WO2012002254A1 - 光源装置及び照明装置 - Google Patents
光源装置及び照明装置 Download PDFInfo
- Publication number
- WO2012002254A1 WO2012002254A1 PCT/JP2011/064432 JP2011064432W WO2012002254A1 WO 2012002254 A1 WO2012002254 A1 WO 2012002254A1 JP 2011064432 W JP2011064432 W JP 2011064432W WO 2012002254 A1 WO2012002254 A1 WO 2012002254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- phosphor assembly
- reflective
- green
- red
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/16—Cooling; Preventing overheating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B33/00—Colour photography, other than mere exposure or projection of a colour film
- G03B33/10—Simultaneous recording or projection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
- H04N9/3111—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
- H04N9/3111—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
- H04N9/3114—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3158—Modulator illumination systems for controlling the spectrum
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3164—Modulator illumination systems using multiple light sources
Definitions
- the present invention relates to a light source device and a projection display device using the same.
- a circular transparent base material capable of rotation control has a plurality of fan-shaped segment regions, and at least two of the segment regions of the transparent base material receive excitation light emitted from a semiconductor laser.
- a light source device including an excitation light source in which layers of different phosphors that emit light in a predetermined wavelength band are arranged and that irradiates the phosphor with excitation light in a visible light region.
- the light source device described in Patent Document 1 irradiates the phosphor layer with excitation light while rotating the disk-shaped transparent substrate on which the phosphor layer is formed, thereby red, green, and blue.
- the three primary color lights are emitted in order. Therefore, it is suitable for a field sequential color projection display device that switches the signals for the three primary colors of the display device in time sequence and correspondingly emits the three primary color lights in order, but it is suitable for a three-plate projection display device as it is. It was not applicable.
- the present invention has been made in view of such problems, and an object thereof is to provide a light source device that can be mounted on a three-plate projection display device using a phosphor as a light source. Another object of the present invention is to provide a light source device capable of extending the lifetime of the phosphor. Furthermore, an object of the present invention is to provide a light source device capable of adjusting the chromaticity of the three primary colors. Still another object of the present invention is to provide a projection display device using the above-described light source device.
- the present invention provides the following 1) to 8) in order to solve the above-described problems of the conventional techniques.
- a semiconductor laser (1) a reflection type phosphor assembly (42) that receives excitation light emitted from the semiconductor laser (1) and emits fluorescence of a predetermined color, and the incident excitation light is incident
- a dichroic mirror (24) that reflects one of the fluorescent light and transmits the other, a heat radiating part (9) that dissipates heat generated by the reflective phosphor assembly, and the reflective phosphor assembly that reflects the reflective phosphor assembly.
- a light source device comprising: an optical member (6); and an afocal optical system having at least one negative optical member (5).
- a semiconductor laser (1) and a reflective phosphor assembly (4) that receives excitation light emitted from the semiconductor laser (1) and emits fluorescence having red, green, and blue light components as white light.
- a dichroic mirror (2) that reflects one of the incident excitation light and the incident white light and transmits the other, and a heat radiating part that radiates heat generated by the reflective phosphor assembly (2) ( 9), a moving mechanism (10, 12, 14, 15) for moving the reflective phosphor assembly (4) in a direction parallel to the surface of the reflective phosphor assembly (4), and the reflective phosphor
- an afocal optical system having at least one positive optical member (6) and at least one negative optical member (5) for converting the size of the luminous flux of white light from the body assembly.
- a reflective phosphor assembly having a red phosphor assembly element that emits red light as fluorescence, a green phosphor assembly element that emits green light, and a blue phosphor assembly element that emits blue light.
- a light source device comprising: an afocal optical system having at least one positive optical member (6) for converting thickness and at least one negative optical member (5).
- a red phosphor assembly element that emits red light as fluorescence, a green phosphor assembly element that emits green light, and a blue phosphor assembly element that emits blue light are arranged in the color arrangement direction.
- the reflection Moving mechanism (10, 12, 14, 15) for moving the type phosphor assembly (41) in a direction parallel to the reflective phosphor assembly surface (41) and in the direction of the color arrangement, and the reflection type A moving mechanism (11, 13,7) For moving the phosphor assembly (41) between phosphor assembly elements having different color chromaticities in a direction parallel to the surface of the reflective phosphor assembly
- Optical member (6) Light source device characterized by and a afocal optical system having at least one negative optical member (5).
- a phosphor assembly element that emits red light as fluorescence and a phosphor assembly element that emits green light are arranged in the direction of the color arrangement, and the color color is in the direction orthogonal to the color arrangement direction.
- a reflective phosphor assembly (41) having a plurality of phosphor assembly elements of different degrees, a heat dissipating section (9) that dissipates heat generated by the reflective phosphor assembly (41), and the red fluorescence At least one red semiconductor laser (1) for emitting excitation light for exciting the body, at least one green semiconductor laser (1) for emitting excitation light for exciting the green phosphor, and blue light
- White color obtained by combining a moving mechanism (11, 13, 15) that moves between body assembly elements and the plurality of dichroic mirrors (21, 22) with the red light, the green light, and the blue light.
- a light source apparatus comprising: an afocal optical system having at least one positive optical member (6) for converting the size of a light beam of light and at least one negative optical member (5).
- a red phosphor assembly element that emits red light as fluorescence, a green phosphor assembly element that emits green light, and blue light are emitted every predetermined angle in the circumferential direction on the disc.
- a reflection type color wheel (43) in which phosphor assembly elements for blue are arranged and phosphor assembly elements having different color chromaticities in the radial direction are arranged, and excitation light for exciting the phosphor At least one semiconductor laser (1) to be emitted, a rotation mechanism (10) for rotating the reflective color wheel (43) at a predetermined angle around the center of a disk, and the reflective color wheel (43)
- a moving mechanism (13) that moves between phosphor assembly elements having different color chromaticities in a direction parallel to the surface of the reflective color wheel (43), and the incident excitation light and the incident light
- the light source device according to any one of 1) to 7) above, a device (111r, 111g, 111b) that modulates light emitted from the light source device, and a projection that projects light modulated by the device
- a projection display device comprising a lens (113).
- a light source device that can be mounted on a three-plate projection display device using a phosphor as a light source. Further, according to the present invention, it is possible to configure a light source device capable of extending the lifetime of the phosphor. Furthermore, according to the present invention, a light source device capable of adjusting the chromaticity of the three primary colors can be configured. Furthermore, according to the present invention, a three-plate projection display device using the above-described light source device can be configured.
- FIG. 6 is a cross-sectional view showing another example of the reflective fluorescent assembly 4.
- FIG. 6 is a cross-sectional view showing another example of the reflective fluorescent assembly 4.
- It is a block diagram which shows the modification of the fundamental structure of FIG. It is a block diagram which shows the state which added the heat sink with respect to the fundamental structure of the light source device shown in FIG. It is a block diagram which shows the state which added the heat sink with respect to the structure shown in FIG. It is a block diagram which shows the light source device 201 of the 1st Embodiment of this invention.
- FIG. 6 is a chromaticity diagram schematically showing an example in which the chromaticities of the three primary colors emitted from the light source device 202 of the second embodiment are changed by selecting a phosphor assembly element.
- FIG. 1 is a configuration diagram showing the basic configuration of a light source device according to a first embodiment of the present invention.
- the semiconductor laser 1 emits one of ultraviolet light, near ultraviolet light, and blue-violet light.
- the semiconductor laser 1 uses one CAN type.
- the light emitted from the semiconductor laser 1 is reflected by the dichroic mirror 2 and the optical path is bent by 90 degrees.
- the dichroic mirror 2 has a characteristic of reflecting any one of ultraviolet light, near ultraviolet light, and blue-violet light that is emitted from the semiconductor laser 1 and transmitting blue light, green light, and red light having longer wavelengths than those.
- the semiconductor laser beam bent by 90 degrees is condensed at a predetermined position by the first convex lens 3.
- a reflective phosphor assembly 4 is disposed at a position where the semiconductor laser beam is condensed.
- FIG. 2 shows a sectional view of the reflective phosphor assembly 4 shown in FIG.
- the base material 7 of the reflective phosphor assembly 4 is made of glass or metal.
- FIG. 2 shows a case where the substrate 7 is a metal.
- reference numeral 7a indicates a mirror state.
- a phosphor 8R that emits red light when excited by ultraviolet light, near-ultraviolet light, and blue-violet light
- a phosphor 8G that emits green light when excited by ultraviolet light, near-ultraviolet light, and blue-violet light on the substrate 7.
- a phosphor 8B that emits blue light when excited by ultraviolet light, near ultraviolet light, or blue-violet light is mixed with the binder 8b and applied to a predetermined thickness.
- the phosphor is applied by precipitation or printing.
- the phosphors 8R, 8G, and 8B receive the light emitted from the semiconductor laser 1 and emit red light, green light, and blue light.
- the reflection type phosphor assembly 4 as a whole mixes these lights. Emits white light.
- the base material 7 is glass.
- a reflective film 7m such as a dichroic mirror that transmits ultraviolet light, near-ultraviolet light, or blue-violet light, which is laser light, and reflects visible light is provided on one surface of the glass substrate.
- a molded product 8a formed by mixing phosphors 8R, 8G, and 8B is adhered onto the reflective film 7m.
- the phosphors 8R, 8G, and 8B receive the light emitted from the semiconductor laser 1 and emit red light, green light, and blue light. However, in the reflective phosphor assembly 4 as a whole, these lights are mixed. Emits white light.
- FIG. 1 the example of FIG.
- the base material 7 is glass.
- a white phosphor 8W is used as the phosphor.
- the substrate 7 is made of metal or glass, provided by a method of applying a phosphor layer, or provided by a method of adhering a molded product.
- the white diffused light emitted from the reflective phosphor assembly 4 is collected by the first convex lens 3, passes through the dichroic mirror 2, and then has a concave lens 5 that functions as a negative optical member and a positive optical element.
- the second convex lens 6 functioning as a member, parallel light having a desired diameter is obtained.
- the concave lens 5 functioning as a negative optical member and the second convex lens 6 functioning as a positive optical member constitute an afocal system.
- FIG. 5 is a block diagram showing a modification of the principle configuration of FIG.
- the light beam from the semiconductor laser 1 is reflected by the dichroic mirror 2, but the light beam from the semiconductor laser 1 is transmitted through the dichroic mirror 2 in FIG. 5.
- the dichroic mirror 2 in FIG. 5 transmits one of ultraviolet light, near ultraviolet light, and blue-violet light that is the emitted light of the semiconductor laser 1, and reflects blue light, green light, and red light having longer wavelengths.
- FIG. 6 is a configuration diagram showing a state in which a heat sink is added to the basic configuration of the light source device shown in FIG. The difference from FIG. 1 is that three semiconductor lasers 1 are used, the semiconductor laser 1 is disposed in contact with the heat sink 91, and the heat sink 9 in which the reflective phosphor assembly 4 functions as a heat radiating portion. It is arranged in contact. Although three semiconductor lasers 1 are used in FIG. 6, the number is not limited to three.
- FIG. 7 is a configuration diagram showing a state in which a heat sink is added to the configuration shown in FIG. The difference from FIG. 1 is that three semiconductor lasers 1 are used, the semiconductor laser 1 is disposed in contact with the heat sink 91, and the heat sink 9 in which the reflective phosphor assembly 4 functions as a heat radiating portion. It is arranged in contact. Although three semiconductor lasers 1 are used in FIG. 7, the number is not limited to three.
- the dichroic mirror 2 in FIG. 7 has a characteristic of transmitting any one of ultraviolet light, near ultraviolet light, and blue-violet light that is emitted from the semiconductor laser 1 and reflecting blue light, green light, and red light having longer wavelengths. Have.
- FIG. 8 is a configuration diagram showing the light source device 201 according to the first embodiment of the present invention.
- the semiconductor laser 1 emits ultraviolet light, near ultraviolet light, or blue-violet light.
- FIG. 8 shows an example in which three CAN type semiconductor lasers 1 are used, the number of semiconductor lasers 1 may be one or more.
- Light emitted from the semiconductor laser 1 is converted into substantially parallel light by the lens 1 a and travels toward the dichroic mirror 2.
- the dichroic mirror 2 has a characteristic of transmitting any one of ultraviolet light, near-ultraviolet light, and blue-violet light that is emitted from the semiconductor laser 1 and reflecting blue light, green light, and red light having longer wavelengths.
- the laser light that has been made substantially parallel light by the lens 1 a passes through the dichroic mirror 2 and is converged by the lens 3 to be condensed at a predetermined position.
- a reflective phosphor assembly 4 is provided at a position where the semiconductor laser beam is condensed.
- the reflective phosphor assembly 4 is provided on one side of the heat sink 92 having a mirror surface or on a metal reflective film formed on the heat sink 92.
- the phosphor layer is provided with the same structure and manufacturing method as described in FIG. 2, FIG. 3 or FIG.
- the phosphor layer includes phosphors 8R, 8G, and 8B
- the phosphors 8R, 8G, and 8B receive the light emitted from the semiconductor laser 1 and emit red light, green light, and blue light. Light and blue light are mixed and white light is emitted from the reflective phosphor assembly 4.
- the phosphor layer includes a white phosphor, white fluorescence is emitted from the beginning.
- the white light emitted from the reflective phosphor assembly 4 is incident on the lens 3 again to become parallel light, is reflected by the dichroic mirror 2, and has a desired aperture by a lens system including the negative lens 5 and the positive lens 6.
- the parallel light is emitted outside the system.
- These lenses constitute a so-called afocal optical system.
- the component that reflects ultraviolet light, near ultraviolet light, or blue-violet light that excites the phosphor without contributing to light emission is transmitted without being reflected by the dichroic mirror 2, and thus is not emitted outside the system.
- the dichroic mirror 2 may be arranged so as to transmit white light and reflect semiconductor laser light as excitation light.
- FIG. 9 is a view showing a moving mechanism of the reflective phosphor assembly 4 in the light source device 201 of FIG.
- the holding jig 15 holds the heat sink 9 on which the reflective phosphor assembly 4 is provided.
- the holding jig 15 has a mechanism that allows the heat sink 9 to move in one direction.
- the spring 14 is disposed between the side wall 15a of the holding jig and one short side surface of the heat sink 9, and the cam 12 is disposed on the other short side surface of the heat sink.
- the cam 12 is rotated by the motor 10
- the heat sink 9 moves in the longitudinal direction.
- the holding jig 15 holds the heat sink 9 so as not to move in the short direction.
- the holding jig 15, the spring 14, the cam 12, and the motor 10 function as a moving mechanism as a whole.
- the reflective phosphor assembly 4 moves, the position of the incident laser light with respect to the reflective phosphor assembly 4 changes relatively.
- Various movement modes may be applied. For example, it may move a certain distance after a fixed time has elapsed, or may move at a slight constant speed. By moving, a new phosphor is used, and as a result, the lifetime of the reflective phosphor assembly 4 is extended.
- the direction of movement is the longitudinal direction of the heat sink 9, but other directions may be selected. Further, as shown in FIG. 11 to be described later, it may be moved two-dimensionally including the vertical direction in addition to the left and right.
- FIG. 10 is a configuration diagram illustrating a light source device according to the second embodiment.
- the semiconductor laser 1, the dichroic mirror 2, and the first convex lens are one system, whereas in FIG. 10, the three semiconductor lasers 1, the dichroic mirrors 21, 22, and 23, the first convex lens 31, 32 and 33 are different.
- the semiconductor laser 1 emits one of ultraviolet light, near ultraviolet light, and blue-violet light.
- the semiconductor laser 1 is a CAN type.
- the light emitted from the three systems of semiconductor lasers 1 is made into substantially parallel light by the respective lenses 1a, passes through the dichroic mirrors 21, 22, and 23 of the respective systems, and the first lenses 31 and 32 of the respective systems.
- the light is condensed at a predetermined position by 33.
- a reflective phosphor assembly 41 is provided at a position where the semiconductor laser beam is condensed.
- FIG. 11 is a front view showing an example of the reflective phosphor assembly 41 formed on the heat sink 9 shown in FIG.
- the structure and manufacturing method of the reflective phosphor assembly 41 in this embodiment are basically the same as those of the light source device of the first embodiment, but the phosphor assembly elements having different phosphor layers are two-dimensional. Is different in that it is arranged. That is, three phosphor assembly elements are arranged corresponding to the arrangement of the three primary colors, and phosphor assembly elements that emit spectra having different chromaticities are arranged in the orthogonal direction. .
- phosphor assembly elements R1, G1, and B1 are arranged from left to right.
- the phosphor assembly elements R2, G2, B2 are arranged from left to right, and in the upper stage, the phosphor assembly elements R3, G3, B3 are arranged from left to right.
- FIG. 11 when FIG. 11 is viewed in the vertical direction, the phosphor assembly elements R1, R2, and R3 are arranged from the bottom to the top in the left column. In the middle row, the phosphor assembly elements G1, G2, G3 are arranged from bottom to top, and in the right column, phosphor assembly elements B1, B2, B3 are arranged from bottom to top. .
- the numbers after R, G, and B indicate a series.
- R1, R2, and R3 are phosphor assembly elements that emit the same red light but have different color chromaticities.
- G1, G2, and G3 are phosphor assembly elements that emit the same green light but have different chromaticities.
- B1, B2, and B3 are phosphor assembly elements that emit the same blue light but have different color chromaticities.
- FIG. 12 is a view showing a moving mechanism of the reflective phosphor assembly 41 in the light source device of FIG.
- the holding jig 15 holds the heat sink 9 on which the reflective phosphor assembly 4 is provided.
- the holding jig 15 has a mechanism that allows the heat sink 9 to move in one direction.
- the spring 14 is disposed between the side wall 15 a of the holding jig and one short side surface of the heat sink 9, and the cam 12 is disposed on the other short side surface of the heat sink 9.
- the cam 12 is rotated by the motor 10
- the heat sink 9 moves in the longitudinal direction.
- the holding jig 15 holds the heat sink 9 so as not to move in the short direction.
- the holding jig 15 itself is held by a member not shown so as to be movable in the short direction of the holding jig 15.
- the holding jig 15 moves in the short direction of the holding jig 15 by rotating the gear 13 that contacts the short side surface of the holding jig by rotation of the motor 10.
- the holding jig 15 cannot move in the longitudinal direction.
- the reflective phosphor assembly 41 on the heat sink 9 can be moved in two orthogonal directions.
- the holding jig 15, the spring 14, the cam 12, the gear 13, and the motors 10 and 11 function as a moving mechanism as a whole.
- the reflective phosphor assembly 4 moves in the left-right direction in FIG. 12, the position of the incident laser light with respect to the reflective phosphor assembly 4 changes relatively.
- Various movement modes may be applied. For example, it may move a certain distance after a fixed time has elapsed, or may move at a slight constant speed. By moving, a new phosphor is used, and as a result, the lifetime of the reflective phosphor assembly 4 is extended.
- the semiconductor laser light is incident on the phosphor assembly elements R1, G1, and B1, and the semiconductor laser light is incident on the phosphor assembly elements R2, G2, and B2 by moving the holding jig,
- the semiconductor laser light enters the phosphor assembly elements R3, G3, and B3. That is, by moving the irradiation region of the semiconductor laser light between the phosphor assembly elements having different chromaticities of the respective colors, the phosphor assembly elements having different color chromaticities are selected, and the chromaticities of the three primary colors are selected.
- the color reproduction range can be changed.
- FIG. 13 is a chromaticity diagram schematically showing an example in which the chromaticities of the three primary colors emitted from the light source device 202 of the second embodiment change depending on the selection of the phosphor assembly element.
- the combination of the phosphor assembly elements is R1, G1, and B1
- the color reproduction range of a solid line triangle and when the combination of the phosphor assembly elements is R2, G2, and B2, the triangle color of a one-dot chain line
- the combination of the reproduction range and the phosphor assembly element is R3, G3, and B3, the color reproduction range changes as a dotted triangle color reproduction range.
- the red light, the green light, and the blue light emitted from the phosphor of the reflective phosphor assembly 4 are incident on the lenses 31, 32, and 33 again to become substantially parallel light, and the dichroic mirrors 21, 22, and 23.
- the reflected light is converted into parallel light having a desired aperture by the lens system including the negative lens 5 and the positive lens 6 and is emitted outside the system.
- the dichroic mirrors 21, 22, and 23 have a characteristic of transmitting any one of ultraviolet light, near-ultraviolet light, and blue-violet light that is emitted from the semiconductor laser.
- the dichroic mirror 21 has characteristics of reflecting red light and transmitting green light and blue light.
- the dichroic mirror 22 has a characteristic of reflecting green light and transmitting blue light.
- the dichroic mirror 23 has a characteristic of reflecting blue light. If the order of red, green and blue is different, the characteristics of the dichroic mirrors 21, 22 and 23 are different from the above characteristics. It should be noted that the ultraviolet light, near ultraviolet light, or blue-violet light that excites the phosphor and reflects without contributing to light emission is transmitted without being reflected by the dichroic mirror, so that it is not emitted outside the system.
- the light source device of the present embodiment is different from the light source device of the first example in that the phosphor assembly elements for the three primary colors are individually arranged and the excitation light sources are also arranged. Therefore, the energy per unit area of the excitation light that irradiates the phosphor to emit the same light beam is small. Therefore, the brightness can be further increased.
- the number of semiconductor lasers 1 for the three primary colors may be the minimum necessary number corresponding to the luminance of the fluorescence required for each of the three primary colors.
- the white balance can be adjusted by individually controlling the output of each semiconductor laser 1 and the brightness of the fluorescence of each of blue light, green light, and red light.
- the reflection type phosphor assembly 41 may include only one phosphor assembly element for red, green, and blue, and the entire holding jig 15 may not move.
- FIG. 14 is a configuration diagram showing the light source device 203 of the third embodiment.
