WO2012001957A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012001957A1
WO2012001957A1 PCT/JP2011/003690 JP2011003690W WO2012001957A1 WO 2012001957 A1 WO2012001957 A1 WO 2012001957A1 JP 2011003690 W JP2011003690 W JP 2011003690W WO 2012001957 A1 WO2012001957 A1 WO 2012001957A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
less
forsterite
annealing
Prior art date
Application number
PCT/JP2011/003690
Other languages
English (en)
French (fr)
Inventor
大村 健
広朗 戸田
山口 広
岡部 誠司
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US13/805,109 priority Critical patent/US9536657B2/en
Priority to MX2012014567A priority patent/MX2012014567A/es
Publication of WO2012001957A1 publication Critical patent/WO2012001957A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet used for a core material such as a transformer and a manufacturing method thereof.
  • the grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
  • it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet.
  • Goth orientation the secondary recrystallized grains in the steel sheet in the (110) [001] orientation
  • impurities in the product steel sheet is limited in view of the manufacturing cost. Therefore, a technique for reducing the iron loss by introducing non-uniformity to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain, that is, a magnetic domain subdivision technique has been developed.
  • Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a linear high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. ing. Magnetic domain fragmentation technology using laser irradiation has been improved thereafter (see Patent Document 2, Patent Document 3, and Patent Document 4), and grain oriented electrical steel sheets having good iron loss characteristics have been obtained.
  • Patent Document 5 discloses an experimental example in which iron loss is improved by irradiating a laser as a component system that does not use an inhibitor.
  • Patent Document 6 discloses an example in which an iron loss is improved by defining an annealing atmosphere at the time of finish annealing by adding a Ti compound to the inhibitor-less material and annealing.
  • Patent Documents 5 and 6 have the following problems. That is, Patent Document 5 describes the effect of the compound in the forsterite coating (a coating mainly composed of Mg 2 SiO 4 ) on the laser irradiation, although there is a description relating to improving the iron loss by limiting the amount of Al. No consideration has been given, and sufficient magnetic domain refinement effect by laser has not been obtained. Furthermore, only the control technique described in Patent Document 6 does not provide a sufficient magnetic domain refinement effect by a laser.
  • the inventors have investigated various factors affecting the iron loss reduction when performing magnetic domain subdivision by laser irradiation.
  • nitrides mainly Al and Ti
  • the thermal conductivity of the film changes locally, and the effect of applying thermal strain by laser irradiation is reduced.
  • the iron loss reduction effect was not sufficiently obtained.
  • the strain introduction amount of each particle is not uniform as expected, and the iron loss reduction effect is not sufficiently obtained.
  • the amount of Al and Ti contained in the forsterite film is 4.0% by mass or less, 0.5% It was also found that the iron loss improvement effect is further improved by controlling the compositional variation of each forsterite by controlling to ⁇ 4.0% by mass and making the standard deviation of the forsterite particle size 1.0 times or less of the average particle size. .
  • the important points regarding the N content in the forsterite coating are the four items described in the following (1) to (4), and the important points regarding the uniformity of the forsterite particles are described in the following (1) to (5). 5 items.
  • the amounts of Al and N in molten steel at the time of steel melting are Al: 0.01% by mass or less and N: 0.005% by mass or less, respectively.
  • the amount of Ti compound (excluding nitride) in the annealing separator is 4 parts by mass or less in terms of TiO 2 with respect to 100 parts by mass of MgO.
  • an inert gas atmosphere containing no N 2 is used at least in the temperature range of 750 to 850 ° C. in the temperature raising process.
  • the atmosphere in which the partial pressure of N 2 is controlled to 25% or less is set in an atmosphere at 1100 ° C. or higher.
  • the difference in the maximum temperature reached in the coil is controlled to 20-50 ° C.
  • the present invention has been made on the basis of the above knowledge, and an object thereof is to provide a grain-oriented electrical steel sheet that meets the demand for low iron loss together with its advantageous manufacturing method.
  • the gist configuration of the present invention is as follows. 1. A grain-oriented electrical steel sheet in which the N content in the forsterite film is suppressed to 3.0% by mass or less in a grain-oriented electrical steel sheet having a magnetic flux density B 8 of 1.91 T or more, which is subdivided by laser irradiation.
  • Steel slabs with Al and N contents of Al: 0.01% by mass or less and N: 0.005% by mass or less at the time of steel melting are hot-rolled and then cold-rolled by cold rolling, followed by decarburization annealing.
  • an annealing separator containing 0.5 to 4 parts by mass of Ti compound amount (excluding nitrides) in terms of TiO 2 with respect to 100 parts by mass of MgO is applied to the surface of the steel sheet, and then the final
  • the annealing atmosphere in the final annealing process is an inert gas atmosphere that does not contain N 2 at least in the temperature range of 750 to 850 ° C during the temperature rising process, and the N 2 partial pressure is 25% or less in the temperature range of 1100 ° C or higher.
  • the grain-oriented electrical steel sheet is produced by applying a magnetic domain fragmentation treatment by laser irradiation after final finish annealing.
  • the effect of reducing iron loss by magnetic domain subdivision using a laser can be improved, and the iron loss of a steel sheet can be further reduced. Therefore, a transformer with good energy consumption efficiency can be obtained by using the grain-oriented electrical steel sheet of the present invention for an iron core.
  • the present invention will be specifically described.
  • the grain-oriented electrical steel sheet of the present invention is limited to those having a B 8 (magnetic flux density when magnetized at 800 A / m) used as a guide for secondary grain orientation accumulation of 1.91 T or more.
  • the N content in the forsterite film is limited to 3.0% by mass or less. More preferably, it is 2.0 mass% or less. Note that there is no problem even if N is not present in the forsterite film, so there is no particular lower limit.
  • the amount of Al contained in the forsterite film is controlled to 4.0% by mass or less and the amount of Ti is controlled to 4.0% by mass or less. Therefore, it is effective to make the composition of the forsterite film as uniform as possible. More preferably, both Ti and Al are 2.0 mass% or less.
  • Ti has the effect of strengthening the forsterite film and improving its tension, and the effect is manifested by containing about 0.5% by mass or more, so the lower limit is preferably 0.5% by mass.
  • For Al there is no problem even if none is present in the forsterite film, so there is no particular lower limit.
  • the main nitrides in the forsterite film are Al and Ti
  • controlling the Al content in the forsterite film to 4.0 mass% or less and the Ti content to 4.0 mass% or less Not only is the composition uniform, it is also effective in reducing nitrides.
  • the point regarding the manufacturing conditions of the grain-oriented electrical steel sheet according to the present invention will be specifically described.
  • conventionally known production conditions for grain-oriented electrical steel sheets and magnetic domain refinement methods using a laser may be applied.
  • the first point is about the molten steel component.
  • the present invention at the time of steel melting, it is necessary to suppress the amounts of Al and N in molten steel to Al: 0.01% by mass or less and N: 0.005% by mass, respectively.
  • a composition that can obtain B 8 : 1.91 T or more may be appropriately determined based on the compositions of conventionally known various grain-oriented electrical steel sheets.
  • a method of manufacturing a grain-oriented electrical steel sheet in a component system that does not use an inhibitor (so-called, It is advantageous to use an inhibitorless method.
  • preferred basic components and optional added components in the inhibitorless method will be described.
  • C 0.08 mass% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, the burden of reducing C to 50 massppm or less where no magnetic aging occurs during the manufacturing process increases. Therefore, the content is preferably 0.08% by mass or less.
  • the lower limit since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.
  • Si 2.0-8.0% by mass Si is an element effective for increasing the electrical resistance of steel and improving iron loss, and its content of 2.0% by mass or more is particularly effective for reducing iron loss. On the other hand, when it is 8.0% by mass or less, particularly excellent workability and magnetic flux density can be obtained. Accordingly, the Si content is preferably in the range of 2.0 to 8.0% by mass.
  • Mn 0.005 to 1.0 mass%
  • Mn is an element advantageous for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor. On the other hand, if it is 1.0 mass% or less, the magnetic flux density of a product board will become especially favorable. Therefore, the Mn content is preferably in the range of 0.005 to 1.0% by mass.
  • Ni 0.03-1.50 mass%
  • Sn 0.01-1.50 mass%
  • Sb 0.005-1.50 mass%
  • Cu 0.03-3.0 mass%
  • P 0.03-0.50 mass%
  • Mo 0.005-0.10 mass%
  • Cr At least one Ni selected from 0.03 to 1.50 mass% is an element useful for further improving the hot rolled sheet structure and further improving the magnetic properties.
  • the content is less than 0.03% by mass, the effect of improving magnetic properties is small.
  • the content is 1.5% by mass or less, the stability of secondary recrystallization increases, and the magnetic properties are improved. Therefore, the Ni content is preferably in the range of 0.03 to 1.5% by mass.
  • Sn, Sb, Cu, P, Mo, and Cr are elements that are useful for further improving the magnetic properties, but if any of them is less than the lower limit of each component, the effect of improving the magnetic properties is small.
  • the amount is not more than the upper limit amount of each component described above, the secondary recrystallized grains develop best. For this reason, it is preferable to make it contain in said range, respectively.
  • the balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.
  • a slab may be produced from the molten steel having the above-described component composition by a normal ingot-making method or a continuous casting method, or a thin slab having a thickness of 100 mm or less (this is also regarded as a kind of slab) directly.
  • You may manufacture by a continuous casting method.
  • the slab thus produced is heated and subjected to hot rolling according to a conventional method, but may be hot rolled immediately after casting without being heated. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
  • hot-rolled sheet annealing is performed as necessary.
  • the main purpose of hot-rolled sheet annealing is to eliminate the band structure generated by hot rolling and to make the primary recrystallized structure sized, thereby further developing the goth structure and improving the magnetic properties in the secondary recrystallization annealing. That is.
  • the hot rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C. If the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallized structure and improving the desired secondary recrystallization. Absent. On the other hand, if the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing becomes too coarse, and it becomes difficult to realize a sized primary recrystallized structure.
  • recrystallization annealing is performed, and an annealing separator is applied.
  • the second point is that the amount of Ti compound in the annealing separator applied after decarburization annealing is 4 parts by mass or less in terms of TiO 2 with respect to 100 parts by mass of MgO.
  • the Ti compound is preferably added from the viewpoint of increasing the tension of the forsterite film and improving the magnetic properties, and the iron loss is improved by increasing the tension of the forsterite film.
  • the addition amount is large, a part of Ti is combined with N to form Ti nitride, and the composition of forsterite particles becomes non-uniform, so the amount of Ti compound in the annealing separator is in terms of TiO 2 It is limited to 4 parts by mass or less. More preferably, it is 3 parts by mass or less.
  • it is less than 0.5 parts by mass, the effect of improving the forsterite film and magnetic properties is lost, so the lower limit is limited to 0.5 parts by mass.
  • the Ti compound does not contain a nitride, and TiO 2 which is an oxide can be cited as a preferred form, but other compounds are not problematic.
  • the annealing separator is mainly composed of MgO.
  • the main component is a known annealing separator component other than MgO as long as it does not hinder the formation of forsterite coating (and can satisfy the requirements and / or suitable conditions of the forsterite coating composition described above). Or a characteristic improving component may be contained.
  • the third point is that, after applying the annealing separator, in the temperature raising process of the final finish annealing step, at least a temperature region of 750 to 850 ° C. is an inert gas atmosphere not containing N 2 .
  • the reason for this is to denitrify and remove N 2 present in the steel plate before forming forsterite. By removing this N 2 , not only the main components of Al and Ti-based nitrides but also the formation of nitrides caused by unavoidable impurities such as V, Nb and B are suppressed.
  • the fourth point is to set the atmosphere when the final finish annealing is performed for the purpose of secondary recrystallization and forsterite film formation. That is, the atmosphere at 1100 ° C. or higher is an atmosphere in which the partial pressure of N 2 is 25% or less, and preferably a reducing atmosphere in which H 2 is 100%.
  • the atmosphere at 1100 ° C. or higher is an atmosphere in which the partial pressure of N 2 is 25% or less, and preferably a reducing atmosphere in which H 2 is 100%.
  • N that penetrates into the steel sheet due to the nitriding reaction causes not only Al and Ti-based nitrides as main components but also nitrides such as V, Nb, and B as inevitable impurities. Furthermore, by suppressing the nitriding reaction in this temperature range, the movement of Al to the steel sheet surface layer is promoted, and a large amount of Al is taken into the unreacted annealing separator to reduce the amount of Al in the forsterite coating. Also contribute. Therefore, the ratio of N 2 in the annealing atmosphere at 1100 ° C. or higher is limited to 25% or less. More preferably, it is a reducing atmosphere in which H 2 is 100%.
  • the difference in the highest temperature reached in the coil in the final finish annealing is 20 to 50 ° C.
  • the reason for this is to improve the forged particle size of the forsterite particles.
  • the temperature is higher than 50 ° C, the growth of forsterite particles is promoted at high temperatures, and particles with different properties as well as particle diameters are generated at low temperatures. To do.
  • the smaller the temperature difference the more likely it is to be advantageous for the uniformity of the forsterite particles, but in order to reduce the temperature difference, measures such as slowing the heating rate are required. The time will be very long.
  • the lower limit of the temperature difference is set to 20 ° C.
  • the method for controlling the difference in the reached temperatures is not particularly limited, but it is easiest to gradually increase the temperature increase rate.
  • This insulating coating is desirably a coating capable of imparting tension to the steel sheet in order to reduce iron loss.
  • the coating capable of imparting tension include inorganic coating containing silica, ceramic coating by physical vapor deposition, chemical vapor deposition, and the like.
  • the magnetic domains are subdivided by irradiating the surface of the steel sheet with laser at any point after the final finish annealing.
  • the N content in the forsterite film is 3.0% by mass or less, preferably
  • Al and Ti in the forsterite film are 4.0% by mass or less, 0.5 to 0.5%, respectively. 4.0% by mass
  • (3) By setting the standard deviation of forsterite particle diameter to 1.0 times or less of the average particle, thermal strain due to laser irradiation is uniformly introduced into the surface layer of the steel sheet, and sufficient magnetic domains The subdivision effect is expressed.
  • the laser light source used in the present invention may be either a continuous wave laser or a pulsed laser, and any type such as a YAG laser or a CO 2 laser may be used.
  • the irradiation marks may be linear or point-like, but the direction of these irradiation marks is preferably a direction that forms 90 ° to 45 ° with respect to the rolling direction of the steel sheet.
  • the green laser marker that has recently been used is particularly suitable in terms of irradiation accuracy.
  • the laser output of the green laser marker used in the present invention is preferably in the range of about 5 to 100 J / m as the amount of heat per unit length.
  • the spot diameter of the laser beam is preferably in the range of about 0.1 to 0.5 mm, and the repetition interval in the rolling direction is preferably in the range of about 1 to 20 mm.
  • the depth of plastic strain applied to the steel sheet is preferably about 10 to 40 ⁇ m. When the plastic strain depth is 10 ⁇ m or more, magnetic domain fragmentation is more effectively exhibited. On the other hand, when the plastic strain depth is 40 ⁇ m or less, the magnetostriction characteristics can be particularly improved.
  • an annealing separator mainly composed of MgO was applied.
  • TiO 2 was added at various ratios in the annealing separator. That is, TiO 2 was changed in the range of 0 to 6 parts by mass with respect to 100 parts by mass of MgO.
  • final finish annealing for the purpose of secondary recrystallization and purification was performed at 1230 ° C. for 5 hours.
  • thermocouples were attached to both ends in the width direction and the center of the coil outer winding, middle winding, and inner winding, the temperature at each location was measured, and the maximum temperature difference was used. In this experiment, the temperature difference in the coil was changed from 10 to 100 ° C by changing the heating rate. Then, an insulating coat made of 50% colloidal silica and magnesium phosphate was applied. Finally, a magnetic domain fragmentation treatment was performed by irradiating a pulse laser linearly with an irradiation width of 150 ⁇ m and an irradiation interval of 7.5 mm in a direction perpendicular to the rolling direction.
  • Table 2 also shows the analysis results such as manufacturing conditions, magnetic characteristics, and N content in the coating.
  • the amounts of N, Al and Ti in the coating were determined by collecting only the forsterite coating from the product and performing wet analysis.
  • the average particle size and standard deviation of forsterite particles are determined by removing the insulating coating with an alkaline solution, observing the steel sheet surface with an SEM, and measuring the forsterite particle size in the 0.5 mm x 0.5 mm region using image analysis software. It was derived by determining the equivalent circle diameter of the particles.
  • the magnetic properties were measured and evaluated according to JIS C2550.
  • the N content in the forsterite film will be 3.0 mass even if the atmosphere of the final finish annealing is optimized. %, And even if B 8 is 1.91 T or more, the iron loss cannot be sufficiently reduced. Steel with a composition that is not suitable in the category of the inhibitorless method (No. 28: containing excessive Se) has B 8 of less than 1.91 T (ie, insufficient Goth orientation accumulation), and the iron loss reduction is still insufficient.
  • the temperature range of 750 to 850 ° C in the temperature rising process is an atmosphere containing N 2 (No. 6, 7, 13, 15, 22) and an atmosphere containing active gas (No. 11, 21) and when the temperature range of 1100 ° C or higher in the temperature rising process is an atmosphere (No. 17 to 19) with a partial pressure of N 2 exceeding 25%, the amount of N in the forsterite film Is over 3.0% by mass, and even when B 8 is 1.91 T or more, the iron loss cannot be sufficiently reduced. That is, it can be seen that the iron loss is remarkably improved by setting the N content in the forsterite coating to 3.0% by mass or less.
  • the iron loss improvement becomes more remarkable when the ratio is 1.0 times or less (preferably 0.75 times or less or 0.5 times or less).
  • the standard deviation of the forsterite particle size can be reduced by controlling the maximum temperature reached in the coil in the final finish annealing (for example, within a range of 20 to 50 ° C.).
  • the iron loss is higher when the Ti content in the forsterite coating is 0.5% by mass or more than when it is less than 0.5% by mass. It is improved significantly more.
  • forsterite Ti content 0.5% by mass or more in the coating the terms of TiO 2 Ti content in the annealing separator MgO: to 100 fold both parts can be achieved by a 0.5 parts by mass or more.
  • the effect of reducing iron loss by magnetic domain subdivision using a laser can be improved, and the iron loss of a steel sheet can be further reduced. Therefore, a transformer with good energy consumption efficiency can be obtained by using the grain-oriented electrical steel sheet of the present invention for an iron core.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 本発明に従い、レーザー照射により磁区細分化を行う、磁束密度B8が1.91T以上の方向性電磁鋼板において、フォルステライト被膜中のN含有量を3.0質量%以下に抑制することによって、近年の低鉄損化の要求に応えた方向性電磁鋼板を得ることができる。

Description

方向性電磁鋼板およびその製造方法
 本発明は、トランスなどの鉄心材料に用いる方向性電磁鋼板およびその製造方法に関するものである。
 方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
 そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位を制御することや、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
 例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に線状の高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。レーザー照射を用いる磁区細分化技術は、その後改良され(特許文献2、特許文献3および特許文献4などを参照)鉄損特性が良好な方向性電磁鋼板が得られるようになってきている。
 また、その他に、鋼板の鉄損特性を改善する方法としては、インヒビターを使用しない成分系として、特許文献5に、レーザーを照射して鉄損を改善した実験例が開示されている。さらに、特許文献6には、インヒビターレス素材に対して、焼鈍分離剤中へのTi化合物添加および仕上げ焼鈍時の焼鈍雰囲気を規定して鉄損を改善した例が開示されている。
 上述したように、種々の技術的改善がなされてはいるものの、近年の省エネルギーや環境保護に対する意識の高まりから、方向性電磁鋼板に対して、更なる鉄損特性の改善が要求されている。
特公昭57-2252号公報 特開2006-117964号公報 特開平10-204533号公報 特開平11-279645号公報 特開2000-119824号公報 特開2007-138201号公報
 しかしながら、上掲した特許文献1~4に記載の方向性電磁鋼板は、そのいずれもが上記した要求に応えられる鉄損値を得られるものではなかった。
 また、発明者らが本発明を成すに至った調査の過程において明らかになったことであるが、特許文献5および6にも以下に述べる課題があった。
 すなわち、特許文献5には、Al量を制限して鉄損を改善することに関する記載はあるものの、フォルステライト被膜(MgSiOを主体とする被膜)中の化合物がレーザー照射に及ぼす影響に関しては何ら考慮が払われてなく、またレーザーによる十分な磁区細分化効果も得られていない。さらに、特許文献6に記載の制御技術のみでは、レーザーによる十分な磁区細分化効果が得られていない。
 そこで、発明者らは、上記した課題を解決するために、レーザー照射によって磁区細分化を行うに際し、鉄損低減に影響を与える因子について種々調査した。その結果、フォルステライト被膜中の窒化物(主にAl、Ti系)の存在およびフォルステライト粒子の整粒度が大きな影響を及ぼしていることを突き止めた。
 すなわち、窒化物(主にTi、Al系)がある一定量以上、フォルステライト被膜中に存在した場合に、被膜の熱伝導率が局部的に変化して、レーザー照射による熱歪付与の効果が不均一となり、その結果、鉄損低減効果が十分に得られていないことが判明した。また、フォルステライト粒子径が均一でない場合、各粒子の歪導入量が所期した程度に均一にならず、鉄損低減効果が十分に得られていないことが判明した。
 次に、フォルステライト被膜中の窒化物の量とレーザー照射による鉄損改善効果との関係を詳細に調査した結果、フォルステライト被膜中のN量を3.0質量%以下に抑制すれば、鉄損改善効果が格段に向上することが分かった。さらに、フォルステライト粒子径の均一性とレーザー照射による鉄損改善効果との関係を詳細に調査した結果、フォルステライト被膜中に多く含有されているAl量、Ti量をそれぞれ4.0質量%以下、0.5~4.0質量%に制御して各フォルステライトの組成変動を抑制し、フォルステライト粒子径の標準偏差を平均粒子径の1.0倍以下とすることで、鉄損改善効果がより向上することも判明した。
 すなわち、フォルステライト被膜中のN量に関する重要ポイントは、以下(1)~(4)に記載の4項目であり、フォルステライト粒子の均一性に関する重要ポイントは以下(1)~(5)に記載の5項目である。
 (1) 鋼溶製時の溶鋼中のAl、N量をそれぞれAl:0.01質量%以下、N:0.005質量%以下とする。
 (2) 焼鈍分離剤中のTi化合物(窒化物を除く)量を、MgOの100質量部に対して、TiO2換算で、4質量部以下とする。
 (3) 最終仕上げ焼鈍工程において、少なくとも昇温過程の750~850℃の温度領域ではN2を含まない不活性ガス雰囲気とする。
 (4) 最終仕上げ焼鈍時に、1100℃以上での雰囲気中、N2の分圧を25%以下に制御した雰囲気とする。 
 (5) 最終仕上げ焼鈍において、コイル内の最高到達温度の差を20~50℃に制御する。
 本発明は、上記知見に基づいてなされたもので、低鉄損化の要求に応えた方向性電磁鋼板を、その有利な製造方法と共に提供することを目的とする。
 すなわち、本発明の要旨構成は次のとおりである。
 1.レーザー照射により磁区細分化された、磁束密度B8が1.91T以上の方向性電磁鋼板において、フォルステライト被膜中のN含有量を3.0質量%以下に抑制した方向性電磁鋼板。
 2.前記フォルステライト被膜中のAl量を4.0質量%以下、Ti量を0.5~4.0質量%に抑制した前記1に記載の方向性電磁鋼板。
 3.前記フォルステライト被膜におけるフォルステライト粒子径の標準偏差が、フォルステライトの平均粒子径の1.0倍以下である前記1または2に記載の方向性電磁鋼板。
 4.鋼溶製時のAl、N量をそれぞれAl:0.01質量%以下、N:0.005質量%以下とした鋼スラブを、熱間圧延し、ついで冷間圧延により冷延板とした後、脱炭焼鈍を施し、ついで鋼板表面に、MgO:100質量部に対してTi化合物量(但し、窒化物を除く)を、TiO2換算で0.5~4質量部含有する焼鈍分離剤を塗布し、その後の最終仕上げ焼鈍工程における焼鈍雰囲気につき、少なくとも昇温過程の750~850℃の温度領域ではN2を含まない不活性ガス雰囲気とし、かつ1100℃以上の温度領域ではN2の分圧を25%以下としたガス雰囲気とし、さらに最終仕上げ焼鈍後にレーザー照射による磁区細分化処理を施す方向性電磁鋼板の製造方法。 
 5.最終仕上げ焼鈍において、コイル内の最高到達温度の差を20~50℃に制御する前記4に記載の方向性電磁鋼板の製造方法。
 本発明によれば、レーザーを用いた磁区細分化による鉄損低減効果を向上させ、鋼板の鉄損をより低減することができる。従って、本発明の方向性電磁鋼板を鉄心に用いることで、エネルギーの消費効率の良いトランスを得ることができる。
 以下、本発明について具体的に説明する。
 前述したように、近年要求されている低鉄損レベルを達成するためには、鋼板の二次粒をゴス方位に高度に集積させた高磁束密度材を用いる必要がある。そのため、本発明の方向性電磁鋼板としては、二次粒方位集積の目安として用いられるB8(800A/mで磁化した場合の磁束密度)が1.91T以上のものに限定する。
 また、本発明では、レーザー照射による熱歪を、鋼板表層に対して均一に付与するために、本来酸化物であるフォルステライト被膜中に不可避的に存在する窒化物(主にAl,Ti系)を低減することが肝要である。そのため、本発明の方向性電磁鋼板においては、フォルステライト被膜中のN量を3.0質量%以下に限定する。より好ましくは2.0質量%以下である。なお、Nはフォルステライト被膜中に皆無であっても問題はないので、下限はとくに設定しない。
 さらに、レーザー照射による熱歪を鋼板表層に対してより均一に付与するためには、フォルステライト被膜中に多く含有されているAl量を4.0質量%以下、Ti量を4.0質量%以下に制御し、もってフォルステライト被膜の組成をできるだけ均一化することが効果的である。より好ましくはTi、Alともに2.0質量%以下である。ただし、Tiは、フォルステライト被膜を強化して、その張力を向上させる効果があり、その効果は、0.5質量%以上程度含有させることで発現することから下限を0.5質量%とすることが好ましい。なお、Alについてはフォルステライト被膜中に皆無であっても問題無いので下限はとくに設定しない。フォルステライト被膜中の主な窒化物はAl、Ti系であることから、フォルステライト被膜中のAl量を4.0質量%以下、Ti量を4.0質量%以下に制御することは、フォルステライト系被膜の組成の均一化だけでなく、窒化物の低減にも効果がある。
 さらに、フォルステライト粒子の粒径分布は、その標準偏差を平均粒子径の1.0倍以下として、より均一にすることが好ましい。より好ましくは0.75倍以下、さらに好ましくは0.5倍以下である。
 次に、本発明に従う方向性電磁鋼板の製造条件に関するポイントについて具体的に述べる。本発明においては、以下に示すポイント以外は、従来公知の方向性電磁鋼板の製造条件、およびレーザーを用いた磁区細分化処理の方法をそれぞれ適用すればよい。
 まず、第1のポイントは、溶鋼成分についてである。
 本発明において、鋼溶製時には、溶鋼中のAl、N量を、それぞれAl:0.01質量%以下、N:0.005質量%以下に抑制することが必要である。というのは、Al量は、多すぎると純化工程でのNの鋼板(地鉄-被膜系)外への放出(脱窒)を阻害し、フォルステライト被膜中に窒化物が多く存在する原因になる。また、純化工程で、多くのAlを鋼板外へ放出するのは困難なため、フォルステライトの粒子の組成がより不均一になる。従って、Alは0.01質量%以下に限定する。一方、Nについては以後の工程で除去することが可能であるが、やはり多すぎると、その除去に時間とコストがかかるため、Nは0.005質量%以下に限定する。
 なお、Tiは焼鈍分離剤へのある程度の含有を許容することを前提としているので、溶鋼中のTi量については通常の不純物レベル(0.005質量%以下)であれば問題ない。
 上記以外の溶鋼組成については、従来知られた種々の方向性電磁鋼板の組成を基に、B8:1.91T以上が得られる組成を適宜定めればよい。
 ただし、上記したように、Al、Nを低減しつつ、B8で1.91T以上という高い磁束密度を得るためには、インヒビターを用いない成分系での方向性電磁鋼板を製造する方法(いわゆる、インヒビターレス法)を利用することが有利である。この場合、上記した溶鋼成分に、さらに以下の元素を含有させることが好ましい。
 以下、インヒビターレス法において好ましいその基本成分および任意添加成分について述べる。
C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減する負担が増大するため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であり、含有量が2.0質量%以上でとくに鉄損低減効果が良好である。一方、8.0質量%以下の場合、とくに優れた加工性や磁束密度を得ることができる。従って、Si量は2.0~8.0質量%の範囲とすることが好ましい。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を良好にする上で有利な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方1.0質量%以下とすると製品板の磁束密度がとくに良好となる。このため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
 ここで、先に述べたように、Al、Nは極力低減する必要がある。一方、Al、Nはインヒビター成分であるため、これらを利用しないで磁束密度の高い方向性電磁鋼板を得るには、さらに、S:50質量ppm(0.005質量%)以下、Se:50質量ppm(0.005質量%)以下とすることが好ましい。言うまでも無く、インヒビターを利用する製造方法を用いるのであれば、SやSeを上記の量以上含有しても問題はない。
 上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織をさらに改善して、磁気特性を一層向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さい。一方1.5質量%以下ではとくに二次再結晶の安定性が増し、磁気特性が改善される。そのため、Ni量は0.03~1.5質量%の範囲とするのが好ましい。
 また、Sn、Sb、Cu、P、MoおよびCrは、それぞれ磁気特性のさらなる向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さい。一方、上記した各成分の上限量以下の場合、二次再結晶粒の発達が最も良好となる。このため、それぞれ上記の範囲で含有させることが好ましい。
 なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
 次いで、上記した成分組成を有する溶鋼から、通常の造塊法、連続鋳造法でスラブを製造してもよいし、100mm以下の厚さの薄鋳片(これもスラブの一種とみなす)を直接連続鋳造法で製造してもよい。このように製造されたスラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
 さらに、必要に応じて熱延板焼鈍を施す。熱延板焼鈍の主な目的は、熱間圧延で生じたバンド組織を解消して一次再結晶組織を整粒とし、もって二次再結晶焼鈍においてゴス組織をさらに発達させて磁気特性を改善することである。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800~1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり所望の二次再結晶の改善が得られない。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が困難となる。
 熱延板焼鈍後は、必要に応じて中間焼鈍を挟む1回以上の冷間圧延を施した後、再結晶焼鈍を行い、焼鈍分離剤を塗布する。ここで、冷間圧延の温度を100℃~250℃に上昇させて行うこと、および冷間圧延の途中で100~250℃の範囲での時効処理を1回または複数回行うことが、ゴス組織を発達させる点で有利である。
 第2のポイントとしては、脱炭焼鈍後に塗布する焼鈍分離剤中のTi化合物量を、MgOの100質量部に対して、TiO2換算で4質量部以下とすることである。Ti化合物は、フォルステライト被膜の張力アップおよび磁気特性の向上の観点から添加することが好ましく、フォルステライト被膜の張力アップにより鉄損が改善する。一方、添加量が多いと一部のTiがNと結びついてTi窒化物を形成し、さらにフォルステライト粒子の組成が不均一になることから、焼鈍分離剤中のTi化合物量はTiO2換算で4質量部以下に限定する。より好ましくは3質量部以下である。一方、0.5質量部未満では、フォルステライト被膜や磁気特性の改善効果がなくなることから、下限を0.5質量部に限定する。
 また、本発明において、Ti化合物とは、窒化物を含まないものとし、酸化物である、TiO2が好適形態としてあげられるが、他の化合物でも問題はない。
 なお、焼鈍分離剤はMgOを主成分とする。ここで主成分であるとは、フォルステライト被膜の形成を阻害しない範囲で(そして上記のフォルステライト被膜組成の要件および/または好適条件を満足できる範囲で)、MgO以外の公知の焼鈍分離剤成分や特性改善成分を含有してもよいことを意味する。
 第3のポイントとしては、焼鈍分離剤を塗布した後、最終仕上げ焼鈍工程の昇温過程において、少なくとも750~850℃の温度領域は、N2を含まない不活性ガス雰囲気とすることである。この理由は、フォルステライト形成前に、鋼板に存在するN2を脱窒して取り除くためである。このN2を取り除くことによって、主成分であるAl、Ti系窒化物だけでなく、不可避的不純物であるV、Nb、Bなどに起因する窒化物の形成も抑制される。加えて、N量の低減により、鋼中Alの鋼板表層への移動が促進され、未反応分離剤(焼鈍後、洗浄により除去される)中にその多くが取り込まれ、フォルステライト被膜中に含有されるAl量の低減にも寄与する。
 次に、750~850℃の温度領域における、具体的な温度および雰囲気ガスの条件は次のとおりである。
 (1) 750℃に満たない場合、温度が低いため脱窒反応が起こりにくくなる。
 (2) 850℃を超える場合、フォルステライト被膜形成が始まってしまうため、脱窒反応が起こりにくくなる。
 (3) 雰囲気にH2を導入すると、フォルステライト被膜が形成されやすくなり、750~850℃でも被膜の形成が起こるため、脱窒反応が起こりにくくなるので、H2は導入しない。また、N2が含有されていると窒化反応が起こってしまうので、本発明において、最終仕上げ焼鈍工程の昇温過程で、少なくとも750~850℃の温度領域では、工程中の雰囲気をN2を含まない不活性ガスに限定する。
 なお、本発明における不活性ガスとは、N2を含まない従来公知の不活性ガスであれば特に制限はなく、ArやHe 等が挙げられる。言うまでも無く、H2ガスや、H2ガスを発生するガスは活性ガスである。
 第4のポイントとしては、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す時の雰囲気を設定することである。
 すなわち、1100℃以上での雰囲気を、N2の分圧が25%以下の雰囲気とし、好適には、H2が100%の還元雰囲気とすることである。最終仕上げ焼鈍において、フォルステライト被膜がすでに形成されている場合、鋼板の窒化は起こりにくいが、それでも1100℃以上の高温になると、鋼板の窒化反応が起こる。すなわち、窒化反応により鋼板に侵入したNは、主成分であるAlやTi系の窒化物だけでなく、不可避的不純物であるV、Nb、Bなどの窒化物の形成原因となってしまう。さらに、この温度域での窒化反応を抑制すると、Alの鋼板表層への移動が促進され、多くのAlが未反応の焼鈍分離剤中に取り込まれて、フォルステライト被膜中のAl量の低減にも寄与する。従って、1100℃以上における焼鈍雰囲気中のN2の比率を25%以下に限定する。より好ましくは、Hが100%の還元雰囲気である。
 第5のポイントとしては、好ましくは最終仕上げ焼鈍におけるコイル内の最高到達温度の差を、20~50℃に制御することである。この理由は、フォルステライト粒子の整粒度を良好にするためである。50℃超の場合、温度の高いところでは、フォルステライト粒子の成長が促進され、温度の低い部分では粒子径のみならず性質も異なる粒子が生成されてしまうため、温度差の上限を50℃とする。
 一方、温度差は小さいほどフォルステライト粒子の均一性に対して有利と考えられがちであるが、温度差を小さくするには昇温速度を遅くするなどの対応が必要となるため、結果として焼鈍時間が非常に長くなってしまう。従って、温度差が小さくなり過ぎても焼鈍時間の影響で却ってフォルステライト粒子の成長度合いが変化してしまうことから、温度差の下限は20℃とした。到達温度の差を制御する方法は特に限定しないが、昇温速度を徐熱化することが最も容易である。
 最終仕上げ焼鈍後には平坦化焼鈍を行って形状を矯正することが有効である。なお、鋼板を積層して使用する場合には、鉄損を改善する目的で、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施すことが有効である。この絶縁コーティングは、鉄損低減のために、鋼板に張力を付与できるコーティングとすることが望ましい。張力を付与できるコーティングとしては、シリカを含有する無機系コーティングや物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。
 本発明では、最終仕上げ焼鈍後におけるいずれかの時点で、鋼板表面にレーザーを照射することにより、磁区を細分化する。その際、前述したように、(1)フォルステライト被膜中のN量を3.0質量%以下とすること、好ましくはさらに(2)フォルステライト被膜中のAl、Tiをそれぞれ4.0質量%以下、0.5~4.0質量%とすること、(3)フォルステライト粒子径の標準偏差を、平均粒子の1.0倍以下とすることで、レーザー照射による熱歪が、鋼板表層に対して均一に導入され、十分な磁区細分化効果が発現する。
 本発明で照射するレーザーの光源としては、連続波レーザー、パルスレーザーのいずれでもよく、YAGレーザーやCOレーザー等の種類を選ばない。また、照射痕は線状でも点状でも構わないが、これら照射痕の方向は、鋼板の圧延方向に対して、90°から45°をなす方向であることが好ましい。
 なお、最近使用されるようになってきたグリーンレーザーマーカーは、照射精度の面で特に好適である。
 本発明で用いるグリーンレーザーマーカーにおけるレーザーの出力は、単位長さ当たりの熱量として、5~100J/m程度の範囲が好ましい。また、レーザービームのスポット径は0.1~0.5mm程度の範囲とし、圧延方向の繰返し間隔は1~20mm程度の範囲とすることが好ましい。
 なお、鋼板に付与される塑性歪の深さは、10~40μm程度とするのが好適である。塑性歪深さを10μm以上とすると磁区細分化がより効果的に発揮される。一方、塑性歪深さを40μm以下とすると、磁歪特性をとくに改善することができる。
 表1に示す成分組成からなり、残部はFeおよび不可避不純物からなる鋼スラブを、連続鋳造にて製造し、1400℃に加熱後、熱間圧延により板厚:2.0mmの熱延板としたのち、1000℃で180秒の熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:0.75mmとし、酸化度PH2O/PH2=0.30、温度:830℃、時間:300秒の条件で中間焼鈍を実施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.23mmの冷延板とした。
Figure JPOXMLDOC01-appb-T000001
 ついで、酸化度PH2O/PH2=0.45、均熱温度840℃で200秒保持する脱炭焼鈍を施したのち、MgOを主成分とする焼鈍分離剤を塗布した。このとき表2に示すように、焼鈍分離剤中に種々の割合でTiO2を添加した。すなわち、MgO:100質量部に対して、TiO2を、0~6質量部の範囲で変化させた。その後、二次再結晶と純化を目的とした最終仕上げ焼鈍を1230℃、5hの条件で実施した。
 この最終仕上げ焼鈍では、昇温過程750~850℃の雰囲気および1100℃以上の雰囲気は、表2に示した条件で行い、それ以外の過程では、N2:H2=50:50の混合雰囲気で実施した。コイル内の到達温度差は、コイル外巻き・中巻き・内巻き部の幅方向両端および中央部に熱電対を取り付けて、各場所の温度を測定し、その最大温度差を用いた。本実験では、コイル内の到達温度差を昇温速度を変化させることで10~100℃まで変化させた。そして、50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コートを塗布した。最後に、圧延方向と直角方向に照射幅:150μm、照射間隔:7.5mmでパルスレーザーを線状に照射する磁区細分化処理を施して製品とした。
 製造条件、磁気特性および被膜中のN量等分析結果を表2に併記する。
 なお、被膜中のN、AlおよびTi量は、製品よりフォルステライト被膜のみを採取して湿式分析することで求めた。フォルステライト粒子の平均粒子径およびその標準偏差は、絶縁コーティングをアルカリ溶液で除去した後、鋼板表面をSEM観察し、0.5mm×0.5mm領域の各フォルステライト粒径を画像解析ソフトによって、フォルステライト粒子の円相当径を求めることで導出した。磁気特性はJIS C2550に従い、測定して評価した。
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、組成および製造条件が本発明範囲を満足する場合、被膜中のN量が本発明の範囲内に抑制され、極めて良好な鉄損特性が得られている。
 また、以下のことが併せて確認された。
 スラブのAl含有量(No.26)およびN含有量が(No.27)が本発明範囲を外れると、最終仕上げ焼鈍の雰囲気を適正化しても、フォルステライト被膜中のN含有量が3.0質量%を超え、B8が1.91T以上であっても充分に鉄損を低減することはできない。
 インヒビターレス法の範疇において好適でない組成(No.28:Seを過剰に含有)の鋼ではB8が1.91T未満(すなわちゴス方位集積が不十分)となり、やはり鉄損低減が不十分となる。
 最終仕上げ焼鈍工程において、昇温過程の750~850℃の温度領域をN2を含む雰囲気(No.6、7、13、15、22)とした場合および活性ガスを含む雰囲気(No.11、21)とした場合、および同昇温過程の1100℃以上の温度領域をN2の分圧25%超の雰囲気(No.17~19)とした場合では、いずれもフォルステライト被膜中のN量が3.0質量%を超え、B8が1.91T以上であっても充分に鉄損を低減することはできない。すなわちフォルステライト被膜中のN量を3.0質量%以下とすることで格段に鉄損が改善されることがわかる。
 最終仕上げ焼鈍の雰囲気を適正化しても、焼鈍分離剤中のTiO換算Ti量をMgO:100重両部に対し4質量部超えとすると、フォルステライト被膜中のTi含有量が4.0%を超え、フォルステライト中のN含有量が3.0質量以上となり鉄損低減が不十分となる原因となる(No.12、25)。
 ここに、発明鋼であるNo.4とNo.5との比較、あるいはNo.8とNo.9から明らかなように、フォルステライト粒径の標準偏差を平均粒径の1.0倍超とした場合より、1.0倍以下(好ましくは0.75倍以下あるいは0.5倍以下)とした場合の方が、鉄損の改善がさらに顕著となる。なお、フォルステライト粒径の標準偏差は、最終仕上げ焼鈍におけるコイル内最高到達温度を制御する(例えば20~50℃の範囲内とする)ことにより低減することができる。
 発明鋼であるNo.20とNo.23との比較から明らかなように、フォルステライト被膜中のTi含有量が0.5質量%未満の場合よりも0.5質量%以上の場合の方が、鉄損がより顕著に改善される。なお、フォルステライト被膜中のTi含有量0.5質量%以上は、焼鈍分離剤中のTiO換算Ti量をMgO:100重両部に対し0.5質量部以上とすることで達成することができる。
 発明鋼であるNo.14とNo.16との比較から明らかなように、フォルステライト被膜中のN含有量を2.0質量%以下とすると、さらに顕著に鉄損が改善されることが分かる。
 発明鋼であるNo.4、9、14とNo.23との比較から明らかなように、最終仕上げ焼鈍工程において、昇温過程の1100℃以上の温度領域においてH2ガスを含有する雰囲気(H2ガス100%)とすることにより、鉄損がさらに改善されることが分かる。
 なお、鉄損差ΔW17/50=0.05W/kgは、方向性電磁鋼板のグレードが1つ上がることに相当する鉄損差である。
産業上の利用の可能性
 本発明によれば、レーザーを用いた磁区細分化による鉄損低減効果を向上させ、鋼板の鉄損をより低減することができる。従って、本発明の方向性電磁鋼板を鉄心に用いることで、エネルギーの消費効率の良いトランスを得ることができる。

Claims (5)

  1.  レーザー照射により磁区細分化された、磁束密度B8が1.91T以上の方向性電磁鋼板において、フォルステライト被膜中のN含有量を3.0質量%以下に抑制した方向性電磁鋼板。
  2.  前記フォルステライト被膜中のAl量を4.0質量%以下、Ti量を0.5~4.0質量%に抑制した請求項1に記載の方向性電磁鋼板。
  3.  前記フォルステライト被膜におけるフォルステライト粒子径の標準偏差が、フォルステライトの平均粒子径の1.0倍以下である請求項1または2に記載の方向性電磁鋼板。
  4.  鋼溶製時のAl、N量をそれぞれAl:0.01質量%以下、N:0.005質量%以下とした鋼スラブを、熱間圧延し、ついで冷間圧延により冷延板とした後、脱炭焼鈍を施し、ついで鋼板表面に、MgO:100質量部に対してTi化合物量(但し、窒化物を除く)を、TiO2換算で0.5~4質量部含有する焼鈍分離剤を塗布し、その後の最終仕上げ焼鈍工程における焼鈍雰囲気につき、少なくとも昇温過程の750~850℃の温度領域ではN2を含まない不活性ガス雰囲気とし、かつ1100℃以上の温度領域ではN2の分圧を25%以下としたガス雰囲気とし、さらに最終仕上げ焼鈍後にレーザー照射による磁区細分化処理を施す方向性電磁鋼板の製造方法。
  5.  最終仕上げ焼鈍において、コイル内の最高到達温度の差を20~50℃に制御する請求項4に記載の方向性電磁鋼板の製造方法。
PCT/JP2011/003690 2010-06-29 2011-06-28 方向性電磁鋼板およびその製造方法 WO2012001957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/805,109 US9536657B2 (en) 2010-06-29 2011-06-28 Grain oriented electrical steel sheet and method for manufacturing the same
MX2012014567A MX2012014567A (es) 2010-06-29 2011-06-28 Placa de acero magnetico orientado y metodo de produccion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-148307 2010-06-29
JP2010148307 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012001957A1 true WO2012001957A1 (ja) 2012-01-05

Family

ID=45401698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003690 WO2012001957A1 (ja) 2010-06-29 2011-06-28 方向性電磁鋼板およびその製造方法

Country Status (5)

Country Link
US (1) US9536657B2 (ja)
JP (1) JP5923879B2 (ja)
MX (1) MX2012014567A (ja)
TW (1) TWI421352B (ja)
WO (1) WO2012001957A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002039A (ja) * 2017-06-14 2019-01-10 新日鐵住金株式会社 レーザー磁区制御用方向性電磁鋼板とその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048180B2 (en) 2013-09-19 2022-01-05 JFE Steel Corporation Grain-oriented electrical steel sheet, and method for manufacturing same
JP6844110B2 (ja) * 2016-01-28 2021-03-17 日本製鉄株式会社 一方向性電磁鋼板の製造方法及び一方向性電磁鋼板用原板の製造方法
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets
WO2023074476A1 (ja) * 2021-10-29 2023-05-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270020A (ja) * 1988-09-02 1990-03-08 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
JPH08291390A (ja) * 1995-04-20 1996-11-05 Kawasaki Steel Corp 磁気特性および被膜特性に優れる方向性けい素鋼板
JPH09184017A (ja) * 1996-01-08 1997-07-15 Kawasaki Steel Corp 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
JPH11335794A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 低履歴損失の方向性珪素鋼板およびその製造方法
JP2000063950A (ja) * 1998-08-19 2000-02-29 Kawasaki Steel Corp 磁気特性および被膜特性に優れた方向性電磁鋼板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644135B2 (ja) * 1974-02-28 1981-10-17
JPS5518566A (en) 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
DK172081A (da) 1980-04-21 1981-10-22 Merck & Co Inc Mercaptoforbindelse og fremgangsmaade til fremstilling deraf
JPH06200325A (ja) * 1992-12-28 1994-07-19 Nippon Steel Corp 高磁性の珪素鋼板の製造法
JP3361709B2 (ja) 1997-01-24 2003-01-07 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
US5702539A (en) * 1997-02-28 1997-12-30 Armco Inc. Method for producing silicon-chromium grain orieted electrical steel
DE69810852T2 (de) * 1997-07-17 2003-06-05 Kawasaki Steel Co Kornorientiertes Elektrostahlblech mit ausgezeichneten magnetischen Eigenschaften und dessen Herstellungsverfahren
JP3482340B2 (ja) 1998-03-26 2003-12-22 新日本製鐵株式会社 一方向性電磁鋼板とその製造方法
JP3846064B2 (ja) 1998-10-09 2006-11-15 Jfeスチール株式会社 方向性電磁鋼板
JP2002194445A (ja) * 2000-12-27 2002-07-10 Kawasaki Steel Corp 被膜特性に優れた高磁束密度方向性電磁鋼板の製造方法
JP2006117964A (ja) 2004-10-19 2006-05-11 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板とその製造方法
TWI305548B (en) * 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP5011712B2 (ja) 2005-11-15 2012-08-29 Jfeスチール株式会社 一方向性電磁鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270020A (ja) * 1988-09-02 1990-03-08 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
JPH08291390A (ja) * 1995-04-20 1996-11-05 Kawasaki Steel Corp 磁気特性および被膜特性に優れる方向性けい素鋼板
JPH09184017A (ja) * 1996-01-08 1997-07-15 Kawasaki Steel Corp 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
JPH11335794A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 低履歴損失の方向性珪素鋼板およびその製造方法
JP2000063950A (ja) * 1998-08-19 2000-02-29 Kawasaki Steel Corp 磁気特性および被膜特性に優れた方向性電磁鋼板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002039A (ja) * 2017-06-14 2019-01-10 新日鐵住金株式会社 レーザー磁区制御用方向性電磁鋼板とその製造方法

Also Published As

Publication number Publication date
JP2012031512A (ja) 2012-02-16
US9536657B2 (en) 2017-01-03
US20130112319A1 (en) 2013-05-09
TW201213560A (en) 2012-04-01
MX2012014567A (es) 2013-02-12
TWI421352B (zh) 2014-01-01
JP5923879B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
RU2532539C2 (ru) Способ изготовления листа текстурированной электротехнической стали
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
TWI448566B (zh) 方向性電磁鋼板的製造方法
US20130160901A1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
EP3530770B1 (en) Hot-rolled steel sheet for electrical steel sheet production and method of producing same
RU2391416C1 (ru) Способ производства листа текстурированной электротехнической стали с высокой плотностью магнитного потока
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
JP6119959B2 (ja) 方向性電磁鋼板の製造方法
WO2016199423A1 (ja) 方向性電磁鋼板およびその製造方法
WO2011102456A1 (ja) 方向性電磁鋼板の製造方法
JP3386751B2 (ja) 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP2015200002A (ja) 方向性電磁鋼板の製造方法
JP7393698B2 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP5923879B2 (ja) 方向性電磁鋼板およびその製造方法
JP2014508858A (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
JP2012031516A (ja) 方向性電磁鋼板の製造方法
JP5760506B2 (ja) 方向性電磁鋼板の製造方法
WO2020218329A1 (ja) 方向性電磁鋼板の製造方法
JP7265187B2 (ja) 方向性電磁鋼板およびその製造方法
JP5527094B2 (ja) 方向性電磁鋼板の製造方法
JP2014173103A (ja) 方向性電磁鋼板の製造方法
JP2001192732A (ja) 磁気特性が優れた一方向性電磁鋼板を得る冷間圧延方法
KR101459730B1 (ko) 방향성 전기강판 및 그 제조방법
JP2020143314A (ja) 鉄損の良好な方向性電磁鋼板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2647/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/014567

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13805109

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11800427

Country of ref document: EP

Kind code of ref document: A1