WO2012002051A1 - 蒸気タービンおよび蒸気タービンのスラスト調整方法 - Google Patents

蒸気タービンおよび蒸気タービンのスラスト調整方法 Download PDF

Info

Publication number
WO2012002051A1
WO2012002051A1 PCT/JP2011/061109 JP2011061109W WO2012002051A1 WO 2012002051 A1 WO2012002051 A1 WO 2012002051A1 JP 2011061109 W JP2011061109 W JP 2011061109W WO 2012002051 A1 WO2012002051 A1 WO 2012002051A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
steam
valve
steam turbine
dummy
Prior art date
Application number
PCT/JP2011/061109
Other languages
English (en)
French (fr)
Inventor
丸山 隆
朝春 松尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11800520.6A priority Critical patent/EP2589747B1/en
Priority to CN201180025267.0A priority patent/CN102906373B/zh
Priority to KR1020127031324A priority patent/KR101466457B1/ko
Publication of WO2012002051A1 publication Critical patent/WO2012002051A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings

Definitions

  • the present invention relates to a steam turbine and a steam turbine thrust adjustment method, and in particular, a rotating shaft of a steam turbine in which at least a high-pressure chamber cascade, an intermediate-pressure chamber cascade, and a plurality of dummy parts are attached to a common rotating shaft.
  • the present invention relates to a steam turbine capable of balancing the thrust force generated in the steam turbine and a method for adjusting the thrust of the steam turbine.
  • a thrust bearing is installed in the steam turbine to receive the thrust force generated on the rotating shaft. Since the load capacity of the thrust bearing is limited, it is necessary to design in consideration of the thrust balance so that the thrust force generated on the rotating shaft does not exceed the load capacity of the bearing in any operating state.
  • the thrust bearing is set within the load capacity range of the bearing.
  • FIG. 13 is a schematic view showing a normal operation state of a steam turbine provided with a conventional thrust adjustment dummy portion.
  • a casing (not shown) is formed so as to surround the rotating shaft 10, and each of the introduction portions (high-pressure main steam 22, reheat steam 24, and low-pressure main steam 26 is introduced into the casing ( (Not shown).
  • the rotary shaft 10 is provided with a high-pressure blade row 2 to which the high-pressure main steam 22 is supplied, an intermediate-pressure blade row 4 to which the reheated steam 24 is supplied, and a low-pressure blade row 6 to which the low-pressure main steam 26 is supplied.
  • the intermediate-pressure blade row 4 and the low-pressure blade row 6 are arranged so that the steam inlet side is in the same direction and faces the steam inlet side of the high-pressure blade row 2.
  • a high-pressure dummy portion 12 is provided between the steam inlet side of the high-pressure blade row 2 and the steam inlet side of the intermediate-pressure blade row 4.
  • a dummy part 14 and a low-pressure dummy part 16 are provided.
  • a thrust balance pipe 30 is provided that communicates the outlet side of the intermediate pressure dummy portion 14 and the latter half of the intermediate pressure blade row 4.
  • the high-pressure main steam 22 from a boiler or the like enters the high-pressure blade row 2 and gradually decreases the temperature and pressure while applying a rotational force to the rotary shaft 1.
  • the steam that has finished work in the high-pressure blade row 2 becomes low-temperature reheated steam 28 and is discharged out of the steam turbine 1.
  • the low-temperature reheat steam discharged from the steam turbine 1 is reheated by a reheat boiler (not shown) outside the steam turbine to become reheat steam 24.
  • the intermediate-pressure reheat steam 24 heated by the reheat boiler gradually decreases the temperature and pressure while applying a rotational force to the rotary shaft 10 through the intermediate-pressure blade row 4.
  • the low-pressure main steam 26 gradually decreases the temperature and pressure while applying a rotational force to the rotary shaft 10 through the low-pressure blade row 6.
  • IP intermediate-pressure
  • the thrust force generated on the rotating shaft 1 in each blade row and dummy portion is indicated by numerals 1 to 6 with ⁇ , and an example of the pressure value between each blade row (dummy portion) is shown in FIG. ing.
  • Numbers 1 to 6 with ⁇ indicate the thrust forces generated in the low pressure dummy portion 16, the intermediate pressure dummy portion 14, the high pressure blade row 2, the high pressure dummy portion 12, the intermediate pressure blade row 4, and the low pressure blade row 6, respectively.
  • the thrust force generated in the blade row can be calculated based on the gas force acting on the blade row provided on the rotating shaft.
  • the thrust force generated in the dummy part can be calculated from the differential pressure before and after the dummy part and the cross-sectional area.
  • the thrust of the high-pressure chamber cascade 2 is balanced with the high-pressure dummy section 12
  • the thrust of the intermediate-pressure chamber cascade 4 is balanced with the intermediate-pressure dummy section 14
  • the thrust of the low-pressure chamber cascade 6 is balanced with the low-pressure dummy section 16.
  • the turbine 1 as a whole has a balanced thrust.
  • FIG. 14 is a schematic view showing a high-pressure main steam stop state of a steam turbine provided with a conventional thrust adjustment dummy portion.
  • the thrust force indicated by the numeral 3 with a circle is also zero.
  • the differential pressure in the high-pressure dummy portion 12 becomes very small, and the thrust force indicated by the numeral 4 with a circle becomes a value close to zero. Therefore, as shown in FIG. 14, even when the high-pressure main steam 22 is stopped, the steam turbine 1 as a whole has a thrust balance.
  • FIG. 15 is a schematic view showing a reheat steam and low-pressure main steam stop state of a steam turbine provided with a conventional thrust adjustment dummy part.
  • FIG. 15 when the reheat steam 24 and the low pressure steam 26 are stopped, no steam is introduced into the intermediate pressure blade row 4 and the low pressure blade row 6, and the pressure before and after the intermediate pressure blade row 4 and the low pressure blade row 6 is any. Is almost a vacuum.
  • the pressure between the intermediate-pressure dummy portion 14 and the low-pressure dummy portion 16 communicated with the latter half of the intermediate-pressure blade row 4 by the thrust balance pipe 30 is also almost vacuum.
  • the thrust force generated is substantially zero because the differential pressure across the low pressure blade row 6 and the low pressure dummy portion 16 is substantially zero.
  • the thrust force (number 2 with a circle) generated in the intermediate pressure dummy portion 14 increases by the amount that the pressure at the outlet portion becomes almost vacuum, and the differential pressure before and after the intermediate pressure blade row 4 Therefore, the thrust force generated by the intermediate pressure blade row 4 (number 5 with a circle) is substantially 0, so that the thrust force applied to the intermediate pressure dummy portion side direction (left side in FIG. 15) increases.
  • the thrust force generated by the high pressure blade row 2 (number 3 with a circle) is substantially the same as that during normal operation, but the thrust force generated by the high pressure dummy portion 12 (number 2 with a circle).
  • the thrust force increased by the IP system is larger than the thrust force increased by the HP system, the thrust force in the left direction in FIG. 15 increases for the steam turbine 1 as a whole, and the thrust force cannot be balanced.
  • the high-pressure dummy portion 12 is enlarged to increase the right side thrust force in FIG. This is not appropriate because the thrust force cannot be balanced during normal operation. Therefore, in FIGS. 13 to 15, the intermediate pressure dummy portion 14 is made smaller and the low pressure dummy portion 16 is made larger, so that the thrust can be obtained during normal operation, high pressure main steam stop and reheat steam stop. Can balance power.
  • Patent Document 1 measures the thrust force generated in the steam turbine based on the bearing metal temperature or the like, and adjusts the thrust force acting on the dummy portion based on the result using electric control, A technique for balancing the thrust force of the entire steam turbine is disclosed.
  • the present invention provides a thrust force that acts on the rotating shaft of the turbine in the entire operating range of the steam turbine without increasing the size of the low-pressure dummy section and without using complicated electric control. It is an object of the present invention to provide a steam turbine and a steam turbine thrust adjustment method capable of balancing the above.
  • a steam turbine for solving the above-mentioned problems, there is provided a steam turbine in which at least a high-pressure blade row, an intermediate-pressure blade row, and a plurality of dummy parts are attached to a common rotating shaft, Detecting means for detecting the presence or absence of inflow, and when the inflow of steam into the intermediate pressure chamber is stopped, among the plurality of dummy portions, a pressure adjusting target dummy portion whose one side communicates with a part of the intermediate pressure chamber A pressure reducing means for reducing the pressure difference between the two sides and a control means for operating the pressure reducing means based on a detection result of the detecting means are provided.
  • the decompression means includes a first pipe connecting both sides of the pressure regulation target dummy part, and a first valve that is disposed in the first pipe and adjusts a pressure difference between both sides of the pressure regulation target dummy part. It is good to include. Thereby, it is possible to balance the thrust force acting on the rotating shaft of the turbine with a simple mechanism.
  • the control means further includes a third pipe connecting the one side of the pressure reducing means and the outlet of the intermediate pressure chamber, and a third valve disposed in the third pipe,
  • the third valve may be opened so that a pressure difference is generated between both sides of the pressure regulation target dummy portion.
  • the pressure reducing means includes a second pipe connecting the part of the intermediate pressure chamber and the one side of the pressure-control target dummy part, and the pressure-control target dummy part disposed in the second pipe.
  • a second valve that adjusts the pressure difference between the two sides, and the second valve may be closed when the flow of steam into the intermediate pressure chamber stops.
  • the second pipe line is also provided in a conventional steam turbine. For this reason, when the existing conventional steam turbine is remodeled, the pressure reducing means can be provided only by attaching the second valve to the existing second pipe line without installing a new pipe, and the remodeling is easy.
  • bypass conduit that bypasses the second valve may be provided, and an orifice may be provided in the bypass conduit.
  • the control means further includes a third pipe connecting the one side of the pressure reducing means and the outlet of the intermediate pressure chamber, and a third valve disposed in the third pipe, When the second valve is closed even though the inflow of steam into the pressure chamber is not stopped, the third valve may be opened so that a pressure difference is generated on both sides of the pressure-control target dummy portion.
  • a steam turbine thrust adjustment method for solving the problem, there is provided a steam turbine thrust adjustment method in which at least a high-pressure blade row, an intermediate-pressure blade row, and a plurality of dummy portions are attached to a common rotating shaft.
  • one side of the plurality of dummy portions reduces a pressure difference between both sides of the pressure control target dummy portion communicating with a part of the intermediate pressure chamber.
  • the pressure difference between both sides of the pressure regulation target dummy part can be reduced by a first valve disposed in a first pipe connecting both sides of the pressure regulation target dummy part.
  • the first valve when the first valve is opened even though the inflow of steam to the intermediate pressure chamber is not stopped, it is disposed in a third pipeline that connects the one side and the outlet of the intermediate pressure chamber.
  • the third valve may be opened so that a pressure difference is generated on both sides of the pressure-control target dummy part.
  • the pressure difference between both sides of the pressure regulation target dummy part is reduced by a second valve disposed in a second pipe connecting the part of the intermediate pressure chamber and the one side of the pressure regulation target dummy part. It should be possible.
  • the second valve when the second valve is closed even though the inflow of steam to the intermediate pressure chamber is not stopped, it is disposed in the third pipe connecting the one side and the outlet of the intermediate pressure chamber.
  • the third valve may be opened so that a pressure difference is generated on both sides of the pressure-control target dummy part.
  • a steam turbine and a method for adjusting a thrust of the steam turbine can be provided.
  • FIG. 1 It is a block diagram which shows the structure of the single compartment reheat steam turbine which provided the dummy part for thrust adjustment in Embodiment 1 of this invention. It is the schematic which shows the normal driving
  • FIG. 1 is a configuration diagram showing a configuration of a single compartment reheat steam turbine provided with a thrust adjustment dummy portion according to the present invention.
  • a low pressure casing 32 and a high / medium pressure casing 34 are formed so as to surround the rotating shaft 10.
  • the high and medium pressure vehicle compartment 34 is provided with a high pressure steam introducing portion 23 for introducing the high pressure steam 22 and a reheat steam introducing portion 25 for introducing the reheat steam 24.
  • the low-pressure casing 32 is provided with a low-pressure steam introducing portion 27 for introducing the low-pressure steam 26.
  • the low-pressure blade row 6 to which the low-pressure steam 26 is supplied from the section 27 is provided in order.
  • the intermediate-pressure blade row 4 and the low-pressure blade row 6 have the same steam inlet side, It arrange
  • a high-pressure dummy portion 12 is provided between the steam inlet side of the high-pressure blade row 2 and the steam inlet side of the intermediate-pressure blade row 4.
  • a thrust balance pipe 30 is provided that communicates the outlet side of the intermediate pressure dummy portion 14 and a part of the intermediate pressure blade row 4.
  • FIG. 2 is a schematic view showing a normal operation state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the normal state refers to an operating state in which all of the high-pressure steam 22, the reheated steam 24, and the low-pressure steam 26 are introduced into the steam turbine.
  • the difference between the conventional FIG. 13 and FIG. 2 of the first embodiment of the present invention is that in the present invention, the diameter of the medium-pressure dummy portion 14 is made larger than the conventional one and the diameter of the low-pressure dummy portion 16 is made smaller than the conventional one. is doing. Thereby, the low-pressure dummy part 16 becomes large and prevents the steam turbine 1 as a whole from becoming unbalanced. Further, a conduit 42 communicating the inlet side and the outlet side of the intermediate pressure dummy portion 14, and a valve 43 is provided on the conduit 42.
  • a conduit 44 connected to the conduit 42 on the outlet side of the intermediate pressure dummy portion 14 with respect to the valve 43 and communicating with the outlet side of the intermediate pressure chamber cascade 4 is provided with a valve 45 on the conduit 44.
  • a valve 41 is provided on the thrust balance pipe 30.
  • a control device 52 is provided, and the control device 52 reads the detection value of the pressure gauge 54 provided at the reheat steam inlet 25 and opens and closes the valves 41, 42, and 43 based on the detection value. It is something to control.
  • the control device 52 performs the operation as shown in FIG.
  • the valve 41 is opened and the valves 43 and 45 are closed.
  • the valves 41, 43, and 45 are shown in black in the open state and white in the closed state.
  • the numerical value indicated by the unit k in FIG. 2 is an exemplary pressure in the part, and the unit is kgf / cm 2, and the same applies to FIGS. 3 to 10 and FIGS. 13 to 15.
  • FIG. 3 is a schematic view showing a high-pressure main steam stop state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the illustration of the control device 52 is omitted.
  • FIG. 3 when the high-pressure main steam 22 is stopped, no steam is introduced into the high-pressure blade row 2, and the differential pressure in the high-pressure blade row 2 becomes zero. Therefore, as shown in FIG. 14, the thrust force indicated by the numeral 3 with a circle is also zero.
  • the differential pressure in the high-pressure dummy portion 12 becomes very small, and the thrust force indicated by the numeral 4 with a circle becomes a value close to zero. Therefore, as shown in FIG. 3, even when the high-pressure main steam 22 is stopped, the steam turbine 1 as a whole has a thrust balance.
  • FIG. 4 is a schematic view showing a reheat steam and low-pressure main steam stop state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • FIG. 4 when the reheat steam 24 and the low pressure steam 26 are stopped, no steam is introduced into the intermediate pressure chamber cascade 4 and the low pressure chamber cascade 6, and the front and rear of the intermediate pressure chamber cascade 4 and the low pressure chamber cascade 6. These pressures are almost vacuum.
  • the thrust force generated by the high-pressure blade row 2 (number 3 with a circle) is substantially the same as during normal operation, but the thrust force generated by the high-pressure dummy part 12 (number 2 with a circle) is Since the pressure at the outlet portion of the high-pressure dummy portion 12 increases by the amount corresponding to the vacuum, the thrust force applied in the direction of the high-pressure dummy portion (right side in FIG. 4) increases.
  • the control device 52 determines that the reheated steam 24 is not introduced from the detected value of the pressure gauge 54 (not shown in FIG. 4), it opens the valve 43. As a result, the front and rear of the intermediate pressure dummy portion 14 are communicated so that the differential pressure becomes substantially zero. That is, when compared with the prior art, it is possible to stop the generation of the thrust force of the intermediate pressure dummy portion 14, which was the cause of the occurrence of an excessive thrust force in the left direction in the figure when the reheat steam 24 is not introduced in the prior art. Then, the low pressure dummy portion 16 having a diameter designed to generate a thrust force in the low pressure dummy portion side direction (left side direction in FIG.
  • the low pressure dummy portion 16 by an amount substantially corresponding to the thrust force increased in the HP system.
  • the thrust force is balanced as a whole of the steam turbine 1 by the generated thrust force.
  • the diameter of the low-pressure dummy portion 16 is designed so that the thrust force is balanced.
  • the diameter of the intermediate pressure dummy portion 14 is designed so that the balance of the thrust force when the main steam is stopped is matched.
  • FIG. 5 is a schematic view showing a state when the valve 43 operates abnormally in the normal operation state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the front and rear of the intermediate pressure dummy portion 14 are connected to increase the pressure on the outlet side of the intermediate pressure dummy portion 14, and the intermediate pressure dummy portion 14.
  • the thrust force generated by the intermediate pressure dummy portion 14 becomes substantially 0 and the thrust force cannot be balanced.
  • the detection value of the pressure gauge 56 provided in the thrust balance pipe 30 increases.
  • the control device 52 determines that the valve 43 or the valve 41 is operating abnormally.
  • FIG. 6 is a schematic view showing a state after the valve 43 operates abnormally and takes measures in the normal operation state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the differential pressure across the intermediate pressure dummy portion 14 is generated to generate a thrust force, and the balance of the thrust force of the entire steam turbine 1 is generated. Can be removed.
  • the pipe 44 and the valve 45 need to be designed in advance so that when the valve 43 is abnormally opened, approximately the same amount of steam that flows through the valve 43 flows through the pipe 44 by opening the valve 45. There is. As described above, even if an abnormality occurs in the valve 43, the balance of the thrust force can be maintained, and the reliability of the steam turbine can be improved with simple equipment.
  • FIG. 7 is a schematic view showing a state in which the valve 41 operates abnormally in the normal operation state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the valve 41 when the valve 41 is abnormally closed due to a failure or the like, the steam on the outlet side of the intermediate pressure dummy portion 14 cannot move to the intermediate pressure blade row 4 via the thrust balance pipe 30. .
  • steam due to the differential pressure before and after the intermediate pressure dummy portion 14, steam leaks from the labyrinth seal provided on the outer peripheral portion of the intermediate pressure dummy portion 14 to the outlet side of the intermediate pressure dummy portion 14.
  • the differential pressure across the portion 14 becomes substantially zero, and the thrust force generated by the intermediate pressure dummy portion 14 becomes substantially zero, making it impossible to balance the thrust force.
  • the detection value of the pressure gauge 56 provided in the thrust balance pipe 30 increases.
  • the control device 52 determines that the valve 43 or the valve 41 has operated abnormally.
  • FIG. 8 is a schematic view showing a state after the valve 41 operates abnormally and takes measures in the normal operation state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the intermediate-pressure dummy portion 14 generates a differential pressure across the front and the thrust force is generated again, and the balance of the thrust force of the entire steam turbine 1 is balanced. It will come out. As described above, even if an abnormality occurs in the valve 41, the balance of the thrust force can be maintained, and the reliability of the steam turbine can be improved with simple equipment.
  • FIG. 9 is a schematic diagram showing a state in which the valve 43 operates abnormally in the reheat steam and low pressure main steam stop state of the steam turbine provided with the thrust adjustment dummy portion of the present invention.
  • the valve 43 needs to be opened in the reheat steam and low-pressure main steam stop state of the steam turbine, but FIG. 9 shows a case where the valve 43 is closed without being operated. .
  • FIG. 9 when the valve 43 is closed, the front and rear of the intermediate pressure dummy portion 14 are not communicated with each other, so that a differential pressure is generated between the front and rear of the intermediate pressure dummy portion 14 and a thrust force is generated.
  • the thrust force causes an unbalance in the thrust force of the entire steam turbine 1.
  • the unbalance is larger than the conventional one by the amount of the medium pressure dummy portion being larger.
  • the detected value of the pressure gauge 56 provided in the thrust balance pipe 30 falls.
  • the control device 52 determines that the valve 43 is not operating normally.
  • FIG. 10 is a schematic view showing a state after a countermeasure is taken because the valve 43 does not operate normally in the reheat steam and low pressure main steam stop state of the steam turbine provided with the thrust adjustment dummy portion of the present invention. .
  • the differential pressure before and after the intermediate pressure dummy portion 14 becomes substantially zero due to the leakage of the intermediate pressure dummy portion 14, and the thrust force at the intermediate pressure dummy portion 14 becomes substantially zero.
  • the pressure balance is the same as in the case where no abnormality occurs in the valve 43, and the thrust force can be balanced. That is, even if an abnormality occurs in the valve 43, the balance of thrust force can be maintained.
  • FIG. 11 is a schematic view showing a high / medium pressure steam turbine provided with a dummy for adjustment in the second embodiment.
  • the high and medium pressure steam turbine 101 shown in FIG. 11 has a casing (not shown) formed around a rotating shaft (not shown), and an introduction portion (not shown) for high-pressure steam and medium pressure steam is provided in the casing. It has.
  • the rotary shaft is provided with a high-pressure chamber blade row 102 to which high-pressure steam is supplied and an intermediate-pressure chamber blade row 104 to which medium-pressure steam is supplied so that the steam inlets face each other.
  • a first dummy portion 111 and a second dummy portion 112 are provided between the steam inlet side of the high pressure chamber cascade 2 and the steam inlet side of the intermediate pressure chamber cascade 104, and the high pressure chamber blade A third dummy portion 113 is provided on the steam outlet side of the row 2. Further, a balance pipe 121 communicating between the first dummy portion 111 and the second dummy portion 112 and before and after the third dummy portion 113, an outlet of the third dummy portion 113, and a medium pressure chamber cascade A balance pipe 122 communicating with the outlet is provided.
  • the balance pipe 121 is provided with a valve 141 before and after the third dummy portion, and the balance pipe 122 is provided with a valve 142.
  • the balance of thrust force during normal operation, high pressure steam stop (HP closed) and medium pressure steam stop (IP closed) is summarized in the table in FIG.
  • the value of the thrust force in the table in FIG. 7 represents the design value relatively and is not an absolute numerical value.
  • the thrust force can be roughly balanced during normal operation and when the HP is closed.
  • the IP is closed
  • a rightward unbalance occurs as a whole due to the thrust force generated mainly in the third dummy portion 113.
  • the valve 41 (CV1) is opened here, the front and rear of the third dummy portion 113 are By reducing the differential pressure, it is possible to balance the thrust force of the entire steam turbine.
  • the differential pressure of the third dummy portion 113 can be reduced by the leakage of the third dummy portion 113 by appropriately closing the valve 142, Similarly, the thrust force can be balanced.
  • FIG. 12 is a schematic view showing a high / medium pressure steam turbine provided with a dummy for adjustment in the third embodiment. 12, the same reference numerals as those in FIG. 11 represent the same items, and the description thereof is omitted.
  • a first dummy portion 111 ′ having the same diameter as that of the first dummy portion 111 and integrated with the second dummy portion 112 shown in FIG. 11 is provided.
  • the balance tube 121 is not provided.
  • the balance pipe 122 is provided with a bypass pipe 123 that bypasses the valve 42, and the bypass pipe 123 is provided with an orifice 124.
  • the thrust force can be balanced in the same manner as in the second embodiment except when the IP is closed, and the thrust force can be balanced by adjusting the opening degree of the valve 142 when the IP is closed.
  • the valve 42 may be closed and the orifice used.
  • the size of the orifice 123 is determined so that the pressure on the back side of the third dummy portion 113 is appropriate when the valve 42 is fully closed. That is, when the IP is closed, the valve 142 is closed, and the steam flows through the orifice 124, so that the back side pressure of the third dummy portion is appropriately maintained, and the entire thrust is balanced.
  • a steam turbine and a steam turbine that can balance the thrust force acting on the rotating shaft of the turbine in the entire operation range of the steam turbine without increasing the size of the low-pressure dummy part and without using complicated electric control. It can be used as a thrust adjustment method.

Abstract

少なくとも高圧翼列、中圧翼列および複数のダミー部が共通の回転軸に取り付けられた蒸気タービンであって、中圧室への蒸気の流入の有無を検知する検知手段と、前記中圧室への蒸気の流入が停止したとき、前記複数のダミー部のうち、片側が前記中圧室の一部に連通した調圧対象ダミー部の両側の圧力差を減少させる減圧手段と、前記検知手段の検知結果に基づいて前記減圧手段を制御する制御手段とを備える。

Description

蒸気タービンおよび蒸気タービンのスラスト調整方法
 本発明は、蒸気タービンおよび蒸気タービンのスラスト調整方法に関するものであり、特に、少なくとも高圧室翼列、中圧室翼列および複数のダミー部が共通の回転軸に取り付けられた蒸気タービンの回転軸に発生するスラスト力を、バランスさせることが可能な蒸気タービンおよび蒸気タービンのスラスト調整方法に関するものである。
 蒸気タービンには、回転軸に発生するスラスト力を受けるためにスラスト軸受が設置されている。スラスト軸受の負荷能力には限界があるため、いかなる運転状態であっても回転軸に発生するスラスト力は軸受の負荷能力を超えないように、スラストバランスを考慮した設計を行う必要がある。
 そのため、翼列と同じ回転軸にダミー部(ダミーピストン)を取り付け、該ダミー部によって反スラスト方向に作用する力を発生させ、回転軸全体として軸方向に作用する力をバランスさせることで、いかなる運転状態であってもスラスト軸受が軸受の負荷能力範囲内に納まるようにしている。
 図13は、従来のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態を示す概略図である。
 図13に示した蒸気タービン1は、回転軸10を囲んで車室(不図示)が形成され、該車室には高圧主蒸気22、再熱蒸気24および低圧主蒸気26それぞれの導入部(不図示)を備えている。
 また、回転軸10には、高圧主蒸気22が供給される高圧翼列2、再熱蒸気24が供給される中圧翼列4、低圧主蒸気26が供給される低圧翼列6が順に設けられており、中圧翼列4と低圧翼列6は蒸気の入口側が同方向であり、高圧翼列2の蒸気入口側と対向するように配置されている。また、高圧翼列2の蒸気入口側と中圧翼列4の蒸気入口側との間には、高圧ダミー部12が設けられており、高圧翼列2の蒸気出口側には、順に中圧ダミー部14と低圧ダミー部16が設けられている。また、中圧ダミー部14の出口側と、中圧翼列4の後半部とを連通するスラストバランス管30が設けられている。
 以上の構成の蒸気タービン1において、図示しないボイラ等からの高圧主蒸気22は、高圧翼列2に入って、回転軸1に回転力を与えながら、次第に温度・圧力を低下させていく。そして、高圧翼列2で仕事を終えた蒸気は、低温再熱蒸気28となって蒸気タービン1外に排出される。蒸気タービン1から排出された低温再熱蒸気は、蒸気タービン外部で再熱ボイラ(不図示)により再加熱されて再熱蒸気24となる。
 前記再熱ボイラで加熱された中圧の再熱蒸気24は、中圧翼列4を通って回転軸10に回転力を与えながら、次第に温度・圧力を低下させていく。また、低圧主蒸気26は、低圧翼列6を通って回転軸10に回転力を与えながら、次第に温度・圧力を低下させていく。
 また、高圧主蒸気22の一部は高圧(HP)ダミー部12を流れ、高圧翼列2で仕事をして温度・圧力の下がった低温再熱蒸気28の一部は中圧(IP)ダミー部14及び低圧(LP)ダミー部16を流れる。
 この際、それぞれの翼列及びダミー部で回転軸1に発生するスラスト力を○付きの数字1~6で示すとともに、各翼列(ダミー部)の間の圧力値の一例を図13に示している。○付きの数字1~6はそれぞれ、低圧ダミー部16、中圧ダミー部14、高圧翼列2、高圧ダミー部12、中圧翼列4、低圧翼列6で発生するスラスト力を示している。翼列に発生するスラスト力は、回転軸に設けられた翼列に作用するガス力に基づいて算出することができる。また、ダミー部に発生するスラスト力はダミー部前後の差圧と断面積より算出することができる。
 図13に示したように、各ダミー部12、14、16及びスラストバランス管30を設けることで、蒸気圧力によるスラストのバランスが取ることができる。つまり、高圧室翼列2のスラストは高圧ダミー部12と、中圧室翼列4のスラストは中圧ダミー部14と、低圧室翼列6のスラストは低圧ダミー部16とバランスして、蒸気タービン1全体としてスラストのバランスが取れている。
 また、蒸気タービンにおいては、スラスト軸受の損傷を防止するためには、通常運転時に加えて、高圧主蒸気が停止した場合、及び再熱蒸気が停止した場合の何れについてもスラストのバランスをとる必要がある。
 まず、図13に示した蒸気タービン1において、トラブルや運転調整等により高圧主蒸気22を停止した場合について考える。図14は、従来のスラスト調整用ダミー部を設けた蒸気タービンの高圧主蒸気停止状態を示す概略図である。
 図14において、高圧主蒸気22を停止すると、高圧翼列2に導入される蒸気がなくなり、高圧翼列2における差圧が0となる。そのため、図14に示したように○付き数字3で示したスラスト力も0となる。また高圧ダミー部12における差圧も非常に小さくなり○付き数字4で示したスラスト力も0に近い値となる。そのため、図14に示したように、高圧主蒸気22の停止状態においても、蒸気タービン1全体としてはスラストバランスがとれている。
 次に、図13に示した蒸気タービン1において、トラブルや運転調整等により再熱蒸気24及び低圧主蒸気26を停止した場合について考える。図15は、従来のスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態を示す概略図である。
 図15において、再熱蒸気24及び低圧蒸気26を停止すると、中圧翼列4及び低圧翼列6に導入される蒸気がなくなり、中圧翼列4及び低圧翼列6の前後の圧力は何れもほぼ真空となる。そして、中圧翼列4の後半部とスラストバランス管30によって連通されている中圧ダミー部14と低圧ダミー部16との間の圧力もほぼ真空となる。
 この場合、LP系(低圧部分)については低圧翼列6、低圧ダミー部16ともに前後差圧が略0となるため発生するスラスト力は略0となる。
 IP系(中圧部分)については中圧ダミー部14で発生するスラスト力(○付き数字2)は出口部の圧力がほぼ真空となる分だけ増加し、中圧翼列4の前後の差圧が略0となるので中圧翼列4で発生するスラスト力(○付き数字5)は略0となるため、中圧ダミー部側方向(図15における左側方向)へかかるスラスト力が増大する。
 また、HP系(高圧部分)については高圧翼列2で発生するスラスト力(○付き数字3)は通常運転時と略同じであるものの、高圧ダミー部12で発生するスラスト力(○付き数字2)は高圧ダミー部12出口部の圧力がほぼ真空となる分だけ増加するため、高圧ダミー部方向(図15における右側方向)へかかるスラスト力が増大する。
 ここで、IP系によって増大するスラスト力は、HP系によって増大するスラスト力よりも大きいため、蒸気タービン1全体としては図15における左側方向のスラスト力が増大し、スラスト力のバランスが取れなくなる。
 再熱蒸気を停止した場合においてもスラスト力のバランスをとるためには、高圧ダミー部12を大きくして図15における右側方向のスラスト力を増大させてバランスをとることが考えられるが、この場合通常運転時にスラスト力のバランスが取れなくなるため適当ではない。
 そこで、図13~図15において、中圧ダミー部14を小さくするとともに、低圧ダミー部16を大きくすることで、通常時運転時、高圧主蒸気停止時及び再熱蒸気停止時の何れにおいてもスラスト力のバランスを取ることができる。
 また、その他の技術として、特許文献1には蒸気タービンに発生するスラスト力を軸受メタル温度等に基づき計測し、その結果に基づいてダミー部に作用するスラスト力を電気制御を用いて調整し、蒸気タービン全体のスラスト力のバランスを取る技術が開示されている。
特開平8-189302号公報
 しかしながら、図13~図15を用いて説明した従来の技術においては、通常運転時、高圧主蒸気停止時に加えて、再熱蒸気停止時においてもスラストのバランスを取るためには、前述の通り、中圧ダミー部14を小さくし、低圧ダミー部16を大きくする必要がある。低圧ダミー部16を大きくした場合、その外周部に位置するケーシングが大きくなるため、必然的に蒸気タービン1全体が大型化してコストアップの原因となることに加え、低圧ダミー部16の径が大きくなるとそこからグランドに漏れ出る蒸気量が増えて、蒸気タービン1の性能が低下する可能性がある。特に近年、低圧室翼列の長大化が進み、それに伴って低圧ダミー部が大きくなる傾向にあり、スラスト力のバランスを取るために低圧ダミー部を大きくすることは適当ではない。
 また、特許文献1に開示された技術のように、電気制御を用いてスラスト力のバランスをとる技術では、電気系統の信頼性が問題になる場合も想定される。
 従って、本発明は従来技術の問題点に鑑み、低圧ダミー部を大型化することなく、しかも複雑な電気制御を用いることなく、蒸気タービンの運転範囲全域において、タービンの回転軸に作用するスラスト力のバランスを取ることができる蒸気タービン及び蒸気タービンのスラスト調整方法を提供することを目的とする。
 上記の課題を解決するための蒸気タービンの発明として、少なくとも高圧翼列、中圧翼列および複数のダミー部が共通の回転軸に取り付けられた蒸気タービンであって、中圧室への蒸気の流入の有無を検知する検知手段と、前記中圧室への蒸気の流入が停止したとき、前記複数のダミー部のうち、片側が前記中圧室の一部に連通した調圧対象ダミー部の両側の圧力差を減少させる減圧手段と、前記検知手段の検知結果に基づいて前記減圧手段を作動させる制御手段とを備えることを特徴とする。
 これにより、中圧室への上記の流入が停止した場合に中圧ダミー部が発生するスラスト力をなくすことができるから、従来では中圧ダミー部が発生するスラスト力をバランスさせるために必要であった低圧ダミー部の径の拡大が不要となるため、低圧ダミー部の径を小さくすることができ、しかも複雑な電気制御を用いることなく、蒸気タービンの運転範囲全域において、タービンの回転軸に作用するスラスト力のバランスを取ることができる。
 また、前記減圧手段は、前記調圧対象ダミー部の両側を連結する第1管路と、該第1管路に配設され前記調圧対象ダミー部の両側の圧力差を調節する第1弁とを含むとよい。
 これにより、簡単な機構でタービンの回転軸に作用するスラスト力のバランスを取ることができる。
 また、前記減圧手段の前記片側および前記中圧室の出口とを連結する第3管路と、前記第3管路に配設された第3弁とをさらに備え、前記制御手段は、前記中圧室への蒸気の流入が停止していないにもかかわらず前記第1弁が開いた場合、前記調圧対象ダミー部の両側に圧力差が生じるように前記第3弁を開くとよい。
 これにより、前記第1弁の故障時においても、スラスト力のバランスを取ることができ、蒸気タービンの信頼性が向上する。
 また、前記減圧手段は、前記中圧室の前記一部および前記調圧対象ダミー部の前記片側を連結する第2管路と、該第2管路に配設され前記調圧対象ダミー部の両側の圧力差を調節する第2弁とを含み、前記中圧室への蒸気の流入が停止したとき、前記第2弁が閉じられるとよい。
 前記第2管路は、従来の蒸気タービンにも設けられている場合が多い。そのため、既設の従来の蒸気タービンを改造する際に配管を新設することなく、既設の前記第2管路に前記第2弁と取り付けるだけで減圧手段を設けることができ、改造が簡単である。
 また、前記第2弁をバイパスするバイパス管路を配設するとともに、該バイパス管路にオリフィスを設けるとよい。
 これにより、スラストバランスの簡単に適切に保つことができる。
 また、前記減圧手段の前記片側および前記中圧室の出口とを連結する第3管路と、前記第3管路に配設された第3弁とをさらに備え、前記制御手段は、前記中圧室への蒸気の流入が停止していないにもかかわらず前記第2弁が閉じた場合、前記調圧対象ダミー部の両側に圧力差が生じるように前記第3弁を開くとよい。
 また、課題を解決するための蒸気タービンのスラスト調整方法の発明として、少なくとも高圧翼列、中圧翼列および複数のダミー部が共通の回転軸に取り付けられた蒸気タービンのスラスト調整方法であって、中圧室への蒸気の流入が停止したとき、前記複数のダミー部のうち片側が前記中圧室の一部に連通した調圧対象ダミー部の両側の圧力差を減少させることを特徴とする。
 また、前記調圧対象ダミー部の両側の圧力差は、前記調圧対象ダミー部の両側を連結する第1管路に配設された第1弁により減圧可能であるとよい。
 また、前記中圧室への蒸気の流入が停止していないにもかかわらず前記第1弁が開いた場合、前記片側および前記中圧室の出口とを連結する第3管路に配設された第3弁を、前記調圧対象ダミー部の両側に圧力差が生じるように開くとよい。
 また、前記調圧対象ダミー部の両側の圧力差は、前記中圧室の前記一部および前記調圧対象ダミー部の前記片側を連結する第2管路に配設された第2弁により減圧可能であるとよい。
 また、前記中圧室への蒸気の流入が停止していないにもかかわらず前記第2弁が閉じた場合、前記片側および前記中圧室の出口とを連結する第3管路に配設された第3弁を、前記調圧対象ダミー部の両側に圧力差が生じるように開くとよい。
 本発明によれば、低圧ダミー部を大型化することなく、しかも複雑な電気制御を用いることなく、蒸気タービンの運転範囲全域において、タービンの回転軸に作用するスラスト力のバランスを取ることができる蒸気タービン及び蒸気タービンのスラスト調整方法を提供することができる。
本発明の実施形態1におけるスラスト調整用ダミー部を設けた単車室再熱蒸気タービンの構成を示す構成図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの高圧主蒸気停止状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、弁が異常動作した場合の状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、弁が異常動作し対処を実施した後の状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、別の弁が異常動作した場合の状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、別の弁が異常動作し対処を実施した後の状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態において、弁が正常に動作しなかった場合の状態を示す概略図である。 本発明の実施形態1におけるスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態において、弁が異常動作し対処を実施した後の状態を示す概略図である。 実施形態2における調整用ダミー部を設けた高中圧蒸気タービンを示す概略図である。 実施形態3における調整用ダミー部を設けた高中圧蒸気タービンを示す概略図である。 従来のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態を示す概略図である。 従来のスラスト調整用ダミー部を設けた蒸気タービンの高圧主蒸気停止状態を示す概略図である。 従来のスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態を示す概略図である。
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
(実施形態1)
 図1は、本発明のスラスト調整用ダミー部を設けた単車室再熱蒸気タービンの構成を示す構成図である。図1に示した蒸気タービン1は、回転軸10を囲んで低圧車室32及び高中圧車室34が形成されている。高中圧車室34には高圧蒸気22を導入する高圧蒸気導入部23と、再熱蒸気24を導入する再熱蒸気導入部25とを備えている。また、低圧車室32には低圧蒸気26を導入する低圧蒸気導入部27を備えている。
 また、回転軸10には、高圧蒸気導入部23より高圧蒸気22が供給される高圧翼列2、再熱蒸気導入部25より再熱蒸気24が供給される中圧翼列4、低圧蒸気導入部27より低圧蒸気26が供給される低圧翼列6が順に設けられており、中圧翼列4と低圧翼列6は蒸気の入口側が同方向であり、高圧翼列2の蒸気入口側と対向するように配置されている。また、高圧翼列2の蒸気入口側と中圧翼列4の蒸気入口側との間には、高圧ダミー部12が設けられており、高圧翼列2の蒸気出口側には、順に中圧ダミー部14と低圧ダミー部16が設けられている。また、中圧ダミー部14の出口側と、中圧翼列4の一部とを連通するスラストバランス管30が設けられている。
 図2は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態を示す概略図である。図2において、図1及び従来技術の図13~図15と同一符号は同一物を表しその説明は省略する。ここで、通常状態とは、高圧蒸気22、再熱蒸気24、低圧蒸気26の何れも蒸気タービンに導入されている運転状態をいう。
 従来の図13と、本発明の実施形態1の図2との違いは、本発明においては中圧ダミー部14の径を従来よりも大きくするとともに、低圧ダミー部16の径を従来よりも小さくしている。これにより、低圧ダミー部16が大きくなり、蒸気タービン1全体がアンバランスになることを防止している。
 また、中圧ダミー部14の入口側と出口側を連通する管路42と、管路42上に弁43が設けられている。また、弁43よりも中圧ダミー部14の出口側で管路42に接続され、中圧室翼列4の出口側とを連通する管路44と、管路44上に弁45が設けられている。また、スラストバランス管30上には弁41が設けられている。
 さらに、制御装置52が設けられており、制御装置52は再熱蒸気導入口25に設けられた圧力計54の検知値を読み込むとともに、該検知値に基づいて弁41、42、43の開閉を制御するものである。通常運転時、つまり再熱蒸気24が蒸気タービン1に導入され、圧力計54が再熱蒸気24が通常示す範囲の圧力を検知している場合には、制御装置52により図2に示すように弁41を開とし、弁43及び45を閉とする。なお、以降において弁41、43、45は、開状態を黒塗り、閉状態を白抜きで表すものとする。
 なお、図2において単位kで示す数値は、当該部における例示的な圧力であって、単位はkgf/cm2であり、図3~図10及び図13~図15についても同様である。
 図2に示したように、各ダミー部12、14、16及びスラストバランス管30を設けることで、通常状態においては、蒸気圧力によるスラストのバランスが取れている。
 次に、図2に示した蒸気タービン1において、高圧主蒸気22を停止した場合について考える。図3は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの高圧主蒸気停止状態を示す概略図である。なお、図3以降においては、制御装置52の図示を省略する。
 図3において、高圧主蒸気22を停止すると、高圧翼列2に導入される蒸気がなくなり、高圧翼列2における差圧が0となる。そのため、図14に示したように○付き数字3で示したスラスト力も0となる。また高圧ダミー部12における差圧も非常に小さくなり○付き数字4で示したスラスト力も0に近い値となる。そのため、図3に示したように、高圧主蒸気22の停止状態においても、蒸気タービン1全体としてはスラストバランスがとれている。
 次に、図2に示した蒸気タービン1において、再熱蒸気24及び低圧主蒸気26を停止した場合について考える。図4は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態を示す概略図である。
 図4において、再熱蒸気24及び低圧蒸気26を停止すると、中圧室翼列4及び低圧室翼列6に導入される蒸気がなくなり、中圧室翼列4及び低圧室翼列6の前後の圧力は何れもほぼ真空となる。HP系(高圧部分)については高圧翼列2で発生するスラスト力(○付き数字3)は通常運転時と略同じであるものの、高圧ダミー部12で発生するスラスト力(○付き数字2)は高圧ダミー部12出口部の圧力がほぼ真空となる分だけ増加するため、高圧ダミー部方向(図4における右側方向)へかかるスラスト力が増大する。
 そして、制御装置52(図4には不図示)は、圧力計54(図4には不図示)の検知値から再熱蒸気24が導入されてないと判断すると、弁43を開ける。これにより、中圧ダミー部14の前後は連通されて差圧が略0となる。すなわち従来技術と比較した場合、従来技術において再熱蒸気24が導入されない場合に図の左向きの過大なスラスト力が発生する原因であった中圧ダミー部14のスラスト力発生を止めることができる。
 そして、前記HP系で増大するスラスト力分に略相当する分だけ低圧ダミー部16で低圧ダミー部側方向(図4における左側方向)のスラスト力が生じるように設計した径の低圧ダミー部16で生じるスラスト力によって蒸気タービン1全体としてスラスト力はバランスする。
 なお、予め再熱蒸気及び低圧主蒸気停止状態において、弁41、43を開とした場合にスラスト力がバランスするような径に低圧ダミー部16の径を設計しておき、通常運転時及び高圧主蒸気停止状態時のスラスト力のバランスが合うように中圧ダミー部14の径を設計しておく。この場合、上記のとおり再熱蒸気及び低圧主蒸気停止状態において中圧ダミー部14のスラスト力発生を止めることができるから、蒸気タービン全体がアンバランスになることを防止するために従来のように低圧ダミー部16の径を大きくする必要がない。よって、低圧ダミー部16の径を小さくすることでグランドへの蒸気の漏出を減少させることができ、蒸気タービンの性能を向上させることができる。
 次に弁41、43、45を設けることにより起こる可能性のある異常状態に対する対応について説明する。
 まず、弁43の異常時について説明する。
 図5は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、弁43が異常動作した場合の状態を示す概略図である。
 図5において、弁43が故障等の原因により異常動作をして開となると、中圧ダミー部14の前後は連通されて中圧ダミー部14出口側の圧力が上昇し、中圧ダミー部14の前後差圧は略0となり、中圧ダミー部14によって生じるスラスト力が略0となってスラスト力のバランスが取れなくなる。
 この場合、スラストバランス管30に設けた圧力計56の検知値が上昇する。該検知値が規定以上に上昇すると制御装置52(図5には不図示)により弁43又は弁41が異常動作をしていると判断する。
 制御装置52により弁43又は弁41が異常動作をしたと判断すると、制御装置52は弁45を開とする。
 図6は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、弁43が異常動作し対処を実施した後の状態を示す概略図である。
 制御装置52により弁45を開とすると、管路44によって中圧ダミー部14の出口側と中圧室翼列4の出口側が連通され、中圧ダミー部14の出口側の蒸気の一部が中圧室翼列4の出口側に流れて中圧ダミー部14の出口側が減圧され、再び中圧ダミー部14の前後差圧ができてスラスト力も発生し、蒸気タービン1全体のスラスト力のバランスがとれるようになる。なお、管路44及び弁45は、弁43の異常開時に、弁45を開けることで弁43を通過する蒸気量と略同量の蒸気が管路44を流れるように予め設計しておく必要がある。
 以上のとおり、弁43に異常が発生してもスラスト力のバランスを保ち続けることができ、簡易な設備で蒸気タービンの信頼性を高めることができる。
 次に弁41の異常時について説明する。
 図7は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、弁41が異常動作した場合の状態を示す概略図である。
 図7において、弁41が故障等の原因により異常動作をして閉となると、中圧ダミー部14出口側の蒸気がスラストバランス管30を介して中圧翼列4に移動することができなくなる。一方で、中圧ダミー部14の前後の差圧によって、中圧ダミー部14外周部に設けられているラビリンスシールから蒸気が中圧ダミー部14出口側へと漏出してくるため、中圧ダミー部14の前後差圧は略0となり、中圧ダミー部14によって生じるスラスト力が略0となってスラスト力のバランスが取れなくなる。
 この場合、スラストバランス管30に設けた圧力計56の検知値が上昇する。該検知値が規定以上に上昇すると制御装置52(図5には不図示)により弁43又は弁41が異常動作をしたと判断する。
 制御装置52により弁43又は弁41が異常になったと判断すると、制御装置52は弁45を開とする。
 図8は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの通常運転状態において、弁41が異常動作し対処を実施した後の状態を示す概略図である。
 制御装置52により弁45を開とすると、管路44によって中圧ダミー部14の出口側と中圧室翼列4の出口側が連通され、中圧ダミー部14の出口側の蒸気の一部が中圧翼列4の出口側に流れて中圧ダミー部14の出口側が減圧され、再び中圧ダミー部14の前後差圧ができてスラスト力も発生し、蒸気タービン1全体のスラスト力のバランスがとれるようになる。
 以上のとおり、弁41に異常が発生してもスラスト力のバランスを保ち続けることができ、簡易な設備で蒸気タービンの信頼性を高めることができる。
 次に、再熱蒸気及び低圧主蒸気停止時における弁41の異常時について説明する。
 図9は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態において、弁43が異常動作した場合の状態を示す概略図である。
 図3を用いて説明したように、蒸気タービンの再熱蒸気及び低圧主蒸気停止状態では弁43を開ける必要があるが、弁43が作動せず閉まった状態の場合を図9では示している。
 図9において、弁43が閉まっていると中圧ダミー部14の前後が連通されなくなるため、中圧ダミー部14の前後に差圧が生じ、スラスト力が発生する。該スラスト力により蒸気タービン1全体のスラスト力にアンバランスが生じる。しかも、該アンバランスは、本発明においては中圧ダミー部径が大きい分だけ従来よりも大きなものとなる。
 この場合、スラストバランス管30に設けた圧力計56の検知値が降下する。該検知値が規定以下に加工すると制御装置52(図9には不図示)により弁43が正常に作動していないと判断する。
 制御装置52により弁43が正常に作動していないと判断すると、制御装置52は弁41を閉じる。
 図10は、本発明のスラスト調整用ダミー部を設けた蒸気タービンの再熱蒸気及び低圧主蒸気停止状態において、弁43が正常に作動せず対処を実施した後の状態を示す概略図である。
 弁41を閉じることで、中圧ダミー部14リークによって、中圧ダミー部14前後の差圧が略0となり、中圧ダミー部14でのスラスト力が略0となる。
 これにより、図4に示したように弁43に異常が発生していない場合と同様の圧力バランスとなり、スラスト力のバランスも取れるようになる。
 つまり、弁43に異常が発生してもスラスト力のバランスを保ち続けることができる。
(実施形態2)
 本発明の技術は、高中圧タービンにも同様に適用することができる。
 図11は、実施形態2における調整用ダミー部を設けた高中圧蒸気タービンを示す概略図である。
 図11に示した高中圧蒸気タービン101は、回転軸(不図示)を囲んで車室(不図示)が形成され、該車室には高圧蒸気、中圧蒸気それぞれの導入部(不図示)を備えている。
 また、前記回転軸には、高圧蒸気が供給される高圧室翼列102、中圧蒸気が供給される中圧室翼列104がそれぞれ蒸気の入口が対向するように設けられている。また、高圧室翼列2の蒸気入口側と中圧室翼列104の蒸気入口側との間には、第1のダミー部111及び第2のダミー部112が設けられており、高圧室翼列2の蒸気出口側には、第3のダミー部113が設けられている。また、第1のダミー部111と第2のダミー部112の間、第3のダミー部113の前後のそれぞれを連通するバランス管121と、第3のダミー部113の出口と中圧室翼列の出口を連通するバランス管122が設けられている。バランス管121は第3のダミー部の前後間に弁141、バランス管122には弁142が設けられている。
 以上の高中圧蒸気タービンにおいて、通常運転時、高圧蒸気停止時(HP閉)及び中圧蒸気停止時(IP閉)の状態におけるスラスト力のバランスを図11内の表にまとめた。なお、図7内の表におけるスラスト力の値は設計値を相対的に表したものであり、絶対的な数値ではない。
 図7に示したように、通常運転時、HP閉時においてはスラスト力の概ねバランスをとることができる。一方でIP閉には主に第3のダミー部113に発生するスラスト力によって全体として右向きのアンバランスが発生するが、ここで弁41(CV1)を開けることで第3のダミー部113の前後差圧を減少させることで蒸気タービン全体のスラスト力のバランスを取ることができる。なお、IP閉時において弁141を開けることに替えて、弁142を適度に閉じることによっても、第3のダミー部113のリークによって第3のダミー部113の差圧を減少させることができ、同様にスラスト力のバランスをとることができる。
(実施形態3)
 図12は、実施形態3における調整用ダミー部を設けた高中圧蒸気タービンを示す概略図である。
 図12において図11と同一符号は同一物を表し、その説明は省略する。
 図12においては図11に示した第2のダミー部112を第1のダミー部111と同径とし一体化した第1のダミー部111’を設けている。またバランス管121を設けていない。さらに、バランス管122には、弁42をバイパスするバイパス配管123を設け、該バイパス配管123にオリフィス124を設けている。
 これにより、IP閉時以外は実施形態2と同様にスラスト力のバランスを取ることができ、IP閉時においては弁142の開度を調整することでスラスト力のバランスを取ることができる。
 この場合において、弁142の開度を微開にする必要があるなど、弁開度の調整が難しい場合には弁42を閉じてオリフィスを使用するとよい。この場合、オリフィス123のサイズを弁42が全閉となったときに第3のダミー部113裏側圧が適切となるように決定しておく。
 即ち、IP閉の場合には弁142が閉じ、オリフィス124を通って蒸気が流れることで第3ダミー部の裏側圧が適切に保たれ、全体のスラストのバランスが取れることとなる。
 低圧ダミー部を大型化することなく、しかも複雑な電気制御を用いることなく、蒸気タービンの運転範囲全域において、タービンの回転軸に作用するスラスト力のバランスを取ることができる蒸気タービン及び蒸気タービンのスラスト調整方法として利用することができる。
 

Claims (11)

  1.  少なくとも高圧翼列、中圧翼列および複数のダミー部が共通の回転軸に取り付けられた蒸気タービンであって、
     中圧室への蒸気の流入の有無を検知する検知手段と、
     前記中圧室への蒸気の流入が停止したとき、前記複数のダミー部のうち、片側が前記中圧室の一部に連通した調圧対象ダミー部の両側の圧力差を減少させる減圧手段と、
     前記検知手段の検知結果に基づいて前記減圧手段を制御する制御手段とを備えることを特徴とする蒸気タービン。
  2.  前記減圧手段は、前記調圧対象ダミー部の両側を連結する第1管路と、該第1管路に配設され前記調圧対象ダミー部の両側の圧力差を調節する第1弁とを含むことを特徴とする請求項1に記載の蒸気タービン。
  3.  前記減圧手段の前記片側および前記中圧室の出口とを連結する第3管路と、
     前記第3管路に配設された第3弁とをさらに備え、
     前記制御手段は、前記中圧室への蒸気の流入が停止していないにもかかわらず前記第1弁が開いた場合、前記調圧対象ダミー部の両側に圧力差が生じるように前記第3弁を開くことを特徴とする請求項2に記載の蒸気タービン。
  4.  前記減圧手段は、前記中圧室の前記一部および前記調圧対象ダミー部の前記片側を連結する第2管路と、該第2管路に配設され前記調圧対象ダミー部の両側の圧力差を調節する第2弁とを含み、前記中圧室への蒸気の流入が停止したとき、前記第2弁が閉じられることを特徴とする請求項1乃至3のいずれか一項に記載の蒸気タービン。
  5.  前記第2弁をバイパスするバイパス管路を配設するとともに、該バイパス管路にオリフィスを設けたことを特徴とする請求項4に記載の蒸気タービン。
  6.  前記減圧手段の前記片側および前記中圧室の出口とを連結する第3管路と、
     前記第3管路に配設された第3弁とをさらに備え、
     前記制御手段は、前記中圧室への蒸気の流入が停止していないにもかかわらず前記第2弁が閉じた場合、前記調圧対象ダミー部の両側に圧力差が生じるように前記第3弁を開くことを特徴とする請求項4に記載の蒸気タービン。
  7.  少なくとも高圧翼列、中圧翼列および複数のダミー部が共通の回転軸に取り付けられた蒸気タービンのスラスト調整方法であって、
     中圧室への蒸気の流入が停止したとき、前記複数のダミー部のうち片側が前記中圧室の一部に連通した調圧対象ダミー部の両側の圧力差を減少させることを特徴とする蒸気タービンのスラスト調整方法。
  8.  前記調圧対象ダミー部の両側の圧力差は、前記調圧対象ダミー部の両側を連結する第1管路に配設された第1弁により減圧可能であることを特徴とする請求項7に記載の蒸気タービンのスラスト調整方法。
  9.  前記中圧室への蒸気の流入が停止していないにもかかわらず前記第1弁が開いた場合、前記片側および前記中圧室の出口とを連結する第3管路に配設された第3弁を、前記調圧対象ダミー部の両側に圧力差が生じるように開くことを特徴とする請求項8に記載の蒸気タービンのスラスト調整方法。
  10.  前記調圧対象ダミー部の両側の圧力差は、前記中圧室の前記一部および前記調圧対象ダミー部の前記片側を連結する第2管路に配設された第2弁により減圧可能であることを特徴とする請求項7乃至9のいずれか一項に記載の蒸気タービンのスラスト調整方法。
  11.  前記中圧室への蒸気の流入が停止していないにもかかわらず前記第2弁が閉じた場合、前記片側および前記中圧室の出口とを連結する第3管路に配設された第3弁を、前記調圧対象ダミー部の両側に圧力差が生じるように開くことを特徴とする請求項10に記載の蒸気タービンのスラスト調整方法。
PCT/JP2011/061109 2010-06-30 2011-05-13 蒸気タービンおよび蒸気タービンのスラスト調整方法 WO2012002051A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11800520.6A EP2589747B1 (en) 2010-06-30 2011-05-13 Vapour turbine and vapour turbine thrust adjustment method
CN201180025267.0A CN102906373B (zh) 2010-06-30 2011-05-13 蒸气轮机及蒸气轮机的推力调整方法
KR1020127031324A KR101466457B1 (ko) 2010-06-30 2011-05-13 증기 터빈 및 증기 터빈의 스러스트 조정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010148624A JP5517785B2 (ja) 2010-06-30 2010-06-30 蒸気タービンおよび蒸気タービンのスラスト調整方法
JP2010-148624 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002051A1 true WO2012002051A1 (ja) 2012-01-05

Family

ID=45401786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061109 WO2012002051A1 (ja) 2010-06-30 2011-05-13 蒸気タービンおよび蒸気タービンのスラスト調整方法

Country Status (6)

Country Link
US (1) US20120017592A1 (ja)
EP (1) EP2589747B1 (ja)
JP (1) JP5517785B2 (ja)
KR (1) KR101466457B1 (ja)
CN (1) CN102906373B (ja)
WO (1) WO2012002051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105201B2 (en) 2017-03-16 2021-08-31 Mitsubishi Heavy Industries Compressor Corporation Steam turbine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222057A1 (de) * 2014-10-29 2016-05-04 Siemens Aktiengesellschaft Turbine mit Axialdruckausgleich
US10247029B2 (en) * 2016-02-04 2019-04-02 United Technologies Corporation Method for clearance control in a gas turbine engine
US10871072B2 (en) * 2017-05-01 2020-12-22 General Electric Company Systems and methods for dynamic balancing of steam turbine rotor thrust
CN112412548B (zh) * 2020-11-23 2021-12-31 东方电气集团东方汽轮机有限公司 一种汽轮机变工况下轴向推力的调整系统及其使用方法
KR102525617B1 (ko) * 2021-02-04 2023-04-24 한국수력원자력 주식회사 발전소의 밸런스 피스톤 축추력 조정 장치
CN113047911B (zh) * 2021-03-10 2022-01-14 东方电气集团东方汽轮机有限公司 一种推力平衡结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113101U (ja) * 1988-01-27 1989-07-31
JPH08189302A (ja) 1995-01-06 1996-07-23 Mitsubishi Heavy Ind Ltd スラスト自動調整装置
JP2004190672A (ja) * 2002-12-06 2004-07-08 General Electric Co <Ge> 大量抽気を伴う複合サイクル蒸気タービンの能動スラスト制御システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424138A1 (de) * 1984-06-30 1986-01-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Luftspeichergasturbine
US4917570A (en) * 1988-05-13 1990-04-17 Westinghouse Electric Corp. Turbine shaft axial load protection system
US5167484A (en) * 1990-10-01 1992-12-01 General Electric Company Method for thrust balancing and frame heating
JP3143986B2 (ja) * 1991-10-14 2001-03-07 株式会社日立製作所 一軸多段遠心圧縮機
US6310414B1 (en) * 1994-06-21 2001-10-30 Rotoflow Corporation Shaft bearing system
US6443690B1 (en) * 1999-05-05 2002-09-03 Siemens Westinghouse Power Corporation Steam cooling system for balance piston of a steam turbine and associated methods
US6957945B2 (en) * 2002-11-27 2005-10-25 General Electric Company System to control axial thrust loads for steam turbines
US7195443B2 (en) * 2004-12-27 2007-03-27 General Electric Company Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
US7632059B2 (en) * 2006-06-29 2009-12-15 General Electric Company Systems and methods for detecting undesirable operation of a turbine
US7937928B2 (en) * 2008-02-29 2011-05-10 General Electric Company Systems and methods for channeling steam into turbines
US8147185B2 (en) * 2009-01-22 2012-04-03 General Electric Company Systems, methods, and apparatus for controlling gas leakage in a turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113101U (ja) * 1988-01-27 1989-07-31
JPH08189302A (ja) 1995-01-06 1996-07-23 Mitsubishi Heavy Ind Ltd スラスト自動調整装置
JP2004190672A (ja) * 2002-12-06 2004-07-08 General Electric Co <Ge> 大量抽気を伴う複合サイクル蒸気タービンの能動スラスト制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105201B2 (en) 2017-03-16 2021-08-31 Mitsubishi Heavy Industries Compressor Corporation Steam turbine

Also Published As

Publication number Publication date
JP5517785B2 (ja) 2014-06-11
EP2589747B1 (en) 2018-08-15
EP2589747A4 (en) 2014-08-27
KR20130004403A (ko) 2013-01-09
CN102906373B (zh) 2015-02-18
JP2012012970A (ja) 2012-01-19
KR101466457B1 (ko) 2014-11-28
CN102906373A (zh) 2013-01-30
EP2589747A1 (en) 2013-05-08
US20120017592A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5517785B2 (ja) 蒸気タービンおよび蒸気タービンのスラスト調整方法
JP6652662B2 (ja) タービン及びタービンシステム
US8650878B2 (en) Turbine system including valve for leak off line for controlling seal steam flow
EP2426318B1 (en) System for controlling thrust in steam turbine
JP6853875B2 (ja) 蒸気タービン
EP2400113B1 (en) System for controlling thrust in steam turbine
EP2941538B1 (en) Method for balancing thrust, turbine and turbine engine
EP3619404B1 (en) Systems and methods for dynamic balancing of steam turbine rotor thrust
EP3848554B1 (en) Turbine and thrust load adjusting method
EP2508719B1 (en) Method for starting a turbomachine
US11933183B2 (en) Steam turbine valve abnormality monitoring system, steam turbine valve drive device, steam turbine valve device, and steam turbine plant
JPH02196101A (ja) 蒸気タービンのスラスト低減装置
KR102525617B1 (ko) 발전소의 밸런스 피스톤 축추력 조정 장치
EP3690205B1 (en) Steam turbine system
JP2013144967A (ja) 蒸気タービンのグランド蒸気シール装置
JPS6040703A (ja) タ−ビンのスラスト力調整装置
JPS6033965B2 (ja) 蒸気タ−ビンにおけるシ−ル蒸気の温度制御方法および装置
JPH0791201A (ja) 再熱蒸気タービン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025267.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2437/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011800520

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127031324

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE