter 61.
  • the oil bath type filter 61 is made of steel fibers made of cotton and impregnated with oil, and mainly removes dust and the like.
  • a gas mixer 5 is interposed on the upstream side of the supercharger 3 at an intermediate portion of the air supply pipe 6.
  • the gas mixer 5 is a so-called pre-supercharger premixing device that mixes fuel gas into the supply air from the oil bath filter 61 on the upstream side of the supercharger 3 to generate a premixed gas. This is performed because when the low-calorie gas is used as fuel, simply supplying gas fuel directly to the gas engine 1 causes a shortage in the desired fuel amount.
  • the fuel gas is supplied to the gas mixer 5 by a premixing pipe 53 branched from a fuel gas supply pipe 92 to the gas engine 1 described later.
  • 52 is a fuel gas flow meter, and the detection result of the flow meter 52 is transmitted to the control device 2. Based on the result, the gas supply amount to the gas mixer 5 is adjusted by the control device 2 to the flow rate to the mixer valve 51.
  • the exhaust turbine 32 is driven by exhaust gas discharged from the collective exhaust pipe 17 of the gas engine 1 on the downstream side of the intake system of the intake pipe 6.
  • the exhaust turbine 32 is coaxially connected to the premixed gas in the supply pipe 6.
  • a supercharger 3 having a compressor 31 for pressurizing the compressor is disposed.
  • a first supply temperature sensor 11 (Tsuc) that measures the temperature of the premixed gas is disposed between the gas mixer 5 of the supply pipe 6 and the supercharger 3.
  • the detection value detected by the first supply air temperature sensor 11 (Tsuc) is transmitted to the control device 2.
  • the detected value is used as a control element of the drain valve 81 described later.
  • Reference numeral 34 denotes an exhaust gas flow rate adjustment valve that is disposed in an exhaust gas bypass pipe 33 that bypasses the exhaust gas from the exhaust collecting pipe 17 to the exhaust turbine 32 and that is operated by the control device 2.
  • the exhaust gas flow rate adjusting valve 34 adjusts the pressure of the compressor 31 by adjusting the exhaust gas flow rate to the exhaust turbine 32.
  • a supply air cooler 4 for cooling the premixed gas pressurized by the supercharger 3 is disposed on the downstream side of the supply system of the supercharger 3.
  • the water vapor contained in the premixed gas condenses into water droplets as it is cooled by the air supply cooler 4, and is separated from the drain valve 81 of the air supply cooler 4 through the drain pipe 42 that is the first conduit. 7
  • the air supply cooler 4 increases the gas density by cooling the premixed gas to improve the output of the gas engine 1 and condenses and removes water vapor in the premixed gas, thereby removing the air supply system. Rust prevention of each formed member is suppressed.
  • An air supply manifold 16 that has branch pipes connected to each cylinder of the gas engine 1 and introduces premixed gas into each cylinder is connected to the downstream side of the air supply system of the air supply cooler 4.
  • the supply air manifold 16 detects the supply temperature Ts of the premixed gas introduced from the supply air cooler 4, and transmits the detected value to the control device 2.
  • An air supply pressure sensor 13 that detects the air pressure Ps and transmits the detected value to the control device 2 is provided. Each detected value is used as a control element of the drain control valve 8 described later.
  • a strainer 91 disposed on the upstream side of the fuel gas supply pipe 92 removes dust, water vapor, and the like contained in a methane-containing gas CMM (Coal Mine Methane; methane concentration of 30 to 50% by weight) that is a fuel gas.
  • CMM Cosmetic Mine Methane; methane concentration of 30 to 50% by weight
  • Primary removal device The fuel gas that has passed through the strainer 91 again separates the liquid fine particles (mist) from the fuel gas by the fuel demister 9 as a secondary removal device.
  • the double purification device is installed because the fuel gas discharged from the coal mine contains a lot of dust, water vapor, etc., removing impurities in the fuel gas and removing the adverse effects on the gas engine 1 It is to do.
  • a part of the fuel gas that has passed through the fuel demister 9 is supplied to the gas mixer 5 through the premixing pipe 53 branched from the fuel gas supply pipe 92 to perform the pre-supercharger premixing described above.
  • Most of the fuel gas is supplied to each cylinder of the gas engine 1 through the fuel gas supply pipe 92.
  • the control device 2 includes a pressure regulating valve 14 that adjusts the pressure of the fuel gas and a cylinder of the gas engine 1 based on a detection value of a fuel gas flow meter 93 that detects a flow rate of the fuel gas disposed in the fuel gas supply pipe 92.
  • the gas supply solenoid valve 18 disposed for each cylinder is controlled to adjust the flow rate of the fuel gas flowing into each cylinder.
  • a drain valve 81 that discharges condensed drain (water) to the outside of the air supply cooler 4 is attached to the lower part of the air supply cooler 4.
  • the drain control means 8 includes a drain valve 81 attached to the bottom of the air supply cooler 4, a gas-liquid separation device 7 that separates the drain and the premixed gas, and a drain valve 81 that communicates with the gas-liquid separation device 7.
  • a drain pipe 42 as one conduit, a return pipe 73 as a second conduit for returning the separated fuel gas to the air supply pipe 6, a first air supply temperature sensor 11, a second air supply temperature sensor 12, an air supply pressure sensor 13, and
  • the control device 2 is provided with a map for controlling the opening and closing of the drain valve 81.
  • the drain that has passed through the drain valve 81 of the air supply cooler 4 and the pressurized premixed gas are introduced into the gas-liquid separator 7 through the drain pipe 42.
  • the gas-liquid separation device 7 has a space 71 having a capacity that allows the pressurized premixed gas to return to atmospheric pressure or a pressure close to the atmospheric pressure, and is included in the supply air as the pressure of the premixed gas decreases. Water vapor is condensed and water is separated from the premixed gas.
  • a fuel gas collecting part 72 having a conical space is disposed at the upper part of the gas-liquid separator 7. This is for collecting methane gas contained in the premixed gas. Since the specific gravity of methane gas is smaller than that of air, the methane gas is separated from the air in the gas-liquid separator 7 and only the methane gas is collected upward (fuel gas collecting unit 72).
  • the conical top portion of the fuel gas collecting section 72 is a return pipe that is a second conduit having one end opened at the top portion and the other end opened at an intermediate portion between the gas mixer 5 and the oil bath filter 61 of the supply pipe 6.
  • a tube 73 is provided.
  • the position of the fuel gas collecting unit 72 of the gas-liquid separation device 7 is arranged to be lower in the direction of gravity than the other end of the return pipe 73.
  • the methane gas and a part of the air collected in the fuel gas collecting part 72 rise and are naturally introduced into the air supply pipe 6 and used as fuel, so that the engine thermal efficiency is improved accordingly.
  • the other air in the gas-liquid separator 7 is discharged into the atmosphere together with the drain accumulated in the gas-liquid separator 7. Further, since the fuel gas is naturally introduced into the air supply pipe, it has an effect of suppressing an increase in the cost of the apparatus, and the greenhouse effect is prevented because methane gas is not released to the atmosphere.
  • FIG. 2 shows an example of a drain valve opening / closing control map according to the present embodiment.
  • FIG. 2A shows the supply air dew point temperature Ts (supply air temperature) on the vertical axis and the absolute humidity Sh (containing water vapor amount g / kg) on the horizontal axis with respect to the supply air pressure Ps.
  • the relationship between the supply air dew point temperature Ts and the absolute humidity Sh with respect to the supply air pressure Ps is shown.
  • the supply air temperature Ts and the supply air pressure Ps on the supply air cooler outlet side are controlled to be constant (gas engine output) by the control device 2 for the supply air cooler 4 and the supercharger 3.
  • FIG. 2B shows the absolute humidity Sh (amount of water vapor) g / kg on the horizontal axis, the reference suction temperature Tstd (dry bulb temperature) that the supercharger 3 sucks on the vertical axis, and the absolute humidity g relative to the relative humidity.
  • Sh absolute humidity
  • Tstd dry bulb temperature
  • the reference suction temperature Tstd of the supercharger 3 when the relative humidity is 100% is 22 degrees. Become. Therefore, when the actual supply air temperature Tsuc sucked by the supercharger 4 is equal to or less than the reference suction temperature, the absolute humidity Sh becomes smaller. Therefore, the premixed gas sucked by the supercharger 4 is on the outlet side of the supply air cooler 4 The contained water vapor will not condense. In other words, if the temperature of the premixed gas sucked into the supercharger 3 is 22 ° C.
  • the supply air temperature Ts after passing through the supply air cooler 4 is 40 ° C. and the supply air pressure Ps is maintained at 2 kg / cm 2, since the premixed gas is the same as the supply air dew point temperature Ts, if the temperature of the premixed gas is sucked into the supercharger 3 (supply air temperature Tsuc) of 22 ° C. or less, the absolute humidity Therefore, the water vapor contained in the premixed gas is not condensed in the charge air cooler 4.
  • the pre-mixed gas is not discharged from the charge air cooler 4 together with the drain by maintaining the drain valve 81 in the closed state, so that it is possible to prevent a reduction in supercharging efficiency to the gas engine 1. .
  • step S1 the supply air temperature Ts (before the engine) of the premixed gas after passing through the supply air cooler 4 is detected by the second supply air temperature sensor 12 in step S2.
  • step S ⁇ b> 3 the supply pressure Ps (before the engine) of the premixed gas after passing through the supply air cooler is detected by the supply air pressure sensor 13.
  • step S4 the first supply air temperature sensor 11 detects the supply air temperature (Tsuc) of the supercharger 3 before the premixed gas is sucked.
  • step S5 the absolute humidity (Sh) is calculated from the supply air temperature (Ts) and the supply air pressure (Ps) from the map. [Fig. 2 (A)]
  • step S6 the reference suction temperature (Tstd) when the relative humidity (Rh) is 100% in the absolute humidity (Sh) calculated in step S5 is calculated from the map. [Fig. 2 (B)]
  • step S7 the supply air temperature (Tsuc) detected in step S4 ⁇ the reference suction temperature (Tstd) is compared. If Yes, the process proceeds to Y, the drain valve Vd is kept closed in Step S8, and the process returns in Step S10. On the other hand, in the case of No, the process proceeds to N, and in step S9, the drain valve Vd performs an operation of periodically discharging drain (condensed water) to the gas-liquid separator 7 and returns in step S10.
  • the fuel gas (methane) contained in the premixed gas and the condensed water are separated by the supply air cooler 4 and the gas-liquid separator 7, and the fuel gas (methane) is separated. Since the structure is such that the condensed water is discharged from the gas-liquid separator 7 into the atmosphere while flowing into the upstream side of the air supply system of the supercharger, the engine thermal efficiency of the fuel gas can be improved and unburned methane gas Is not released into the atmosphere, so that air pollution control effect can be obtained. Since the condensed water is discharged from the gas-liquid separator 7 into the atmosphere, it has the effect of preventing corrosion of the members forming the intake system path.
  • Drain valve control means for controlling the drain valve of the apparatus to be maintained in a closed state is provided to suppress discharge of the pressurized premixed gas and minimize a reduction in supercharging efficiency to the gas engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

空気より比重が小さいガスを燃料とし、過給機前予混合装置を備えたガスエンジン1において、過給機3の給気系下流側に位置し、過給機3にて加圧された予混合ガスを給気冷却器4にて冷却し、冷却に伴い凝縮する凝縮水と該凝縮水と伴に排出する予混合ガスを気液分離装置7にて凝縮水、空気、燃料ガスに分離して、燃料ガスを過給機3の給気系上流側に戻し、凝縮水は大気に排出することを特徴とする。

Description

給気冷却器をそなえたガスエンジン
 本発明は、天然ガスやバイオガス、又は炭鉱坑内等から排出されるメタン含有ガスを吸気ガスや燃料として有効活用する給気冷却器をそなえたガスエンジンに関する。
 メタンCHや二酸化炭素CO等の温室効果ガスの排出規制に対する世論の関心は、年々高まっている。特に、メタンCHは二酸化炭素COの21倍の温室効果があり、メタンCHの大気中への放出は無視できない。一方、石炭の採掘時には、炭鉱坑内から石炭1トンあたり10~40Nm(純メタン換算)の多量のメタンCHが大気に放出されている。
 炭鉱坑内から排出されるメタンCH含有ガスは、石灰層中に混在し、保安のためにガス抜きボーリング孔から真空ポンプで回収する回収メタン含有ガスCMM(Coal Mine Methane。メタン濃度30~50重量%)と、坑道及び切羽から換気のために排出される換気メタン含有ガスVAM(Ventilation Air Methane。メタン濃度0.3~0.7重量%)とがある。
 そのため、炭鉱坑内にて発生するメタン含有ガスを大気に放出することなく有効活用することは、社会的かつ経済的貢献が極めて大きい。
 特許文献1には、ゴミの埋立処分場で発生するランドフィルガスや、前記炭鉱排出ガス
等のように、メタン濃度が可燃限界より低いガスを燃料として利用可能にしたガスタービンが開示されている。
 特許文献2には、炭鉱坑内から排出されるメタン含有ガスを燃料として用いる発電用ガスエンジンが開示されている。特許文献2の図5に対し、坑内状況の概要を詳細に開示したガスエンジン発電設備を添付の図4に基づいて説明する。
 図4は、炭鉱坑内と炭鉱坑内の近傍に設けられたガスエンジン発電設備200を模式的に示す。図4において、炭鉱坑内は、炭層Cと採掘炭層Cとが層状に形成されている。
 炭鉱坑内と外部とを連通する換気孔206が設けられている。
 炭鉱坑内の切羽204で、採掘炭層Cにガス抜きボーリング穴208が穿設され、ガス抜きボーリング孔208から排出されるメタン含有ガスCMMは、換気孔206内に配設された管路210から真空ポンプ211によってガスエンジン発電設備200に送られる。
 また、炭鉱坑内から喚起孔206を通して排出される換気メタン含有ガスVAMは、管路212を通ってガスエンジン発電設備200に送られる。ガスエンジン発電設備200が稼動して生じた電力E及び蒸気Sは、炭鉱坑内ユーティリティ設備202又は、その他の需要先に送られている。
特開2010-19247号公報 米国特許出願公開第2005/0205022号明細書
 メタンガスを燃料とするガスエンジンは、燃焼後の排出物が水HOと二酸化炭素COしかないため、環境汚染が極めて少ないという長所を有し、今後広く普及することが期待される内燃機関である。
 メタンガス等の低カロリーガスを燃料として使用する場合、各気筒に設けられた燃料ガス供給用電磁弁からの燃料供給量では不足するため、給気系統で不足分を補う必要がある。この不足分の燃料ガス補給を過給機の前で行う所謂、過給機前予混合と言われることが行われている。
 そのため、燃料ガスを混合された予混合ガスは過給機で加圧され後に、給気冷却器で冷却され、給気中に含まれている水蒸気が凝縮して水滴となる。この水滴を排出するために予混合ガスの一部が水滴と伴にドレンとして排出される。
 ところが、既述のとおり、メタンCHは二酸化炭素COの21倍の温室効果があると共に、加圧された予混合ガスが排出されるので内燃機関における過給効率及び、熱機関効率の低下をまねく。
 本発明は、かかる従来技術の課題に鑑み、低カロリーガスをガスエンジンの燃料として使用する場合に、ドレンと伴に排出された予混合ガスが凝縮点以下の圧力になる容量を有した容器中で気液分離を行い、水分は外部に排出すると共に、燃料ガスは再度給気系に戻すことにより、給気ドレン中に含まれる燃料ガスの再利用による機関熱効率の向上と、有害ガスの大気放出の削減を図ることを目的とする。
 本発明はかかる目的を達成するもので、ガスを燃料とするガスエンジンへの給気を加圧する過給機の給気系上流側にて燃料ガスを空気に混合して予混合ガスを生成する過給機前予混合装置を備えた給気冷却器をそなえた前記ガスエンジンであって、前記過給機の給気系下流側に位置し、前記過給機にて加圧された前記予混合ガスを冷却すると共に、前記予混合ガスの冷却に伴い凝縮する凝縮水を排出するドレンバルブを有した給気冷却器と、前記ドレンバルブに第1導管を介して接続して、前記凝縮水と伴に排出される前記予混合ガスを前記凝縮水から分離する気液分離装置と、該気液分離装置にて分離された前記予混合ガスが第2導管を介して前記過給機の給気系上流側に流入されるようにしたことを特徴とする。
 本発明装置によれば、燃料ガスが予混合された予混合ガスを凝縮水と伴に大気中に排出させないで、予混合ガスと凝縮水とを分離して、予混合ガスを過給機の給気系上流側に流入させる構造としたので、燃料ガスの機関熱効率が向上する。
 更には、未燃焼の燃料ガスが大気中に放出されないので、大気汚染防止効果を有する。
 また、本願発明において好ましくは、前記燃料ガスは空気より比重が小さい燃料であって、前記気液分離装置は前記凝縮水に伴って排出される前記予混合ガスが大気圧又はそれに近い圧力に開放される容量を有すると共に、上部に前記予混合ガスを捕集する捕集部を備えているとよい。
 このような構成にすることにより、予混合ガスを大気圧又は、それに近い圧力に開放されるので、予混合ガスの気液分離が促進され、給気系に燃料ガスと伴に戻される予混合ガスからの凝縮水がなくなり、給気系を構成する部材の腐食を防止できる効果を有している。
 また、本願発明において好ましくは、前記過給機の上流側に配置された第1給気温度センサにて検知された前記予混合ガスの過給機吸込み温度(Tsuc)と、前記給気冷却器出口側に配設された第2給気温度センサ及び、給気圧力センサにて検知された前記予混合ガスの給気温度(Ts)と、給気圧力(Ps)とに基づいて、前記ドレンバルブを開閉制御するドレンバルブ制御手段を備えるとよい。
 このような構成にすることにより、給気冷却器内で凝縮水が生じない時にはドレンバルブを閉じることで、不要な予混合ガスの排出を防止して、ガスエンジンへの過給効率の減少を最小限に抑制可能になる。
 また、本願発明において好ましくは、前記ドレンバルブ制御手段は前記給気冷却器出口側の給気温度(Ts)及び、前記給気圧力(Ps)を前記給気冷却器及び、前記過給機によって一定に制御すると共に、該一定の前記給気温度(Ts)及び、前記給気圧力(Ps)時において、前記給気冷却器出口側での予混合ガスの相対湿度が100%となる場合の過給機側での予混合ガスの基準吸込み温度(Tstd)をマップに基づいて算出し、該算出した基準吸込み温度(Tstd)に対し、実際に検出された前記吸込み温度(Tsuc)の検出値が低い場合には、前記ドレンバルブを閉止状態に維持するドレンバルブ制御手段を備えるとよい。
 このような構成にすることにより、過給機側での予混合ガスの基準吸込み温度(Tstd)をマップに基づいて算出し、該算出した基準吸込み温度(Tstd)に対し、実際に検出された前記吸込み温度(Tsuc)の検出値が低い場合には、ドレンバルブの開閉を制御することでガスエンジンへの過給効率の低下を最小限に抑制効果になる。
 また、本願発明において好ましくは、前記気液分離装置の前記捕集部は前記過給機の給気系上流側の給気路形成部材に対し重力方向下側に位置させるとよい。
 このような構成にすることにより、燃料ガスが空気より比重が小さいので、気液分離装置で予混合ガスが分離され、更に、燃料ガスが上方へ分離されるので、分離された燃料ガスが給気路形成部材の給気路に自然に流入していくので、装置の簡素化が図れ、コスト軽減効果を有する。
 本発明によれば、給気冷却器で凝縮された凝縮水に伴って排出される燃料ガスを含んだ給気から、燃料ガスと水分とを分離させて、燃料ガスは給気系に戻すと共に、水分は大気に放出することにより、分離した燃料ガスの分、機関熱効率が向上する一方、未燃料ガスが大気に放出されないので、大気汚染の防止効果を向上させることができる。
 更に、給気冷却器のドレンバルブの開閉を制御することにより、加圧された予混合ガスの排出タイミングを少なくすることにより、ガスエンジンへの過給効率低下を抑制できる効果を有している。
図1は本発明の実施形態にかかるガスエンジンの概略構成図を示す。 図2は本発明の実施形態にかかるガスエンジンに使用するドレンバルブ開閉制御マップで、(A)は給気圧力Psに対する給気露点温度Tsと絶対湿度Shの関係を示し、(B)は相対湿度に対する絶対湿度g/kgと過給機側での基準吸込み温度(Tstd)との関係を示す。 図3は本発明の実施形態にかかるドレンバルブ開閉制御フロー図を示す。 図4は従来技術の説明図を示す。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。
 但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 本発明にかかるガスエンジンの実施形態を図1~図3に基づいて説明する。
 本実施形態の発電用ガスエンジン1は炭鉱近傍に配設され、燃料ガス及び、給気ガスとして炭鉱構内から排出されるメタン含有ガスを用いる。図1において、発電用ガスエンジン1(以後ガスエンジン1と記載する)の出力軸15には発電機10が連結されている。
 ガスエンジン1に接続されている吸気経路形成部材である給気管6の給気系上流側にはオイルバス式フィルタ61が配設されている。オイルバス式フィルタ61には炭鉱構内から排出される坑道及び切羽から換気のために排出される換気メタン含有ガスVAMと外気が導入される。オイルバス式フィルタ61はスチール繊維を綿状にして、オイルを含浸させたもので、主に埃等を除去する。
 給気管6の中間部で過給機3の上流側にはガスミキサー5が介装されている。ガスミキサー5はオイルバス式フィルタ61からの給気に燃料ガスを過給機3の上流側で混合して予混合ガスを生成する所謂、過給機前予混合装置である。
 これは、低カロリーガスを燃料とする場合に、ガスエンジン1に直接ガス燃料を供給するだけでは所望燃料量に不足が生じるために行われる。
 また、ガスミキサー5への燃料ガス供給は後述するガスエンジン1への燃料ガス供給管92から分岐した予混合配管53によって行われる。52は燃料ガスの流量計であり、流量計52の検出結果を制御装置2へ送信される。その結果に基づいてガスミキサー5へのガス供給量を制御装置2によってミキサーバルブ51への流量調整を行っている。
 吸気管6の吸気系下流側にはガスエンジン1の集合排気管17から排出される排気ガスによって排気タービン32を駆動して、排気タービン32と同軸的に連結され、給気管6の予混合ガスを加圧するコンプレッサ31を有した過給機3が配設されている。
 また、給気管6のガスミキサー5と過給機3との間には予混合ガスの温度を測定する第1給気温度センサ11(Tsuc)が配設されている。第1給気温度センサ11(Tsuc)にて検出された検出値は制御装置2へ送信している。該検出値は後述するドレンバルブ81の制御要素として使用する。34は排気集合管17からの排気ガスを排気タービン32に対してバイパスさせる排気ガスバイパス管33に配設され、制御装置2により作動する排気ガス流量調整バルブである。排気ガス流量調整バルブ34は排気タービン32への排気ガス流量調整を行いコンプレッサ31の加圧調整を行う。
 過給機3の給気系下流側には、過給機3にて加圧された予混合ガスを冷却する給気冷却器4が配設されている。予混合ガスに含まれていた水蒸気は給気冷却器4による冷却にともない凝縮して水滴となり、給気冷却器4のドレンバルブ81から第1導管であるドレン配管42を介して気液分離装置7に導かれる。給気冷却器4は予混合ガスを冷却することにより、気体密度を高くしてガスエンジン1の出力向上を図ると共に、予混合ガス中の水蒸気を凝縮させて除去することにより、給気系を形成している各部材の防錆を抑制している。
 給気冷却器4の給気系下流側には、ガスエンジン1の各気筒に連結された枝管を有し、予混合ガスを各気筒内に導入する給気マニホールド16が連結されている。給気マニホールド16には給気冷却器4から導入される予混合ガスの給気温度Tsを検出して、該検出値を制御装置2へ送信している第2給気温度センサ12と、給気圧力Psを検出して、該検出値を制御装置2へ送信している給気圧力センサ13とが配設されている。該夫々の検出値は後述するドレン制御バルブ8の制御要素として使用する。
 燃料ガス供給管92の上流側に配置されているストレーナ91は、燃料ガスであるメタン含有ガスCMM(Coal Mine Methane。メタン濃度30~50重量%)に含まれている埃、水蒸気等を除去する第一次除去装置である。ストレーナ91を通過した燃料ガスは第二次除去装置である燃料デミスター9にて再度、液体微粒子(ミスト)を燃料ガスから分離する。
 二重に浄化装置を配設するのは、炭鉱から排出される燃料ガスには多くの埃、水蒸気等が混入されており、燃料ガス中の不純物を除去してガスエンジン1への悪影響を除去するためである。
 燃料デミスター9を通過した燃料ガスの一部は燃料ガス供給管92から分岐した予混合
配管53によってガスミキサー5へ燃料ガスの供給を行い、既述の過給機前予混合を行う。
 燃料ガスの大部分は燃料ガス供給管92を介してガスエンジン1の各気筒に供給される。
 制御装置2は、燃料ガス供給管92に配設された燃料ガスの流量を検知する燃料ガス流量計93の検出値に基づいて、燃料ガスの圧力を調整する調圧弁14とガスエンジン1の気筒毎に配設されたガス供給電磁弁18を制御して、各気筒へ流入させる燃料ガス流量を調整している。
 給気冷却器4の下部には凝縮されたドレン(水分)を給気冷却器4の外部に排出するドレンバルブ81が装着されている。
 ドレン制御手段8は、給気冷却器4の底部に取付けられたドレンバルブ81、ドレンと予混合ガスとを分離する気液分離装置7、ドレンバルブ81と気液分離装置7とを連通する第1導管であるドレン配管42、分離された燃料ガスを給気管6に戻す第2導管である戻し配管73、第1給気温度センサ11、第2給気温度センサ12、給気圧力センサ13及び、ドレンバルブ81を開閉制御するマップを備えた制御装置2で構成されている。
 給気冷却器4のドレンバルブ81を通過したドレンと加圧された予混合ガスはドレン配管42を介して気液分離装置7に導入される。
 気液分離装置7は加圧された予混合ガスが大気圧又は、それに近い圧力に戻ることができる容量の空間71を有しており、予混合ガスの圧力が下がることにより給気中に含まれていた水蒸気が凝縮して予混合ガスから水分が分離される。
 更に、気液分離装置7の上部には円錐状の空間を有した燃料ガス収集部72が配設されている。予混合ガス中に含まれていたメタンガスを収集するためのものである。メタンガスは比重が空気より小さいので、気液分離装置7内にて空気から分離してメタンガスだけが上方(燃料ガス収集部72)に集まる。燃料ガス収集部72の円錐状の頂部には、一端が該頂部に開口し、他端が給気管6のガスミキサー5とオイルバス式フィルタ61との中間部に開口した第2導管である戻し管73が配設されている。
 また、気液分離装置7の燃料ガス収集部72の位置は戻し管73の他端より重力方向において下側になるように配置されている。その結果、燃料ガス収集部72に収集されたメタンガスと一部の空気は上昇して自然に給気管6内に導入され、燃料として使用されるので、その分機関熱効率が向上する。
 尚、気液分離装置7内の他の空気は気液分離装置7に溜まったドレンと伴に大気中に排出される。
 更に、燃料ガスが給気管に自然に導入されるので、装置としてのコスト上昇を抑制できる効果を有すると共に、メタンガスを大気に放出しないので温室効果が防止される。
 図2は本実施形態にかかるドレンバルブ開閉制御マップの一例を示す。
 ドレンバルブ開閉制御マップは図2(A)は給気圧力Psに対し、縦軸に給気露点温度Ts(給気温度)、横軸に絶対湿度Sh(含有水蒸気量g/kg)を示し、給気圧力Psに対する給気露点温度Tsと絶対湿度Shの関係を示したものである。
 給気冷却器出口側の給気温度Ts及び、給気圧力Psは給気冷却器4及び、過給機3を制御装置2によって一定(ガスエンジン出力)に制御される。
 また、予混合ガスは給気冷却器4で冷却されて、余分の水蒸気は凝縮され排除されているので、測定された給気温度Tsと給気圧力Psの状態において、予混合ガス中の水蒸気は凝縮しない状態(相対湿度は100%)となっており、給気温度Ts=給気露点温度Tsと置き換えられる。
 また、図2(B)は横軸に絶対湿度Sh(含有水蒸気量)g/kg、縦軸に過給機3が吸込む基準吸込み温度Tstd(乾球温度)を示し、相対湿度に対する絶対湿度g/kgと過給機側での基準吸込み温度(Tstd)との関係を示したものである。
 本マップは過給機3及び給気冷却器4の性能に基づいて、本実施形態におけるガスエンジン1の試験結果により求めたものである。
 例えば、図2において、給気温度Ts=40℃、給気圧力Ps=2kg/cm(一定に制御)の場合、相対湿度100%時の過給機3の基準吸い込み温度Tstdが22度となる。従って、過給機4が吸込む実際の給気温度Tsuc≦基準吸込み温度の場合には絶対湿度Shが小さくなる方向なので、過給機4が吸込んだ予混合ガスは給気冷却器4出口側において含まれている水蒸気は凝縮しないことになる。
 言替えると、過給機3に吸込まれる予混合ガスの温度が22℃、相対湿度100%であれば、給気冷却器4通過後の給気温度Tsが40℃、給気圧力Psが2kg/cmに維持され、予混合ガスは給気露点温度Tsと同じなので、過給機3に吸込まれる予混合ガスの温度(給気温度Tsuc)が22℃以下の場合、絶対湿度が小さくなるので、予混合ガスに含まれている水蒸気は給気冷却器4の中で凝縮しないことになる。
 従って、ドレンが発生しないので、ドレンバルブ81は閉状態を維持することにより、予混合ガスがドレンと伴に給気冷却器4から排出されないので、ガスエンジン1への過給効率低下を防止できる。
 図3に基づいて制御フローを説明する。
 ステップS1からスタートして、ステップS2において予混合ガスの給気冷却器4通過後の給気温度Ts(エンジン前)を第2給気温度センサ12にて検知する。ステップS3において予混合ガスの給気冷却器通過後の給気圧力Ps(エンジン前)を給気圧力センサ13にて検知する。ステップS4にて過給機3の予混合ガス吸込み前の給気温度(Tsuc)を第1給気温度センサ11にて検知する。
 ステップS5において給気温度(Ts)及び給気圧力(Ps)から絶対湿度(Sh)をマップから算出する。〔図2(A)〕
 ステップS6において、ステップS5で算出された絶対湿度(Sh)において相対湿度(Rh)が100%の時の基準吸い込み温度(Tstd)をマップから算出する。〔図2(B)〕
 ステップS7において、ステップS4で検知した給気温度(Tsuc)≦基準吸込み温度(Tstd)を比較する。
 Yesの場合はYに進み、ステップS8にてドレンバルブVdは閉止を維持し、ステップS10でリターンする。一方、Noの場合はNに進み、ステップS9にてドレンバルブVdはドレン(凝縮水)を気液分離装置7へ定期的に排出する動作になり、ステップS10でリターンする。
 本発明の実施形態においては、給気冷却器4及び気液分離装置7によって、予混合ガスに含まれている燃料ガス(メタン)と、凝縮水とを分離して、燃料ガス(メタン)を過給機の給気系上流側に流入させると共に、凝縮水は気液分離装置7から大気中に排出させる構造としたので、燃料ガスの機関熱効率を向上させることができると共に、未燃焼のメタンガスが大気中に放出されないので、大気汚染抑制効果が得られる。
 凝縮水は気液分離装置7から大気中に排出させるため、吸気系路を形成する部材の腐食防止効果を有する。
 更に、ドレン開時、凝縮水に伴って加圧された予混合ガスの排出を伴うので、過給機3の吸込み温度(Tsuc)と、給気冷却器4の出口側の給気温度(Ts)と、給気圧力(Ps)とに基づき、一定の条件下において、吸込み温度(Tsuc)がある閾値(規準吸込み温度Tstd)より低い場合にはドレン(凝縮水)の生成がないので、ドレン装置のドレンバルブを閉状態に維持するように制御するドレンバルブ制御手段を備え、加圧された予混合ガスの排出を抑制してガスエンジンへの過給効率の減少を最小限にする。
 低カロリーガスを燃料として、燃料の一部を予混合する過給機前予混合装置を有するガスエンジンのドレン装置による過給効率低下抑制と、ドレンに含まれる燃料ガスの回収による燃料効率改善を図るガスエンジンに適用できる。

Claims (5)

  1.  ガスを燃料とするガスエンジンへの給気を加圧する過給機の給気系上流側にて燃料ガスを空気に混合して予混合ガスを生成する過給機前予混合装置を備えた前記ガスエンジンであって、前記過給機の給気系下流側に位置し、前記過給機にて加圧された前記予混合ガスを冷却すると共に、前記予混合ガスの冷却に伴い凝縮する凝縮水を排出するドレンバルブを有した給気冷却器と、前記ドレンバルブに第1導管を介して接続し、前記凝縮水と伴に排出される前記予混合ガスを前記凝縮水から分離する気液分離装置と、該気液分離装置にて分離された前記予混合ガスが第2導管を介して前記過給機の給気系上流側に流入されるようにしたことを特徴とする給気冷却器をそなえたガスエンジン。
  2.  前記燃料ガスは空気より比重が小さい燃料であって、前記気液分離装置は前記凝縮水に伴って排出される前記予混合ガスが大気圧又は、それに近い圧力に開放される容量を有すると共に、上部に前記予混合ガスを捕集する捕集部を備えていることを特徴とする請求項1記載の給気冷却器をそなえたガスエンジン。
  3.  前記過給機の上流側に配置された第1給気温度センサにて検知された前記予混合ガスの過給機吸込み温度(Tsuc)と、前記給気冷却器出口側に配設された第2給気温度センサ及び、給気圧力センサにて検知された前記予混合ガスの給気温度(Ts)と、給気圧力(Ps)とに基づいて、前記ドレンバルブを開閉制御するドレンバルブ制御手段を備えたことを特徴とする請求項1記載の給気冷却器をそなえたガスエンジン。
  4.  前記ドレンバルブ制御手段は前記給気冷却器出口側の給気温度(Ts)及び、前記給気圧力(Ps)を前記給気冷却器及び、前記過給機によって一定に制御すると共に、該一定の前記給気温度(Ts)及び、前記給気圧力(Ps)時において、前記給気冷却器出口側での予混合ガスの相対湿度が100%となる場合の過給機が吸込む予混合ガスの基準吸込み温度(Tstd)をマップに基づいて算出し、該算出した基準吸込み温度(Tstd)に対し、実際に検出された前記吸込み温度(Tsuc)の検出値が低い場合には、前記ドレンバルブを閉止状態に維持するドレンバルブ制御手段を備えたことを特徴とする請求項3記載の給気冷却器をそなえたガスエンジン。
  5.  前記気液分離装置の前記捕集部は前記過給機の給気系上流側の給気路形成部材に対し重
    力方向下側に位置していることを特徴とする請求項2記載の給気冷却器をそなえたガスエンジン。
PCT/JP2011/064720 2010-06-28 2011-06-27 給気冷却器をそなえたガスエンジン WO2012002341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11800805.1A EP2587042B1 (en) 2010-06-28 2011-06-27 Gas engine having intercooler
NO11800805A NO2587042T3 (ja) 2010-06-28 2011-06-27
US13/701,190 US9217398B2 (en) 2010-06-28 2011-06-27 Gas engine having intercooler
KR1020127025377A KR101340229B1 (ko) 2010-06-28 2011-06-27 급기 냉각기를 구비한 가스 엔진
CN201180027018.5A CN102918253B (zh) 2010-06-28 2011-06-27 燃气发动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145954A JP5211115B2 (ja) 2010-06-28 2010-06-28 ガスエンジンの給気冷却器のドレン装置
JP2010-145954 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012002341A1 true WO2012002341A1 (ja) 2012-01-05

Family

ID=45402049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064720 WO2012002341A1 (ja) 2010-06-28 2011-06-27 給気冷却器をそなえたガスエンジン

Country Status (7)

Country Link
US (1) US9217398B2 (ja)
EP (1) EP2587042B1 (ja)
JP (1) JP5211115B2 (ja)
KR (1) KR101340229B1 (ja)
CN (1) CN102918253B (ja)
NO (1) NO2587042T3 (ja)
WO (1) WO2012002341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103670667A (zh) * 2012-09-21 2014-03-26 福特环球技术公司 用于从涡轮增压器装置的进气道中排出液体的系统和方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666264A (zh) * 2008-09-07 2010-03-10 胜利油田胜利动力机械集团有限公司 活塞往复式低浓度瓦斯发电机组
JP5308466B2 (ja) * 2011-01-31 2013-10-09 三菱重工業株式会社 ガスエンジンの燃料ガス供給方法および装置
JP5314719B2 (ja) * 2011-02-28 2013-10-16 三菱重工業株式会社 ガスエンジンの給気装置
JP5723455B2 (ja) * 2011-10-17 2015-05-27 川崎重工業株式会社 希薄燃料吸入ガスタービン
US9297296B2 (en) * 2012-08-07 2016-03-29 Ford Global Technologies, Llc Method for discharging condensate from a turbocharger arrangement
JP2014084777A (ja) * 2012-10-23 2014-05-12 Toyota Motor Corp オイル抜き穴の開閉制御装置
EP2803836B1 (en) * 2013-05-17 2016-05-25 Caterpillar Energy Solutions GmbH Water injection in combustion engines
CH708276A1 (de) * 2013-07-04 2015-01-15 Liebherr Machines Bulle Sa Gasmotor.
WO2015029094A1 (ja) * 2013-08-25 2015-03-05 Masuda Keiji 可燃性冷媒の漏洩検知構造
US9422855B2 (en) * 2013-12-12 2016-08-23 Ford Global Technologies, Llc Shuttle valve assembly and method for intercooler condensation removal
US9267424B2 (en) 2013-12-20 2016-02-23 Ford Global Technologies, Llc System and methods for engine air path condensation management
US9382836B2 (en) 2013-12-20 2016-07-05 Ford Global Technologies, Llc System and methods for engine air path condensation management
US10176696B2 (en) * 2014-11-21 2019-01-08 Richard Harper Apparatus and process for measuring gaseous emissions from an engine
JP6453092B2 (ja) * 2015-02-06 2019-01-16 ヤンマー株式会社 バイオガスエンジン
JP6521689B2 (ja) * 2015-03-24 2019-05-29 大阪瓦斯株式会社 凝縮水処理機能付きエンジンシステム
US9932921B2 (en) * 2015-10-26 2018-04-03 Ford Global Technologies, Llc Method for utilizing condensate to improve engine efficiency
DE102016202612A1 (de) * 2016-02-19 2017-08-24 Volkswagen Aktiengesellschaft Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
US10920682B2 (en) * 2018-11-02 2021-02-16 Rem Technology Inc. Intake air assessment for industrial engines
JP7128600B1 (ja) 2022-01-27 2022-08-31 山田 榮子 屑鉄の大量溶解装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216061A (ja) * 1985-03-25 1985-10-29 Niigata Eng Co Ltd ガス燃焼式内燃機における燃料ガス供給装置
JPH10184471A (ja) * 1996-12-24 1998-07-14 Tokyo Gas Co Ltd ドレーントラップ
JP2005226476A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 吸気通路内蓄積オイルの排出構造
US20050205022A1 (en) 2004-03-19 2005-09-22 Kuninori Ito Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
JP2009092005A (ja) * 2007-10-10 2009-04-30 Toyota Motor Corp 内燃機関のインタークーラ洗浄装置
JP2010019247A (ja) 2008-06-13 2010-01-28 Kawasaki Heavy Ind Ltd 希薄燃料吸入ガスタービン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221130B1 (en) * 1999-08-09 2001-04-24 Cooper Turbocompressor, Inc. Method of compressing and drying a gas and apparatus for use therein
JP2004011517A (ja) * 2002-06-06 2004-01-15 Honda Motor Co Ltd 動力装置
US6748741B2 (en) * 2002-10-23 2004-06-15 Honeywell International Inc. Charge air condensation collection system for engines with exhaust gas recirculation
RU2272973C1 (ru) * 2004-09-24 2006-03-27 Салават Зайнетдинович Имаев Способ низкотемпературной сепарации газа (варианты)
JP4247191B2 (ja) 2005-03-08 2009-04-02 三菱重工業株式会社 ガスエンジンのガス供給装置及び運転方法
SE529731C2 (sv) 2006-03-21 2007-11-06 Scania Cv Ab Kylararrangemang hos ett fordon
US20080276627A1 (en) 2007-05-08 2008-11-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of a ship
JP4483901B2 (ja) * 2007-06-29 2010-06-16 株式会社日立製作所 エンジンシステム
JP4476317B2 (ja) * 2007-08-30 2010-06-09 三菱重工業株式会社 ガスエンジンの統合制御方法及び装置
US8118009B2 (en) 2007-12-12 2012-02-21 Ford Global Technologies, Llc On-board fuel vapor separation for multi-fuel vehicle
JP4563443B2 (ja) * 2007-12-14 2010-10-13 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
JP4616878B2 (ja) * 2007-12-14 2011-01-19 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
US20100089071A1 (en) * 2008-10-09 2010-04-15 Peter A. Hofmann Apparatus For Recovery Of Volatile Organic Compound Vapor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216061A (ja) * 1985-03-25 1985-10-29 Niigata Eng Co Ltd ガス燃焼式内燃機における燃料ガス供給装置
JPH10184471A (ja) * 1996-12-24 1998-07-14 Tokyo Gas Co Ltd ドレーントラップ
JP2005226476A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 吸気通路内蓄積オイルの排出構造
US20050205022A1 (en) 2004-03-19 2005-09-22 Kuninori Ito Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
JP2009092005A (ja) * 2007-10-10 2009-04-30 Toyota Motor Corp 内燃機関のインタークーラ洗浄装置
JP2010019247A (ja) 2008-06-13 2010-01-28 Kawasaki Heavy Ind Ltd 希薄燃料吸入ガスタービン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103670667A (zh) * 2012-09-21 2014-03-26 福特环球技术公司 用于从涡轮增压器装置的进气道中排出液体的系统和方法

Also Published As

Publication number Publication date
EP2587042A4 (en) 2016-09-14
EP2587042B1 (en) 2017-11-01
NO2587042T3 (ja) 2018-03-31
KR101340229B1 (ko) 2013-12-10
CN102918253A (zh) 2013-02-06
JP2012007582A (ja) 2012-01-12
KR20120127665A (ko) 2012-11-22
JP5211115B2 (ja) 2013-06-12
US9217398B2 (en) 2015-12-22
EP2587042A1 (en) 2013-05-01
CN102918253B (zh) 2015-01-14
US20130067913A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5211115B2 (ja) ガスエンジンの給気冷却器のドレン装置
CA2703706C (en) Improved method and apparatus for capturing and controlling fugitive gases
JP5627598B2 (ja) Co2回収部を備えた発電プラント
US8408006B2 (en) Power plant with CO2 capture
US8056318B2 (en) System for reducing the sulfur oxides emissions generated by a turbomachine
AU2006222506B2 (en) Method and apparatus for utilising fugitive gases as a supplementary fuel source
KR101607654B1 (ko) 크로스헤드 및 배기가스 재순환 기능을 구비한 대형 저속 터보차지 2-행정 내연 기관 및 이의 작동 방법
KR102215838B1 (ko) 볼텍스튜브를 이용한 배기가스 포집장치
CN102606308A (zh) 在带有废气再循环的燃气轮机发电站中气体成分的调节
US8851054B2 (en) Apparatus for providing diluted fugitive gases as a fuel to an engine
RU2559467C2 (ru) Способ снижения выбросов со2 в потоке газообразных продуктов сгорания и промышленные установки для осуществления этого способа
CA2678569C (en) Check valve for fugitive gas fuel source
CA2685655C (en) Method and apparatus for processing diluted fugitive gases
CN205618336U (zh) 一种天然气压缩机组管道的过滤装置
CN113671875B (zh) Igcc和igcc的控制方法
SK7044Y1 (sk) Zariadenie na úpravu a reguláciu plynov pre spaľovacie zariadenie
DE202007000177U1 (de) Filtereinheit zum Abscheiden von Ruß-, Feinstaub-, Staub- und anderen Emissionen aus Abluft und Abgas
AU2013200871A1 (en) Method and apparatus for utilising fugitive gases as a supplementary fuel source

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027018.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025377

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011800805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE