WO2012002174A1 - 無鉛半導体封入用ガラス - Google Patents

無鉛半導体封入用ガラス Download PDF

Info

Publication number
WO2012002174A1
WO2012002174A1 PCT/JP2011/063917 JP2011063917W WO2012002174A1 WO 2012002174 A1 WO2012002174 A1 WO 2012002174A1 JP 2011063917 W JP2011063917 W JP 2011063917W WO 2012002174 A1 WO2012002174 A1 WO 2012002174A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
lead
semiconductor
mass
Prior art date
Application number
PCT/JP2011/063917
Other languages
English (en)
French (fr)
Inventor
橋本 幸市
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN2011800328059A priority Critical patent/CN102958860A/zh
Priority to US13/805,039 priority patent/US9230872B2/en
Publication of WO2012002174A1 publication Critical patent/WO2012002174A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to glass for semiconductor encapsulation, and specifically to glass used for encapsulation of semiconductor elements such as thermistors, diodes, and LEDs.
  • Such glass for encapsulating a semiconductor is called a bead after melting a glass raw material in a melting furnace and forming the molten glass into a tubular shape, cutting the obtained glass tube into a length of about 2 mm, washing it, and so on. A short glass tube is manufactured, and then the glass tube is chipped and cracked by inspection to be shipped. Further, glass may be exposed to an acidic plating solution or flux for the terminal treatment in assembling the diode.
  • the glass for semiconductor encapsulation is (1) that it can be encapsulated at a low temperature so as not to deteriorate the semiconductor element, and (2) a metal that inputs and outputs signals not only to the semiconductor element but also to the semiconductor element in order to ensure highly reliable adhesion. It has a thermal expansion coefficient that matches the thermal expansion coefficient of the wire, (3) Adhesion between glass and metal wire is sufficiently high, (4) High volume resistance, (5) Chemical resistance is sufficiently strong Such characteristics are required.
  • the sealing temperature and the sealing time are adjusted so that an oxide film with an appropriate thickness is formed, and specifically, the sealing temperature and the sealing time are adjusted so that the color tone of the oxide film becomes a red bean color.
  • the color tone of the oxide film is black, the oxide film is peeled off from the metal wire, and sealing cannot be performed properly. Further, when the oxide film disappears and exhibits a metallic luster, the adhesion between the glass and the metal is lost, and the sealing cannot be performed properly.
  • the glass for semiconductor devices having a low temperature encapsulating is usually the Sb 2 O 3 exert refining effect at low temperature containing about 0.8 wt%.
  • Sb 2 O 3 is susceptible to a reducing action and has an action of providing oxygen to the glass, there is a possibility that Sb 2 O 3 itself is reduced to a metal to generate Sb metal fine particles inside the glass. is there. In this case, when the glass and the semiconductor element are in contact with each other, the reduced Sb metal fine particles may adversely affect the element characteristics of the semiconductor element. Further, when glass tends to be reduced, the diffusion rate of the oxide film of the metal wire may change, and the semiconductor element may not be stably encapsulated.
  • the glass has been melted at a low temperature for a long time and an oxidizing agent such as nitrate has been added so that the glass does not tend to be reduced.
  • an oxidizing agent such as nitrate has a large environmental load, and the Sb compound itself has a concern about the environmental load, so it is desired to reduce its content.
  • glass tubes used for encapsulating semiconductor elements have been required to automate appearance inspection in order to increase production efficiency.
  • the appearance inspection is automated using a CCD camera or the like, the appearance is observed from the side surface of the glass tube. Therefore, it is preferable that the glass tube is colored or emits fluorescence.
  • a technical problem of the present invention is to create a lead-free glass for encapsulating lead-free semiconductors that is easy to automate the appearance inspection and is excellent in clarity and encapsulation of semiconductor elements.
  • the present inventors limited the Sb 2 O 3 content to 0.1% by mass or less with a glass that basically does not contain PbO, and introduced CeO 2 to achieve the above technical problem. It was found that can be solved.
  • Patent Document 2 although the use of CeO 2 as fining agents are described, which allows coexistence with Sb 2 O 3, also the use of CeO 2 instead of Sb 2 O 3 There is no explanation about the effect of.
  • the glass for encapsulating lead-free semiconductors of the present invention has a viscosity temperature of 10 6 dPa ⁇ s or less, 670 ° C. or less, a CeO 2 content of 0.01 to 6 mass% as a glass composition, and Sb The content of 2 O 3 is 0.1% by mass or less.
  • “lead-free” means that a lead raw material is not actively added as a glass raw material, and does not completely exclude contamination from impurities and the like. More specifically, the content of PbO in the glass composition is limited to 1000 ppm or less including contamination from impurities and the like.
  • SiO 2 —B 2 O 3 —R 2 O (R is an alkali metal) -based glass, and R 2 O contains two or more of Li 2 O, Na 2 O and K 2 O. It is preferable.
  • SiO 2 —B 2 O 3 —R 2 O-based glass means glass containing SiO 2 , B 2 O 3 and R 2 O (alkali metal oxide) as essential components.
  • the glass composition is SiO 2 20 to 65%, Al 2 O 3 0 to 10%, B 2 O 3 10 to 40%, MgO 0 to 10%, CaO 0 to 10% by mass%. SrO 0-10%, BaO 0-10%, ZnO 0-35%, Li 2 O 0.2-10%, Na 2 O 0.5-17%, K 2 O 0-16%, TiO 2 0- It is preferable to contain 10%, ZrO 2 0 to 5%, Bi 2 O 3 0 to 25%, La 2 O 3 0 to 10%.
  • each component is regulated according to the above configuration, it is possible to achieve both clarity, low-temperature encapsulating property, and adhesiveness with a metal wire without containing Sb 2 O 3 .
  • BaO is preferably less than 1% by mass.
  • the outer tube for semiconductor encapsulation of the present invention is characterized by comprising the above glass.
  • the lead-free semiconductor encapsulating glass of the present invention contains CeO 2 , the glass is colored and emits fluorescence. For this reason, the outer tube for semiconductor encapsulation made of the glass of the present invention can be automated in appearance inspection by a machine.
  • CeO 2 also functions as a fining agent, so that the amount of Sb 2 O 3 used can be reduced. Therefore, the outer tube having excellent clarification and using this can stably enclose the semiconductor element.
  • the glass for encapsulating lead-free semiconductors of the present invention has a viscosity temperature of 10 6 dPa ⁇ s is 670 ° C. or lower.
  • the viscosity temperature of 10 6 dPa ⁇ s generally corresponds to the sealing temperature of the semiconductor element. Therefore, the glass of the present invention can encapsulate a semiconductor element at 670 ° C. or lower.
  • SiO 2 containing two or more of Li 2 O, Na 2 O, and K 2 O and B 2 O 3 as essential components It is preferable to use —B 2 O 3 —R 2 O (R is an alkali metal) glass.
  • the glass of the present invention has a temperature corresponding to a viscosity of 10 6 dPa ⁇ s of 670 ° C. or lower, a temperature corresponding to a viscosity of 10 5 dPa ⁇ s of 800 ° C. or lower, further 750 ° C. or lower,
  • the temperature is preferably 730 ° C. or lower
  • the temperature corresponding to a viscosity of 10 4 dPa ⁇ s is preferably 870 ° C. or lower, more preferably 850 ° C. or lower, and particularly preferably 800 ° C. or lower.
  • CeO 2 is a component for obtaining a mantle tube that exhibits a clarification effect and emits color and fluorescence.
  • CeO 2 itself recrystallizes from the glass and becomes devitrified, which adversely affects the dimensions of the outer tube.
  • the content thereof is 0.01 to 6% by mass, preferably 0.05 to 4% by mass, and more preferably 0.1 to 2% by mass.
  • CeO 2 is difficult to introduce in a large amount into the glass because the devitrification property deteriorates. Therefore, when it is desired to increase the CeO 2 content, the BaO content is preferably decreased, specifically, less than 1% by mass.
  • the glass for encapsulating a semiconductor include, by mass%, SiO 2 20 to 65%, Al 2 O 3 0 to 10%, B 2 O 3 10 to 40%, MgO 0 to 10%, CaO 0 ⁇ 10%, SrO 0 ⁇ 10%, BaO 0 ⁇ 10%, ZnO 0 ⁇ 35%, Li 2 O 0.2 ⁇ 10%, Na 2 O 0.5 ⁇ 17%, K 2 O 0 ⁇ 16%, TiO 2 0-10%, ZrO 2 0-5%, Bi 2 O 3 0-25%, La 2 O 3 0-10%, CeO 2 0.01-6%, Sb 2 O 3 0-0.1 % Containing glass is preferably used.
  • SiO 2 is a main component and an important component for stabilizing the glass, but is also a component that raises the sealing temperature. Its content is 20 to 65%, preferably 25 to 60%, more preferably 30 to 55%. When the content of SiO 2 is too small, it becomes difficult to enjoy the effects described above. On the other hand, if the content of SiO 2 is too large, it is difficult to cold sealed.
  • Al 2 O 3 is a component that increases chemical resistance, but is also a component that increases the viscosity of the glass.
  • the content of Al 2 O 3 is 0 to 10%, preferably 0.1 to 8%, more preferably 0.2 to 7%.
  • Al 2 O content of 3 is too large, too high the viscosity of the glass, in addition to the moldability tends to decrease, it is difficult to cold sealed.
  • B 2 O 3 is a component that stabilizes the glass and is essential as a component that lowers the viscosity of the glass. It is also a component that reduces chemical resistance. Its content is 10 to 40%, preferably 12 to 35%, more preferably 14 to 30%. If the content of B 2 O 3 is too small it becomes difficult to enjoy the effects described above. On the other hand, when the content of B 2 O 3 is too large, chemical resistance is deteriorated.
  • Alkaline earth metal oxides (R'O) composed of MgO, CaO, SrO, and BaO have a high effect of stabilizing the glass, but the effect of lowering the glass cannot be expected, but the encapsulation temperature may be increased. is there. Therefore, the total amount of R′O is preferably 0 to 10%, particularly 0 to 8%, more preferably 0 to 6%.
  • R′O Alkaline earth metal oxides
  • MgO and CaO are not essential components, and each is 0 to 10%, preferably 0 to 4%, more preferably 0 to 2%. When there is too much content of MgO and CaO, the viscosity of glass will become high. CaO has the effect of improving chemical resistance in addition to the effects common to the alkaline earth metal oxide components described above.
  • SrO is not an essential component and is 0 to 10%, preferably 0 to 6%, more preferably 0 to 4%, and particularly preferably 0 to 2%. When there is too much content of SrO, the viscosity of glass will become high and melting will become difficult.
  • BaO is not an essential component and is 0 to 10%, preferably 0 to 6%, more preferably 0 to 4%, and particularly preferably 0 to 2%. When there is too much content of BaO, the viscosity of glass will become high. In particular, in order to contain a large amount of CeO 2 , the content is preferably less than 1%.
  • ZnO is a component excellent in the effect of reducing the viscosity of glass.
  • ZnO is not an essential component, but it is preferable to contain 1% or more of ZnO in order to obtain the effects described above.
  • the content of ZnO is 0 to 35%, preferably 1 to 30%, more preferably 2 to 25%, and particularly preferably 10 to 25%.
  • the ratio (mass ratio) of ZnO / SiO 2 is set to 0.02 to 1, more preferably 0.05 to 0.8 in order to enhance the effect.
  • a range is desirable.
  • the effect can be expected at 0.02 or more, but is desirably 0.05 or more. If it is set to 1 or less, it is desirable for preventing the deopacity.
  • R 2 O An alkali metal oxide (R 2 O) composed of Li 2 O, Na 2 O, and K 2 O is shown, and has an effect of reducing the viscosity of the glass or increasing the expansion.
  • Li 2 O and Na 2 O are used as essential components in the glass having the above composition because they have a high effect of reducing the viscosity of the glass.
  • the total amount of R 2 O is preferably 8 to 22%, particularly 10 to 20%.
  • the content of Li 2 O is 0.2 to 10%, preferably 0.4 to 8%, more preferably 0.8 to 6%.
  • the content of Li 2 O is too small it becomes difficult to enjoy the effects described above.
  • the content of Li 2 O is too large, devitrification is deteriorated.
  • the content of Na 2 O is 0.5 to 17%, preferably 1 to 15%, more preferably 2 to 13%.
  • the content of Na 2 O is 0.5 to 17%, preferably 1 to 15%, more preferably 2 to 13%.
  • the content of Na 2 O is too small it becomes difficult to enjoy the effects described above.
  • the content of Na 2 O is too large, devitrification is deteriorated.
  • K 2 O is not an essential component, but it is desirable that it is contained in some amount for stability against low temperature and devitrification.
  • the content of K 2 O is 0 to 16%, preferably 0.2 to 13%, more preferably 0.4 to 12%. When the content of K 2 O is too large, devitrification is deteriorated.
  • TiO 2 can be added to increase chemical resistance. TiO 2 is not an essential component, but is preferably added in an amount of 0.2% or more in order to obtain the effects described above. However, if TiO 2 is contained excessively, the glass is easily devitrified by contact with a metal or a refractory, which causes dimensional problems during molding.
  • the content of TiO 2 is 0 to 10%, preferably 0.2 to 8%, more preferably 0.4 to 6%.
  • ZrO 2 can be added to increase chemical resistance.
  • ZrO 2 is not an essential component, but is preferably contained in an amount of 0.05% or more in order to obtain the effects described above.
  • ZrO 2 is contained excessively, the viscosity of the glass becomes too high.
  • glass easily devitrifies due to contact with metals and refractories, causing dimensional problems during molding.
  • the content of ZrO 2 is 0 to 5%, preferably 0.05 to 4%, more preferably 0.1 to 3%.
  • Bi 2 O 3 can be contained to increase chemical resistance. However, if Bi 2 O 3 is contained excessively, the glass easily devitrifies due to contact with a metal or a refractory, and causes a problem in dimensions during molding.
  • the content of Bi 2 O 3 is 0 to 25%, preferably 0 to 20%, more preferably 0 to 15%.
  • La 2 O 3 can be contained to improve chemical resistance. However, if La 2 O 3 is contained excessively, the glass is easily devitrified by contact with a metal or a refractory, and causes a problem in dimensions at the time of molding.
  • the content of La 2 O 3 is 0 to 10%, preferably 0 to 8%, more preferably 0 to 6%.
  • various components can be added as long as the properties of the glass are not impaired.
  • F can be added up to 0.5% in order to reduce the viscosity of the glass.
  • environmentally undesirable components such as As 2 O 3 should not be added. Incidentally the content of As 2 O 3 is limited to Sb 2 O 3 similarly to 0.1%.
  • the glass for encapsulating lead-free semiconductors of the present invention preferably has a thermal expansion coefficient between 30 ° C. and 380 ° C. of 85 to 105 ⁇ 10 ⁇ 7 / ° C. for sealing with dumet.
  • the volume resistance of the glass becomes low, for example, electricity slightly flows between the electrodes of the diode, resulting in a circuit as if a resistor was installed in parallel with the diode. For this reason, it is preferable that the volume resistance of glass is as high as possible.
  • the volume resistance value at 150 ° C. is 7 or more, preferably 9 or more, and more preferably 10 or more in Log ⁇ ( ⁇ ⁇ cm).
  • the resistance value at 250 ° C. is preferably 7 or more in terms of Log ⁇ ( ⁇ ⁇ cm).
  • Manufacture of mantle tubes on an industrial scale includes a mixing and mixing process in which minerals and refined crystal powders containing components that form glass are measured and mixed, and the raw materials to be put into the furnace are prepared, and the raw materials are melted into glass. It consists of a process, a forming process for forming the molten glass into a tube shape, and a processing process for cutting the tube into predetermined dimensions.
  • the raw materials are composed of minerals and impurities composed of a plurality of components such as oxides and carbonates, and may be prepared in consideration of the analytical values, and the raw materials are not limited. These are measured by weight and mixed with an appropriate mixer according to the scale, such as a V mixer, a rocking mixer, or a mixer equipped with stirring blades, to obtain an input raw material.
  • an appropriate mixer according to the scale such as a V mixer, a rocking mixer, or a mixer equipped with stirring blades
  • a melting furnace is a melting tank for melting glass raw material to vitrify, a clarification tank for rising and removing bubbles in the glass, and lowering the clarified glass to a viscosity suitable for molding, and leading to a molding apparatus It consists of a passage (feeder).
  • a refractory material or a furnace covered with platinum is used, and it is heated by heating with a burner or electric current to glass.
  • the charged raw materials are usually vitrified in a melting bath of 1300 ° C. to 1600 ° C., and further enter a clarification bath of 1400 ° C. to 1600 ° C.
  • bubbles in the glass are lifted to remove the bubbles.
  • the glass that comes out of the Kiyosumi pass is lowered in temperature as it moves to the molding apparatus through the feeder, and has a viscosity of 10 4 to 10 6 dPa ⁇ s suitable for glass molding.
  • the glass is formed into a tubular shape with a forming apparatus.
  • a molding method a Danner method, a tongue method, a downdraw method, and an updraw method can be applied.
  • the outer tube for semiconductor encapsulation can be obtained by cutting the glass tube into a predetermined dimension.
  • a diamond cutter as a method suitable for mass production, a large number of tube glasses are bound together and then cut with a diamond wheel cutter. A method of cutting a large number of tube glasses at a time is generally used.
  • a jig is used to set an electrode material such as a dumet wire in the outer tube so that the semiconductor element is sandwiched from both sides. Thereafter, the whole is heated to a temperature of 670 ° C. or lower, the outer tube is softened and deformed, and hermetically sealed.
  • a small electronic component such as a silicon diode, a light emitting diode, or a thermistor can be manufactured.
  • the glass for encapsulating a semiconductor according to the present invention can be used for encapsulating a semiconductor element by, for example, forming a powder into a paste, winding it around a semiconductor element and firing it.
  • Table 1 shows examples of the present invention (sample Nos. 1 to 10).
  • Glass raw materials were prepared so as to have the glass composition described in the table, and were melted at 1200 ° C. for 3 hours using a platinum pot.
  • Silica powder, aluminum oxide, boric acid, magnesium carbonate, calcium carbonate, strontium carbonate, zinc oxide, lithium carbonate, sodium nitrate, potassium carbonate, potassium carbonate, titanium oxide, zirconium oxide, bismuth oxide, lanthanum oxide, cerium oxide Etc. were used. Thereafter, the molten glass was poured onto a metal plate, formed into a 4 mm thick plate, and appropriately annealed. The clarity of each sample obtained was evaluated.
  • the number of bubbles of 0.1 mm or more present in the central portion (measurement area 3 cm square) of each sample is counted, and “ ⁇ ” indicates that the number of bubbles is 3 or less, and “4” or 5 indicates the number of bubbles. “Fair”, and the number of bubbles of 6 or more was designated as “x”.
  • the thermal expansion coefficient ⁇ is a value obtained by measuring an average linear thermal expansion coefficient in a temperature range of 30 to 380 ° C. with a self-recording differential thermal dilatometer using a cylindrical measurement sample having a diameter of about 3 mm and a length of about 50 mm.
  • the strain point, sealing temperature (temperature at 10 6 dPa ⁇ s), temperature at 10 5 dPa ⁇ s, and temperature at 10 4 dPa ⁇ s were determined as follows. First, the strain point and the softening point were measured by a fiber method based on ASTM C338. Next, the temperature corresponding to the viscosity (10 4 dPa ⁇ s and 10 2.5 dPa ⁇ s) in the working point region was determined by a platinum ball pulling method. Finally, these viscosities and temperatures were applied to the Fulcher equation to calculate temperatures at 10 6 dPa ⁇ s and 10 5 dPa ⁇ s.
  • the glass raw material was melted in the same manner as described above. Subsequently, the molten glass was wound up with a glass blowing rod, a glass tube having an outer diameter of 1.4 mm and an inner diameter of 0.8 mm was drawn, and then cut into 1.8 mm. Next, the jumet wire was inserted into the glass tube and heated for 10 minutes at the previously determined encapsulation temperature to obtain a jumet inclusion body sample. Using this sample, the encapsulating property, coloring property and fluorescence were evaluated. The evaluation of the encapsulating property is evaluated by observing the appearance of the jumet line. If the color tone of the jumet line is a red bean color, “ ⁇ ”, if it is brown, “ ⁇ ”, if it exhibits a metallic luster, “x”. It was.
  • “ ⁇ ” indicates that strong fluorescence was generated from the glass tube
  • “X” indicates that weak fluorescence was generated or fluorescence was not generated.
  • evaluation may be performed using a light source with a wavelength of 254 nm, in this example, since a UV light with a wavelength of 254 nm is dangerous for the eyes, a light source with a wavelength of 365 nm was used.
  • the volume resistivity at 150 ° C. is a value measured by a method according to ASTM C-657.
  • the glass according to the present invention is suitable as a glass envelope material used for enclosing semiconductor elements such as thermistors, diodes, and LEDs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明の技術的課題は、外観検査の自動化が容易であり、しかも清澄性及び半導体素子の封入性に優れた無鉛半導体封入用ガラスを創案することにある。 本発明に係る無鉛半導体封入用ガラスは、10dPa・sの粘度の温度が670℃以下であり、ガラス組成として、CeOの含有量が0.01~6質量%であり、且つSbの含有量が0.1質量%以下である。

Description

無鉛半導体封入用ガラス
 本発明は、半導体封入用ガラスに関し、具体的にはサーミスタ、ダイオード、LED等の半導体素子の封入に用いられるガラスに関する。
 サーミスタ、ダイオード、LED等の半導体素子は、気密封入が必要になる。従来、半導体素子を気密封入するため、鉛ガラスが使用されてきたが、近年は特許文献1や特許文献2に紹介される無鉛のガラスも知られている。このような半導体封入用ガラスは、ガラス原料を溶融窯で溶融し、溶融ガラスを管状に成形した後、得られたガラス管を長さ約2mm程度に切断して、洗浄して、ビーズと呼ばれる短いガラス管を作製し、次に検査により、ガラス管の欠けや割れを取り除いた上で出荷される。またダイオードの組み立てにおいて端子処理のため酸性のメッキ液やフラックスにガラスがさらされることがある。
 半導体封入用ガラスには、(1)半導体素子を劣化させないような低温で封入できること、(2)信頼性の高い接着を確保するため、半導体素子のみならず、半導体素子へ信号を入出力する金属線の熱膨張係数に整合した熱膨張係数を有すること、(3)ガラスと金属線の接着性が十分に高いこと、(4)体積抵抗が高いこと、(5)耐薬品性が十分に強いこと等の特性が要求される。
日本国特開2002-37641号公報 米国特許第6864197号公報
 従来、半導体素子の封入の際に、ジュメット線等の金属線に過剰な酸化膜を生じさせて、その酸化物をガラスに拡散させることにより、ガラスと金属線の接着性を確保してきた。この際、適正厚みの酸化膜が生成するように、封入温度と封入時間を調整し、具体的には酸化膜の色調が小豆色になるように、封入温度と封入時間を調整する。酸化膜の色調が黒色であると、酸化膜が金属線から剥離して、封入を適正に行うことができない。また、酸化膜が消失して、金属光沢を呈すると、ガラスと金属の接着性が失われて、やはり封入を適正に行うことができない。
 また、ガラス管にトンネル状の泡が存在すると、ガラス管の内部と外部が繋がり、気密不良が発生するおそれがある。このため、低温封入性を有する半導体素子用ガラスは、通常、低温で清澄効果を発揮するSbを0.8質量%程度含有している。
 しかし、Sbは、還元作用を受けやすく、またガラスに酸素を提供する作用を有するため、Sb自体が金属まで還元されて、ガラスの内部にSb金属微粒子を発生させるおそれがある。この場合、ガラスと半導体素子が接触すると、還元されたSb金属微粒子が、半導体素子の素子特性に悪影響を及ぼすおそれがある。また、ガラスが還元傾向である場合、金属線の酸化膜の拡散速度が変化して、安定して半導体素子を封入できないおそれもある。
 このような事態を防止するため、従来、ガラスが還元傾向にならないように、低温で長時間溶融するとともに、硝酸塩等の酸化剤を添加していた。しかし、硝酸塩等の酸化剤は、環境負荷が大きく、またSb化合物自体にも環境負荷の懸念があるため、その含有量を低減することが望まれる。
 さらに近年では、半導体素子の封入に用いられるガラス管は、生産効率を高めるために、外観検査の自動化が要求されている。CCDカメラ等により外観検査を自動化する場合、ガラス管の側面から外観観察することになるため、ガラス管が着色しているか、或いは蛍光を発することが好ましい。
 そこで、本発明は、外観検査の自動化が容易であり、しかも清澄性及び半導体素子の封入性に優れた無鉛半導体封入用ガラスを創案することを技術的課題とする。
 本発明者等は、鋭意検討の結果、PbOを基本的に含有しないガラスでSbの含有量を0.1質量%以下に制限し、且つCeOを導入することで上記技術的課題を解決できることを見出した。
 なお特許文献2には、清澄剤としてCeOを使用することが記載されているが、Sbとの共存を許容しており、またSbの代わりにCeOを使用することによる効果について何ら説明されていない。
 すなわち、本発明の無鉛半導体封入用ガラスは、10dPa・sの粘度の温度が670℃以下であり、ガラス組成として、CeOの含有量が0.01~6質量%であり、且つSbの含有量が0.1質量%以下であることを特徴とする。
 なお本発明において「無鉛」とは、ガラス原料として積極的に鉛原料を添加しないという意味であり、不純物等からの混入を完全に排除するものではない。より具体的には、ガラス組成中のPbOの含有量は、不純物等からの混入も含めて1000ppm以下に制限される。
 本発明においては、SiO-B-RO(Rはアルカリ金属)系ガラスからなり、ROとしてLiO、NaO及びKOのうち2種以上を含有することが好ましい。本発明において「SiO-B-RO系ガラス」とは、SiO、B及びRO(アルカリ金属酸化物)を必須成分として含むガラスを意味する。
 上記構成によれば、10dPa・sの粘度の温度を670℃以下にすることが容易になる。
 本発明においては、ガラス組成として、質量%で、SiO 20~65%、Al 0~10%、B 10~40%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~10%、ZnO 0~35%、LiO 0.2~10%、NaO 0.5~17%、KO 0~16%、TiO 0~10%、ZrO 0~5%、Bi 0~25%、La 0~10%含有することが好ましい。
 上記構成に従って各成分の含有量を規制すれば、Sbを含有しなくても、清澄性、低温封入性、金属線との接着性を両立させることができる。
 本発明においては、BaOが1質量%未満であることが好ましい。
 上記構成によれば、ガラス組成中に導入するCeOの含有量を容易に増やすことができる。
 また本発明の半導体封入用外套管は、上記ガラスからなることを特徴とする。
 本発明の無鉛半導体封入用ガラスは、CeOを含有していることから、ガラスが着色し、また蛍光を発する。このため本発明のガラスにより作製される半導体封入用外套管は、機械による外観検査の自動化が可能である。
 また本発明の無鉛半導体封入用ガラスは、CeOは清澄剤としても機能することから、Sbの使用量を削減することができる。それゆえ優れた清澄性を有し、しかもこれを用いて作製した外套管は安定して半導体素子を封入することができる。
 本発明の無鉛半導体封入用ガラスは、10dPa・sの粘度の温度が670℃以下である。10dPa・sの粘度の温度は、概ね半導体素子の封入温度に相当する。それゆえ本発明のガラスは、670℃以下で半導体素子を封入することができる。なお10dPa・sの粘度の温度を670℃以下とするためには、LiO、NaO、KOの内の2種以上と、Bを必須成分として含むSiO-B-RO(Rはアルカリ金属)系ガラスとすることが好ましい。
 また本発明のガラスは、10dPa・sの粘度に相当する温度が670℃以下であることに加え、10dPa・sの粘度に相当する温度が800℃以下、さらには750℃以下、特に730℃以下であることが好ましく、10dPa・sの粘度に相当する温度が870℃以下、さらには850℃以下、特に800℃以下であることが好ましい。
 また本発明のガラスにおいて、CeOは、清澄効果を発揮し、また着色や蛍光を発する外套管を得るための成分である。一方で過剰に導入するとCeO自体がガラスから再結晶して失透し、外套管の寸法に悪影響を与える。その含有量は0.01~6質量%、好ましくは0.05~4質量%で、さらに好ましくは0.1~2質量%である。なおCeOは失透性が悪化するという理由から、ガラス中に多量に導入することが困難である。そこでCeOの含有量を増量したい場合には、BaOの含有量を少なくする、具体的には1質量%未満とすることが好ましい。
 本発明の無鉛半導体封入用ガラスにおいて、Sbを使用すると、還元作用を受けてガラスの内部にSb金属微粒子を発生させるおそれがある。またガラスが還元傾向である場合、金属線の酸化膜の拡散速度が変化して、安定して半導体素子を封入できないおそれもある。このような事情から、Sbは、極力添加を避けるべきであり、具体的には0.1質量%以下に制限される。好ましくは0.05質量%以下に制限することが望ましい。
 上記の半導体封入用ガラスの好適な具体例として、質量%で、SiO 20~65%、Al 0~10%、B 10~40%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~10%、ZnO 0~35%、LiO 0.2~10%、NaO 0.5~17%、KO 0~16%、TiO 0~10%、ZrO 0~5%、Bi 0~25%、La 0~10%、CeO 0.01~6%、Sb 0~0.1%含有するガラスを使用することが好ましい。
 本発明の半導体封入用ガラスにおいて、上記のようにガラス組成範囲を限定した理由を以下に説明する。なお、以下の%表示は、特に断りがある場合を除き、質量%を指す。
 SiOは、主成分でありガラスの安定化に重要な成分であるが、封止温度を上昇させる成分でもある。その含有量は20~65%、好ましくは25~60%、さらに好ましくは30~55%である。SiOの含有量が少なすぎると、上記した効果を享受し難くなる。一方、SiOの含有量が多すぎると、低温封入が困難になる。
 Alは、耐薬品性を高める成分であるが、ガラスの粘性を上昇させる成分でもある。Alの含有量は0~10%、好ましくは0.1~8%、さらに好ましくは0.2~7%である。Alの含有量が多すぎると、ガラスの粘性が高くなり過ぎ、成形性が低下しやすくなることに加えて、低温封入が困難になる。
 Bは、ガラスを安定化させる成分であるとともに、ガラスの粘性を低下させる成分で必須である。また耐薬品性を低下させる成分でもある。その含有量は10~40%、好ましくは12~35%、さらに好ましくは14~30%である。Bの含有量が少なすぎると上記した効果を享受し難くなる。一方、Bの含有量が多すぎると、耐薬品性が悪くなる。
 MgO、CaO、SrO、BaOからなるアルカリ土類金属酸化物(R’O)はガラスを安定化させる効果が高いが、ガラスを低温化させる効果は期待できず、むしろ封入温度を上昇させるおそれがある。このためR’Oは合量で0~10%、特に0~8%、さらには0~6%であることが好ましい。なお各アルカリ土類金属酸化物成分については以下に述べる。
 MgOとCaOは必須成分ではなく、各々0~10%、好ましくは各々0~4%、さらに好ましくは各々0~2%である。MgOやCaOの含有量が多すぎると、ガラスの粘度が高くなる。なおCaOは上記したアルカリ土類金属酸化物成分共通の効果に加え、耐薬品性を向上させる効果がある。
 SrOは必須成分ではなく、0~10%、好ましくは0~6%、さらに好ましくは0~4%、特に好ましくは0~2%である。SrOの含有量が多すぎると、ガラスの粘度が高くなって溶融が困難になる。
 BaOは必須成分ではなく、0~10%、好ましくは0~6%、さらに好ましくは0~4%、特に好ましくは0~2%である。BaOの含有量が多すぎると、ガラスの粘度が高くなる。特にCeOを多く含有させるためには1%未満とすることが望ましい。
 ZnOはガラスの粘性を低下させる効果に優れる成分である。ZnOは必須成分ではないが、上記した効果を得るためにはZnOを1%以上含有することが好ましい。その一方でZnOは過剰に含有させるとガラスが失透する。ZnOの含有量は0~35%、好ましくは1~30%、さらに好ましくは2~25%、特に好ましくは10~25%である。特に粘性の低下の効果のためにZnOを用いる場合には、その効果を高めるためにZnO/SiOの比(質量比)を0.02~1、さらに好ましくは0.05~0.8の範囲にすることが望ましい。0.02以上でその効果が期待できるが望ましくは0.05以上であることが望ましい。1以下にすれば失透明を防止する上で望ましい。
 LiO、NaO、KOからなるアルカリ金属酸化物(RO)、を示し、ガラスの粘性を下げたり、膨張を上げたりする効果がある。特にLiOやNaOはガラスの粘性を低下させる効果が高いことから、上記組成のガラスでは必須成分として使用する。一方、ROの量(アルカリ金属酸化物の合量)が過剰になると、膨張が高くなりすぎてジュメットとの間でクラックを生じる。それゆえROは合量で8~22%、特に10~20%であることが好ましい。なお各アルカリ金属酸化物成分については以下に述べる。
 LiOの含有量は0.2~10%、好ましくは0.4~8%、さらに好ましくは0.8~6%である。LiOの含有量が少なすぎると上記した効果を享受し難くなる。一方、LiOの含有量が多すぎると、失透性が悪くなる。
 NaOの含有量は0.5~17%、好ましくは1~15%、さらに好ましくは2~13%である。NaOの含有量が少なすぎると上記した効果を享受し難くなる。一方、NaOの含有量が多すぎると、失透性が悪くなる。
 KOは必須成分ではないが、低温化と失透明に対する安定性のため多少含有することが望ましい。KOの含有量は0~16%、好ましくは0.2~13%、さらに好ましくは0.4~12%である。KOの含有量が多すぎると、失透性が悪くなる。
 TiOは耐薬品性を高めるために添加することができる。TiOは必須成分ではないが、上記した効果を得るために0.2%以上添加することが好ましい。ただしTiOを過剰に含有すると、金属や耐火物との接触によってガラスが容易に失透し、成形時に寸法上の問題を引き起こす。TiOの含有量は0~10%、好ましくは0.2~8%、さらに好ましくは0.4~6%である。
 ZrOは耐薬品性を高めるために添加することができる。ZrOは必須成分ではないが、上記した効果を得るために0.05%以上含有することが好ましい。ただしZrOを過剰に含有すると、ガラスの粘度が高く成りすぎる。また金属や耐火物との接触によってガラスが容易に失透し、成形時に寸法上の問題を引き起こす。ZrOの含有量は0~5%、好ましくは0.05~4%、さらに好ましくは0.1~3%である。
 Biは耐薬品性を高めるために含有することができる。ただしBiを過剰に含有すると、金属や耐火物との接触によってガラスが容易に失透し、成形時に寸法上の問題を引き起こす。Biの含有量は0~25%、好ましくは0~20%、さらに好ましくは0~15%である。
 Laは耐薬品性を高めるために含有することができる。ただしLaを過剰に含有すると、金属や耐火物との接触によってガラスが容易に失透し、成形時に寸法上の問題を引き起こす。Laの含有量は0~10%、好ましくは0~8%、さらに好ましくは0~6%である。
 また上記成分以外にも、ガラスの特性を損なわない範囲で種々の成分を添加することができる。例えばガラスの粘性を低下させるためにFを0.5%まで添加することができる。ただしAs等環境上好ましくない成分は添加すべきでない。なおAsの含有量はSb同様0.1%以下に制限される。
 本発明の無鉛半導体封入用ガラスは、ジュメットとシールするために、ガラスの30℃~380℃間の熱膨張係数が85~105×10-7/℃であることが好ましい。
 またガラスの体積抵抗が低くなってしまうと、例えばダイオードの電極間にわずかに電気が流れるようになり、あたかもダイオードに平行して抵抗体を設置したような回路を生じてしまう。このため、ガラスの体積抵抗は極力高いことが好ましい。具体的には150℃における体積抵抗値が、Logρ(Ω・cm)で7以上、好ましくは9以上、さらに好ましくは10以上である。また200℃程度の高温でダイオードを好適に使用する場合には、250℃における抵抗値がLogρ(Ω・cm)で7以上あることが好ましい。
 次に本発明の無鉛半導体封入用ガラスからなる半導体封入用外套管の製造方法を説明する。
 工業的規模での外套管の製造方法は、ガラスを形成する成分を含有する鉱物や精製結晶粉末を計測混合し、炉に投入する原料を調合する調合混合工程と、原料を溶融ガラス化する溶融工程と、溶融したガラスを管の形に成形する成形工程と、管を所定の寸法に切断する加工工程からなっている。
 まずガラス原料を調合混合する。原料は、酸化物や炭酸塩など複数の成分からなる鉱物や不純物からなっており、分析値を考慮して調合すればよく、原料は限定されない。これらを重量で計測し、Vミキサーやロッキングミキサー、攪拌羽根のついたミキサーなど規模に応じた適当な混合機で混合し、投入原料を得る。
 次に原料をガラス溶融炉に投入し、ガラス化する。溶融炉はガラス原料を溶融しガラス化するための溶融槽と、ガラス中の泡を上昇除去するための清澄槽と、清澄されたガラスを成形に適当な粘度まで下げ、成形装置に導くための通路(フィーダー)よりなる。溶融炉は、耐火物や内部を白金で覆った炉が使用され、バーナーによる加熱やガラスへの電気通電によって加熱される。投入された原料は通常1300℃~1600℃の溶解槽でガラス化され、さらに1400℃~1600℃の清澄槽に入る。ここでガラス中の泡を浮上させて泡を除去する。清澄糟から出たガラスは、フィーダーを通って成形装置に移動するうちに温度が下がり、ガラスの成形に適した粘度10~10dPa・sになる。
 次いで成形装置にてガラスを管状に成形する。成形法としてはダンナー法、ベロ法、ダウンドロー法、アップドロー法が適用可能である。
 その後、ガラス管を所定の寸法に切断することにより、半導体封入用外套管を得ることができる。ガラス管の切断加工は、管1本ずつをダイヤモンドカッターで切断することも可能であるが、大量生産に適した方法として、多数の管ガラスを1本に結束してからダイヤモンドホイールカッターで切断し、一度に多数の管ガラスを切断する方法が一般的に用いられている。
 次に本発明のガラスからなる外套管を用いた半導体素子の封入方法を述べる。
 まず外套管内でジュメット線などの電極材料が半導体素子を両側から挟み込んだ状態となるように冶具を用いてセットする。その後、全体を670℃以下の温度に加熱し、外套管を軟化変形させて気密封入する。このような方法でシリコンダイオード、発光ダイオード、サーミスタなどの小型の電子部品を作製することができる。
 なお本発明の半導体封入用ガラスは、ガラス管として使用する以外にも、例えば、粉末状にしてペースト化し、半導体素子に巻き付けて焼成することで半導体素子を封入することもできる。
 以下、実施例に基づいて本発明を説明する。
 表1は、本発明の実施例(試料No.1~10)を示している。
Figure JPOXMLDOC01-appb-T000001
 表中に記載のガラス組成になるように、ガラス原料を調合し、白金ポットを用いて1200℃で3時間溶融した。ガラス原料として、珪石粉、酸化アルミニウム、硼酸、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、酸化亜鉛、炭酸リチウム、硝酸ソーダ、炭酸カリウム、炭酸カリウム、酸化チタン、酸化ジルコニウム、酸化ビスマス、酸化ランタン、酸化セリウム等を使用した。その後、溶融ガラスを金属板の上に流し出して、4mm厚の板状に成形し、適正にアニールした。得られた各試料を用いて、清澄性を評価した。清澄性の評価は、各試料の中央部分(測定面積3cm角)に存在する0.1mm以上の泡をカウントして、泡数3個以下を「○」、泡数4個または5個を「△」、泡数6個以上を「×」とした。
 また熱膨張係数及び封入温度を求めた。
 熱膨張係数αは、直径約3mm、長さ約50mmの円柱状の測定試料を用いて、自記示差熱膨張計により30~380℃の温度範囲における平均線熱膨張係数を測定した値である。
 歪点、封入温度(10dPa・sにおける温度)、10dPa・sにおける温度、及び10dPa・sにおける温度は次のようにして求めた。まずASTM C338に準拠するファイバ法により歪点及び軟化点を測定した。次に、白金球引き上げ法により作業点領域の粘度(10dPa・s及び102.5dPa・s)に相当する温度を求めた。最後に、これらの粘度と温度をFulcherの式に当てはめて、10dPa・s及び10dPa・sにおける温度を算出した
 次に上記と同様にしてガラス原料を溶融した。続いて、溶融ガラスをガラス吹き棒で巻き取って、外径1.4mm、内径0.8mmのガラス管を引いた後、1.8mmに切断した。次に、ジュメット線をガラス管に挿入し、先に求めた封入温度で10分間加熱して、ジュメット封入体試料を得た。この試料を用いて、封入性、着色性および蛍光性を評価した。なお封入性の評価は、ジュメット線の外観を観察することにより評価し、ジュメット線の色調が小豆色であれば「○」、褐色であれば「△」、金属光沢を呈していれば「×」とした。
 着色性は、ガラス管の外観を目視で観察することにより評価した。
 蛍光性は、波長365nmの光源を用い、紫外線をガラス管に照射して評価した。評価は、ガラス管から強い蛍光が発生したものを「○」、弱い蛍光が発生したもの、或いは蛍光が発生しなかったものを「×」とした。なお、波長254nmの光源を用いて評価しても良いが、本実施例では波長254nmの紫外線は目に危険であるため、波長365nmの光源を使用した。
 150℃における体積抵抗率は、ASTM  C-657に準拠した方法で測定した値である。
 本発明に係るガラスは、サーミスタ、ダイオード、LED等の半導体素子の封入に用いられるガラス外套管材料として好適である。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年7月1日付で出願された日本特許出願(特願2010-150971)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (5)

  1.  10dPa・sの粘度の温度が670℃以下であり、ガラス組成として、CeOの含有量が0.01~6質量%であり、且つSbの含有量が0.1質量%以下である無鉛半導体封入用ガラス。
  2.  SiO-B-RO(Rはアルカリ金属)系ガラスからなり、ROとしてLiO、NaO及びKOのうち2種以上を含有する請求項1に記載の無鉛半導体封入用ガラス。
  3.  ガラス組成として、質量%で、SiO 20~65%、Al 0~10%、B 10~40%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~10%、ZnO 0~35%、LiO 0.2~10%、NaO 0.5~17%、KO 0~16%、TiO 0~10%、ZrO 0~5%、Bi 0~25%、La 0~10%含有する請求項1又は2に記載の無鉛半導体封入用ガラス。
  4.  BaOが1質量%未満である請求項1~3の何れかに記載の無鉛半導体封入用ガラス。
  5.  請求項1~4の何れかに記載のガラスからなる半導体封入用外套管。
PCT/JP2011/063917 2010-07-01 2011-06-17 無鉛半導体封入用ガラス WO2012002174A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800328059A CN102958860A (zh) 2010-07-01 2011-06-17 无铅半导体密封用玻璃
US13/805,039 US9230872B2 (en) 2010-07-01 2011-06-17 Lead-free glass for semiconductor encapsulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-150971 2010-07-01
JP2010150971 2010-07-01

Publications (1)

Publication Number Publication Date
WO2012002174A1 true WO2012002174A1 (ja) 2012-01-05

Family

ID=45401897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063917 WO2012002174A1 (ja) 2010-07-01 2011-06-17 無鉛半導体封入用ガラス

Country Status (4)

Country Link
US (1) US9230872B2 (ja)
JP (1) JP2012031048A (ja)
CN (1) CN102958860A (ja)
WO (1) WO2012002174A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111681A (ja) * 2010-11-04 2012-06-14 Nippon Electric Glass Co Ltd 半導体封入用無鉛ガラス及び半導体封入用外套管
JP2012116744A (ja) * 2010-11-11 2012-06-21 Nippon Electric Glass Co Ltd 半導体封入用無鉛ガラス及び半導体封入用外套管
JP6041201B2 (ja) * 2012-10-10 2016-12-07 日本電気硝子株式会社 半導体封入用無鉛ガラス
CN104193184B (zh) * 2014-09-09 2016-06-22 福建省港达玻璃制品有限公司 一种自清洁钢化玻璃的制备方法
CN106024726B (zh) * 2016-07-19 2018-12-11 如皋市大昌电子有限公司 一种用无铅玻璃封装的二极管
CA3117986A1 (en) 2018-11-26 2020-06-04 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
KR20210096140A (ko) 2018-11-26 2021-08-04 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 향상된 탄성 계수를 갖는 고성능 섬유 유리 조성물
CN112010561B (zh) * 2020-09-17 2022-04-15 成都光明光电股份有限公司 封装玻璃
CN112551896A (zh) * 2020-12-08 2021-03-26 上海华伽电子有限公司 一种无铅低温玻璃及其制备方法及应用该玻璃制备的二极管玻壳
CN114530300B (zh) * 2022-04-21 2022-08-16 西安宏星电子浆料科技股份有限公司 一种无铅介质浆料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037641A (ja) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法
JP2009013002A (ja) * 2007-07-03 2009-01-22 Agc Techno Glass Co Ltd 蛍光ランプ用紫外線吸収ガラスおよび蛍光ランプ用ガラス管
JP2010006627A (ja) * 2008-06-25 2010-01-14 Nippon Electric Glass Co Ltd 金属被覆用ガラス及び半導体封止材料

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52966Y2 (ja) * 1971-11-04 1977-01-11
JPS569462B2 (ja) * 1973-07-09 1981-03-02
JPS585930B2 (ja) * 1975-06-24 1983-02-02 古河電気工業株式会社 ナンネンセイポリオレフインハツポウタイオヨビ ソノセイゾウホウホウ
JPS59174544A (ja) * 1983-03-25 1984-10-03 Nippon Electric Glass Co Ltd 半導体被覆用ガラス
JPH01122937A (ja) 1987-11-04 1989-05-16 Nakashima:Kk ガラス溶射用フリット
JP2971502B2 (ja) * 1990-03-27 1999-11-08 旭硝子株式会社 コバール封着用ガラス組成物
JPH052966A (ja) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd リレー
DE4124801C2 (de) * 1991-07-26 1995-03-30 Bayer Ag Emailfritte für die Direktemaillierung auf ungebeiztem Stahlblech und deren Verwendung
JP3269416B2 (ja) * 1996-02-28 2002-03-25 日本電気硝子株式会社 結晶化ガラス及びその製造方法
US6287996B1 (en) * 1998-09-14 2001-09-11 Asahi Glass Company Ltd. Ceramic color composition and process for producing a curved glass plate
DE19842942C2 (de) * 1998-09-18 2001-05-23 Schott Glas Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendung
DE19934072C2 (de) * 1999-07-23 2001-06-13 Schott Glas Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung
US6534346B2 (en) * 2000-05-16 2003-03-18 Nippon Electric Glass Co., Ltd. Glass and glass tube for encapsulating semiconductors
JP4743650B2 (ja) * 2000-12-15 2011-08-10 日本電気硝子株式会社 蛍光ランプ用コバールシールガラス
JP4795651B2 (ja) * 2003-06-06 2011-10-19 ショット アクチエンゲゼルシャフト 特に蛍光ランプへ用いる高耐薬品性紫外線吸収ガラス、製造方法、及び使用方法
JP2005041729A (ja) * 2003-07-28 2005-02-17 Nippon Electric Glass Co Ltd 照明用ガラス
JP2005162600A (ja) 2003-11-11 2005-06-23 Nippon Electric Glass Co Ltd 半導体パッケージ用カバーガラス
US7291573B2 (en) * 2004-11-12 2007-11-06 Asahi Techno Glass Corporation Low melting glass, sealing composition and sealing paste
CN1993297A (zh) * 2004-12-21 2007-07-04 旭硝子株式会社 电极包覆用玻璃
JPWO2006068030A1 (ja) * 2004-12-21 2008-06-12 旭硝子株式会社 電極被覆用ガラス
JP4777936B2 (ja) * 2007-04-23 2011-09-21 Agcテクノグラス株式会社 ガラス管成形用スリーブ及びガラス管の製造方法
JP2009263168A (ja) * 2008-04-25 2009-11-12 Hitachi Displays Ltd 蛍光ランプ用ガラス、それを用いたガラス管及びそれを用いた蛍光ランプ及びそれを用いた液晶表示装置
JP2011132113A (ja) 2009-11-30 2011-07-07 Nippon Electric Glass Co Ltd 半導体封入用ガラス
JP2011116578A (ja) * 2009-12-02 2011-06-16 Nippon Electric Glass Co Ltd 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037641A (ja) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法
JP2009013002A (ja) * 2007-07-03 2009-01-22 Agc Techno Glass Co Ltd 蛍光ランプ用紫外線吸収ガラスおよび蛍光ランプ用ガラス管
JP2010006627A (ja) * 2008-06-25 2010-01-14 Nippon Electric Glass Co Ltd 金属被覆用ガラス及び半導体封止材料

Also Published As

Publication number Publication date
US20130090227A1 (en) 2013-04-11
JP2012031048A (ja) 2012-02-16
US9230872B2 (en) 2016-01-05
CN102958860A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2012002174A1 (ja) 無鉛半導体封入用ガラス
US7968380B2 (en) Semiconductor encapsulation material and method for encapsulating semiconductor using the same
JP7036168B2 (ja) 無アルカリガラス基板
US6534346B2 (en) Glass and glass tube for encapsulating semiconductors
JP5029014B2 (ja) 半導体封止用ガラス及び半導体封止用外套管並びに半導体電子部品
WO2012063726A1 (ja) 半導体封入用無鉛ガラス及び半導体封入用外套管
KR20080106027A (ko) 저 융점의 무연 솔더 유리 및 그 용도
JP4789052B2 (ja) 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法
JP3748533B2 (ja) 低融点ガラス及びその製造方法
JP5088914B2 (ja) 半導体封入用ガラス及び半導体封入用外套管
WO2012060337A1 (ja) 半導体封入用無鉛ガラス及び半導体封入用外套管
WO2014103936A1 (ja) 半導体封入用ガラス及び半導体封入用外套管
JP2003073142A (ja) 照明用ガラス組成物
JP2011116578A (ja) 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法
JP5678410B2 (ja) 無鉛低融点ガラス
JP2003040644A (ja) 照明用ガラス組成物
JP2011132113A (ja) 半導体封入用ガラス
JP2011184216A (ja) 半導体封止用ガラス、半導体封止用外套管及び半導体電子部品
JP2012140259A (ja) 半導体封入用外套管の製造方法及び半導体封入用外套管
JP2001199738A (ja) 照明用ガラス組成物
WO2008038780A1 (fr) Composition de verre et article en verre l'utilisant
HU201282B (en) Process for producing new borosilicate glasses first of all for metal-glass bond

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032805.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800639

Country of ref document: EP

Kind code of ref document: A1