- the difference from the light source device 202 of the second embodiment shown in FIG. 10 is that a laser light source is used as direct illumination light for blue light.
- the other configuration is the same as that of FIG. 10, and the description of the same part is omitted.
- the semiconductor laser 1 emitting blue light is arranged at a point on the extension of the optical axis formed by the concave lens 5 and the second convex lens 6.
- the semiconductor laser light is collected by the lens 1 a and the lens 1 c and enters the diffusion plate 35.
- the semiconductor laser light diffused by the diffusing plate 35 is converted into parallel light by the lens 34 and transmitted through the two dichroic mirrors to be converted into parallel light having a desired aperture by the lens system constituted by the concave lens 5 and the second convex lens 6. Inject outside the system.
- the reflective phosphor assembly 41 on the heat sink 9 is movable in two orthogonal directions, and the reflective phosphor assembly 41 has a plurality of phosphor assembly elements for both red and green.
- the reflective phosphor assembly 41 may have only one phosphor assembly element for red, green, and blue, and the entire holding jig 15 may not move.
- FIG. 15 is a configuration diagram showing the light source device 204 of the fourth embodiment.
- the semiconductor laser 1 emits one of ultraviolet light, near ultraviolet light, and blue-violet light.
- FIG. 15 shows an example in which three CAN type semiconductor lasers 1 are used, but the number is not limited to three.
- Light emitted from the semiconductor laser 1 is converted into substantially parallel light by the lens 1 a and travels toward the dichroic mirror 2.
- the dichroic mirror 2 has a characteristic of reflecting ultraviolet light, near-ultraviolet light, and blue-violet light that are emitted from the semiconductor laser, and transmitting blue light, green light, and red light having longer wavelengths.
- the laser light that has been made substantially parallel by the lens 1a is reflected by the dichroic mirror 2 and turned 90 degrees, and is converged by the lens 3 at a predetermined position.
- a reflective color wheel 43 is disposed at a position where the laser light is condensed.
- the reflective color wheel 43 has a disk shape.
- the base material of the reflective color wheel 43 is made of glass or metal.
- As the metal base material at least one surface subjected to a mirror surface treatment or a mirror surface is used.
- a reflective film such as a dichroic mirror that transmits ultraviolet light, near ultraviolet light, or blue-violet light, which is laser light, and reflects visible light is provided on one side.
- the central portion of the reflective color wheel 43 is connected to the motor 10 that functions as a rotation mechanism, and the reflective color wheel 43 is arranged in a rotatable state.
- a moving mechanism including a motor and a gear 13 (not shown) displaces the reflective color wheel 43 up and down.
- FIG. 16 is a plan view showing the structure of the light incident surface of the reflective color wheel 43 of the light source device 204 of the fourth embodiment.
- the phosphor assembly element 8RL, the phosphor assembly element 8GL, or the phosphor assembly element 8BL has the structure described with reference to FIG.
- the three types of phosphor assembly elements are equally divided in the circumferential direction, and each phosphor assembly element occupies a region of 20 degrees in the circumferential direction (this angle is referred to as a segment angle).
- the segment angle of the phosphor assembly element 8RL, the phosphor assembly element 8GL, or the phosphor assembly element 8BL is set so that the intensity ratio of the three primary colors finally obtained, that is, the white balance becomes a predetermined value. Different angles may be set.
- phosphor assembly elements that emit fluorescence of the same color but different chromaticity are arranged from the outer periphery to the inner periphery.
- the phosphor assembly elements R1, R2, and R3 from the outer periphery to the inner periphery, in G1, the phosphor assembly elements in G1, G2, and G3 in green, and in B1, the phosphor assembly elements in B1, B2, and B3 Arrange the elements.
- the numbers after R, G, and B indicate a series.
- Rotating such a reflective color wheel 43 at a sufficiently high speed enables a light source that can be used in a three-plate projection display device.
- the reflective color wheel 43 rotates at a rotation speed such that the three primary colors emitted sequentially in time can be regarded as white light.
- the frequency at which a so-called color break is not visible is assumed to be 1000 Hz or more.
- the first-type phosphor assembly element, the second-series phosphor assembly element, the third-series phosphor assembly are arranged by displacing the reflective color wheel 43 up and down by the moving mechanism described above.
- a three-dimensional element can be selected, and the emission spectra of the three primary colors (blue light, green light, red light) are changed, and the chromaticity of the three primary colors can be adjusted. Since the phosphor assembly element on the outer peripheral side has a larger area at the same angle, it is desirable to arrange a frequently used hue on the outer peripheral side from the viewpoint of extending the life of the phosphor.
- the fluorescence emitted from the phosphor layer is converted into substantially parallel light by the lens 2, and passes through the dichroic mirror and is converted into parallel light having a desired aperture by a lens system including the negative lens 3 and the positive lens 4. Eject.
- the component that is reflected by the semiconductor laser light without contributing to the fluorescence emission is reflected without being transmitted through the dichroic mirror, and therefore is not emitted outside the system.
- the dichroic mirror 2 may be arranged to reflect white light and transmit semiconductor laser light that is excitation light.
- FIG. 17 is a block diagram showing a light source device 205 according to the fifth embodiment of the present invention.
- the light source device of the fifth embodiment has the same external configuration as the light source device of the first embodiment shown in FIG.
- the phosphor layer is provided with the same structure and manufacturing method as described in FIG. 2, FIG. 3 or FIG.
- the difference from the light source device of the first embodiment is that, in the first embodiment, the reflective phosphor assembly 4 uses a phosphor that emits white light, whereas the fifth embodiment In the embodiment, the reflective phosphor assembly 42 uses a phosphor that emits blue light, green light, or red light as the predetermined light.
- the phosphor layer includes any of phosphors 8R, 8G, and 8B.
- the phosphors 8R, 8G, and 8B receive the light emitted from the semiconductor laser 1 and emit red light, green light, and blue light.
- the dichroic mirror 24 has a characteristic of transmitting any one of ultraviolet light, near-ultraviolet light, and bluish violet light emitted from the semiconductor laser 1 and reflecting the emitted light of the phosphor having a longer wavelength than those. The rest is the same as the configuration of FIG.
- FIG. 18 is a view showing a moving mechanism of the reflective phosphor assembly 42 in the light source device 205 of FIG. Since the reflective phosphor assembly 42 is the same as that of FIG. 9 except for the difference, the overlapping description is omitted.
- FIG. 19 is a diagram showing a projection display device using the light source device 202 according to the second embodiment.
- Illumination light white light
- the polarization direction is aligned in one direction by the polarization conversion element 103.
- the polarization direction of the light emitted from the polarization conversion element 103 is P-polarized light (polarized light whose electric field vector is parallel to the paper surface).
- the P-polarized light emitted from the polarization conversion element 103 passes through the condenser lens 104 and is separated into blue light (P-polarized light) and red-green light (P-polarized light) by the B / RG separation cross dichroic mirror 105.
- Blue light (P-polarized light) has its optical path bent by the mirror 106 and passes through the B field lens 109b.
- the P-polarized light that has passed through the B field lens 109b passes through a wire grid type polarization beam splitter (hereinafter referred to as “WG-PBS”) 110b, and the S-polarized component of the light modulated by the B device 111b is for B.
- the light is reflected by the WG-PBS 110b and travels toward the synthetic dichroic prism 112.
- the red / green light separated by the B / RG separation cross dichroic mirror 105 is bent in the optical path by the mirror 107 and separated by the RG dichroic mirror 108 into red light and green light.
- the field lens 109r, 109 g, WG-PBS 110r, 110g, and the S-polarized component of the light modulated by the devices 111r, 111g is reflected by the WG-PBS 110r, 110g and then directed to the combined dichroic prism 112.
- Three colors are synthesized by the synthesis dichroic prism 112 and projected onto the screen by the projection lens 113.
- the light source devices according to the first, third, and fourth embodiments can also be used as the light source portion of the projection display device.
- FIG. 20 is a diagram showing a projection display device using the light source device 205 according to the fifth embodiment of the present invention.
- the blue light, green light, and red light emitted from the light source device are made uniform in light luminance distribution by the first integrators 101b, 101g, and 101r and the second integrators 102b, 102g, and 102r, respectively, and the polarization conversion elements 1031b, With 1031g and 1031r, the polarization direction is aligned in one direction.
- the polarization direction of the light emitted from the polarization conversion elements 1031b, 1031g, and 1031r is P-polarized light (polarized light whose electric field vector is parallel to the paper surface).
- the blue light emitted from the polarization conversion element passes through the capacitor 1041b and the field lens 109b.
- the green light emitted from the polarization conversion element is transmitted through the condenser lens 1041g and the field lens 109g.
- the red light emitted from the polarization conversion element is transmitted through the condenser lens 1041r and the field lens 109r.
- B device 111b, G device 111g, and R device 111r are modulated and reflected.
- the S-polarized light component is reflected by the -WG-PBS 110b, 110g, 110r and travels toward the synthesis dichroic prism 112.
- Three colors are synthesized by the synthesis dichroic prism 112 and projected onto the screen by the projection lens 113.
- the projection type display device of the above embodiment uses a reflective liquid crystal element
- a transmissive liquid crystal element may be used.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Liquid Crystal (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Microscoopes, Condenser (AREA)
- Lenses (AREA)
Abstract
本発明は、光源として蛍光体を用いた三板式の投写型表示装置に搭載可能な光源装置であって、蛍光体寿命を長寿命化することができる光源装置を提供する。 本発明の光源装置は、半導体レーザ(1)と、前記半導体レーザ(1)から射出する励起光を受けて所定の色光を射出する反射型蛍光体組立体(42)と、入射する励起光と入射する蛍光とのいずれか一方を反射し他方を透過するダイクロイックミラー(24)と、反射型蛍光体組立体の発する熱を放熱する放熱部(9)と、反射型蛍光体組立体を反射型蛍光体組立体の面と平行方向に移動させる移動機構(12、14)と、反射型蛍光体組立体からの蛍光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)とを有するアフォーカル光学系とを備える。
Description
本発明は、光源装置およびそれを用いた投射表示装置に関する。
液晶プロジェクタ等の投射表示装置において、従来、光源として超高圧水銀ランプやキセノンランプ等の放電ランプが用いられてきた。近年、発光ダイオードや半導体レーザを光源等として用いることが検討されている。
特許文献1には、回転制御可能な円形状の透明基材に複数の扇形形状のセグメント領域を有し、透明基材のセグメント領域の少なくとも二つには、半導体レーザから射出する励起光を受けて所定の波長帯域光を発光する異なる蛍光体の層が配置され、可視光領域の励起光を蛍光体に照射する励起光源を備える光源装置が記載されている。
ところで、特許文献1に記載の光源装置は、蛍光体の層が形成された円板状の透明基材を回転させつつ、励起光を蛍光体の層に照射することにより、赤、緑、青3原色光を順番に射出させるものである。そのため、表示デバイスの3原色用信号を時間順次で切り替え、対応して3原色光を順番に照射するフィールドシーケンシャルカラー方式の投射表示装置には適しているが、3板式の投射表示装置にはそのままでは適用できないものであった。
本発明はこのような問題点に鑑みなされたものであり、光源として蛍光体を用いた3板式の投射型表示装置に搭載可能な光源装置を提供することを目的とする。また、本発明は蛍光体寿命を長寿命化することができる光源装置を提供することを目的とする。さらに、本発明は3原色の色度を調整することができる光源装置を提供することを目的とする。さらにまた、本発明は上述の光源装置を用いた投射型表示装置を提供することを目的とする。
本発明は、上述した従来の技術の課題を解決するため、以下の1)~8)を提供する。
1)半導体レーザ(1)と、前記半導体レーザ(1)から射出する励起光を受けて所定の色光の蛍光を射出する反射型蛍光体組立体(42)と、入射する前記励起光と入射する前記蛍光のいずれか一方を反射し他方を透過するダイクロイックミラー(24)と、前記反射型蛍光体組立体の発する熱を放熱する放熱部(9)と、前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行方向に移動させる移動機構(10、12、14、15)と、前記反射型蛍光体組立体からの前記蛍光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
2)半導体レーザ(1)と、前記半導体レーザ(1)から射出する励起光を受けて赤色光、緑色光、青色光成分を有する蛍光を白色光として射出する反射型蛍光体組立体(4)と、入射する前記励起光と入射する前記白色光のいずれか一方を反射し他方を透過するダイクロイックミラー(2)と、前記反射型蛍光体組立体(2)の発する熱を放熱する放熱部(9)と、前記反射型蛍光体組立体(4)を前記反射型蛍光体組立体(4)の面と平行方向に移動させる移動機構(10、12、14、15)と、前記反射型蛍光体組立体からの白色光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
3)蛍光として赤色光を発光する赤用蛍光体組立体エレメント、緑色光を発光する緑用蛍光体組立体エレメント、青色光を発光する青用蛍光体組立体エレメントを有する反射型蛍光体組立体(41)と、前記反射型蛍光体組立体(41)の発する熱を放熱する放熱部(9)と、前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザ(1)と、前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザ(1)と、前記青用蛍光体を励起する励起光を射出する少なくとも1つの青用の半導体レーザ(1)と、赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラー(21)と、緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラー(22)と、青色に対する蛍光を反射し励起光を透過する青用のダイクロイックミラー(23)と、前記反射型蛍光体組立体(41)を前記反射型蛍光体組立体(41)の面と平行な方向に移動させる移動機構(10、12、14、15)と、前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラー(21、22、23)で合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
4)蛍光として赤色光を射出する赤用蛍光体組立体エレメント、緑色光を射出する緑用蛍光体組立体エレメント、青色光を射出する青用蛍光体組立体エレメントが色の配列の方向に配列し、前記色の配列の方向と直交する方向には色の色度の異なる複数の蛍光体組立体エレメントを有する反射型蛍光体組立体(41)と、前記反射型蛍光体組立体(41)の発する熱を放熱する放熱部(9)と、前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザ(1)と、前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザ(1)と、前記青用蛍光体を励起する励起光を射出する少なくとも1つの青用の半導体レーザ(1)と、赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラー(21)と、緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラー(22)と、青色に対する蛍光を反射し励起光を透過する青用のダイクロイックミラー(23)と、前記反射型蛍光体組立体(41)を前記反射型蛍光体組立体面(41)と平行な方向であって色の配列の方向に移動させる移動機構(10、12、14、15)と、前記反射型蛍光体組立体(41)を前記反射型蛍光体組立体(41)の面と平行な方向であって色の色度の異なる蛍光体組立体エレメントの間で移動させる移動機構(11、13、15)と、前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラー(21、22、23)で合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
5)蛍光として赤色光を発光する赤用蛍光体組立体エレメントおよび緑色光を発光する緑用蛍光体組立体エレメントを有する反射型蛍光体組立体(41)と、前記反射型蛍光体組立体(41)の発する熱を放熱する放熱部(9)と、前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザ(1)と、前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザ(1)と、青色光を射出する半導体レーザ(1)と、前記青色光を射出する半導体レーザ光を拡散する拡散部材(35)と、赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラー(21)と、緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラー(22)と、前記反射型蛍光体組立体(41)を前記反射型蛍光体組立体(41)の面と平行な方向であって色の配列の方向に移動させる移動機構(10、12、14、15)と、前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラー(21、22)で合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
6)蛍光として赤色光を射出する蛍光体組立体エレメントおよび緑色光を射出する蛍光体組立体エレメントが色の配列の方向に配列し、前記色の配列の方向と直交する方向には色の色度の異なる複数の蛍光体組立体エレメントを有する反射型蛍光体組立体(41)と、前記反射型蛍光体組立体(41)の発する熱を放熱する放熱部(9)と、前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザ(1)と、前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザ(1)と、青色光を射出する半導体レーザ(1)と、前記青色光を射出する半導体レーザ光を拡散する拡散部材(35)と、赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラー(21)と、緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラー(22)と、前記反射型蛍光体組立体(41)を前記反射型蛍光体組立体の面と平行な方向であって色の配列方向に移動させる移動機構(10、12、14、15)と、前記反射型蛍光体組立体(41)を前記反射型蛍光体組立体の面と平行な方向であって色の色度の異なる蛍光体組立体エレメントの間で移動させる移動機構(11、13、15)と、前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラー(21、22)で合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
7)円板上の円周方向においては所定の角度毎に、蛍光として赤色光を射出する赤用蛍光体組立体エレメント、緑色光を射出する緑用蛍光体組立体エレメント、青色光を射出する青用蛍光体組立体エレメントが配置されるとともに、径方向においては色の色度の異なる蛍光体組立体エレメントが配置される反射型カラーホイール(43)と、前記蛍光体を励起する励起光を射出する少なくとも1つの半導体レーザ(1)と、前記反射型カラーホイール(43)を円板の中心を軸として所定の角度で回転させる回転機構(10)と、前記反射型カラーホイール(43)を前記反射型カラーホイール(43)の面と平行な方向であって色の色度の異なる蛍光体組立体エレメントの間で移動させる移動機構(13)と、入射する前記励起光と入射する前記蛍光のいずれか一方を反射し他方を透過するダイクロイックミラー(2)と、前記反射型カラーホイール(43)からの光の光束の大きさを変換する少なくとも1つの正の光学部材(6)と少なくとも1つの負の光学部材(5)を有するアフォーカル光学系と、を備えることを特徴とする光源装置。
8)上記1)ないし7)のいずれか1項に記載の光源装置と、前記光源装置から発する光を変調するデバイス(111r、111g、111b)と、前記デバイスで変調された光を投射する投射レンズ(113)と、を備えることを特徴とする投射表示装置。
本発明によれば、光源として蛍光体を用いて3板式の投射型表示装置に搭載することができる光源装置を構成することができる。また、本発明によれば、蛍光体寿命を長寿命化することができる光源装置を構成することができる。さらに、本発明によれば、3原色の色度を調整することができる光源装置を構成することができる。さらにまた、本発明によれば、上述の光源装置を用いた3板式の投射型表示装置を構成することができる。
以下に、本発明に係る光源装置及び投射表示装置の実施形態について、図面を参照して説明する。なお、全図において、共通な機能を有する部品には同一符号を付し、一度説明したものに関しては、説明の繰り返しを省略する。
<第1の実施形態>
図1は本発明の第1の実施形態の光源装置の原理的な構成を示す構成図である。半導体レーザ1は紫外光、近紫外光、青紫光のいずれかの光を発光する。半導体レーザ1はCANタイプのものを1個使用している。半導体レーザ1から射出した光はダイクロイックミラー2で反射して光路を90度曲げられる。ダイクロイックミラー2は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれかを反射し、それらより長波長である青色光、緑色光、赤色光を透過する特性を有する。90度曲げられた半導体レーザ光は第一の凸レンズ3により所定の位置に集光する。半導体レーザ光が集光する位置には、反射型蛍光体組立体4が配置されている。
図1は本発明の第1の実施形態の光源装置の原理的な構成を示す構成図である。半導体レーザ1は紫外光、近紫外光、青紫光のいずれかの光を発光する。半導体レーザ1はCANタイプのものを1個使用している。半導体レーザ1から射出した光はダイクロイックミラー2で反射して光路を90度曲げられる。ダイクロイックミラー2は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれかを反射し、それらより長波長である青色光、緑色光、赤色光を透過する特性を有する。90度曲げられた半導体レーザ光は第一の凸レンズ3により所定の位置に集光する。半導体レーザ光が集光する位置には、反射型蛍光体組立体4が配置されている。
図2は図1に示す反射型蛍光体組立体4の断面図を示す。反射型蛍光体組立体4の基材7は、ガラスまたは金属からなる。図2は基材7が金属の場合を示している。基材7としては少なくとも片面に鏡面処理が施されたもの、または鏡面状態であるものが用いられる。図2において、参照番号7aは鏡面状態であることを示す。基材7の上に、紫外光、近紫外光、青紫光によって励起されて赤色光を発する蛍光体8Rと、紫外光、近紫外光、青紫光によって励起されて緑色光を発する蛍光体8Gと、紫外光、近紫外光、青紫光によって励起されて青色光を発する蛍光体8Bとがバインダ8bと混合されて所定厚みに塗布されている。ここで、蛍光体は沈殿法やプリントにて塗布される。蛍光体8R、8G、8Bは、半導体レーザ1の射出光を受けて、赤色光・緑色光、青色光を射出するが、反射型蛍光体組立体4全体としては、それらの光は混合して白色光を射出する。
図3、図4は反射型蛍光体組立体4の他の例を示す断面図である。図3の例では基材7はガラスである。ガラス基材の片面には、レーザ光である紫外光または近紫外光または青紫光を透過し可視光を反射するダイクロイックミラー等の反射膜7mが設けられる。反射膜7mの上に、蛍光体8R、8G、8Bを混入して成型された成形品8aが接着されている。蛍光体8R、8G、8Bは、半導体レーザ1の射出光を受けて、赤色光、緑色光、青色光を射出するが、反射型蛍光体組立体4全体としては、それらの光は混合して白色光を射出する。図4の例では、基材7はガラスである。また、蛍光体として白色蛍光体8Wが用いられる。以下の実施の形態において、基材7を金属にするかガラスにするか、蛍光体層を塗布する方法で設けるか、成形品を接着する方法で設けるかは、任意に組み合わせることができる。
図1に戻り、反射型蛍光体組立体4から射出した白色拡散光は第一の凸レンズ3で集光され、ダイクロイックミラー2を透過した後、負の光学部材として機能する凹レンズ5と正の光学部材として機能する第二の凸レンズ6によって、所望の直径の平行光とされる。ここで負の光学部材として機能する凹レンズ5と正の光学部材として機能する第二の凸レンズ6はアフォーカル系を構成する。
図5は、図1の原理的な構成の変形例を示す構成図である。図1においては、半導体レーザ1からの光線はダイクロイックミラー2で反射されるが、図5においては、半導体レーザ1からの光線がダイクロイックミラー2を透過する点が異なる。図5におけるダイクロイックミラー2は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれかを透過し、それらより長波長である青色光、緑色光、赤色光を反射する特性を有する。
図6は図1に示す光源装置の原理的な構成に対し、ヒートシンクを付加した状態を示す構成図である。図1との違いは、半導体レーザ1を3個用いていること、半導体レーザ1はヒートシンク91に接触して配置されていること、反射型蛍光体組立体4が放熱部として機能するヒートシンク9に接触して配置されていることである。図6では半導体レーザ1を3個使用しているが、3個に限定されない。
図7は、図5に示す構成に対し、ヒートシンクを付加した状態を示す構成図である。図1との違いは、半導体レーザ1を3個用いていること、半導体レーザ1はヒートシンク91に接触して配置されていること、反射型蛍光体組立体4が放熱部として機能するヒートシンク9に接触して配置されていることである。図7では半導体レーザ1を3個使用しているが、3個に限定されない。図7におけるダイクロイックミラー2は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれか透過し、それらより長波長である青色光、緑色光、赤色光を反射する特性を有する。
図8は本発明の第1の実施形態の光源装置201を示す構成図である。半導体レーザ1は紫外光または近紫外光または青紫光を発光する。図8では、CANタイプの半導体レーザ1を3個使用した例を示すが、半導体レーザ1の個数は1個でも複数個でもよい。半導体レーザ1から射出した光はレンズ1aにより略平行光とされ、ダイクロイックミラー2に向かう。ダイクロイックミラー2は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれかを透過し、それらより長波長である青色光、緑色光、赤色光を反射する特性を有する。レンズ1aにより略平行光とされたレーザ光はダイクロイックミラー2を透過し、レンズ3により収束光となって所定の位置に集光する。
半導体レーザ光が集光する位置には、反射型蛍光体組立体4が設けられる。反射型蛍光体組立体4は、ヒートシンク92の片側を鏡面とされたもの又はヒートシンク92上に成膜された金属反射膜の上に設けられる。蛍光体層は、図2、図3または図4で説明されたのと同じ構造、製法で設けられる。蛍光体層が蛍光体8R、8G、8Bを含む場合、蛍光体8R、8G、8Bは、半導体レーザ1の射出光を受けて赤色光、緑色光、青色光を発光するが、赤色光・緑色光、青色光は混合して、反射型蛍光体組立体4からは白色光を射出する。蛍光体層が白色蛍光体を含む場合、当初から白色の蛍光を射出する。
反射型蛍光体組立体4から射出した白色光は、再びレンズ3に入射し平行光となり、ダイクロイックミラー2により反射され、負のレンズ5と正のレンズ6で構成されるレンズ系により所望の口径の平行光にして系外に射出する。これらのレンズはいわゆるアフォーカル光学系を構成する。
一方、蛍光体を励起する紫外光または近紫外光または青紫光であって発光に寄与することなく反射する成分は、ダイクロイックミラー2で反射することなく透過するため、系外に射出することはない。なお、図8に示す第1の実施形態の光源装置において、図6に示すように、ダイクロイックミラー2は白色光を透過し、励起光である半導体レーザ光を反射するような配置としてもよい。
図9は図8の光源装置201における反射型蛍光体組立体4の移動機構を示す図である。保持ジグ15は、反射型蛍光体組立体4が設けられるヒートシンク9を保持する。保持ジグ15は、ヒートシンク9を一方向に移動可能とする機構を有する。具体的には、保持ジグの側壁15aとヒートシンク9の一方の短手側面との間にばね14が配置され、ヒートシンクの他方の短手側面にはカム12が配置される。モータ10によりカム12が回転すると、ヒートシンク9は長手方向に移動する。一方、保持ジグ15は、ヒートシンク9を短手方向には移動不能に保持する。このように、保持ジグ15、ばね14、カム12、モータ10は全体として移動機構として機能する。
反射型蛍光体組立体4が移動すると、反射型蛍光体組立体4に対する入射レーザ光の位置は相対的に変化する。種々の移動の態様が適用され得る。たとえば、定時間経過後に一定距離移動してもよいし、わずかな一定速度で移動してもよい。移動することで新たな蛍光体が使用され、その結果、反射型蛍光体組立体4の長寿命化が図られる。図9では、移動の方向は、ヒートシンク9の長手方向であるが、それ以外の方向を選択してもよい。また、後述する図11のように、左右以外に上下方向を含め2次元的に移動させてもよい。
<第2の実施形態>
図10は第2の実施形態の光源装置を示す構成図である。図8では、半導体レーザ1、ダイクロイックミラー2、第1の凸レンズが1系統であるのに対し、図10では、3系統の半導体レーザ1、ダイクロイックミラー21、22、23、第1の凸レンズ31、32、33を有している点が異なる。半導体レーザ1は紫外光、近紫外光、青紫光のいずれかを発光する。半導体レーザ1はCANタイプのものを使用している。3系統の半導体レーザ1から発せられた光はそれぞれのレンズ1aにより略平行光とされ、それぞれの系統のダイクロイックミラー21、22、23を透過してそれぞれの系統の第1のレンズ31、32、33によりそれぞれ所定の位置に集光する。半導体レーザ光が集光する位置には、反射型蛍光体組立体41が設けられている。
図10は第2の実施形態の光源装置を示す構成図である。図8では、半導体レーザ1、ダイクロイックミラー2、第1の凸レンズが1系統であるのに対し、図10では、3系統の半導体レーザ1、ダイクロイックミラー21、22、23、第1の凸レンズ31、32、33を有している点が異なる。半導体レーザ1は紫外光、近紫外光、青紫光のいずれかを発光する。半導体レーザ1はCANタイプのものを使用している。3系統の半導体レーザ1から発せられた光はそれぞれのレンズ1aにより略平行光とされ、それぞれの系統のダイクロイックミラー21、22、23を透過してそれぞれの系統の第1のレンズ31、32、33によりそれぞれ所定の位置に集光する。半導体レーザ光が集光する位置には、反射型蛍光体組立体41が設けられている。
図11は、図10に示すヒートシンク9上に形成されている反射型蛍光体組立体41の一例を示す正面図である。本実施形態における反射型蛍光体組立体41の構造、製法は、基本的に第1の実施形態の光源装置の場合と同じであるが、互いに異なる蛍光体層を有する蛍光組立体エレメントが2次元的に配置されている点が異なる。すなわち、3原色の色の配列に対応して、3つの蛍光体組立体エレメントが配置され、かつ、直交する方向には、色度の異なるスペクトルを発光する蛍光体組立体エレメントが配置されている。
具体的には、図11の下段においては、左から右に向かって蛍光体組立体エレメントR1、G1、B1が配置されている。中段においては、左から右に向かって蛍光体組立体エレメントR2、G2、B2が、上段においては、左から右に向かって蛍光体組立体エレメントR3、G3、B3が配置されている。
一方、図11を上下方向に見ると、左側の列では、下から上に向かって蛍光体組立体エレメントR1、R2、R3が配置されている。中央の列では、下から上に向かって蛍光体組立体エレメントG1、G2、G3が、右側の列では、下から上に向かってB1、B2、B3の蛍光体組立体エレメントが配置されている。ここで、R、G、Bの次の数字は系列を示す。R1、R2、R3は同じ赤色光を発光するが色の色度が互いに異なる蛍光体組立体エレメントである。G1、G2、G3は同じ緑色光を発光するが光の色度が互いに異なる蛍光体組立体エレメントである。B1、B2、B3は同じ青色光を発光するが色の色度が互いに異なる蛍光体組立体エレメントである。
図12は図10の光源装置における反射型蛍光体組立体41の移動機構を示す図である。保持ジグ15は、反射型蛍光体組立体4が設けられるヒートシンク9を保持する。保持ジグ15は、ヒートシンク9を一方向に移動可能とする機構を有する。具体的には、保持ジグの側壁15aとヒートシンク9の一方の短手側面の間にばね14が配置され、ヒートシンク9の他方の短手側面にはカム12が配置される。モータ10によりカム12が回転することにより、ヒートシンク9は長手方向に移動する。一方、保持ジグ15は、ヒートシンク9を短手方向には移動不能に保持する。
一方、保持ジグ15自体は図示されていない部材により、保持ジグ15の短手方向に移動可能に保持される。モータ10に回転により保持ジグ短手側面に当接するギア13が回転することで、保持ジグ15は保持ジグ15の短手方向に移動する。保持ジグ15は長手方向には移動できない。
以上の結果、ヒートシンク9上の反射型蛍光体組立体41は直交する2方向に移動可能とされる。図12においては、保持ジグ15、ばね14、カム12、ギア13、モータ10、11は全体として移動機構として機能する。
反射型蛍光体組立体4が図12の左右方向に移動すると、反射型蛍光体組立体4に対する入射レーザ光の位置は相対的に変化する。種々の移動の態様が適用され得る。たとえば、定時間経過後に一定距離移動してもよいし、わずかな一定速度で移動してもよい。移動することで新たな蛍光体が使用され、その結果、反射型蛍光体組立体4の長寿命化が図られる。
次に、反射型蛍光体組立体4が図12の上下方向に移動する場合を説明する。当初、半導体レーザ光は蛍光体組立体エレメントR1、G1、B1に入射しているとして、保持ジグが移動することにより、半導体レーザ光は蛍光体組立体エレメントR2、G2、B2に入射し、さらに保持ジグが移動すると、半導体レーザ光は蛍光体組立体エレメントR3、G3、B3に入射する。すなわち、半導体レーザ光の照射領域をそれぞれの色の色度が異なる蛍光体組立体エレメントの間で移動させることで、色の色度が異なる蛍光体組立体エレメントを選択し、3原色の色度を変えることができ、色再現範囲の変更を可能とする。図13は、蛍光体組立体エレメントの選択により第2の実施形態の光源装置202から射出する3原色の色度が変わる例を模式的に示す色度図である。例えば、蛍光体組立体エレメントの組合せがR1、G1、B1の場合には実線の三角形の色再現範囲、蛍光体組立体エレメントの組合せがR2、G2、B2の場合には一点鎖線の三角形の色再現範囲、蛍光体組立体エレメントの組合せがR3、G3、B3の場合には点線三角形の色再現範囲というように色再現範囲が変化する。
図10に戻り、反射型蛍光体組立体4の蛍光体から射出した赤色光、緑色光、青色光は、再びレンズ31、32、33に入射し略平行光となり、ダイクロイックミラー21、22、23により、反射され負のレンズ5と正のレンズ6で構成されるレンズ系により所望の口径の平行光にして系外に射出する。ここで、ダイクロイックミラー21、22、23は半導体レーザの射出光である紫外光、近紫外光、青紫光のいずれかを透過する特性を有する。また図10の配置の場合、ダイクロイックミラー21は赤色光を反射、緑色光、青色光を透過する特性を有する。また、ダイクロイックミラー22は緑色光を反射し、青色光を透過する特性を有する。また、ダイクロイックミラー23は青色光を反射する特性を有する。赤緑青の順序が異なれば、ダイクロイックミラー21、22、23の特性は上記の特性とは異なる。なお、蛍光体を励起する紫外光または近紫外光または青紫光であって発光に寄与することなく反射する成分は、ダイクロイックミラーで反射することなく透過するため、系外に射出することはない。
本実施形態の光源装置は、第1の実施例の光源装置と異なり3原色用の蛍光体組立体エレメントを個別に配置し、励起光源もそれぞれ配置する。そのため、同じ光束を射出するのに蛍光体へ照射する励起光の単位面積あたりのエネルギーが少ない。したがって、さらなる高輝度化をすることができる。その際、3原色用の各々の半導体レーザ1の個数は、3原色用それぞれに必要な蛍光の輝度に対応した必要最小限の個数でよい。また青色光、緑色光、赤色光のそれぞれの蛍光の輝度を個々の半導体レーザ1の出力を個別に制御して白バランスを調整することもできる。
なお、図10において、反射型蛍光体組立体41が赤用、緑用、青用の蛍光体組立体エレメント各1つのみであり、保持ジグ15全体が移動しない態様であってもよい。
<第3の実施形態>
図14は第3の実施形態の光源装置203を示す構成図である。図10に示した第2の実施形態の光源装置202との相違点は、青色光について、レーザ光源を直接照明光として用いる点である。それ以外の構成は図10と同様であり、同様な部分の説明は省略する。青色光を発する半導体レーザ1は、凹レンズ5と第2の凸レンズ6で作る光軸の延長上の点に配置される。半導体レーザ光はレンズ1a、レンズ1cで集光され拡散板35に入射する。拡散板35で拡散した半導体レーザ光はレンズ34で平行光とされ2枚のダイクロイックミラーを透過して、凹レンズ5と第2の凸レンズ6で構成されるレンズ系により所望の口径の平行光にして系外に射出する。
図14は第3の実施形態の光源装置203を示す構成図である。図10に示した第2の実施形態の光源装置202との相違点は、青色光について、レーザ光源を直接照明光として用いる点である。それ以外の構成は図10と同様であり、同様な部分の説明は省略する。青色光を発する半導体レーザ1は、凹レンズ5と第2の凸レンズ6で作る光軸の延長上の点に配置される。半導体レーザ光はレンズ1a、レンズ1cで集光され拡散板35に入射する。拡散板35で拡散した半導体レーザ光はレンズ34で平行光とされ2枚のダイクロイックミラーを透過して、凹レンズ5と第2の凸レンズ6で構成されるレンズ系により所望の口径の平行光にして系外に射出する。
図14において、ヒートシンク9上の反射型蛍光体組立体41は直交する2方向に移動可能とされ、反射型蛍光体組立体41は赤用、緑用とも複数の蛍光体組立体エレメントを有する。なお、反射型蛍光体組立体41が赤用、緑用、青用の蛍光体組立体エレメント各1つのみを有し、保持ジグ15全体が移動しない態様であってもよい。
<第4の実施形態>
図15は第4の実施形態の光源装置204を示す構成図である。半導体レーザ1は紫外光、近紫外光、青紫光のいずれかを発光する。図15では、CANタイプの半導体レーザ1を3個使用した例を示すが、3個には限定されない。半導体レーザ1から射出した光はレンズ1aにより略平行光とされ、ダイクロイックミラー2に向かう。ダイクロイックミラー2は、半導体レーザの射出光である紫外光、近紫外光、青紫光を反射し、それらより長波長である青色光、緑色光、赤色光を透過する特性を有する。レンズ1aにより略平行光とされたレーザ光はダイクロイックミラー2で反射されて90度向きを変えられ、レンズ3により収束光となって所定の位置に集光する。レーザ光が集光する位置には、反射型カラーホイール43が配置される。
図15は第4の実施形態の光源装置204を示す構成図である。半導体レーザ1は紫外光、近紫外光、青紫光のいずれかを発光する。図15では、CANタイプの半導体レーザ1を3個使用した例を示すが、3個には限定されない。半導体レーザ1から射出した光はレンズ1aにより略平行光とされ、ダイクロイックミラー2に向かう。ダイクロイックミラー2は、半導体レーザの射出光である紫外光、近紫外光、青紫光を反射し、それらより長波長である青色光、緑色光、赤色光を透過する特性を有する。レンズ1aにより略平行光とされたレーザ光はダイクロイックミラー2で反射されて90度向きを変えられ、レンズ3により収束光となって所定の位置に集光する。レーザ光が集光する位置には、反射型カラーホイール43が配置される。
反射型カラーホイール43は円板状の形状を有する。反射型カラーホイール43の基材は、ガラスまたは金属からなる。金属基材は、少なくとも片面に鏡面処理が施されたもの、または鏡面状態であるものが用いられる。ガラス基材の場合は、レーザ光である紫外光または近紫外光または青紫光を透過し可視光を反射するダイクロイックミラー等の反射膜がその片側に設けられる。反射型カラーホイール43の中心部分は回転機構として機能するモータ10と接続しており、反射型カラーホイール43は回転可能な状態で配置されている。一方、図示されていないモータとギア13により構成される移動機構は反射型カラーホイール43を上下に変位させる。
図16は、第4の実施形態の光源装置204の反射型カラーホイール43の光入射面の構造を示す平面図である。蛍光体組立体エレメント8RLまたは蛍光体組立体エレメント8GLまたは蛍光体組立体エレメント8BLは、図2または図3にて説明した構造を有している。3種類の蛍光体組立体エレメントは、円周方向に等分に分割されており、各蛍光体組立体エレメントは円周方向に20度の領域を占有する(この角度をセグメント角度と称する)。なお、蛍光体組立体エレメント8RLまたは蛍光体組立体エレメント8GLまたは蛍光体組立体エレメント8BLのセグメント角度は、最終的に得られる3原色の強度比、すなわち、ホワイトバランスが所定の値になるように異なる角度に設定してもよい。一方、径方向には、同じ色ではあるが色度の異なる蛍光を発光する蛍光体組立体エレメントを外周から内周にむかって配置する。赤では、外周から内周にむかってR1、R2、R3の蛍光体組立体エレメントを、緑ではG1、G2、G3の蛍光体組立体エレメントを、青ではB1、B2、B3の蛍光体組立体エレメントを配置する。ここで、R、G、Bの次の数字は系列を示す。
このような反射型カラーホイール43を十分に早い速度で回転させることで、3板式投射型表示装置において使用できる光源を可能にする。反射型カラーホイール43は、時間順次に射出する3原色が白色光と見なせるような回転数で回転する。一般的に、いわゆるカラーブレイクの見えない周波数が1000Hz以上であるとされている。いま、セグメント角度(個々の蛍光体組立体エレメントの角度)をS(度)、反射型カラーホイール43の回転数をR(rpm)、1秒間のRGB光の点灯サイクルをXとして、X=(R÷60)×(360÷(3×S))=(2×R)÷Sであるから、カラーブレイクの見えない下限の回転数は、R=(S×X)÷2となる。X=1000Hzと置くと、R=500×Sとなる。
図16の場合S=20度であるから、反射型カラーホイール43の回転数は、R=10000(rpm)となる。S=8度ではR=4000(rpm)、S=2度ではR=1000(rpm)となる。また、反射型カラーホイール43の回転は表示素子の映像表示の期間と同期する必要は無く、又反射型カラーホイール43の回転数に回転ムラがあっても問題はない。
一方、上述の移動機構で反射型カラーホイール43を上下に変位させることで、1番の系列の蛍光体組立体エレメント、2番の系列の蛍光体組立体エレメント、3番の系列の蛍光体組立体エレメントを選択することができ、3原色(青色光、緑色光、赤色光)の発光スペクトルが変わり3原色の色度の調整が可能である。外周側の蛍光体組立体エレメントほど、同じ角度における面積が大きくなることから、使用頻度の高い色相を外周側に配置することが、蛍光体の長寿命化の点で望ましい。
蛍光体層を射出する蛍光は、レンズ2により略平行光になり、ダイクロイックミラーを透過し負のレンズ3と正のレンズ4で構成されるレンズ系により所望の口径の平行光にして系外に射出する。一方、半導体レーザ光で蛍光の発光に寄与することなく反射する成分は、ダイクロイックミラーで透過することなく反射するため、系外に射出することはない。なお、図15に示す第4の実施形態の光源装置において、図8に示すように、ダイクロイックミラー2は白色光を反射し、励起光である半導体レーザ光を透過するような配置としてもよい。
<第5の実施形態>
図17は本発明の第5の実施形態の光源装置205を示す構成図である。第5の実施形態の光源装置は、図8に示す第1の実施形態の光源装置と外観構成が同一である。また、蛍光体層は、図2、図3または図4で説明されたのと同じ構造、製法で設けられる。第1の実施形態の光源装置との相違点は、第1の実施形態において、反射型蛍光体組立体4は、白色光を発光する蛍光体を使用しているのに対し、第5の実施形態において、反射型蛍光体組立体42は、所定の光として、青色光または緑色光または赤色光を発光する蛍光体を使用する点である。具体的には、蛍光体層は蛍光体8R、8G、8Bのいずれかを含む。蛍光体8R、8G、8Bは、半導体レーザ1の射出光を受けて赤色光、緑色光、青色光を発光する。また、ダイクロイックミラー24は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれかを透過し、それらより長波長である蛍光体の発光光を反射する特性を有する。それ以外は図8の構成と同じである。
図17は本発明の第5の実施形態の光源装置205を示す構成図である。第5の実施形態の光源装置は、図8に示す第1の実施形態の光源装置と外観構成が同一である。また、蛍光体層は、図2、図3または図4で説明されたのと同じ構造、製法で設けられる。第1の実施形態の光源装置との相違点は、第1の実施形態において、反射型蛍光体組立体4は、白色光を発光する蛍光体を使用しているのに対し、第5の実施形態において、反射型蛍光体組立体42は、所定の光として、青色光または緑色光または赤色光を発光する蛍光体を使用する点である。具体的には、蛍光体層は蛍光体8R、8G、8Bのいずれかを含む。蛍光体8R、8G、8Bは、半導体レーザ1の射出光を受けて赤色光、緑色光、青色光を発光する。また、ダイクロイックミラー24は、半導体レーザ1の射出光である紫外光、近紫外光、青紫光のいずれかを透過し、それらより長波長である蛍光体の発光光を反射する特性を有する。それ以外は図8の構成と同じである。
図18は図17の光源装置205における反射型蛍光体組立体42の移動機構を示す図である。反射型蛍光体組立体42が異なる以外は図9と同じであるので、重複する説明は省略する。
図19は、第2の実施形態に係る光源装置202を用いた投射型表示装置を示す図である。光源装置から射出した照明光(白色光)は、第1のインテグレータ101及び第2のインテグレータ102により光の輝度分布を均一化され、偏光変換素子103により、偏光方向を一方向に揃えられる。本実施形態では、偏光変換素子103を射出した光の偏光方向はP偏光(電界ベクトルが紙面と平行な偏光)である。偏光変換素子103を射出したP偏光は、コンデンサレンズ104を透過して、B/RG分離クロスダイクロイックミラー105で青色光(P偏光)と赤緑色光(P偏光)に分離される。青色光(P偏光)はミラー106で光路を曲げられ Bフィールドレンズ109bを通過する。
Bフィールドレンズ109bを通過したP偏光は、ワイヤーグリッド型偏光ビームスプリッタ(以下、「WG-PBS」という。)110bを透過し、B用デバイス111bで変調された光の内S偏光成分がB用 WG-PBS110bで反射され合成ダイクロイックプリズム112に向かう。B/RG分離クロスダイクロイックミラー105で分離された赤緑色光は、ミラー107で光路を曲げられ、RGダイクロイックミラー108で赤色光と緑色光に分離され、青色光の場合と同様、フィールドレンズ109r、109g、 WG-PBS110r、110gと通過し、デバイス111r、111gで変調された光の内S偏光成分が WG-PBS110r、110gで反射され後合成ダイクロイックプリズム112に向かう。合成ダイクロイックプリズム112で3色が合成され投射レンズ113でスクリーンに投影される。
以上、第2の実施形態に係る光源装置を用いた投射型表示装置と同様に、第1、第3、第4実施形態に係る光源装置も投射表示装置の光源部分として用いることができる。
図20は、本発明の第5の実施形態に係る光源装置205を用いた投射型表示装置を示す図である。光源装置から射出した青色光、緑色光、赤色光は、それぞれ第1のインテグレータ101b、101g、101r及び第2のインテグレータ102b、102g、102rにより光の輝度分布が均一化され、偏光変換素子1031b、1031g、1031rにより、偏光方向が一方向に揃えられる。本実施形態では、偏光変換素子1031b、1031g、1031rを射出した光の偏光方向はP偏光(電界ベクトルが紙面と平行な偏光)である。偏光変換素子を射出した青色光はコンデンサ1041b、フィールドレンズ109bを透過する。偏光変換素子を射出した緑色光はコンデンサレンズ1041g、フィールドレンズ109gを透過する。偏光変換素子を射出した赤色光はコンデンサレンズ1041r、フィールドレンズ109rを透過する。
フィールドレンズ109b、109g、109rを通過した青色光、緑色光、赤色光(P偏光)は、それぞれワイヤーグリッド型偏光ビームスプリッタ(以下、「WG-PBS」という。)110b、110g、110rを透過し、B用デバイス111b、G用デバイス111g、R用デバイス111rで変調されつつ反射される。変調された光の内S偏光成分が WG-PBS110b、110g、110rで反射され合成ダイクロイックプリズム112に向かう。合成ダイクロイックプリズム112で3色が合成され投射レンズ113でスクリーンに投影される。
また、上記実施例の投射型表示装置は反射型液晶素子を用いているが、透過型液晶素子を用いてもよい。
1 半導体レーザ、
1a レンズ、
1c レンズ、
2 21、22、23、24 ダイクロイックミラー、
3 31、32、33、 第一の凸レンズ、
4、41、42 反射型蛍光体組立体、
43 反射型カラーホイール、
5 凹レンズ(負の光学部材)、
6 第二の凸レンズ(正の光学部材)、
7 基材、8 蛍光体層、
8R 赤用蛍光体、
8G 緑用蛍光体、
8B 青用蛍光体、
8RL 赤用蛍光体組立体エレメント、
8GL 緑用蛍光体組立体エレメント、
8BL 青用蛍光体組立体エレメント、
9 ヒートシンク(放熱部)
91、92 ヒートシンク、
10、11 モータ(回転機構)、
12 カム(移動機構)、
13 ギア(移動機構)、
14 ばね(移動機構)、
15 保持ジグ(移動機構)、
34 レンズ、
35 拡散板、
101 第1のインテグレータ、
102 第2のインテグレータ、
103、1031r、1031g、1031b 偏光変換素子、
104、1041r、1041g、1041b コンデンサレンズ、
105 B/RG分離クロスダイクロイックミラー、
106 ミラー、
107 ミラー、
108 RGダイクロイックミラー、
109r、109g 109b フィールドレンズ、
110r、110g、110b WG-PBS、
111r、111g、111b デバイス、
112 合成ダイクロイックプリズム、
113 投射レンズ、
201、202、203、204、205 光源装置
1a レンズ、
1c レンズ、
2 21、22、23、24 ダイクロイックミラー、
3 31、32、33、 第一の凸レンズ、
4、41、42 反射型蛍光体組立体、
43 反射型カラーホイール、
5 凹レンズ(負の光学部材)、
6 第二の凸レンズ(正の光学部材)、
7 基材、8 蛍光体層、
8R 赤用蛍光体、
8G 緑用蛍光体、
8B 青用蛍光体、
8RL 赤用蛍光体組立体エレメント、
8GL 緑用蛍光体組立体エレメント、
8BL 青用蛍光体組立体エレメント、
9 ヒートシンク(放熱部)
91、92 ヒートシンク、
10、11 モータ(回転機構)、
12 カム(移動機構)、
13 ギア(移動機構)、
14 ばね(移動機構)、
15 保持ジグ(移動機構)、
34 レンズ、
35 拡散板、
101 第1のインテグレータ、
102 第2のインテグレータ、
103、1031r、1031g、1031b 偏光変換素子、
104、1041r、1041g、1041b コンデンサレンズ、
105 B/RG分離クロスダイクロイックミラー、
106 ミラー、
107 ミラー、
108 RGダイクロイックミラー、
109r、109g 109b フィールドレンズ、
110r、110g、110b WG-PBS、
111r、111g、111b デバイス、
112 合成ダイクロイックプリズム、
113 投射レンズ、
201、202、203、204、205 光源装置
Claims (8)
- 半導体レーザと、
前記半導体レーザから射出する励起光を受けて所定の色光の蛍光を射出する反射型蛍光体組立体と、
入射する前記励起光と入射する前記蛍光のいずれか一方を反射し他方を透過するダイクロイックミラーと、
前記反射型蛍光体組立体の発する熱を放熱する放熱部と、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行方向に移動させる移動機構と、
前記反射型蛍光体組立体からの前記蛍光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 半導体レーザと、
前記半導体レーザから射出する励起光を受けて赤色光、緑色光、青色光成分を有する蛍光を白色光として射出する反射型蛍光体組立体と、
入射する前記励起光と入射する前記白色光のいずれか一方を反射し他方を透過するダイクロイックミラーと、
前記反射型蛍光体組立体の発する熱を放熱する放熱部と、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行方向に移動させる移動機構と、
前記反射型蛍光体組立体からの白色光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 蛍光として赤色光を発光する赤用蛍光体組立体エレメント、緑色光を発光する緑用蛍光体組立体エレメント、青色光を発光する青用蛍光体組立体エレメントを有する反射型蛍光体組立体と、
前記反射型蛍光体組立体の発する熱を放熱する放熱部と、
前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザと、
前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザと、
前記青用蛍光体を励起する励起光を射出する少なくとも1つの青用の半導体レーザと、
赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラーと、
緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラーと、
青色に対する蛍光を反射し励起光を透過する青用のダイクロイックミラーと、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行な方向に移動させる移動機構と、
前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラーで合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 蛍光として赤色光を射出する赤用蛍光体組立体エレメント、緑色光を射出する緑用蛍光体組立体エレメント、青色光を射出する青用蛍光体組立体エレメントが色の配列の方向に配列し、前記色の配列の方向と直交する方向には色の色度の異なる複数の蛍光体組立体エレメントを有する反射型蛍光体組立体と、
前記反射型蛍光体組立体の発する熱を放熱する放熱部と、
前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザと、
前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザと、
前記青用蛍光体を励起する励起光を射出する少なくとも1つの青用の半導体レーザと、
赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラーと、
緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラーと、
青色に対する蛍光を反射し励起光を透過する青用のダイクロイックミラーと、
前記反射型蛍光体組立体を前記反射型蛍光体組立体面と平行な方向であって色の配列の方向に移動させる移動機構と、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行な方向であって色の色度の異なる蛍光体組立体エレメントの間で移動させる移動機構と、
前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラーで合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 蛍光として赤色光を発光する赤用蛍光体組立体エレメントおよび緑色光を発光する緑用蛍光体組立体エレメントを有する反射型蛍光体組立体と、
前記反射型蛍光体組立体の発する熱を放熱する放熱部と、
前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザと、
前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザと、
青色光を射出する半導体レーザと、
前記青色光を射出する半導体レーザ光を拡散する拡散部材と、
赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラーと、
緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラーと、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行な方向であって色の配列の方向に移動させる移動機構と、
前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラーで合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 蛍光として赤色光を射出する蛍光体組立体エレメントおよび緑色光を射出する蛍光体組立体エレメントが色の配列の方向に配列し、前記色の配列の方向と直交する方向には色の色度の異なる複数の蛍光体組立体エレメントを有する反射型蛍光体組立体と、
前記反射型蛍光体組立体の発する熱を放熱する放熱部と、
前記赤用蛍光体を励起する励起光を射出する少なくとも1つの赤用の半導体レーザと、
前記緑用蛍光体を励起する励起光を射出する少なくとも1つの緑用の半導体レーザと、
青色光を射出する半導体レーザと、
前記青色光を射出する半導体レーザ光を拡散する拡散部材と、
赤色に対する蛍光を反射し励起光を透過する赤用のダイクロイックミラーと、
緑色に対する蛍光を反射し励起光を透過する緑用のダイクロイックミラーと、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行な方向であって色の配列方向に移動させる移動機構と、
前記反射型蛍光体組立体を前記反射型蛍光体組立体の面と平行な方向であって色の色度の異なる蛍光体組立体エレメントの間で移動させる移動機構と、
前記赤色光と前記緑色光と前記青色光とを前記複数のダイクロイックミラーで合成して得られる白色光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 円板上の円周方向においては所定の角度毎に、蛍光として赤色光を射出する赤用蛍光体組立体エレメント、緑色光を射出する緑用蛍光体組立体エレメント、青色光を射出する青用蛍光体組立体エレメントが配置されるとともに、径方向においては色の色度の異なる蛍光体組立体エレメントが配置される反射型カラーホイールと、
前記蛍光体を励起する励起光を射出する少なくとも1つの半導体レーザと、
前記反射型カラーホイールを円板の中心を軸として所定の角度で回転させる回転機構と、
前記反射型カラーホイールを前記反射型カラーホイールの面と平行な方向であって色の色度の異なる蛍光体組立体エレメントの間で移動させる移動機構と、
入射する前記励起光と入射する前記蛍光のいずれか一方を反射し他方を透過するダイクロイックミラーと、
前記反射型カラーホイールからの光の光束の大きさを変換する少なくとも1つの正の光学部材と少なくとも1つの負の光学部材を有するアフォーカル光学系と、
を備えることを特徴とする光源装置。 - 請求項1ないし7のいずれか1項に記載の光源装置と、
前記光源装置から発する光を変調するデバイスと、
前記デバイスで変調された光を投射する投射レンズと、
を備えることを特徴とする投射表示装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-149530 | 2010-06-30 | ||
JP2010149530 | 2010-06-30 | ||
JP2011063746A JP2013178290A (ja) | 2010-06-30 | 2011-03-23 | 光源装置及び照明装置 |
JP2011-063746 | 2011-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012002254A1 true WO2012002254A1 (ja) | 2012-01-05 |
Family
ID=45401972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064432 WO2012002254A1 (ja) | 2010-06-30 | 2011-06-23 | 光源装置及び照明装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013178290A (ja) |
WO (1) | WO2012002254A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103309140A (zh) * | 2012-03-14 | 2013-09-18 | 卡西欧计算机株式会社 | 光源装置及投影机 |
JP2013195846A (ja) * | 2012-03-21 | 2013-09-30 | Casio Comput Co Ltd | 光源装置及びプロジェクタ |
JP2013250321A (ja) * | 2012-05-30 | 2013-12-12 | Nichia Chem Ind Ltd | 光源装置及びこの光源装置を備えたプロジェクタ |
JP2014182192A (ja) * | 2013-03-18 | 2014-09-29 | Canon Inc | 画像表示装置及びその制御方法 |
WO2014188645A1 (ja) * | 2013-05-22 | 2014-11-27 | パナソニックIpマネジメント株式会社 | 光学変換素子およびそれを用いた光源 |
WO2015019724A1 (ja) * | 2013-08-09 | 2015-02-12 | 株式会社Jvcケンウッド | プロジェクタ |
WO2016058816A1 (de) * | 2014-10-17 | 2016-04-21 | Osram Gmbh | Lichtmodul für eine beleuchtungsvorrichtung, leuchtstoffrad für ein entsprechendes lichtmodul und optisches system |
JPWO2014115492A1 (ja) * | 2013-01-24 | 2017-01-26 | パナソニックIpマネジメント株式会社 | 固体光源装置 |
US10133163B2 (en) | 2013-07-31 | 2018-11-20 | Nichia Corporation | Light source unit and optical engine |
WO2020135292A1 (zh) * | 2018-12-27 | 2020-07-02 | 深圳光峰科技股份有限公司 | 显示设备及其控制方法 |
CN112879834A (zh) * | 2021-01-26 | 2021-06-01 | 广东怡隆光学科技有限公司 | 一种双波段激光灯具光源系统 |
EP3925516A1 (en) * | 2020-06-18 | 2021-12-22 | DENTSPLY SIRONA Inc. | Handheld intraoral dental 3d camera |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5558996B2 (ja) * | 2010-09-30 | 2014-07-23 | 三洋電機株式会社 | 光源装置及び投写型映像表示装置 |
JP5914878B2 (ja) * | 2011-04-20 | 2016-05-11 | パナソニックIpマネジメント株式会社 | 光源装置及び投写型表示装置 |
TWI540377B (zh) * | 2014-01-29 | 2016-07-01 | 台達電子工業股份有限公司 | 光波長轉換器及其適用之光源系統 |
CN105223761B (zh) * | 2014-07-01 | 2017-05-24 | 中强光电股份有限公司 | 投影装置及照明系统 |
JP6557948B2 (ja) * | 2014-08-27 | 2019-08-14 | カシオ計算機株式会社 | 光源装置及び投影装置 |
WO2016072360A1 (ja) * | 2014-11-05 | 2016-05-12 | ウシオ電機株式会社 | 多波長光源および光源装置 |
JP6428437B2 (ja) * | 2014-11-05 | 2018-11-28 | ウシオ電機株式会社 | 多波長光源および光源装置 |
JP6536874B2 (ja) * | 2014-12-19 | 2019-07-03 | カシオ計算機株式会社 | 投影装置 |
JP6493056B2 (ja) * | 2015-07-21 | 2019-04-03 | 株式会社リコー | 画像投影装置 |
JP6627364B2 (ja) * | 2015-09-24 | 2020-01-08 | セイコーエプソン株式会社 | 光源装置、光源ユニット及びプロジェクター |
JP6575361B2 (ja) | 2016-01-07 | 2019-09-18 | セイコーエプソン株式会社 | 波長変換素子、照明装置及びプロジェクター |
JPWO2017169083A1 (ja) * | 2016-03-31 | 2019-02-07 | 富士フイルム株式会社 | 画像撮像装置及び画像撮像方法 |
JP7279571B2 (ja) * | 2019-08-06 | 2023-05-23 | セイコーエプソン株式会社 | 光源装置およびプロジェクター |
WO2024083732A1 (en) * | 2022-10-18 | 2024-04-25 | Signify Holding B.V. | Lighting arrangement comprising a laser light source |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001133881A (ja) * | 1999-11-02 | 2001-05-18 | Hitachi Ltd | 光学ユニット及びそれを用いた反射型プロジェクタ装置 |
JP2006332042A (ja) * | 2005-04-11 | 2006-12-07 | Philips Lumileds Lightng Co Llc | 再循環及び色混合を備えた反射光学機器を使用する照明器 |
JP2007003914A (ja) * | 2005-06-24 | 2007-01-11 | Matsushita Electric Ind Co Ltd | 発光モジュールとこれを用いた投映型表示装置用光源ユニット |
JP2007187702A (ja) * | 2006-01-11 | 2007-07-26 | Casio Comput Co Ltd | プロジェクタ及びプロジェクタの色合い調整方法と、この方法に使用するカラーホイール |
JP2010086815A (ja) * | 2008-09-30 | 2010-04-15 | Casio Computer Co Ltd | 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ |
-
2011
- 2011-03-23 JP JP2011063746A patent/JP2013178290A/ja not_active Withdrawn
- 2011-06-23 WO PCT/JP2011/064432 patent/WO2012002254A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001133881A (ja) * | 1999-11-02 | 2001-05-18 | Hitachi Ltd | 光学ユニット及びそれを用いた反射型プロジェクタ装置 |
JP2006332042A (ja) * | 2005-04-11 | 2006-12-07 | Philips Lumileds Lightng Co Llc | 再循環及び色混合を備えた反射光学機器を使用する照明器 |
JP2007003914A (ja) * | 2005-06-24 | 2007-01-11 | Matsushita Electric Ind Co Ltd | 発光モジュールとこれを用いた投映型表示装置用光源ユニット |
JP2007187702A (ja) * | 2006-01-11 | 2007-07-26 | Casio Comput Co Ltd | プロジェクタ及びプロジェクタの色合い調整方法と、この方法に使用するカラーホイール |
JP2010086815A (ja) * | 2008-09-30 | 2010-04-15 | Casio Computer Co Ltd | 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103309140A (zh) * | 2012-03-14 | 2013-09-18 | 卡西欧计算机株式会社 | 光源装置及投影机 |
JP2013195846A (ja) * | 2012-03-21 | 2013-09-30 | Casio Comput Co Ltd | 光源装置及びプロジェクタ |
JP2013250321A (ja) * | 2012-05-30 | 2013-12-12 | Nichia Chem Ind Ltd | 光源装置及びこの光源装置を備えたプロジェクタ |
JPWO2014115492A1 (ja) * | 2013-01-24 | 2017-01-26 | パナソニックIpマネジメント株式会社 | 固体光源装置 |
JP2014182192A (ja) * | 2013-03-18 | 2014-09-29 | Canon Inc | 画像表示装置及びその制御方法 |
WO2014188645A1 (ja) * | 2013-05-22 | 2014-11-27 | パナソニックIpマネジメント株式会社 | 光学変換素子およびそれを用いた光源 |
US10133163B2 (en) | 2013-07-31 | 2018-11-20 | Nichia Corporation | Light source unit and optical engine |
WO2015019724A1 (ja) * | 2013-08-09 | 2015-02-12 | 株式会社Jvcケンウッド | プロジェクタ |
WO2016058816A1 (de) * | 2014-10-17 | 2016-04-21 | Osram Gmbh | Lichtmodul für eine beleuchtungsvorrichtung, leuchtstoffrad für ein entsprechendes lichtmodul und optisches system |
WO2020135292A1 (zh) * | 2018-12-27 | 2020-07-02 | 深圳光峰科技股份有限公司 | 显示设备及其控制方法 |
EP3925516A1 (en) * | 2020-06-18 | 2021-12-22 | DENTSPLY SIRONA Inc. | Handheld intraoral dental 3d camera |
WO2021254724A1 (en) * | 2020-06-18 | 2021-12-23 | Dentsply Sirona Inc. | Handheld intraoral dental 3d camera |
CN112879834A (zh) * | 2021-01-26 | 2021-06-01 | 广东怡隆光学科技有限公司 | 一种双波段激光灯具光源系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2013178290A (ja) | 2013-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012002254A1 (ja) | 光源装置及び照明装置 | |
JP5842162B2 (ja) | 光源装置及びそれを用いた画像表示装置 | |
JP5870259B2 (ja) | 照明装置および該照明装置を備える投射型表示装置 | |
JP5874058B2 (ja) | 光源装置および投写型表示装置 | |
JP5429079B2 (ja) | 光源装置および投射型表示装置 | |
JP5817109B2 (ja) | 光源装置およびプロジェクター | |
JP5605047B2 (ja) | 光源装置およびそれを用いた投写型表示装置 | |
JP5770433B2 (ja) | 光源装置及び画像投影装置 | |
WO2011118536A1 (ja) | 投写型映像表示装置および光源装置 | |
WO2014196015A1 (ja) | 照明光学系及びプロジェクタ | |
WO2014196079A1 (ja) | 光源装置およびそれを備えた投写型表示装置 | |
JP2012008549A (ja) | 光源装置およびこれを用いた照明装置ならびに画像表示装置 | |
JP2012113224A (ja) | 照明装置及び投写型映像表示装置 | |
WO2016157365A1 (ja) | プロジェクター及び画像光投射方法 | |
US11215910B2 (en) | Light source device and projection display apparatus having a laser optical system, a fluorescence optical system, and a light combiner | |
WO2015111145A1 (ja) | 光源装置およびこれを用いた映像表示装置 | |
JP7203322B2 (ja) | 照明装置及び投写型映像表示装置 | |
JP2012013898A (ja) | 光源装置および投射型表示装置 | |
JP2012008303A (ja) | 光源装置及びそれを用いた投写型表示装置 | |
WO2016021002A1 (ja) | 光源装置、プロジェクタおよび光源装置の制御方法 | |
JP2015049441A (ja) | 照明装置及びプロジェクター | |
JP2018084757A (ja) | 照明装置及びプロジェクター | |
WO2020054397A1 (ja) | 光源装置及び投写型映像表示装置 | |
JP2017083907A (ja) | プロジェクタおよび画像形成素子への照明光の照射方法 | |
JP6137238B2 (ja) | 光源装置及び画像投影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11800719 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11800719 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |