WO2012002280A1 - 立体視画像表示方法および装置 - Google Patents

立体視画像表示方法および装置 Download PDF

Info

Publication number
WO2012002280A1
WO2012002280A1 PCT/JP2011/064563 JP2011064563W WO2012002280A1 WO 2012002280 A1 WO2012002280 A1 WO 2012002280A1 JP 2011064563 W JP2011064563 W JP 2011064563W WO 2012002280 A1 WO2012002280 A1 WO 2012002280A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
stereoscopic image
unit
display
Prior art date
Application number
PCT/JP2011/064563
Other languages
English (en)
French (fr)
Inventor
吉川 賢治
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012002280A1 publication Critical patent/WO2012002280A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/236Image signal generators using stereoscopic image cameras using a single 2D image sensor using varifocal lenses or mirrors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/588Setting distance between source unit and detector unit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed

Definitions

  • the present invention relates to a stereoscopic image display method and apparatus for displaying a stereoscopic image using an image for each photographing direction acquired by photographing subjects from different photographing directions.
  • stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images.
  • a stereoscopically viewable image hereinafter referred to as a stereoscopic image or a stereo image
  • a stereoscopic image or a stereo image is generated based on a plurality of images having parallax obtained by photographing the same subject from different directions.
  • stereoscopic images is used not only in the fields of digital cameras and televisions, but also in the field of radiographic imaging. That is, the subject is irradiated with radiation from different directions, the radiation transmitted through the subject is detected by the radiation image detector, and a plurality of radiation images having parallax are obtained, and based on these radiation images A stereoscopic image is generated. And by generating a stereoscopic image in this way, a radiographic image with a sense of depth can be observed, and a radiographic image more suitable for diagnosis can be observed.
  • the two images are synthesized in the observer's head and recognized as a stereoscopic image.
  • mammography screening mammography of a large number of patients is sequentially observed.
  • the stereoscopic image of the next patient is temporarily erased and then the next patient's stereoscopic vision is erased.
  • the image is displayed, the stereoscopic view in the observer's head is released once, and it is necessary to recognize the stereoscopic image again every time the display is switched to a new stereoscopic image. Is very burdensome.
  • an object of the present invention is to provide a stereoscopic image display method and apparatus that can reduce the burden on an observer when sequentially switching and displaying a plurality of stereoscopic images.
  • the stereoscopic image display method of the present invention acquires a plurality of sets of images for each shooting direction by shooting a subject from different shooting directions, and sequentially displays the stereoscopic images using the acquired sets of images.
  • the stereoscopic image display method when switching the display from the first stereoscopic image to the next second stereoscopic image, the set of the first images constituting the first stereoscopic image is changed to the second stereoscopic image. Is displayed with a change that gradually approaches the second set of images.
  • the stereoscopic image display apparatus uses a plurality of sets of images for each shooting direction by shooting a subject from different shooting directions, an image acquisition unit for acquiring, and a set of images acquired by the image acquisition unit.
  • the display unit switches the display from the first stereoscopic image to the next second stereoscopic image
  • the first stereoscopic image is provided with the display unit that displays the stereoscopic image.
  • the first set of images constituting the image is displayed with a change gradually approaching the second set of images constituting the second stereoscopic image.
  • the display unit includes, for each image of the first image set, the density of each image incident on the same eye and each image of the second image set.
  • the ratio with the concentration of can be changed gradually.
  • the display unit can be switched from the first image set to the second image set in units of pixels, rows, or columns.
  • the display unit divides each image of the first set of images into a plurality of regions, and simultaneously images of the second set of images in each region in units of pixels, rows, or columns. You can switch to
  • a subject area recognition unit for recognizing a subject area in each image of the first and second image sets, and a subject area in each image of the second image set are each image of the first image set.
  • a correction unit that corrects the object so as to be close to the region of the subject.
  • a thickness information acquisition unit that acquires thickness information in the depth direction of the stereoscopic image of the subject that is the subject of the first set of images and the subject that is the subject of the second set of images; Providing a pop-out amount adjusting unit that adjusts the pop-out amount from the screen of the display unit of the stereoscopic image composed of the second set of images based on the thickness information acquired by the thickness information acquiring unit. Can do.
  • the time for switching the concentration ratio can be set to 40 ms or less.
  • the switching time in pixel units, row units, or column units can be 40 ms or less.
  • the time until the switching from the first image set to the second image set is completed can be 10 s or less.
  • a switching notification unit for notifying that switching from the first set of images to the second set of images is in progress.
  • the display unit can display a third stereoscopic image that is displayed in the same display mode continuously before and after switching from the first image set to the second image set.
  • the stereoscopic image display method and apparatus of the present invention when the display is switched from the first stereoscopic image to the next second stereoscopic image, the first set of images constituting the first stereoscopic image. Is displayed with a change gradually approaching the set of second images constituting the second stereoscopic image, so that the observer can switch from the first stereoscopic image to the second stereoscopic image. Since the stereoscopic vision of the next new second stereoscopic image can be continuously performed without releasing the stereoscopic vision in the head of the user, the burden on the observer can be reduced.
  • FIG. 1 is a schematic configuration diagram of a breast image photographing display system using an embodiment of a stereoscopic image display device of the present invention.
  • the figure which looked at the arm part of the mammography display system shown in FIG. 1 from the right direction of FIG. 1 is a block diagram showing a schematic configuration inside a computer of the breast image capturing and displaying system shown in FIG.
  • A The figure which shows an example of the radiographic image which comprises a 1st stereo image
  • the figure for demonstrating the method to switch per pixel from a 1st stereo image to a 2nd stereo image The figure for demonstrating the method to switch per line from a 1st stereo image to a 2nd stereo image
  • the figure for demonstrating the method to switch per column from a 1st stereo image to a 2nd stereo image The figure for demonstrating the method switched in a pixel unit for every division area from a 1st stereo image to a 2nd stereo image
  • the figure for demonstrating the method to switch per line for every division area from a 1st stereo image to a 2nd stereo image The block diagram which shows schematic structure inside the computer of the breast image radiographing display system using other embodiment of the stereoscopic vision image display apparatus of this invention.
  • the block diagram which shows schematic structure inside the computer of the breast image radiographing display system using other embodiment of the stereoscopic vision image display apparatus of this invention.
  • A Image diagram of the first stereo image
  • B Image diagram of the second stereo image after adjusting the pop-out amount to be equal to that of the first stereo image.
  • Diagram for explaining calculation example of adjustment of pop-out amount The figure which shows an example of the marker displayed by the same display aspect continuously before and after switching from a 1st stereo image to a 2nd stereo image.
  • the breast image radiographing display system of the present embodiment is characterized by a method for switching the display of a breast radiographic image displayed as a stereoscopic image.
  • a schematic configuration of the entire breast image radiographing display system will be described. .
  • a breast image radiographing display system 1 of the present embodiment includes a mammography apparatus 10, a computer 8 connected to the mammography apparatus 10, a monitor 9 connected to the computer 8, and an input unit. 7.
  • the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate.
  • the arm part 13 connected with the base 11 is provided.
  • FIG. 2 shows the arm 13 viewed from the right direction in FIG.
  • the arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
  • a radiation image detector 15 such as a flat panel detector and a detector controller 33 that controls reading of a charge signal from the radiation image detector 15.
  • a charge amplifier that converts the charge signal read from the radiation image detector 15 into a voltage signal
  • a correlated double sampling circuit that samples the voltage signal output from the charge amplifier
  • a circuit board provided with an AD conversion unit for converting a voltage signal into a digital signal is also installed.
  • the photographing table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the photographing table 14 is fixed to the base 11. can do.
  • the radiation image detector 15 can repeatedly perform recording and reading of a radiation image, and may use a so-called direct type radiation image detector that directly receives radiation and generates charges. Alternatively, a so-called indirect radiation image detector that converts radiation once into visible light and converts the visible light into a charge signal may be used.
  • a radiation image signal readout method a radiation image signal is read out by turning on / off a TFT (thin film transistor) switch, or by irradiating reading light. It is desirable to use a so-called optical readout system from which a radiation image signal is read out, but the present invention is not limited to this, and other systems may be used.
  • a radiation source 17 and a radiation source controller 32 are accommodated in the radiation irradiation unit 16.
  • the radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17 and the radiation generation conditions (tube current, time, tube current time product, etc.) in the radiation source 17.
  • a compression plate 18 disposed above the imaging table 14 to press and compress the breast, a support portion 20 that supports the compression plate 18, and a support portion 20 in the vertical direction ( A moving mechanism 19 for moving in the Z direction) is provided.
  • the position of the compression plate 18 and the compression pressure are controlled by the compression plate controller 34.
  • the computer 8 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD.
  • the control unit 8a, the radiation image storage unit 8b, and the display as shown in FIG. A control unit 8c is configured.
  • the control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system. A specific control method will be described in detail later.
  • the radiation image storage unit 8b stores the radiation image signal acquired by the radiation image detector 15 in advance.
  • the display control unit 8c reads the radiographic image signal stored in the radiographic image storage unit 8b and displays a stereo image of the breast on the monitor 9 based on the radiographic image signal. Then, when the display control unit 8c switches the display of the first stereo image displayed on the monitor 9 to the next second stereo image, the display controller 8c converts the set of radiation images constituting the first stereo image to the second stereoscopic image.
  • the control is performed by gradually changing the set of radiographic images constituting the visual image so that the specific control method will be described in detail later.
  • the input unit 7 is composed of a pointing device such as a keyboard and a mouse, for example, and receives an input of shooting conditions and a shooting start instruction by the photographer.
  • the monitor 9 is configured to be able to display a stereo image using two radiation image signals output from the computer 8 at the time of taking a stereo image.
  • a stereo image for example, a radiographic image based on two radiographic image signals is displayed using two screens, and one of the radiographic images is observed by using a half mirror or a polarizing glass. It is possible to adopt a configuration in which a stereo image is displayed by being incident on the right eye of the observer and the other radiation image is incident on the left eye of the observer.
  • two radiographic images may be displayed in a superimposed manner while being shifted by a predetermined amount of parallax, and this may be configured to generate a stereo image by observing with a polarizing glass, or a parallax barrier method and a lenticular method
  • a stereo image may be generated by displaying two radiation images on a stereoscopically viewable 3D liquid crystal.
  • a stereo image of the breast is taken for two subjects, the radiographic image signals obtained by the radiographing are respectively stored, and based on the stored radiographic image signal, first the first subject is taken.
  • An operation of displaying a stereo image of the breast of the examiner and then switching from the stereo image of the breast of the first subject to the stereo image of the breast of the second subject will be described.
  • the breast M1 of the first patient is placed on the imaging table 14, and the breast is compressed with a predetermined pressure by the compression plate 18.
  • a stereo image of the breast M1 is captured. Specifically, first, the control unit 8 a reads a convergence angle ⁇ for capturing a preset stereo image, and outputs information on the read convergence angle ⁇ to the arm controller 31.
  • ⁇ 2 ° is stored in advance as information on the convergence angle ⁇ at this time.
  • the present invention is not limited to this, and an arbitrary convergence angle is set by the photographer in the input unit 7. It can be set.
  • the arm controller 31 receives the information on the convergence angle ⁇ output from the control unit 8a.
  • the arm controller 31 captures the image of the arm unit 13 based on the information on the convergence angle ⁇ as shown in FIG.
  • a control signal is output so as to rotate + ⁇ ° with respect to a direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated + 2 ° with respect to a direction perpendicular to the imaging table 14.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of the radiation image signal.
  • the control signal radiation is emitted from the radiation source 17, a radiation image obtained by photographing the breast from the + 2 ° direction is detected by the radiation image detector 15, and a radiation image signal is read by the detector controller 33.
  • the radiographic image signal is stored in the radiographic image storage unit 8 b of the computer 8.
  • the arm controller 31 once returns the arm unit to the initial position, and then outputs a control signal so as to rotate by ⁇ ° with respect to the direction perpendicular to the imaging table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated by ⁇ 2 ° with respect to a direction perpendicular to the imaging table 14.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and radiation image reading.
  • the radiation image storage unit 8b of the computer 8 stores the signal.
  • the breast M2 of the second subject is placed on the imaging table 14, and two radiographic images constituting a stereo image are taken in the same manner as described above, and the second subject is examined.
  • the two radiation image signals of the person's breast M2 are also stored in the radiation image storage unit 8b of the computer 8.
  • the radiographic image of the breast M1 of the first subject is first displayed on the monitor 9.
  • an instruction to display a stereo image of the first subject is input by the observer at the input unit 7, and the first test is performed from the radiation image storage unit 8b by the display control unit 8c according to the display instruction.
  • Two radiation image signals of the person are read out.
  • FIG. 4A is a diagram schematically showing one radiographic image constituting a stereo image of the breast M1 of the first subject.
  • an instruction to display a stereo image of the second subject is input by the observer at the input unit 7, and the display control unit 8c responds to the display instruction by the display control unit 8c from the radiation image storage unit 8b. Two radiation image signals are read out.
  • the display control unit 8c displays a stereo image of the breast M2 of the second subject on the monitor 9 based on the two input radiation image signals, and the first person currently displayed on the monitor 9 is displayed.
  • the monitor 9 is temporarily darkened and the viewer's stereoscopic image recognition is interrupted. Do not be.
  • a set of radiographic images hereinafter referred to as a first radiographic image and a second radiographic image
  • a first stereo image constituting a stereo image
  • a third radiographic image and a fourth radiographic image constituting a stereo image (hereinafter referred to as a second stereo image) of the breast M2 of the second subject. It controls to change so that it may approach.
  • the second stereo image shown in FIG. 4B is formed from the first radiographic image forming the first stereo image shown in FIG. 4A.
  • the operation when switching the display to the radiation image 3 will be described.
  • the first radiographic image and the third radiographic image are radiographic images incident on the same eye of the observer, for example, the right eye. The same applies to the switching method from the second radiation image to the fourth radiation image.
  • the display control unit 8c performs display control so that the ratio of the density of the third radiation image to the density of the first radiation image gradually increases.
  • FIG. 5A to FIG. 5E show an example of a change in the specific display mode.
  • FIG. 5A shows the density ratio of the first radiographic image and the third radiographic image as 10: 0, and FIG. 5B shows the density ratio of the first radiographic image and the third radiographic image as 7: 3C, FIG. 5C shows the density ratio of the first radiation image and the third radiation image as 5: 5, and FIG. 5D shows the first radiation image and the third radiation.
  • the density ratio of the image is displayed as 3: 7, and FIG. 5E is the ratio of the density of the first radiographic image and the third radiographic image displayed as 0:10.
  • the display with the density ratio of the first radiographic image and the third radiographic image being 10: 0 means that only the first image is displayed, and the first radiographic image and the third radiographic image are displayed.
  • the display with the radiation image density ratio of 0:10 means that only the third image is displayed.
  • 5A to 5E are sequentially switched and displayed with the passage of time.
  • the switching time for switching from a radiographic image having a predetermined density ratio to a radiographic image having the next density ratio is 40 ms or less in order to maintain the stereoscopic vision of the observer.
  • this switching time can be set to an arbitrary time in the input unit 7 by the observer.
  • the time until switching from the first radiation image to the third radiation image is completed that is, the time until switching from the radiation image in FIG. 5A to the radiation image in FIG. 5E is 10 s or less. .
  • this time can also be arbitrarily set by the observer in the input unit 7.
  • the density of the radiographic image is switched at a ratio as shown in FIGS. 5A to 5E, but other ratios may be set. 7 can be arbitrarily set.
  • the observer can maintain the recognition of the stereoscopic image and can reduce the burden on the observer. .
  • display control is performed so that the ratio of the density of the third radiographic image to the density of the first radiographic image is gradually increased, so that the first radiographic image to the third radiological image are controlled.
  • the change gradually approaches the image the present invention is not limited to this, and other display control methods may be adopted.
  • the display may be switched in units of pixels from the first radiation image to the third radiation image.
  • FIG. 6A to FIG. 6D show an example of a change in the specific display mode. Note that one of the grids in FIGS. 6A to 6D represents one pixel P, and a pixel having a numerical value “1” represents data of one pixel constituting the first radiation image. It is assumed that a pixel having a numerical value “3” displays data of one pixel constituting the third radiation image.
  • FIG. 6A shows the first radiographic image
  • FIG. 6B shows the case where only the first pixel of the first radiographic image is switched to the pixel data of the third radiographic image
  • FIG. 6C shows the upper left of the first radiographic image
  • FIG. 6D shows the third radiation image from the upper left to the lower right of the first radiation image up to the 12th pixel. The image data is switched to pixel data.
  • the first radiographic image is changed from the pixel data of the first radiographic image to the pixel data of the third radiographic image one pixel at a time from the upper left pixel toward the lower right pixel. It is switched sequentially. By controlling the display in this way, it is possible to make a change gradually approaching from the first radiation image to the third radiation image.
  • the switching time in units of one pixel is desirably 40 ms or less in order to maintain the stereoscopic vision of the observer.
  • this switching time can also be set to an arbitrary time by the observer at the input unit 7.
  • the display is switched from the first radiation image to the third radiation image in units of pixels, but the display may be switched in units of rows.
  • 7A to 7D show an example of the change in the specific display mode.
  • FIG. 7A shows the first radiographic image
  • FIG. 7B shows the case where only the first row of the first radiographic image is switched to the pixel data of the third radiographic image
  • FIG. 7C shows 2 of the first radiographic image
  • FIG. 7D is a diagram in which up to the third line of the first radiographic image is switched to pixel data of the third radiographic image.
  • the first radiation image is sequentially switched from the pixel data of the first radiation image to the pixel data of the third radiation image one row at a time from the top row.
  • the switching time for each line is preferably 40 ms or less in order to maintain the stereoscopic vision of the observer.
  • this switching time can also be set to an arbitrary time by the observer at the input unit 7.
  • the display may be switched in units of columns from the first radiation image to the third radiation image.
  • FIG. 8A to FIG. 8D show an example of the change in the specific display mode.
  • FIG. 8A shows the first radiographic image
  • FIG. 8B shows the case where only the first column of the first radiographic image is switched to the pixel data of the third radiographic image
  • FIG. 8C shows 2 of the first radiographic image
  • FIG. 8D is a diagram in which up to the third column of the first radiographic image is switched to the pixel data of the third radiographic image.
  • the first radiation image is sequentially switched from the pixel data of the first radiation image to the pixel data of the third radiation image one column at a time from the leftmost column.
  • the switching time for each column is 40 ms or less in order to maintain the stereoscopic vision of the observer.
  • this switching time can also be set to an arbitrary time by the observer at the input unit 7.
  • the switching time becomes long. For example, as shown in FIG. 9A Further, if the first radiographic image is divided into a plurality of regions R1 to R4, and the pixel data of the radiographic image in each region is simultaneously switched to the pixel data of the third radiographic image in pixel units, the switching time is reduced. Shortening can be achieved.
  • FIG. 9A to FIG. 9D show an example of a change in the specific display mode.
  • FIG. 9A shows the first radiographic image
  • FIG. 9B shows the case where only the first pixel in each of the regions R1 to R4 of the first radiographic image is switched to the pixel data of the third radiographic image
  • FIG. 9C shows the first radiographic image.
  • FIG. 9D shows up to the fifth pixel of each region R1 to R4 of the first radiographic image, in which the second pixel of each region R1 to R4 of the first radiographic image is switched to the pixel data of the third radiographic image. Is switched to the pixel data of the third radiation image.
  • the radiographic images in the regions R1 to R4 may be switched to pixel data of the third radiographic image at the same time in units of rows.
  • FIG. 10A to FIG. 10D show an example of changes in the specific display mode.
  • FIG. 10A shows a first radiographic image
  • FIG. 10B shows a case where only the first row of each region R1 to R4 of the first radiographic image is switched to pixel data of the third radiographic image
  • FIG. 10C shows the first radiographic image.
  • FIG. 10D shows the third radiation image pixel data up to the second row in each region R1 to R4 of the first radiation image
  • FIG. 10D shows the third radiation image to the third row in each region R1 to R4.
  • Are switched to the pixel data of the third radiation image that is, all the pixel data are switched to the pixel data of the third radiation image.
  • the radiographic images of the regions R1 to R4 may be switched to pixel data of the third radiographic image simultaneously in units of columns.
  • the pixels, rows, and columns that are simultaneously switched need not be pixels, rows, and columns that correspond to the same position, but may be pixels, rows, and columns that correspond to the same position.
  • the display control unit 8c may cause the monitor 9 to display an index or a message indicating that switching is in progress.
  • the method of notifying the observer that the switching is being performed is not limited to the monitor display, and for example, a lamp may be turned on or another notification method may be used.
  • a correction unit 8e that corrects the third radiation image may be provided so that the region of the breast M2 in the image is close to the region of the breast M1 in the first radiation image.
  • the contour of the breast may be detected by performing edge extraction, or other known techniques such as pattern recognition may be adopted. May be.
  • the breast M2 of the third radiographic image when the area of the breast M2 of the third radiographic image is smaller than the area of the breast M1 of the first radiographic image, the breast M2 of the third radiographic image
  • the enlargement process may be performed so that the area is the same size as the area of the breast M1 of the first radiation image.
  • the reduction process may be performed so that these areas have the same size.
  • the position of the breast M2 of the third radiographic image is shifted from the position of the breast M1 of the first radiographic image, the breast M2 of the third radiographic image is matched so that these positions coincide. The position may be shifted by shift correction or the like.
  • the display is switched from the first radiation image to the third radiation image in the same manner as described above. What should I do?
  • the compression direction of the compression plate 18 (Z direction), that is, the thickness of the breast in the depth direction of the stereo image also differs.
  • Z direction the compression direction of the compression plate 18
  • the thicker first stereo image of the breast M1 is displayed from the screen of the monitor 9.
  • the pop-out amount becomes large, and when the first stereo image is switched to the second stereo image, the pop-out amount from the screen of the monitor 9 is changed, which causes a burden on the observer.
  • the computer 8 acquires the thickness information of the breast M1 that is the imaging target of the first stereo image and the thickness information of the breast M2 that is the imaging target of the second stereo image.
  • a thickness information acquisition unit 8f that controls the amount of projection of the second stereo image from the screen of the monitor 9 based on the thickness information acquired by the thickness information acquisition unit 8f; May be provided.
  • the thickness information acquisition unit 8f of the present embodiment acquires the position information of the compression plate 18 from the compression plate controller 34 that controls the position of the compression plate 18, and based on the position information, the thickness information of the breast M1 and the breast M2 Is something to get.
  • the method for acquiring the thickness information is not limited to this, and other methods may be adopted.
  • the pop-out amount adjustment unit 8g acquires the difference in thickness between the breast M1 and the breast M2 acquired by the thickness information acquisition unit 8f, and configures the third stereo image based on the difference.
  • the amount of projection of the second stereo image from the screen of the monitor 9 is adjusted by adjusting the amount of parallax by shifting the radiation image and the fourth radiation image. Specifically, as shown in FIGS. 4A and 4B, when the breasts have different sizes, the breast M2 that is the subject of the second stereo image is captured rather than the breast M1 that is the subject of the first stereo image. Therefore, if the pop-out amount is not adjusted, the second stereo image has a smaller pop-out amount from the screen of the monitor 9 than the first stereo image. It will be.
  • the pop-out amount adjustment unit 8g increases the pop-out amount of the second stereo image so as to be approximately the same as the pop-out amount of the first stereo image.
  • the radiographic images are shifted so that the amount of parallax between the third radiographic image and the fourth radiographic image for displaying the second stereo image becomes large.
  • This shift processing may be performed by performing image processing on the third radiographic image and the fourth radiographic image, and the display position of these images is controlled when displaying on the monitor 9. You may be made to do by.
  • FIG. 13A is an image diagram of the display state of the first stereo image
  • FIG. 13B is an image diagram of the display state of the second stereo image after the shift process is performed as described above.
  • 13A and 13B represent the screen of the monitor 9, and the pop-out amount d1 of the first stereo image and the pop-out amount d2 of the second stereo image are approximately the same.
  • the second stereo image What is necessary is just to shift these radiographic images so that the amount of parallax between the 3rd radiographic image which displays an image, and a 4th radiographic image may become small.
  • the subject of the first stereo image is a breast A having a thickness of 40 mm
  • the subject of the second stereo image is a breast B having a thickness of 60 mm
  • the imaging angle is Consider the amount of image shift when the angle is 4 ° and the SID is 650 mm.
  • the SID is the distance between the radiation source 17 and the detection surface of the radiation image detector 15 in the radiation optical axis direction
  • the imaging angle is determined by the optical axis direction of the radiation and the direction perpendicular to the detection surface. It is a corner.
  • These radiation images may be shifted so as to be smaller (in the direction of the arrow in FIG. 14).
  • the parallax amount is adjusted by shifting the third radiographic image and the fourth radiographic image after the second stereo image is captured.
  • the second stereo image is captured.
  • the convergence angle ⁇ may be calculated based on the thickness information, and the pop-out amount may be adjusted by taking the third radiation image and the fourth radiation image at the convergence angle ⁇ .
  • the display control unit 8c displays the third stereo displayed in the same display mode continuously before and after switching from the first stereo image to the second stereo image.
  • An image may be displayed on the monitor 9.
  • the third stereo image includes a marker, for example. 15A and 15B show the markers MK_R and MK_L respectively displayed on the first radiographic image and the second radiographic image constituting the first stereo image, and FIGS. 15C and 15D show the second radiographic image.
  • the marker MK_R and the marker MK_L are respectively displayed on the third radiographic image and the fourth radiographic image constituting the stereo image.
  • the marker MK_R in FIG. 15A and the marker MK_L in FIG. 15B are not shown in the drawing, they are displayed with a predetermined amount of parallax, and a stereo image marker is displayed using these two markers. Is displayed.
  • marker MK_R in FIG. 15C and the marker MK_L in FIG. 15D are not shown in the drawing, they are displayed with a predetermined amount of parallax, and a stereo image marker is displayed using these two markers. Is done.
  • the marker MK_R and the marker MK_L in FIGS. 15A and 15B are continuously displayed without disappearing, and the marker MK_R and the marker in FIGS. 15C and 15D are displayed. Displayed as MK_L.
  • the marker displayed as a stereo image from the marker MK_R and the marker MK_L is continuously displayed in the same display mode before and after switching from the first stereo image to the second stereo image.
  • the observer When the observer switches from the first stereo image to the second stereo image, the observer can maintain the recognition of the stereoscopic image by gazing at the marker displayed as the stereo image. The burden on observation can be reduced.
  • an embodiment of the stereoscopic image display apparatus of the present invention is applied to a breast image capturing and displaying system.
  • the subject of the present invention is not limited to the breast, and for example, the chest and head.
  • the present invention can also be applied to a radiographic imaging display system for imaging.
  • the present invention is not limited to displaying a stereoscopic image of a radiographic image, but can also be applied to displaying an image captured by another imaging device such as a digital camera as a stereoscopic image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

複数の立体視画像を順次切り替えて表示する際の観察者の負荷を軽減する。第1の立体視画像から次の第2の立体視画像に表示を切り替える際、第1の立体視画像を構成する第1の画像の組を第2の立体視画像を構成する第2の画像の組に徐々に近づく変化をさせて表示する。

Description

立体視画像表示方法および装置
 本発明は、互いに異なる撮影方向から被写体を撮影することによって取得した撮影方向毎の画像を用いて立体視画像を表示する立体視画像表示方法および装置に関するものである。
 従来、複数の画像を組み合わせて表示することにより、視差を利用して立体視できることが知られている。このような立体視できる画像(以下、立体視画像またはステレオ画像という)は、同一の被写体を異なる方向から撮影して取得された互いに視差のある複数の画像に基づいて生成される。
 そして、このような立体視画像の生成は、デジタルカメラやテレビなどの分野だけでなく、放射線画像撮影の分野においても利用されている。すなわち、被験者に対して互いに異なる方向から放射線を照射し、その被験者を透過した放射線を放射線画像検出器によりそれぞれ検出して互いに視差のある複数の放射線画像を取得し、これらの放射線画像に基づいて立体視画像を生成することが行われている。そして、このように立体視画像を生成することによって奥行感のある放射線画像を観察することができ、より診断に適した放射線画像を観察することができる。
特開2000-004450号公報
 ここで、上述したような立体視画像を観察する際、2つの画像を観察者の頭の中で合成して立体視画像として認識するが、このような立体視画像の認識には時間がかかり、また疲労感を感じる。
 そして、たとえば、マンモグラフィ検診などにおいては、多数の患者のマンモグラフィを順次観察していくことになるが、このような場合に、現在観察中の立体視画像を一旦消してから次の患者の立体視画像を表示するようにしたのでは、観察者の頭の中での立体視が一度解放されてしまい、新しい立体視画像に表示が切り替わるたびに立体視画像を再度認識する必要があり、観察者に非常に負荷がかかる。
 なお、特許文献1には、上述したような立体視画像を表示する装置が提案されているが、上述したような立体視画像の連続観察における問題点については何も開示されていない。
 本発明は、上記の事情に鑑み、複数の立体視画像を順次切り替えて表示する際の観察者の負荷を軽減することができる立体視画像表示方法および装置を提供することを目的とする。
 本発明の立体視画像表示方法は、異なる撮影方向から被写体を撮影することによって撮影方向毎の画像の組を複数組、取得し、該取得した画像の組を用いて立体視画像を順次表示する立体視画像表示方法において、第1の立体視画像から次の第2の立体視画像に表示を切り替える際、第1の立体視画像を構成する第1の画像の組を第2の立体視画像を構成する第2の画像の組に徐々に近づく変化をさせて表示する。
 本発明の立体視画像表示装置は、異なる撮影方向から被写体を撮影することによって撮影方向毎の画像の組を複数組、取得する画像取得部と、画像取得部によって取得された画像の組を用いて立体視画像を表示する表示部とを備えた立体視画像表示装置において、表示部が、第1の立体視画像から次の第2の立体視画像に表示を切り替える際、第1の立体視画像を構成する第1の画像の組を第2の立体視画像を構成する第2の画像の組に徐々に近づく変化をさせて表示することを特徴とする。
 また、上記本発明の立体視画像表示装置においては、表示部を、第1の画像の組の各画像のうち、同じ目に入射される各画像の濃度と第2の画像の組の各画像の濃度との比率を徐々に変化させるものとできる。
 また、表示部を、第1の画像の組から第2の画像の組へ画素単位、行単位または列単位で切り替えるものとできる。
 また、表示部を、第1の画像の組の各画像をそれぞれ複数の領域に分割し、その各領域内の画像を画素単位、行単位または列単位で同時に第2の画像の組の各画像へ切り替えるものとできる。
 また、第1および第2の画像の組の各画像における被写体の領域を認識する被写体領域認識部と、第2の画像の組の各画像における被写体の領域を第1の画像の組の各画像における被写体の領域に近づけるように補正する補正部とを設けることができる。
 また、第1の画像の組の撮影対象である被写体と、第2の画像の組の撮影対象である被写体との立体視画像の奥行方向についての厚さ情報を取得する厚さ情報取得部と、厚さ情報取得部によって取得された厚さ情報に基づいて、第2の画像の組から構成される立体視画像の表示部の画面からの飛び出し量を調整する飛び出し量調整部とを設けることができる。
 また、濃度の比率の切り替えの時間を40ms以下とすることができる。
 また、画素単位、行単位または列単位での切り替えの時間を40ms以下とすることができる。
 また、第1の画像の組から第2の画像の組に切り替えが完了するまでの時間を10s以下とすることができる。
 また、第1の画像の組から第2の画像の組への切り替えの途中であることを報知する切替報知部を設けることができる。
 また、表示部を、第1の画像の組から第2の画像の組への切り替えの前後で連続して同じ表示態様で表示される第3の立体視画像を表示するものとできる。
 本発明の立体視画像表示方法および装置によれば、第1の立体視画像から次の第2の立体視画像に表示を切り替える際、第1の立体視画像を構成する第1の画像の組を第2の立体視画像を構成する第2の画像の組に徐々に近づく変化をさせて表示するようにしたので、第1の立体視画像から第2の立体視画像へ切り替わる際に観察者の頭の中での立体視が一度解放されることなく、次の新しい第2の立体視画像の立体視を継続して行うことができるので、観察者の負荷を軽減することができる。
本発明の立体視画像表示装置の一実施形態を用いた乳房画像撮影表示システムの概略構成図 図1に示す乳房画像撮影表示システムのアーム部を図1の右方向から見た図 図1に示す乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図 (A)第1のステレオ画像を構成する放射線画像の一例を示す図、(B)第2のステレオ画像を構成する放射線画像の一例を示す図 本発明の立体視画像表示装置の一実施形態を用いた乳房画像撮影表示システムにおける第1のステレオ画像から第2のステレオ画像への切り替えの作用を説明するための図 第1のステレオ画像から第2のステレオ画像へ画素単位で切り替える方法を説明するための図 第1のステレオ画像から第2のステレオ画像へ行単位で切り替える方法を説明するための図 第1のステレオ画像から第2のステレオ画像へ列単位で切り替える方法を説明するための図 第1のステレオ画像から第2のステレオ画像へ分割領域毎に画素単位で切り替える方法を説明するための図 第1のステレオ画像から第2のステレオ画像へ分割領域毎に行単位で切り替える方法を説明するための図 本発明の立体視画像表示装置のその他の実施形態を用いた乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図 本発明の立体視画像表示装置のその他の実施形態を用いた乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図 (A)第1のステレオ画像のイメージ図、(B)飛び出し量を第1のステレオ画像と同等に調整した後の第2のステレオ画像のイメージ図 飛び出し量の調整の計算例を説明するための図 第1のステレオ画像から第2のステレオ画像への切り替えの前後で連続して同じ表示態様で表示されるマーカーの一例を示す図
 以下、図面を参照して本発明の立体視画像表示装置の一実施形態を用いた乳房画像撮影表示システムについて説明する。本実施形態の乳房画像撮影表示システムは、立体視画像として表示される乳房の放射線画像の表示の切り替え方法に特徴を有するものであるが、まず、乳房画像撮影表示システム全体の概略構成について説明する。
 本実施形態の乳房画像撮影表示システム1は、図1に示すように、乳房画像撮影装置10と、乳房画像撮影装置10に接続されたコンピュータ8と、コンピュータ8に接続されたモニタ9および入力部7とを備えている。
 そして、乳房画像撮影装置10は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能であり、かつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13を備えている。なお、図2には、図1の右方向から見たアーム部13を示している。
 アーム部13はアルファベットのCの形をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31により制御される。
 撮影台14の内部には、フラットパネルディテクタ等の放射線画像検出器15と、放射線画像検出器15からの電荷信号の読み出しを制御する検出器コントローラ33が備えられている。また、撮影台14の内部には、放射線画像検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換部などが設けられた回路基板なども設置されている。
 また、撮影台14はアーム部13に対し回転可能に構成されており、基台11に対してアーム部13が回転したときでも、撮影台14の向きは基台11に対し固定された向きとすることができる。
 放射線画像検出器15は、放射線画像の記録と読出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線画像検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線画像検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフされることによって放射線画像信号が読みだされる、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。
 放射線照射部16の中には放射線源17と、放射線源コントローラ32が収納されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17における放射線発生条件(管電流、時間、管電流時間積等)を制御するものである。
 また、アーム部13の中央部には、撮影台14の上方に配置されて乳房を押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19が設けられている。圧迫板18の位置、圧迫圧は、圧迫板コントローラ34により制御される。
 コンピュータ8は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイスなどを備えており、これらのハードウェアによって、図3に示すような制御部8a、放射線画像記憶部8bおよび表示制御部8cが構成されている。
 制御部8aは、各種のコントローラ31~35に対して所定の制御信号を出力し、システム全体の制御を行うものである。具体的な制御方法については後で詳述する。
 放射線画像記憶部8bは、放射線画像検出器15によって取得された放射線画像信号を予め記憶するものである。
 表示制御部8cは、放射線画像記憶部8bに記憶された放射線画像信号を読み出し、その放射線画像信号に基づいてモニタ9に乳房のステレオ画像を表示させるものである。そして、表示制御部8cは、モニタ9に表示された第1のステレオ画像を次の第2のステレオ画像に表示を切り替える際、第1のステレオ画像を構成する放射線画像の組を第2の立体視画像を構成する放射線画像の組に徐々に近づけるように変化させて制御するものであるが、その具体的な制御方法については後で詳述する。
 入力部7は、たとえば、キーボードやマウスなどのポインティングデバイスから構成されるものであり、撮影者による撮影条件などの入力や撮影開始指示の入力などを受け付けるものである。
 モニタ9は、ステレオ画像の撮影時においては、コンピュータ8から出力された2つの放射線画像信号を用いてステレオ画像を表示可能なように構成されたものである。ステレオ画像を表示する構成としては、たとえば、2つの画面を用いて2つの放射線画像信号に基づく放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラスなどを用いることで一方の放射線画像は観察者の右目に入射させ、他方の放射線画像は観察者の左目に入射させることによってステレオ画像を表示する構成を採用することができる。または、たとえば、2つの放射線画像を所定の視差量だけずらして重ね合わせて表示し、これを偏光グラスで観察することでステレオ画像を生成する構成としてもよいし、もしくはパララックスバリア方式およびレンチキュラー方式のように、2つの放射線画像を立体視可能な3D液晶に表示することによってステレオ画像を生成する構成としてもよい。
 次に、本実施形態の乳房画像撮影表示システムの作用について説明する。なお、ここでは、二人の被検者について乳房のステレオ画像の撮影を行い、その撮影によって取得した放射線画像信号をそれぞれ記憶し、その記憶した放射線画像信号に基づいて、まず、一人目の被検者の乳房のステレオ画像を表示し、その後、一人目の被検者の乳房のステレオ画像から二人目の被検者の乳房のステレオ画像に切り替えて表示する際の作用について説明する。
 まず、撮影台14の上に一人目の患者の乳房M1が設置され、圧迫板18により乳房が所定の圧力によって圧迫される。
 次に、入力部7おいて、撮影者によって種々の撮影条件が入力された後、撮影開始の指示が入力される。
 そして、入力部7において撮影開始の指示があると、乳房M1のステレオ画像の撮影が行われる。具体的には、まず、制御部8aが、予め設定されたステレオ画像の撮影のための輻輳角θを読み出し、その読み出した輻輳角θの情報をアームコントローラ31に出力する。なお、本実施形態においては、このときの輻輳角θの情報としてθ=±2°が予め記憶されているものとするが、これに限らず、撮影者によって入力部7において任意の輻輳角を設定可能である。
 そして、アームコントローラ31において、制御部8aから出力された輻輳角θの情報が受け付けられ、アームコントローラ31は、この輻輳角θの情報に基づいて、図2に示すように、アーム部13が撮影台14に垂直な方向に対して+θ°回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して+2°回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が+2°回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、乳房を+2°方向から撮影した放射線画像が放射線画像検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。
次に、アームコントローラ31は、図2に示すように、アーム部を初期位置に一旦戻した後、撮影台14に垂直な方向に対して-θ°回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して-2°回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が-2°回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像の読出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、乳房を-2°方向から撮影した放射線画像が放射線画像検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。
 そして、次に、撮影台14の上に二人目の被検者の乳房M2が設置され、上記と同様にしてステレオ画像を構成する2枚の放射線画像の撮影が行われ、二人目の被検者の乳房M2の2枚の放射線画像信号についてもコンピュータ8の放射線画像記憶部8bに記憶される。
 次に、上述したステレオ画像の撮影によって放射線画像記憶部8bに記憶された放射線画像信号に基づいて、まず、一人目の被検者の乳房M1の放射線画像がモニタ9に表示される。
 具体的には、観察者によって一人目の被検者のステレオ画像の表示指示が入力部7において入力され、その表示指示に応じて表示制御部8cによって放射線画像記憶部8bから一人目の被検者の2枚の放射線画像信号が読み出される。
 そして、表示制御部8cにおいて、その2枚の放射線画像信号に対して所定の信号処理が施されてモニタ9に出力される。モニタ9は、入力された2つの放射線画像信号に基づいて乳房M1のステレオ画像を表示する。図4Aは、一人目の被検者の乳房M1のステレオ画像を構成する一方の放射線画像を模式的に示した図である。
 次に、観察者によって二人目の被検者のステレオ画像の表示指示が入力部7において入力され、その表示指示に応じて表示制御部8cによって放射線画像記憶部8bから二人目の被検者の2枚の放射線画像信号が読み出される。
 そして、表示制御部8cは、入力された2枚の放射線画像信号に基づいて二人目の被検者の乳房M2のステレオ画像をモニタ9に表示させるが、現在モニタ9に表示されている一人目の被検者の乳房M1のステレオ画像から二人目の被検者の乳房M2のステレオ画像へと表示が切り替わる際、一旦、モニタ9の画面が暗くなって観察者の立体視画像の認識が途切れないようする。具体的には、一人目の被検者の乳房M1のステレオ画像(以下、第1のステレオ画像という)を構成する放射線画像の組(以下、第1の放射線画像と第2の放射線画像という)を、二人目の被検者の乳房M2のステレオ画像(以下、第2のステレオ画像という)を構成する放射線画像の組(以下、第3の放射線画像と第4の放射線画像という)に徐々に近づけるように変化させるよう制御する。
 以下、その具体的な表示制御方法を説明するが、ここでは、図4Aに示した第1のステレオ画像を構成する第1の放射線画像から、図4Bに示す第2のステレオ画像を構成する第3の放射線画像へと表示を切り替える際の作用について説明する。なお、第1の放射線画像と第3の放射線画像とはそれぞれ観察者の同じ側の目、たとえば、右側の目に入射される放射線画像である。また、第2の放射線画像から第4の放射線画像への切り替え方法についても同様である。
 具体的には、表示制御部8cは、第1の放射線画像の濃度に対する第3の放射線画像の濃度の比率が徐々に大きくなるように表示制御する。図5A~図5Eは、その具体的な表示態様の変化の一例を示したものである。
 図5Aは第1の放射線画像と第3の放射線画像の濃度の比を10:0として表示したものであり、図5Bは第1の放射線画像と第3の放射線画像の濃度の比を7:3として表示したものであり、図5Cは第1の放射線画像と第3の放射線画像の濃度の比を5:5として表示したものであり、図5Dは第1の放射線画像と第3の放射線画像の濃度の比を3:7として表示したものであり、図5Eは第1の放射線画像と第3の放射線画像の濃度の比を0:10として表示したものである。ここで、第1の放射線画像と第3の放射線画像の濃度の比を10:0として表示とは、第1の画像のみが表示されていることを言い、第1の放射線画像と第3の放射線画像の濃度の比を0:10として表示とは、第3の画像のみが表示されていることを言うものである。
 そして、図5A~図5Eが時間の経過とともに順次切り替えられて表示される。このとき所定の濃度の比の放射線画像から次の濃度の比の放射線画像に切り替える際の切り替え時間、観察者の立体視を維持するためには40ms以下であることが望ましい。ただし、この切り替え時間は観察者によって入力部7において任意の時間を設定可能であるものとする。
 また、第1の放射線画像から第3の放射線画像までに切り替えが完了するまでの時間は、すなわち、図5Aの放射線画像から図5Eの放射線画像まで切り替わるまでの時間は10s以下とすることが望ましい。ただし、この時間についても観察者によって入力部7において任意に設定可能であるものとする。
 また、本実施形態においては、図5A~図5Eに示すような比率で放射線画像の濃度を切り替えるようにしたがその他の比率に設定するようにしてもよく、この比率についても観察者によって入力部7において任意に設定可能であるものとする。
 上述したようにして第1のステレオ画像から第2のステレオ画像へと表示を切り替えることによって、観察者は立体視画像の認識を維持することができ、観察者への負担を軽減することができる。
 なお、上記実施形態の説明においては、第1の放射線画像の濃度に対する第3の放射線画像の濃度の比率が徐々に大きくなるように表示制御することによって、第1の放射線画像から第3の放射線画像へと徐々に近づく変化をさせたが、これに限らず、その他の表示制御方法を採用するようにしてもよい。
 具体的には、たとえば、第1の放射線画像から第3の放射線画像へ画素単位で表示を切り替えるようにしてもよい。図6A~図6Dは、その具体的な表示態様の変化の一例を示したものである。なお、図6A~図6Dにおける格子の一つが、一つの画素Pを意味し、その中の数値が「1」の画素は第1の放射線画像を構成する1画素のデータを表示しているものとし、数値が「3」の画素は第3の放射線画像を構成する1画素のデータを表示しているものとする。
 図6Aは第1の放射線画像であり、図6Bは第1の放射線画像の1画素目だけを第3の放射線画像の画素データに切り替えたものであり、図6Cは第1の放射線画像の左上から右に向かって5画素目までを第3の放射線画像の画素データに切り替えたものであり、図6Dは第1の放射線画像の左上から右下に向かって12画素目までを第3の放射線画像の画素データに切り替えたものである。
 図6A~図6Dに示すように、第1の放射線画像は、左上の画素から右下の画素に向かって1画素ずつ第1の放射線画像の画素データから第3の放射線画像の画素データへと順次切り替えられる。このように表示制御することによって、第1の放射線画像から第3の放射線画像へと徐々に近づく変化をさせることができる。
 なお、このとき1画素単位での切り替え時間は、観察者の立体視を維持するためには40ms以下であることが望ましい。ただし、この切り替え時間も観察者によって入力部7において任意の時間を設定可能であるものとする。
 また、上記説明では、第1の放射線画像から第3の放射線画像へ画素単位で表示を切り替えるようにしたが、行単位で表示を切り替えるようにしてもよい。図7A~図7Dは、その具体的な表示態様の変化の一例を示したものである。
 図7Aは第1の放射線画像であり、図7Bは第1の放射線画像の1行目だけを第3の放射線画像の画素データに切り替えたものであり、図7Cは第1の放射線画像の2行目までを第3の放射線画像の画素データに切り替えたものであり、図7Dは第1の放射線画像の3行目までを第3の放射線画像の画素データに切り替えたものである。
 図7A~図7Dに示すように、第1の放射線画像は、一番上の行から1行ずつ第1の放射線画像の画素データから第3の放射線画像の画素データへと順次切り替えられる。このように表示制御することによって、第1の放射線画像から第3の放射線画像へと徐々に近づく変化をさせることができる。
 なお、このとき1行単位での切り替え時間は、観察者の立体視を維持するためには40ms以下であることが望ましい。ただし、この切り替え時間も観察者によって入力部7において任意の時間を設定可能であるものとする。
 また、第1の放射線画像から第3の放射線画像へ列単位で表示を切り替えるようにしてもよい。図8A~図8Dは、その具体的な表示態様の変化の一例を示したものである。
 図8Aは第1の放射線画像であり、図8Bは第1の放射線画像の1列目だけを第3の放射線画像の画素データに切り替えたものであり、図8Cは第1の放射線画像の2列目までを第3の放射線画像の画素データに切り替えたものであり、図8Dは第1の放射線画像の3列目までを第3の放射線画像の画素データに切り替えたものである。
 図8A~図8Dに示すように、第1の放射線画像は、一番左の列から1列ずつ第1の放射線画像の画素データから第3の放射線画像の画素データへと順次切り替えられる。このように表示制御することによって、第1の放射線画像から第3の放射線画像へと徐々に近づく変化をさせることができる。
 なお、このとき1列単位での切り替え時間は、観察者の立体視を維持するためには40ms以下であることが望ましい。ただし、この切り替え時間も観察者によって入力部7において任意の時間を設定可能であるものとする。
 また、上述したように画素単位、行単位または列単位で表示を切り替える場合、たとえば、放射線画像の画素数が多数の場合には切り替え時間が長くなることになるが、たとえば、図9Aに示すように、第1の放射線画像を複数の領域R1~R4に分割し、その各領域内の放射線画像の画素データを画素単位で同時に第3の放射線画像の画素データへ切り替えるようにすれば切り替え時間の短縮を図ることができる。 
 図9A~図9Dは、その具体的な表示態様の変化の一例を示したものである。図9Aは第1の放射線画像であり、図9Bは第1の放射線画像の各領域R1~R4の1画素目だけを第3の放射線画像の画素データに切り替えたものであり、図9Cは第1の放射線画像の各領域R1~R4の2画素目までを第3の放射線画像の画素データに切り替えたものであり、図9Dは第1の放射線画像の各領域R1~R4の5画素目までを第3の放射線画像の画素データに切り替えたものである。
 また、図9A~9Dに示すように画素単位で切り替えるのではなく、各領域R1~R4の放射線画像を行単位で同時に第3の放射線画像の画素データへ切り替えるようにしてもよい。
 図10A~図10Dは、その具体的な表示態様の変化の一例を示したものである。図10Aは第1の放射線画像であり、図10Bは第1の放射線画像の各領域R1~R4の1行目だけを第3の放射線画像の画素データに切り替えたものであり、図10Cは第1の放射線画像の各領域R1~R4の2行目までを第3の放射線画像の画素データに切り替えたものであり、図10Dは第1の放射線画像の各領域R1~R4の3行目までを第3の放射線画像の画素データに切り替えたもの、すなわち全ての画素データを第3の放射線画像の画素データに切り替えたものである。
 また、図10A~図10Dに示すように行単位で切り替えるのではなく、各領域R1~R4の放射線画像を列単位で同時に第3の放射線画像の画素データへ切り替えるようにしてもよい。なお、同時に切り替える画素、行、列は同じ位置に相当する画素、行、列としなくても良いが、同じ位置に相当する画素、行、列としても良い。
 なお、上述したようにして第1のステレオ画像から第2のステレオ画像へと表示を切り替えるようにした場合、たとえば、その切り替えの時間が比較的長い場合には、切り替え中なのか切り替えを終了したのかの判断が困難であるため、表示制御部8cが、切り替え中であることを示す指標やメッセージなどをモニタ9に表示させるようにしてもよい。また、切り替え中であることを観察者に報知する方法としてはモニタ表示に限らず、たとえば、ランプを点灯させたりその他の報知方法を用いるようにしてもよい。
 また、図4A,図4Bで示すように、第1の放射線画像の乳房M1と、表示切り替え後の第3の放射線画像の乳房M2との大きさが異なる場合には、観察者が立体視画像を認識する際に負担がかかる場合がある。
 そこで、図11に示すように、コンピュータ8に、第1の放射線画像における乳房M1の領域と第3の放射線画像における乳房M2の領域とをそれぞれ認識する被写体領域認識部8dと、第3の放射線画像における乳房M2の領域を第1の放射線画像における乳房M1の領域に近づけるように第3の放射線画像を補正する補正部8eとを設けるようにしてもよい。なお、被写体領域認識部8dにおける被写体領域の認識方法としては、たとえば、エッジ抽出を行うことによって乳房の輪郭を検出するようにしてもよいし、パターン認識などその他の公知の技術を採用するようにしてもよい。
 そして、図4A,図4Bに示すように、第3の放射線画像の乳房M2の領域の方が第1の放射線画像の乳房M1の領域よりも小さい場合には、第3の放射線画像の乳房M2の領域が第1の放射線画像の乳房M1の領域と同じ程度の大きさとなるように拡大処理を施すようにすればよい。また、乳房M1と乳房M2の大きさの関係が逆の場合には、これらの領域が同じ程度の大きさとなるように縮小処理を施すようにすればよい。また、さらに、第3の放射線画像の乳房M2の位置が、第1の放射線画像の乳房M1の位置からずれている場合には、これらの位置が一致するように第3の放射線画像の乳房M2の位置をシフト補正などによってずらすようにしてもよい。
 そして、補正部8eにおいて第3の放射線画像に対して拡大・縮小処理やシフト補正などを施した後、上記と同様にして第1の放射線画像から第3の放射線画像への表示の切り替えを行うようにすればよい。
 また、たとえば、図4A,図4Bに示すように乳房の大きさが違うような場合、圧迫板18の圧迫方向(Z方向)、すなわちステレオ画像の奥行方向の乳房の厚さも異なることになるが、このような場合に上述したように第1のステレオ画像と第2のステレオ画像とを同じ輻輳角で撮影すると、より厚い乳房M1の第1のステレオ画像の方が、モニタ9の画面からの飛び出し量が大きくなることになり、第1のステレオ画像から第2のステレオ画像へと切り替えた際、モニタ9の画面からの飛び出し量が変化することになり観察者の負担となってしまう。
 そこで、図12に示すように、コンピュータ8に、第1のステレオ画像の撮影対象である乳房M1の厚さ情報と、第2のステレオ画像の撮影対象である乳房M2の厚さ情報とを取得する厚さ情報取得部8fと、その厚さ情報取得部8fによって取得された厚さ情報に基づいて、第2のステレオ画像のモニタ9の画面からの飛び出し量を調整する飛び出し量調整部8gとを設けるようにしてもよい。
 本実施形態の厚さ情報取得部8fは、圧迫板18の位置をコントロールする圧迫板コントローラ34から圧迫板18の位置情報を取得し、その位置情報に基づいて乳房M1および乳房M2の厚さ情報を取得するものである。なお、厚さ情報を取得する方法としてはこれに限らずその他の方法を採用するようにしてもよい。
 そして、飛び出し量調整部8gは、厚さ情報取得部8fによって取得された乳房M1と乳房M2との厚さの差を取得し、この差に基づいて、第2のステレオ画像を構成する第3の放射線画像と第4の放射線画像とをシフトして視差量を調整することによって、第2のステレオ画像のモニタ9の画面からの飛び出し量を調整するものである。具体的には、図4A,図4Bに示すように乳房の大きさが違うような場合、第1のステレオ画像の撮影対象である乳房M1よりも第2のステレオ画像の撮影対象である乳房M2の方が厚さが薄くなることになるので、飛び出し量を調整してない場合には、第2のステレオ画像の方が第1のステレオ画像よりもモニタ9の画面からの飛び出し量が少なくなることになる。
 したがって、このような厚さの関係である場合には、飛び出し量調整部8gは、第2のステレオ画像の飛び出し量をより大きくして第1のステレオ画像の飛び出し量と同程度となるように、第2のステレオ画像を表示する第3の放射線画像と第4の放射線画像との視差量が大きくなるようにこれらの放射線画像をシフトする。なお、このシフト処理は、第3の放射線画像と第4の放射線画像とに画像処理を施すことによって行うようにしてもよいし、モニタ9に表示する際にこれらの画像の表示位置を制御することによって行うようにしてもよい。
 図13Aは第1のステレオ画像の表示状態のイメージ図であり、図13Bは、上述したようにシフト処理を施した後の第2のステレオ画像の表示状態のイメージ図である。図13A,図13Bに示す9aはモニタ9の画面を表すものであり、第1のステレオ画像の飛び出し量d1と第2のステレオ画像の飛び出し量d2とは同じ程度となる。
 また、第1のステレオ画像の乳房の厚さと第2のステレオ画像の乳房の厚さ関係が逆であり、第2のステレオ画像の乳房の方が厚さが厚い場合には、第2のステレオ画像を表示する第3の放射線画像と第4の放射線画像との視差量が小さくなるようにこれらの放射線画像をシフトするようにすればよい。
 ここで、たとえば、図14に示すように、第1のステレオ画像の被写体が厚さ40mmの乳房Aであって、第2のステレオ画像の被写体が厚さ60mmの乳房Bであり、撮影角度が4°であり、SIDが650mmの場合の画像のシフト量を検討する。なお、SIDとは放射線光軸方向についての放射線源17と放射線画像検出器15の検出面との間の距離であり、また、撮影角度は放射線の光軸方向と検出面の垂直方向とによってなされる角である。
 まず、図14に示すHは、H=SID(650mm)×cos (4°)=648.4mmとなり、図14に示すWは、W=SID(650mm)×sin (4°)=45.3mmとなる。さらに、tanθ’=W/(H-乳房A(40mm))=0.075となり、図14に示すXは、X=tanθ’ × 乳房A(40mm)=2.98mmとなる。また、tanθ”= W/(H-乳房B(60mm))=0.077となり、図14に示すYは、Y=tanθ” × 乳房B(60mm)=4.62mmとなる。
 したがって、乳房Bを撮影した際の視差量を乳房Aを撮影した際の視差量に合わせるためには、Y-X=1.642mmだけ第3の放射線画像と第4の放射線画像との視差量が小さくするように(図14の矢印方向)これらの放射線画像をシフトするようにすればよい。なお、たとえば、1画素の大きさが0.05mmである場合には、1.642mm /0.05mm = 32.8 画素だけシフトするようにすればよい。
 また、上記説明では、第2のステレオ画像を撮影した後に、第3の放射線画像と第4の放射線画像をシフトすることによって視差量を調整するようにしたが、第2のステレオ画像を撮影する前までに、厚さ情報に基づいて輻輳角θを演算し、その輻輳角θで第3の放射線画像と第4の放射線画像とを撮影することによって飛び出し量を調整するようにしてもよい。
 また、第1のステレオ画像から第2のステレオ画像に切り替えた際に、観察者の立体視画像の認識を維持できなくなるのは、乳房画像が一旦、真っ暗になるからであるが、観察者の立体視画像の認識を維持させるために、たとえば、表示制御部8cが、第1のステレオ画像から第2のステレオ画像への切り替えの前後で連続して同じ表示態様で表示される第3のステレオ画像をモニタ9に表示させるようにしてもよい。
 第3のステレオ画像としては、たとえば、マーカーなどがある。図15A,図15Bは、第1のステレオ画像を構成する第1の放射線画像と第2の放射線画像とにそれぞれマーカーMK_RとMK_Lとを表示したものであり、図15C,図15Dは、第2のステレオ画像を構成する第3の放射線画像と第4の放射線画像とにそれぞれマーカーMK_RとマーカーMK_Lとを表示したものである。なお、図15AのマーカーMK_Rと図15BのマーカーMK_Lとは、図面上には表していないが、所定の視差量を持って表示されており、これらの2つのマーカーを用いてステレオ画像のマーカーが表示される。
 また、図15CのマーカーMK_Rと図15DのマーカーMK_Lとも、図面上には表していないが、所定の視差量を持って表示されており、これらの2つのマーカーを用いてステレオ画像のマーカーが表示される。
 そして、第1のステレオ画像から第2のステレオ画像に切り替わる際、図15A,図15BのマーカーMK_RおよびマーカーMK_Lは一旦消えることなくそのまま継続して表示され、図15C,図15DのマーカーMK_RおよびマーカーMK_Lとして表示される。
 すなわち、マーカーMK_RとマーカーMK_Lとからステレオ画像として表示されるマーカーは、第1のステレオ画像から第2のステレオ画像に切り替わる前後で、一旦消えることなく連続して同じ表示態様で表示される。
 観察者は、第1のステレオ画像から第2のステレオ画像へ切り替える際、このステレオ画像として表示されたマーカーを注視することによって立体視画像の認識を維持することができ、第2のステレオ画像を観察する際の負担を軽減することができる。
 また、上記実施形態においては、第1のステレオ画像から第2のステレオ画像への切り替えが完了した後、さらに、第2のステレオ画像にとって最適な表示位置、倍率、立体感となるように自動調整してもよい。
 なお、上記説明は、本発明の立体視画像表示装置の一実施形態を乳房画像撮影表示システムに適用したものであるが、本発明の被写体としては乳房に限らず、たとえば、胸部や頭部などを撮影する放射線画像撮影表示システムにも本発明を適用することができる。
 また、本発明は、放射線画像の立体視画像を表示する場合に限らず、デジタルカメラなどその他の撮影装置で撮影した画像を立体視画像として表示する場合においても適用することができる。
1   乳房画像撮影表示システム
7   入力部
8   コンピュータ
8a  制御部
8b  放射線画像記憶部
8c  表示制御部
8d  被写体領域認識部
8e  補正部
8f  厚さ情報取得部
8g  飛び出し量調整部
9   モニタ
10  乳房画像撮影装置
13  アーム部
14  撮影台
15  放射線画像検出器
17  放射線源
18  圧迫板
19  移動機構
31  アームコントローラ
32  放射線源コントローラ
33  検出器コントローラ
34  圧迫板コントローラ

Claims (12)

  1.  異なる撮影方向から被写体を撮影することによって前記撮影方向毎の画像の組を複数組、取得し、該取得した画像の組を用いて立体視画像を表示する立体視画像表示方法において、
     第1の前記立体視画像から次の第2の前記立体視画像に表示を切り替える際、前記第1の立体視画像を構成する第1の画像の組を前記第2の立体視画像を構成する第2の画像の組に徐々に近づく変化をさせて表示することを特徴とする立体視画像表示方法。
  2.  異なる撮影方向から被写体を撮影することによって前記撮影方向毎の画像の組を複数組、取得する画像取得部と、該画像取得部によって取得された画像の組を用いて立体視画像を表示する表示部とを備えた立体視画像表示装置において、
     前記表示部は、第1の前記立体視画像から次の第2の前記立体視画像に表示を切り替える際、前記第1の立体視画像を構成する第1の画像の組を前記第2の立体視画像を構成する第2の画像の組に徐々に近づく変化をさせて表示することを特徴とする立体視画像表示装置。
  3.  前記表示部は、前記第1の画像の組の各画像の濃度と前記第2の画像の組の各画像うち、同じ目に入射される各画像の濃度との比率を徐々に変化させることを特徴とする請求項2記載の立体視画像表示装置。
  4.  前記表示部は、前記第1の画像の組から前記第2の画像の組へ画素単位、行単位または列単位で切り替えることを特徴とする請求項2記載の立体視画像表示装置。
  5.  前記表示部は、前記第1の画像の組の各画像をそれぞれ複数の領域に分割し、該各領域内の画像を画素単位、行単位または列単位で同時に前記第2の画像の組の各画像へ切り替えることを特徴とする請求項2記載の立体視画像表示装置。
  6.  前記第1および第2の画像の組の各画像における前記被写体の領域を認識する被写体領域認識部と、
     前記第2の画像の組の各画像における前記被写体の領域を前記第1の画像の組の各画像における前記被写体の領域に近づけるように補正する補正部とを更に備えたことを特徴とする請求項2から5いずれか1項記載の立体視画像表示装置。
  7.  前記第1の画像の組の撮影対象である被写体と、前記第2の画像の組の撮影対象である被写体との前記立体視画像の奥行方向についての厚さ情報を取得する厚さ情報取得部と、
     該厚さ情報取得部によって取得された厚さ情報に基づいて、前記第2の画像の組から構成される立体視画像の前記表示部の画面からの飛び出し量を調整する飛び出し量調整部とを更に備えたことを特徴とする請求項2から6いずれか1項記載の立体視画像表示装置。
  8.  前記濃度の比率の切り替えの時間が40ms以下であることを特徴とする請求項3記載の立体視画像表示装置。
  9.  前記画素単位、行単位または列単位での切り替えの時間が40ms以下であることを特徴とする請求項4または5記載の立体視画像表示装置。
  10.  前記第1の画像の組から前記第2の画像の組に切り替えが完了するまでの時間が10s以下であることを特徴とする請求項2から9いずれか1項記載の立体視画像表示装置。
  11.  前記第1の画像の組から前記第2の画像の組への切り替えの途中であることを報知する切替報知部を更に備えたことを特徴とする請求項2から10いずれか1項記載の立体視画像表示装置。
  12.  前記表示部は、前記第1の画像の組から前記第2の画像の組への切り替えの前後で連続して同じ表示態様で表示される第3の立体視画像を表示することを特徴とする請求項2から11いずれか1項記載の立体視画像表示装置。
PCT/JP2011/064563 2010-06-28 2011-06-24 立体視画像表示方法および装置 WO2012002280A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010146363A JP2013198508A (ja) 2010-06-28 2010-06-28 立体視画像表示方法および装置
JP2010-146363 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012002280A1 true WO2012002280A1 (ja) 2012-01-05

Family

ID=45401997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064563 WO2012002280A1 (ja) 2010-06-28 2011-06-24 立体視画像表示方法および装置

Country Status (2)

Country Link
JP (1) JP2013198508A (ja)
WO (1) WO2012002280A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226959A (ja) * 1994-02-14 1995-08-22 Sharp Corp 立体映像表示装置
JPH1040420A (ja) * 1996-07-24 1998-02-13 Sanyo Electric Co Ltd 奥行き感制御方法
JP2005109568A (ja) * 2003-09-26 2005-04-21 Sanyo Electric Co Ltd 映像表示装置及びプログラム
JP2006149944A (ja) * 2004-12-01 2006-06-15 Konica Minolta Medical & Graphic Inc 医用画像記録システム
JP2009239389A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 立体画像表示装置および方法並びにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226959A (ja) * 1994-02-14 1995-08-22 Sharp Corp 立体映像表示装置
JPH1040420A (ja) * 1996-07-24 1998-02-13 Sanyo Electric Co Ltd 奥行き感制御方法
JP2005109568A (ja) * 2003-09-26 2005-04-21 Sanyo Electric Co Ltd 映像表示装置及びプログラム
JP2006149944A (ja) * 2004-12-01 2006-06-15 Konica Minolta Medical & Graphic Inc 医用画像記録システム
JP2009239389A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 立体画像表示装置および方法並びにプログラム

Also Published As

Publication number Publication date
JP2013198508A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
US20130300737A1 (en) Stereoscopic image generating apparatus, stereoscopic image generating method, and stereoscopic image generating program
JP2012045022A (ja) 放射線画像撮影表示装置および放射線画像撮影表示方法
WO2012081244A1 (ja) 表示装置
JP2012029742A (ja) 放射線画像撮影表示方法および装置
US20120027169A1 (en) Radiological image radiographing and displaying method and apparatus
JP2012029759A (ja) 放射線画像撮影表示方法および装置
JP2012066049A (ja) 放射線画像撮影装置および立体視画像表示方法
WO2012002280A1 (ja) 立体視画像表示方法および装置
WO2012056695A1 (ja) 立体視画像表示装置および方法並びにプログラム
JP2012192137A (ja) 放射線画像表示装置および方法
WO2012132320A1 (ja) 立体視画像表示装置および立体視画像表示方法
WO2012066753A1 (ja) 立体視画像表示方法および装置
WO2012105188A1 (ja) 立体視画像表示装置および方法並びにプログラム
WO2012043547A1 (ja) 立体視画像表示方法および立体視画像表示装置
JP2012068610A (ja) 立体視画像表示装置、放射線画像撮影表示システムおよび立体視画像表示方法
WO2012043480A1 (ja) 立体視画像表示方法および立体視画像表示装置
WO2012056722A1 (ja) 立体視画像表示装置および方法並びにプログラム
WO2012056679A1 (ja) 立体視画像表示システムおよび立体視画像用表示装置
WO2012056677A1 (ja) 立体視画像表示装置
JP2012178626A (ja) 立体視放射線画像表示方法および装置
WO2012029726A1 (ja) 乳房画像撮影表示方法および装置
JP2012095274A (ja) 立体視画像表示装置および立体視画像表示方法
WO2011161972A1 (ja) 放射線画像撮影表示方法およびシステム
WO2012056692A1 (ja) 立体視画像表示装置および立体視画像表示方法
WO2012056723A1 (ja) 立体視画像表示装置および立体視画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP