WO2012001196A2 - Vectores alfavirales y usos de los mismos para la expresión de genes heterólogos - Google Patents

Vectores alfavirales y usos de los mismos para la expresión de genes heterólogos Download PDF

Info

Publication number
WO2012001196A2
WO2012001196A2 PCT/ES2011/070462 ES2011070462W WO2012001196A2 WO 2012001196 A2 WO2012001196 A2 WO 2012001196A2 ES 2011070462 W ES2011070462 W ES 2011070462W WO 2012001196 A2 WO2012001196 A2 WO 2012001196A2
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
gene expression
expression vector
vector according
sequence encoding
Prior art date
Application number
PCT/ES2011/070462
Other languages
English (en)
French (fr)
Other versions
WO2012001196A3 (es
Inventor
Alejandro Mario Aranda
Jaione Bezunartea Bezunartea
Jesús María PRIETO VALTUEÑA
José Ignacio QUETGLAS MAS
Marta RUIZ GUILLÉN
Cristian Smerdou Picazo
Original Assignee
Proyecto De Biomedicina Cima, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proyecto De Biomedicina Cima, S.L. filed Critical Proyecto De Biomedicina Cima, S.L.
Publication of WO2012001196A2 publication Critical patent/WO2012001196A2/es
Publication of WO2012001196A3 publication Critical patent/WO2012001196A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the invention relates to gene expression methods using viral vectors and, more specifically, to an alpha vector that has an increased propagation capacity relative to alpha-viral vectors known to date.
  • the invention relates to methods for the treatment of cancer and to methods for in vitro expression of proteins of interest using said modified alpha viral vectors.
  • Alphaviruses are a genus of viruses belonging to the togaviridae family characterized by presenting a single-stranded and positive polarity RNA genome that is found in a nucleocapsid that in turn is covered by an envelope containing viral proteins. that form the spicules of the virus (spikes).
  • the genus alphavirus includes, among others, the Sindbis virus, the Semliki forest virus (hereinafter SFV by Semliki Forest virus), the Ross river virus and the Venezuelan equine encephalitis virus and the eastern equine myelitis brain.
  • Alphaviruses are able to replicate very efficiently in animal cells and are capable of infecting a wide spectrum of animal cells, which makes them suitable candidates for use as gene expression vectors to express genes of interest in animal cells.
  • a review of the latest advances in the development of viral vectors for gene therapy can be found in Atkins et al. (Expert Rev. Mol Med., 2008, 10: e33) and Lundstrom, K. (Gene Therapy, 2005, 12: S92- S97).
  • Alphavirus-based gene expression vectors typically consist of self-replicating RNA molecules derived from alphavirus genomes, in which the 5 'and 3' sequences necessary for replication and the replicase gene (Rep) have been maintained, while the genes that code for structural viral proteins have been replaced by a transgene. After transfection of these vectors in a cell, Rep will be translated and copy the RNA vector into a negative RNA strand, which will be used as a template for amplification of the RNA vector. Rep can also recognize a subgenomic promoter in the negative RNA strand, from which it will make a smaller subgenomic RNA, which can be translated to produce heterologous proteins at elevated levels.
  • Rep can also recognize a subgenomic promoter in the negative RNA strand, from which it will make a smaller subgenomic RNA, which can be translated to produce heterologous proteins at elevated levels.
  • vectors have been described in which the structural genes of the viral genome have been replaced by the gene of interest. In this way, the gene of interest is under the control of the 26S subgenomic promoter. Lacking structural proteins, this type of vector is incapable of generating infectious viruses.
  • This type of vector can be administered either in the form of DNA or as RNA.
  • this solution has the disadvantage that the efficiency of gene transfer is very low since it is based on the insertion of naked DNA or RNA into the cells without there being a vehicle mediation mediated by the envelope proteins.
  • the second possibility consists in the administration of the alphaviral vector as part of viral particles.
  • These particles are generated in vitro by transfection into suitable cells of two polynucleotides: a first component formed by the genome of the virus where the structural genes have been replaced by the gene of interest that remains under the control of the viral subgenomic promoter and a second component that provides in trans the structural proteins that have been eliminated in the first component.
  • a first component formed by the genome of the virus where the structural genes have been replaced by the gene of interest that remains under the control of the viral subgenomic promoter
  • a second component that provides in trans the structural proteins that have been eliminated in the first component.
  • SFVG avian stomatitis virus
  • the invention relates to a gene expression vector comprising an alphaviral replicon.
  • said replicon comprises a heterologous gene that is operatively linked to a subgenomic alphaviral promoter
  • sequence encoding the structural polyprotein contains a deletion in the region that encodes the capsid protein so that said sequence is not capable of producing a capsid protein capable of forming functional nucleocapsids.
  • the invention in a second aspect, relates to a viral particle comprising a vector according to the invention.
  • the invention in a third aspect, relates to a DNA polynucleotide comprising the sequence complementary to the vector of the invention.
  • the invention relates to a method for obtaining a viral particle comprising a heterologous gene of interest comprising (i) expressing in a host cell a first polynucleotide component that encodes the capsid protein of said alphavirus and a second component selected from the group of a vector according to the invention, a viral particle according to the invention or a polynucleotide of DNA according to the invention,
  • the invention relates to a method for obtaining a composition comprising infectious material comprising
  • the invention relates to a composition obtained by the method for obtaining a composition comprising infectious material according to the invention.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a gene expression vector according to the invention, a viral particle according to the invention, a polynucleotide according to the invention or a composition according to the invention. and a pharmaceutically acceptable vehicle.
  • the invention relates to a gene expression vector according to the invention, a viral particle according to the invention, a polynucleotide according to the invention or a composition according to the invention for use in medicine. .
  • the invention relates to the use of a gene expression vector according to the invention, a viral particle according to the invention, a polynucleotide according to the invention or a composition according to the invention for Preparation of a medicine for the treatment of cancer.
  • the invention relates to an in vitro method for the production in a cell culture of a protein of interest comprising
  • the invention relates to a gene expression vector comprising an alphaviral replicon.
  • said replicon comprises a multiple naxium site that is associated with a subgenomic alphaviral promoter so that it allows the insertion of genes into said multiple naive site under the operational control of said alphagenic subgenomic promoter and wherein the sequence encoding the capsid protein comprises a deletion such that said sequence is not capable of producing a protein capable of forming functional nucleocapsids.
  • Figure 1 Scheme of SFV vectors containing a heterologous gene (HG) and an open reading phase (ORF) encoding the structural polyprotein of SFV (p62-6K-E1) in which the sequence of the capsid has been Deleted A-D, vectors containing the ORFs encoding HG and p62-6K-El under the control of independent viral subgenomic promoters (SG) and located in the two possible orders.
  • E-J vectors containing the ORFs encoding HG and p62-6K-El under the control of a single viral subgenomic promoter (SG).
  • HG and p62-6K-El are expressed as a single ORF by using the self-protection sequence of the aged fever virus (2A) used as a connector between them (EF), or as two independent ORFs by including an IRES sequence between them (GJ). In all cases the two possible orders are shown.
  • the sequence encoding the translation enhancer of the SFV capsid (enh) followed by 2A can be fused to the amino terminus of p62-6K-El and HG (A and G), only to the amino terminus of HG (B and H) , only to the amino end of p62-6K-El (C and I) or to neither of the two ORFs (D and J).
  • Figure 2 Scheme of the SFV or SIN vectors that express the viral envelope proteins.
  • ORF open reading phase
  • FIG. 3 Analysis of the propagation of the SFV vectors that express the viral envelope proteins.
  • BHK cells were electroporated with RA of the vectors SFV-enh-spike, SFV-Lac and SFVwt (e), or infected with SFV-enh-spike (i). The supernatant was collected at 24h and used to infect monolayers of BHK cells that were fixed at 24h and analyzed by immunofluorescence with a specific antiserum for viral replicase.
  • FIG. 6 Transmission of heterologous genes using the SFV-enh-spike vector.
  • A) BHK cells were electroporated with SFV-enh-spike-GFP vector RNA and mixed with non-electroporated cells in a 1: 20 ratio. At the indicated times the cells were fixed and the expression of GFP was analyzed in a fluorescence microscope (GFP). The same preparations were analyzed by immunofluorescence with a specific antiserum for the SFV envelope proteins ( ⁇ -spikes).
  • FIG. 7 Antitumor effect of the SFV-enh-spike-scIL-12 vector.
  • C57 / BL6 mice were inoculated with 5 x 10 5 MC38 murine colon adenocarcinoma cells.
  • the tumors were 5 mm in diameter, they were injected intratumorally with the indicated doses of SFV-enh-spike-scIL-12 or SFV-scIL-12, SFV-enh-spike or with a similar volume of saline (8 mice per group ). Tumor size was monitored at the indicated times by measuring two perpendicular diameters. The mean of the average tumor diameter in each group is represented.
  • an alpha-genome genome in which the sequence encoding the capsid protein has been removed maintains the ability to propagate when introduced into a recipient cell being able to infect neighboring cells in a manner dependent on the viral glycoproteins (see examples of the present invention).
  • This process is also observed in recombinant alpha-viral genomes in which a gene of interest has been introduced.
  • the use of alpha-viral genomes deficient in the capsid implies an improvement in the expression of proteins of interest with respect to alpha-viral vectors that lack other structural proteins since said expression occurs both in initially infected cells and in cells. to which the infection spreads. Therefore, in a first aspect, the invention relates to a gene expression vector comprising an alphaviral replicon.
  • said replicon comprises a heterologous gene that is operatively linked to a subgenomic alphaviral promoter
  • sequence encoding the structural polyprotein contains a deletion in the region that encodes the capsid protein so that said sequence is not capable of producing a capsid protein capable of forming functional nucleocapsids.
  • gene expression vector refers to a linear or circular DNA molecule that comprises a polynucleotide that encodes a polypeptide of interest and that is operably linked to additional sequences that allow for expression of said polynucleotide when it is in a cell or in vitro in the presence of suitable reagents.
  • alphaviral replicon refers to an RNA polynucleotide that expresses the structural and non-structural proteins of the alphavirus from which drift that allows said RNA to direct its own replication when introduced into a recipient cell.
  • alpha viral replicons comprise the following elements:
  • non-structural polyprotein a nucleotide sequence encoding a polyprotein comprising the nspl, nsp2, nsp3 and nsp4 non-structural protein sequences of an alphavirus, called non-structural polyprotein,
  • nucleotide sequence encoding a polyprotein comprising the sequences of the capsid, p62, 6K and El structural proteins of said alphavirus, called structural polyprotein and
  • alphavirus refers to any RNA virus of the genus alphaviridae.
  • a description of members of the genus alfaviridae can be found in Strauss and Strauss, Microbiol. Rev., 58: 491-562 (1994).
  • alphaviruses include, without limitation, the Aura virus, the Bebaru virus, the Cabassou virus, the Chikungunya virus, the eastern equine encephalomyelitis virus, the Fort Morgan virus, the Getah virus, the Kyzylagach virus, the Mayoaro virus, the Middleburg virus, Mucambo virus, Ndumu virus, Pixuna virus, Tonate virus, Triniti virus, western equine encephalomyelitis virus, Whataroa virus, Sindbis virus (SIN), Semliki Forest virus, Venezuelan equine encephalomyelitis virus (VEE) and the Ross river virus.
  • Sindbis virus SIN
  • Semliki Forest virus Venezuelan equine encephalomyelitis virus (VEE)
  • Ross river virus examples of alphaviruses include, without limitation, the Aura virus, the Bebaru virus, the Cabassou virus, the Chikungunya virus, the eastern equine ence
  • the genomic sequences of different alphaviruses, as well as the sequences of different structural and non-structural proteins are known in the state of the art such as the sequences of the SIN virus (GenBank Accession Nos. J02363, NCBI Accession No. NC_001547), of the SFV (GenBank Accession No. X04129, NCBI Acession No. NC_003215), VEE (GenBank Accession No. L04653, NCBI Accession No. NC_001449), etc. whose contents are incorporated by reference in this document.
  • 5 'untranslated sequence of alphaviral replicon The first element of the vectors of the invention comprises the sequence of the 5 'untranslated region of the genome of an alphavirus.
  • 5'-untranslated sequence refers to the sequence that appears at the 5 'end of the alphavirus genome that is not translated and that contains the necessary region for alphavirus replication, that is, the sequence that is recognized by the polymerase during the synthesis of the RNA molecule from the negative polarity RNA template.
  • the 5 'untranslated sequence comprises the sequence defined by SEQ ID NO: 1.
  • sequence A The first element of the vector of the invention is a polynucleotide sequence (hereinafter sequence A) that encodes a polyprotein comprising the sequences of nspl, nsp2, nsp3 and nsp4 non-structural proteins.
  • nspl protein is involved in the initiation (or continuation) of the synthesis of the negative polarity chain of the viral RNA and in the addition of the cap to the 5 'end of the genomic and subgenomic RNA during transcription since nsp 1 has methyltransferase activity and guanyltransferase nspl also modulates the activity of nsp2 since polyproteins containing nspl do not effectively process the union between nsp2 and nsp3.
  • nsp2 is a multifunctional protein involved in the replication of the viral genome and in the processing of polystructural polyprotein. The N-terminal end of nsp2 has helicase activity.
  • nsp2 is able to process the polyprotein in the junction zones nspl / nsp2, nsp2 / nsp3, and nsp3 / nsp4 nsp3 is a protein with two clearly differentiated domains and whose function in viral replication is not fully clarified although it is known that nsp3 is required for viral RNA synthesis.
  • nsp4 is the RNA polymerase that contains the characteristic GDD motif of this enzyme.
  • nsP4 polypeptide sequence has a similar length between the different alphaviruses (607 amino acids in VEE, 610 amino acids in SIN and 614 amino acids in SFV) presenting a high degree of consensus among them (Kinney, et al, 1989, Virology, 170: 19-30).
  • sequence encoding the non-structural polyprotein belongs to SFV.
  • said sequence comprises the sequence depicted in SEQ ID NO: 2.
  • Sequence encoding the modified structural polyprotein by means of a deletion such that said sequence is not capable of producing a capsid protein capable of forming functional nucleocapsids sequence B
  • the alphaviral replicon contains a nucleotide sequence encoding the structural polyprotein where said sequence is modified by means of a deletion so that said sequence is not capable of producing a capsid protein capable of forming functional nucleocapsids.
  • This modified sequence is hereinafter referred to as sequence B.
  • structural polyprotein of an alphavirus refers to a polypeptide comprising the sequences of the structural proteins of said alphavirus and which is synthesized from of the subgenomic promoter of said alphavirus and which, after processing, gives rise to the proteins that are part of the structure of the virus.
  • structural protein of an alphavirus refers to any alphavirus protein necessary for the RNA replicon packaging and typically include the capsid protein, El glycoprotein, E2 glycoprotein and 6K protein, which appear in the mature virion.
  • the structural proteins of the alphaviruses are generally described in Strauss et al. (Microbe 1. Rev. 1994, 58: 491-562).
  • the capsid protein corresponds to the N-terminal sequence of the structural polyprotein and, after processing said polyprotein, interacts with an alpha-viral RNA and other capsid monomers to form the nucleocapsids.
  • the envelope proteins form heterodimers that associate in the envelope in the form of trimers to form the spicules that are involved in the interaction with the cellular receptor and entry into the target cell.
  • the term "structural protein of an alphavirus” also refers to a combination of one or more viral structural proteins that come from the synthesis in the form of a polyprotein called C-E3-E2-6K-E1. E3, E2 and 6K act as translocation / transport signals of the glycoproteins of the E2, 6K and El spike, respectively.
  • the origin of the proteins is not particularly limiting.
  • the invention contemplates vectors in which the El protein and the E2 protein are derived from different alphaviruses.
  • both the El protein and the E2 protein may be modified with respect to the native protein.
  • the invention contemplates the possibility of using vectors in which the sequence B encodes one or more hybrid proteins comprising regions of structural proteins of different alphaviruses. These regions may be contiguous or not contiguous.
  • a particular region of a structural protein is derived from a first alphavirus and the rest of the protein (the transmembrane domain and / or the luminal domain) can be derived from another alphavirus.
  • “Deletion in the region encoding the capsid protein” means, in the context of the present invention, any mutation consisting of the elimination of one or more amino acids in the region of the sequence encoding the structural polyprotein encoding the capsid thus giving rise to a sequence that encodes the structural polyprotein that has lost the ability to encode a capsid protein capable of assembling with other similarly modified monomers and forming nucleocapsids.
  • the invention contemplates both modified B sequences in which the sequence encoding the capsid has undergone a total deletion as well as variants in which the deletion results in capsid proteins that have lost the ability to assemble to form capsids.
  • Suitable methods for determining if a variant of the capsid is capable of being assembled into nucleocapsids are widely known to those skilled in the art.
  • Skoging-Nyberg and Liljestrom, J. Viral, 2001, 75: 4625-4632 have described a method based on infection of recipient cells (BHK) with viral particles followed by analysis of nucleocapsid formation by centrifugation in gradient of metabolically labeled cell extracts. The formation of nucleocapsids is detected by the appearance of radioactive signal in areas of high density in the gradient.
  • Sequences B suitable for use in the present invention include those in which 100% of the sequence encoding the capsid has been deleted, or at least 95%, at least 90%>, at least 85%, at minus 80%, at least 75%, at least 70%), at least 65%, at least 60%>, at least 55%, at least 50%, at least 45%, at minus 40%, at least 35%, at least 30%, at least 25%, at least 20%, at least 15% or at least 10% of the sequence with respect to the 5 'end or at least 90% of the sequence encoding the capsid, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, at least 50%>, at least 45%, at least 40%>, at least 35%), at least 30%>, at least 25%, at minus 20%>, at least 15% or at least 10% of the sequence with respect to the 3 'end.
  • the invention contemplates B sequences in which the deletion results in a capsid protein that lacks at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at at least 80, at least 90, at least 100, at least 150, at least 200, at least 250 amino acids from the N-terminal end or at least 10, at least 20, at least 30, at least 40, at least 50, at at least 60, at least 80, at least 90, at least 100, at least 150, at least 200, at least 235 and at least 250 amino acids from the C-terminal end.
  • sequence B has undergone a total deletion of the capsid sequence.
  • the region that is deleted from the sequence encoding the structural polyprotein in SFFV is the region formed by nucleotides 7420 to 8220 (both included) of the sequence identified as NC 003215 in the database of NCBI.
  • the identification of the corresponding regions in other alphaviruses can be carried out by the expert from the comparison of the SFFV4 sequences with the other alphavirus using standard sequence alignment algorithms such as the BLASTP algorithm (BLAST Manual, Altschul, S. et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J., 1990, Mol. Biol. 215: 403-410).
  • the region that is deleted from the sequence encoding the structural polyprotein is the region formed by nucleotides 7522-8220 (both included) of the sequence identified as NC_003215 in the NCBI database.
  • sequence B has undergone a total deletion of the capsid sequence with the exception of the 5 'end sequence and comprising at least the first 102 nucleotides of the gene.
  • This sequence encodes a 34 amino acid peptide that is unable to form capsids (see example 1) but acts as translation enhancer of the AR m (enh region) that is formed from the sequence encoding the modified polyprotein.
  • the region that is deleted from the sequence encoding the structural polyprotein is the region formed by nucleotides 7522-8220 (both included) of the sequence identified as NC 003215 in the NCBI database.
  • the identification of the corresponding regions in other alphaviruses can be carried out by the expert from the comparison of the SFFV4 sequences with the other alphavirus using standard sequence alignment algorithms such as the BLASTP algorithm (BLAST Manual, Altschul, S. et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J., 1990, Mol. Biol. 215: 403-410).
  • sequence encoding the structural polyprotein according to the present invention is from SFV. In an even more preferred embodiment, said sequence comprises the sequence described in SEQ ID NO: 3.
  • sequences encoding the structural proteins of the vector of the invention are under operative control of the alphaviral subgenomic promoter.
  • operation control refers to an arrangement of elements where each of said elements is arranged so as to perform its usual function.
  • a gene is under operational control of a particular promoter when the promoter is capable of activating the transcription of said gene in the presence of suitable enzymes.
  • the promoter does not have to be contiguous with the gene sequence as long as it maintains the transcription activating function.
  • the gene will be considered to be under operational control if its transcription is activated by said promoter.
  • an "alpha-subgenomic promoter" or 26S promoter is a promoter originally defined in an alpha-genome genome that is capable, together with viral and cellular polymerases, of directing the transcription of a subgenomic m m of shorter length. to that of the viral genome during the process of replication of the alphaviral genome.
  • the subgenomic promoter comes from the region of the genome that is between the coding regions of the non-structural and structural proteins of said alphavirus.
  • the subgenomic promoter comprises a central or core region that provides the majority of promoter activity and flanking regions (extended or native promoter) that increase transcription activating capacity.
  • the subgenomic promoter is between positions 7348 and 7378 while the minimum region that is necessary for transcription corresponds to nucleotides 7354-7378 (Rausalu K. et al. Virol J. 2009 Mar 24; 6: 33).
  • the core promoter is between positions 7579 and 7612, while the minimum region that is necessary for transcription corresponds to nucleotides 7579 to 7602.
  • the subgenomic promoter may be truncated (for example, to produce a minimal subgenomic promoter) or modified so that its activity is reduced, or increased using methods known in the art.
  • the subgenomic promoter is derived from SFV.
  • the SFV subgenomic promoter comprises the sequence indicated in SEQ ID NO: 4.
  • the fourth element of the alphaviral replicon is the 3 'untranslated region of an alphaviral genome.
  • the term "non-translated region 3 ', as used in the present invention, corresponds to a non-translated region that appears after the termination codon and comprises different signals including, without limitation, polyadenylation signals, termination signals and the like. .
  • the 3 'untranslated region of the vector of the invention typically contains an AR polymerase recognition sequence. This sequence, called the alphavirus polymerase recognition sequence, 3 'CSE terminal or 3' replication sequence (see Strauss and Strauss, 1994, supra.), Provides a recognition site for the origin of negative chain replication.
  • the exact sequence that is used as the recognition sequence is not particularly limiting as well as the extension thereof as long as it maintains the ability to function as a recognition sequence.
  • the 3 'untranslated region typically contains a polyadenine tail that allows to increase the stability of the RNA and, therefore, the quantity of the products resulting from the translation of said RNA.
  • the poly (A) tail can be of any size as long as it is sufficient to increase the cytoplasm stability of the vector molecule of the invention.
  • the poly (A) tail comprises at least 10 adenosine nucleotides and, more preferably, at least 25 or 40 adenosine nucleotides.
  • the 3 'untranslated region is from SFV. In an even more preferred embodiment, the 3 'untranslated region comprises the sequence indicated in SEQ ID NO: 5.
  • the alphaviral replicon that is part of the vector of the invention further comprises a gene encoding a heterologous polypeptide wherein said gene is operably linked to a subgenomic promoter of an alphavirus.
  • This sequence is hereinafter referred to as nucleotide sequence C of the invention.
  • heterologous polypeptide refers to a product that is not naturally encoded by the alphavirus genome from which the replicon is derived.
  • the nature / function of the heterologous polypeptide is not particularly limiting for the present invention.
  • Detectable heterologous polypeptides whose coding sequences can be incorporated into the present invention include, without limitation, luciferase, fluorescent protein (green / red) and variants thereof, such as EGFP (enhanced green fluorescent protein), RFP (red fluorescent protein, such as DsRed or DsRed2), CFP (cyan fluorescent protein), BFP (green blue fluorescent protein), YFP (yellow fluorescent protein), ⁇ -galactosidase or chloramphenicol acetyltransferase, and the like.
  • EGFP enhanced green fluorescent protein
  • RFP red fluorescent protein, such as DsRed or DsRed2
  • CFP cyan fluorescent protein
  • BFP green blue fluorescent protein
  • YFP yellow fluorescent protein
  • ⁇ -galactosidase or chloramphenicol acetyltransferase and the like.
  • the heterologous polypeptide may be a polypeptide of therapeutic interest so that the vectors of the invention can be used for in vitro expression of said polypeptide or for the treatment of diseases that require expression of said polypeptide,
  • the invention contemplates vectors in which the C sequence contains genes or cDNAs encoding one or more polypeptides of therapeutic interest that include, without limitation, erythropoietin (EPO), leptins, adrenocorticotropic hormone releasing hormone (CRH), somatotropic hormone releasing hormone (GHRH), gonadotrofma-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), prolactin-releasing hormone (PRH), melatonin-releasing hormone (MRH), prolactin-inhibiting hormone (PIH), somatostatin, AC-adrenocorticotropic hormone (ACH) ), somatotropic or growth hormone (GH), luteinizing hormone (LH),
  • EPO ery
  • heterologous gene encodes a protein or an RNA that is capable of stopping tumor proliferation or activating the immune response against the cell expressing said protein.
  • heterologous genes suitable for use in the present invention include genes encoding polypeptides with anti-angiogenic activity (endostatins), genes with non-cytokine antitumor activity (Granzyme B, TRAIL, PTEN, SHP1 and SHP2) and genes encoding cytokines and that act by enhancing a patient's immune response against tumor cells.
  • the heterologous gene encodes a cytokine with immunostimulatory activity, including, IL-2, IL-7, IL-12, IL-15 (with or without its receptor), IL-21, IL-23, GM -CSF, TRAIL or tumor necrosis factor-alpha).
  • said interleukin is interleukin 12 (IL-12) or a functionally equivalent variant thereof.
  • interleukin 12 refers to a protein produced by dendritic cells in response to antigen stimulation and having heterodimeric structure formed by an A chain (IL-12A or p35) and a B chain (IL-12B or p40).
  • the polynucleotide comprising a sequence encoding IL-12 may include a polynucleotide comprising the nucleotide sequences encoding said p35 and p40 subunits of IL -12, that is both coding sequences included in the same polynucleotide and operatively linked to separate transcription promoter regions that may be identical or different between both coding sequences.
  • the polynucleotide encoding IL-12 may comprise a single open reading frame encoding a fusion protein formed by a polypeptide resulting from the fusion of the A and B chains of interleukin 12.
  • scIL-12 Single chain IL-12
  • scIL-12 Single chain IL-12
  • the invention contemplates the use of a sequence iii) comprising, sequentially, the p40 and p35 chains of murine IL-12 and the L19 fragment of a human ScFv as described by Santimaria, M., et al. ., (Clin Cancer Res, 2003. 9: 571-9).
  • variants of IL-12 suitable for use in the present invention include the variants described in WO06119897A.
  • a functionally equivalent variant of IL-12 is understood as any polypeptide whose sequence can be obtained by insertion, substitution or elimination of one or more amino acids from the IL-12 sequence, and polypeptide that at least in part retains the ability to increase antitumor immunity, determined for example by means of the assay mentioned in Example 6 of the present invention, the assay cited in Rodr ⁇ guez Madoz et al, [Mol. Ther. 2005, 12: 153-163] or the test described in Leong et al.
  • the IL-12 variants preferably have a sequence identity with said immunostimulatory cytokine of at least 50%, at least 60%, at least 70%>, at least 80%>, at least 90%>, at least 91%>, at least 92%, at least 93%), at least 94%>, at least 95%, at least 96%>, at least 97%, at least 98 % or at least 99%.
  • the degree of identity between variants and immunostimulatory cytokines is determined using computer algorithms and methods that are widely known to those skilled in the art.
  • the identity between two amino acid sequences is preferably determined using the BLASTP algorithm [BLASTM Annual, Altschul, S., et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J Mol Biol, 215: 403- 410 (1990)].
  • the heterologous gene does not comprise the sequence encoding the capsid of an alphavirus other than the alphavirus from which the replicon is derived.
  • the heterologous gene does not comprise the sequence encoding the Sindbis virus capsid or the sequence encoding the Ross River virus capsid.
  • the heterologous gene does not comprise the sequence encoding the capsid of the SFV or the sequence encoding the capsid of the Ross River virus.
  • the heterologous gene does not comprise a sequence encoding a fusion protein formed by the alphavirus capsid protein from which the replicon was obtained and part of the capsid protein of a second alphavirus.
  • the heterologous polypeptide is operatively linked to a subgenomic promoter of an alphavirus.
  • Sequences B and C of the vector of the invention can be ordered differently in the replicon of the invention. Likewise, regardless of their arrangement in the vector, the sequences may be associated with additional regulatory regions of the expression to the subgenomic promoter mentioned above.
  • the invention contemplates vectors comprising two subgenomic promoters, the heterologous gene (sequence C) being operatively linked to a first subgenomic promoter and the sequence encoding the structural polyprotein (sequence B) operatively linked to a second subgenomic alphaviral promoter.
  • the invention contemplates vectors in which the sequence encoding the structural polyprotein (B) and the sequence of the heterologous gene (C) are operably linked to a single subgenomic alphaviral promoter thus giving rise to the sequence D, which is formed by a subgenomic alphaviral promoter and by a sequence that results in a single transcript that will contain the region encoding the structural polyprotein and the sequence of the heterologous gene.
  • sequence B may be in position 5 'with respect to sequence C (figure ID, top panel) or vice versa, that is, sequence B may be in position 3' with respect to sequence C (figure ID , bottom panel).
  • sequences B, C and / or D of the vector of the invention may contain, between the subgenomic promoter of the alphavirus and the region of translation initiation, additional elements that contribute to increasing the efficiency with which said coding sequences, once transcribed, are translated to give rise, respectively, to the modified structural polyprotein or to the polypeptide encoded by the heterologous gene.
  • additional elements that contribute to increasing the efficiency with which said coding sequences, once transcribed, are translated to give rise, respectively, to the modified structural polyprotein or to the polypeptide encoded by the heterologous gene.
  • These types of elements are generally called translation enhancing sequences.
  • translation enhancing sequences refers to sequences that act in cis and that cause an increase in the amount of polypeptide or protein that is produced from an RNA with respect to the RNA. translation that takes place when the translation is initiated through a cap structure in the absence of said enhancer. Translation enhancing sequences include, without limitation, the 5 'end of the Gtx homeodomain protein (Chappell et al, Proc. Natl.Acad.Sci. USA, 101: 9590-9594, 2004), the sequence translation enhancer AGGT that appears in influenza virus mRNAs (Kash et al, J. Virol. 76: 10417-10426).
  • the translation enhancer is the translation enhancer of the SFV capsid protein and comprising the sequence encoding the first 34 amino acids of the SFV capsid as described by Sjóberg. et al. (Biotechnology (N. Y.), 1994, 12, 1127-1131).
  • the translation enhancement sequence corresponds to the sequence SEQ ID NO: 6.
  • the translational enhancer of the SFV capsid since the sequence capable of increasing the translation efficiency appears in the 3 'position with respect to the AUG codon of initiation, the proteins whose coding sequence is under Operational control of the enhancer sequence is synthesized with a region of 34 additional amino acids in N-terminal position.
  • the invention contemplates the possibility of inserting into the polynucleotide the sequence encoding a target sequence of a protease or the sequence encoding a self-protection .
  • the protease cut sites suitable for its Incorporation into the polypeptides of the invention include, without limitation, enterokinase cutting site (DDDDK), factor Xa cutting site (IEDGR), thrombin cutting site (LVPRGS), TEV protease cutting site (ENLYFQG) , the PreScission protease (LEVLFQGP) cut-off site, the flaggrin (RKRR), HGF-SF (KQLR) protease, MT-SPl / matriptase (RQAR) protease, protease cut-off PAR2 (SKGR) or uPA / urokinase protease (PRFK).
  • proteases that appear naturally in the cells in which the gene expression vector is to be used according to the present invention, so that the processing takes place in the cell itself where it is carries out the expression.
  • suitable cut sites for cell proteases include the ubiquitin hydrolase cut site, the HCV NS2B / NS3 protease cut site, the prostate specific protease cut site and the like.
  • the sequence of the translational enhancer and the sequence B, C or D according to the invention are separated by a sequence encoding a self-protection.
  • fusion protein comprising the sequence derived from the translational enhancer of the alphavirus capsid, the sequence of the self-protection and the sequence of the protein or polyprotein encoded by the polynucleotide B, C or D of the invention.
  • Autoproteases act in cis on the fusion protein eliminating the sequences from the protease and the translation enhancing sequence resulting in a protein whose N-terminal end carries only one additional proline (Smerdou, C. and P. Liljestrom . (1999) J. Virol. 73: 1092-1098).
  • said nucleotide sequence encoding a (auto) protease that acts in cis between the sequence of said self-protection and the sequence encoded by the polynucleotides that form the vector of the invention is derived from a virus, for example, a picornavirus, an alphavirus, etc.
  • said sequence comprises the nucleotide sequence encoding the 2A region of the FMDV virus polyprotein (FMDV) or FMDV 2A autoprotease as described, among others, in EP 736099, the content of which is includes in its entirety by reference.
  • the sequence encoding FMDV 2A autoprotease comprises the sequence identified in SEQ ID NO: 7.
  • the alphavirus capsid translation enhancer sequence is found together with the sequence that encodes an autoprotease forming part of a cassette that can be inserted at will in 5 'position with respect to the reading frame of the protein of interest, this being both the sequence encoding the modified polyprotein or the sequence of the gene of interest.
  • the cassette is formed by the translation enhancer sequence of the SFV capsid followed by the sequence encoding FMDV 2A autoprotease.
  • the translation enhancer-autoprotease sequence comprises the sequence identified in SEQ ID NO: 8.
  • sequences B, C and / or D comprise the region that increases the translation of the alphavirus capsid gene, followed by the sequence encoding an autoprotease.
  • sequences B, C and / or D comprise the region that increases the translation of the alphavirus capsid gene, followed by the sequence encoding FMDV 2A autoprotease.
  • Translation enhancing sequences may be incorporated into the vectors of the invention operatively linked to sequence B, operably linked to sequence C, operably linked to sequences B and C or operably linked to sequence D.
  • sequences B and C are each operatively linked to a subgenomic promoter and each comprise, in a 3 'position with respect to the respective subgenomic promoter, a translation enhancer of the SFV capsid. and, optionally, the sequence encoding FMDV autoprotease 2A.
  • This type of construction is represented schematically in Figure 1A, both when sequence B is in position 5 ' with respect to sequence C (upper panel) or when sequence C is in position 5 'with respect to sequence B (lower panel).
  • the vector of the invention comprises the sequence indicated in SEQ ID NO: 10) composed of:
  • EGFP enhanced GFP
  • the vector of the invention comprises the sequence indicated in SEQ ID NO: 1 1) composed of:
  • only one of the B or C sequences is under operational control of the cassette formed by the translation enhancer and the sequence encoding FMDV 2A autoprotease.
  • the invention contemplates vectors in which only the sequence of the heterologous C gene is operatively linked to the augmentation-autoprotease cassette, in which case it can be found in a 3 'position with respect to the polymucleotide B) ( Figure IB, upper panel) or in position 5 'with respect to polymucleotide B (figure IB, lower panel).
  • sequence B comprises a translation regulator cassette in 5 'position comprising the translation enhancer sequence of the SFV capsid and the sequence encoding FMDV autoprotease 2A.
  • sequence B comprises the sequence indicated in SEQ ID NO: 9.
  • sequences B or C contain regulatory elements of the translation.
  • This type of construct is represented schematically in Figure ID, both when sequence B is in position 5 'with respect to sequence C (upper panel) and when sequence C is in position 5' with respect to sequence B (bottom panel).
  • sequence D In those vectors in which sequences B and C appear operatively coupled to a single subgenomic promoter (sequence D), the invention contemplates the possibility of said sequence being polycistronic, that is, a sequence in which the sequence encoding the structural polyprotein and the sequence encoding the heterologous protein appear in separate reading frames, so that each of them is preceded by translation regulatory elements. In the case of the polycistronic type D sequence, the invention contemplates the presence of translation regulatory sequences that act on each of the sequences independently. This type of sequence has been described in detail previously and includes internal ribosomal entry sites or IRES ⁇ infernal ribosomal entry sites).
  • IRES is used to indicate sequences that appear in mRNAs and that are capable of recruiting translational machinery to an internal translation initiation codon with the help of trans-acting factors (reviewed in Jackson, Translational Control of Gene Expression, pp. 127-184, Cold Spring Harbor Laboratory Press, 2000). IRES elements frequently appear in mRNA of viral origin.
  • IRES elements useful for use in the present invention include, without limitation, IRES of picornavirus (e.g., poliovirus), encephalomyocarditis virus (EMCV), FMDV, IRES of flavivirus (e.g., hepatitis C virus), IRES from pestivirus (for example, classical swine fever virus (CSFV)), IRES from retrovirus (for example, murine leukemia virus or MLV), from lentiviruses (for example, simian immunodeficiency virus or SIV ) or IRES of cellular mRNA such as those that appear in translation factors (eIF4G), in transcription factors (c-Myc), IRES of growth factors (for example, VEGF, IGF-II, PDGF-2 or FGF- 2), of homeotic genes (for example, IRES of Antennapedia), of proteins of survival (for example of the X-associated apoptosis inhibitor (XIAP) or Apaf-1), IRES of chaperones
  • a first cassette formed by a translational enhancer and the coding sequence of a self-protection
  • a second cassette formed by a translational enhancer and the coding sequence of an autoprotease operatively linked with said IRES and the sequence encoding the structural polyprotein (modified in the sequence encoding the capsid protein) fused in phase with said second cassette.
  • heterologous gene may be in a 3 'position with respect to the gene encoding the structural polyprotein, in which case the arrangement of elements in the vector of the invention would be as indicated in Figure 1G (lower panel):
  • a first cassette formed by a translational enhancer and the coding sequence of a self-protection
  • sequence D of the invention comprises a single cassette formed by the translation enhancer and the sequence encoding a self-protection that can be operatively coupled with sequence B of according to the invention or operatively coupled to the sequence C.
  • the vector described schematically in Figure 1H comprises the cassette formed by the translation enhancer the sequence encoding an operatively coupled autoprotease to the heterologous gene followed by the gene encoding the modified polyprotein under the control of an IRES.
  • the sequence encoding the modified polyprotein is operatively linked to a cassette formed by the translation enhancer and the sequence encoding an autoprotease and it is the heterologous gene that is operatively linked to an IRES ( Figure II, upper panel).
  • the gene of interest can be operatively linked to an IRES and a cassette formed by the translation enhancer and the sequence encoding a self-protection and the sequence encoding the structural polyprotein according to the invention (sequence B) can lacking any type of translation augmenting element.
  • sequence B can lacking any type of translation augmenting element.
  • Figure 1H lower panel
  • sequence encoding the modified polyprotein may be operatively linked to an IRES and a cassette formed by the translation enhancer and the sequence encoding a self-protection and the heterologous gene may lack additional elements of translational regulation (Figure II). , bottom panel).
  • sequence (iv) includes an IRES as the sole regulatory element of translation.
  • the IRES can be operatively coupled to the heterologous gene ( Figure 1J, upper panel) or to the gene encoding the modified polyprotein ( Figure 1J, lower panel).
  • the invention contemplates both vectors where the heterologous gene is in a 5 'position with respect to the gene encoding the modified polyprotein as in position 3 '.
  • the D sequence may be a monocistronic sequence, that is, it comprises a single reading frame that encodes a polyprotein formed by the structural proteins of the alphavirus and the protein encoded by the heterologous gene.
  • sequence D is provided with sequences that encode target sites for proteases or sequences that code for self-protection, so that after the synthesis of the polyprotein by translating the transcript of the sequence D, it can be processed to separate the encoded protein by the heterologous gene of the rest of the proteins that are part of the polyprotein.
  • the invention contemplates different embodiments depending on the relative organization of the sequences encoding each of the polyprotein elements.
  • the D sequence encodes a polyprotein comprising, in the N- to C-terminal sense:
  • sequence D is operatively linked to a cassette formed by the translation enhancer and the sequence encoding a self-protection as reflected schematically in Figure 1E (upper panel).
  • the D sequence encodes a polyprotein comprising, in the N- to C-terminal sense:
  • the vectors of the invention have been defined above as comprising a heterologous gene under the control of a subgenomic alphaviral promoter, the person skilled in the art will appreciate that the vectors of the invention can present instead of said heterologous gene a sequence containing a multiple cloning site where it would be possible to insert a gene of interest so that said gene of interest is under operational control of said subgenomic promoter .
  • the invention relates to a gene expression vector comprising a replicon alfaviral
  • said replicon comprises a multiple cloning site that is operatively linked to a subgenomic alphaviral promoter so as to allow the insertion of genes into said multiple cloning site under the operational control of said alphagen subgenomic promoter and
  • sequence encoding the structural polyprotein comprises a deletion in the region encoding the capsid protein so that said sequence is not capable of producing a protein capable of forming functional nucleocapsids.
  • multiple cloning site refers to a DNA fragment that comprises several target sites for restriction endonucleases close together and that cut the viral replicon into a single position.
  • the multiple cloning site comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 restriction targets each formed by at least 4, at least 5 or at least 6 nucleotides .
  • the person skilled in the art will appreciate that the cloning vectors of the invention may have different arrangements of the elements that comprise it.
  • the invention contemplates vectors comprising two subgenomic promoters, the multiple cloning site being associated with the first subgenomic promoter and the replicon sequence encoding the structural polyprotein associated with the second subgenomic promoter.
  • the invention contemplates the possibility that the vector contains a single alpha-viral subgenomic promoter so that both the sequence encoding the structural polyprotein and the multiple cloning site are operatively linked to said single alpha-viral subgenomic promoter.
  • the cloning vector of the invention comprises variants in which the second subgenomic promoter and the multiple cloning site are in 5 'or 3' position with respect to the sequence encoding the structural polyprotein ( sequence B) as well as variants in which sequence B and / or the cassette formed by the subgenomic promoter and the multiple cloning site are additionally associated with translation regulatory elements such as a translation enhancer, in particular, the SFV capsid gene enhancer optionally coupled to a sequence encoding an autoprotease.
  • a translation enhancer in particular, the SFV capsid gene enhancer optionally coupled to a sequence encoding an autoprotease.
  • the invention contemplates variants in which the multiple cloning site can be located in different positions in the vector and associated with different types of additional regulatory elements.
  • variants contemplated in the present invention include all those that appear in the schemes of Figure 1, wherein the HG would indicate in this case the position of the multiple cloning site.
  • the invention contemplates vectors in which the multiple cloning site and / or the sequence encoding the structural polyprotein comprise a translation enhancer in 5 'position with respect to said sequence.
  • said translation enhancer is the translation enhancer of the capsid of an alphavirus.
  • the translation enhancer is linked to a sequence encoding a self-protection, where the self-protection is in position 3 'with respect to said augmenting element.
  • the insertion of the gene into the multiple cloning site must be carried out so that the open reading frame of the gene is in phase with the sequence encoding the self-protection and, in case the augmenting sequence contains sequence coding, also in the same reading frame as said augmenting sequence.
  • the autoprotease is FMDV autoprotease 2A.
  • the invention contemplates the possibility that the vector comprises an IRES between the B sequence and the multiple cloning site.
  • multiple cloning site in the vector of the invention is designed such that by inserting the sequence of the heterologous gene, the sequence encoded by it and the sequence encoding the modified structural polyprotein give rise to a single polyprotein further comprising, between the end of said polyprotein that is closest to the multiple cloning site and said polyprotein a linker selected between the FMDV 2A autoprotease sequence and the sequence of a protease cleavage site.
  • the vector comprises a sequence D under the control of a single subgenomic promoter and wherein said sequence D is monoistronic.
  • the invention contemplates families formed by 3 vectors in which the multiple cloning site is displaced one nucleotide with respect to the previous one. Thus, by cloning the gene of interest in the 3 vectors, it is ensured that at least one of them contains said gene in the appropriate reading frame.
  • the sequence of which encodes the structural protein and the sequence of the multiple cloning site are separated by a sequence encoding a self-protection , so that after the synthesis of the protein, it is processed to give rise to the protein encoded by the gene of interest.
  • said autoprotease is FMDV autoprotease 2A.
  • the gene expression vector of the invention encoding a single polyprotein comprises a translation enhancer in 5 'position with respect to said sequence.
  • the translation enhancer is the translation enhancer of the alphavirus capsid (enh).
  • the vector further comprises between the sequence of the enhancer of the translation enhancer of the alphavirus capsid and the sequence encoding a single structural polyprotein a sequence encoding a self-protection.
  • the cloning vector of the invention comprises the sequence characterized by SEQ ID NO: 12 (SFV-spike vector) comprising: 5 ' untranslated end (nucleotides 1-86)
  • non-structural polyprotein sequence encoding non-structural polyprotein (nucleotides 87-7385) - subgenomic promoter (nucleotides 7354-7378, which overlap with the end of non-structural proteins)
  • the SFV-spike vector is modified by a multiple cloning site that is in 3 'position with respect to the subgenomic promoter and in 5' or 3 'position with respect to the coding sequence the modified structural polyprotein.
  • the cloning vector of the invention comprises the sequence characterized by SEQ ID NO: 14 (SIN-spike vector) comprising: 5 ' untranslated end (nucleotides 1-59)
  • the SIN-spike vector is modified by a multiple cloning site that is in 3 'position with respect to the subgenomic promoter and in 5' or 3 'position with respect to the coding sequence the modified structural polyprotein.
  • the cloning vector of the invention comprises the sequence characterized by SEQ ID NO: 13 (SFV-enh-spike vector) comprising: 5 ' untranslated end (nucleotides 1-86),
  • protease 2A sequence encoding protease 2A (nucleotides 7526-7576).
  • the SFV-enh-spike vector is modified by a multiple cloning site that is in position 3 'with respect to a subgenomic promoter and in 5 ⁇ 3 'position with respect to the sequence encoding the modified structural polyprotein.
  • the vector of the invention comprising the multiple cloning site may comprise an alphaviral replicon selected from the group of Semliki Forest (SFV) and Sindbis virus (SIN).
  • SFV Semliki Forest
  • SIN Sindbis virus
  • the vector of the invention as defined above comprises an alphaviral replicon modified by (i) the presence of a heterologous gene that is operatively linked to a subgenomic alphaviral promoter and (ii) a deletion in the sequence encoding the structural polyprotein of said alphaviral replicon so that said sequence is not capable of giving rise to a capsid protein capable of forming functional nucleocapsids. Therefore, since alphaviruses have a positive polarity RNA as a genome, the vector of the invention is typically an RNA molecule.
  • the invention relates to a DNA polynucleotide of sequence complementary to the replicon of the invention so that, after transcription, the RNA is generated with the alphaviral replicon.
  • sequence complementary to a particular sequence is understood, in the context of the present invention, the inverse of a sequence resulting from replacing each nucleotide in said particular sequence by the complementary nucleotide according to the rules established by Watson-Crick. Therefore, two sequences are complementary when they can be joined together in an antiparallel sense (the 5 'end of one of them with the 3' end of the other and each A, T (U), G and C of a sequence is paired , respectively, with a T (U), A, C and G.
  • the DNA polynucleotide of the The present invention would have the sequence of the vector of the invention read in reverse (3 'to 5') and replacing each U, A, C and G of the vector with A, T, G and C, respectively.
  • this DNA when copied by an RNA polymerase, it inserts in each position the complementary base to which it appears in the mold an RNA molecule is generated whose sequence coincides with that of the vector of the invention.
  • the invention contemplates that said DNA is operatively associated with a transcriptional promoter, so that it is possible to generate the viral alpha RNA by transcription in vivo or in vitro.
  • the promoter acts on the sequence in the 3 'position resulting in an alphaviral replicon that is capable of directing its own replication in the cell and expressing a protein of interest.
  • the type of promoter that is operatively linked to the DNA of the invention is not particularly limiting for the present invention.
  • the invention contemplates the use of promoters suitable for in vitro transcription such as promoters of RNA polymerase of phage T7, T3 and SP6, as well as suitable promoters constituting for in vivo expression, including both promoters derived from genomes of eukaryotic viruses such as polyoma virus, adenovirus, SV40, CMV (early or late), Moloney leukemia virus promoter, Rous sarcoma virus (RSV) LTR promoter, virus promoter avian sarcoma, hepatitis B virus, the metallothionein gene promoter, the herpes simplex virus thymidine kinase gene promoter, LTR regions of other retroviruses, the immunoglobulin gene promoter, the gene promoter actin, the promoter of the EF-lalpha gene as well as inducible promote
  • the polynucleotide that is operatively associated with the promoter comprises, in addition to the sequences encoding the non-structural and structural polyprotein of the alphavirus, other regulatory elements such as polyadenylation sequences, non-translated sequences necessary for replication, sequences of processing or adjustment, nuclear export sequences and transcription termination sequences.
  • the invention in another aspect, relates to a viral particle comprising a vector of the invention.
  • viral particle refers to a virion unit containing the vector of the invention in the form of AR, a nucleocapsid structure formed by the capsid protein that encompasses said RNA and a lipid envelope in which glycoproteins encoded by the alphaviral genome are found and that comes from the plasma membrane of the cell in which said particle has been formed.
  • the particle may contain other elements (for example, targeting elements such as biotin, other structural and non-structural viral proteins and other receptor binding ligands).
  • the viral particles comprise an envelope containing the El and E2 glycoproteins forming the so-called viral spicules and the minor protein of the 6K envelope, a capsid formed by a regular arrangement of the protein C and the RNA vector of the invention with the elements defined above.
  • the invention relates to a method for obtaining a viral particle according to the invention comprising
  • the method for obtaining a viral particle of the invention comprises expressing in a host cell
  • gene expression vector comprising an alphaviral replicon has been defined in detail previously.
  • the type of vector used in the method of the invention is not particularly limiting, so the invention contemplates carrying out the first stage with any of the vectors shown schematically in Figure 1 of the present invention.
  • the expression of the different sequences in the recipient cell can be carried out in different ways.
  • Transfection can be carried out by microinjection of a composition comprising the vector or, alternatively, by co-precipitation in the presence of calcium phosphate or calcium chloride, by transfection mediated by DEAE-dextran, lipofection, electroporation as well as a whole series of Transfection kits based on prior art and commercially available.
  • the effectiveness of the transfection will depend on a series of factors that include the type of cell, the number of passes, the state of confluence as well as the conditions (time, form of preparation of the liposomes or precipitates, etc.) of the transfection All these parameters can be determined and adjusted by routine experimentation.
  • Transfection is carried out from cell cultures comprising at least 10 7 cells / mL of medium, preferably between 5 x 10 7 and 5 x 10 8 cells / mL of medium.
  • the replicon that is used in the context of the present invention is any of the gene expression vectors that have been described in detail in the previous section. In particular, it is possible to use vectors in which the arrangement of elements coincides with that of the vectors that are described schematically in Figure 1.
  • the alphaviral replicon is provided in the form of a viral particle
  • the virus is contacted with the cells using a ratio of number of viral particles to cells (multiplicity of infection or MOI) of at least about 1, 2, 10, 20, 30, 50, 100, 200, 2000 or any other MOI value suitable for substantially infecting all cells of the culture.
  • the term "host cell” refers to a cell that has been modified by introducing at least one of the vectors of the invention.
  • the host cell is a cultured mammalian cell such as Vero cells, BHK cells, chicken embryo fibroblasts (CEF), DF-1, 293, 293T cells, CHO cells, 293T / 17 cells (ATCC: CRL- 11268), UMNSAH / DF-1 cells (CRL-12203) and insect cells such as Spodoptera frugiperda SF21 cells; C6 / 36 of Aedes albopictus; TRA-171 cells of Toxorhynchites amboinensis; RML-12 cells of Aedes aegypti; AP-61 cells of Aedes pseudoscutellaris; and MOS-55 cells from Anopheles gambiae cells.
  • capsid proteins these may be derived from a polynucleotide that is stably integrated into the genome of the host cell or which is expressed transiently as it has been co-transfected together- or separately with the vectors of the invention.
  • the polynucleotide encoding the capsid protein can be introduced by co-electroporation with a vector containing the coding sequence of the capsid protein (called vector or auxiliary nucleic acid ).
  • auxiliary nucleic acid can be found in the electroporation mixture at a concentration of 20-500 ⁇ g in every 0.8 mL of electroporation mixture, preferably around 50 ⁇ of electroporation mixture where said mixture contains between 5xl0 6 and 2xl0 7 cells, preferably around lxlO 7 cells.
  • the cells are maintained in suitable conditions for the replication of the viral replicon, for the expression of the structural and non-structural proteins of the alphavirus encoded in the replicon and for the expression of the protein of the capsid of the alphavirus and for the assembly from the nucleocapsid capsid protein with the genetic material inside.
  • suitable conditions refers to the conditions of time, temperature and culture media that allow continued growth of the cells for the synthesis of the components of the virions and the assembly of the viral particles. These conditions can be determined in particular for each case by routine experimentation.
  • the viral particles are collected from the supernatant of the host cells.
  • it is necessary to purify the viral particles by known methods such as CsCl gradient ultracentrifugation or the methods described in US7078218, US5492462 and US6156558).
  • Per particle Infectious alphaviral means a particle that is capable of introducing genomic RNA into a cell, typically by transduction.
  • cell culture supernatants infected with viral vectors according to the present invention contain a material that is capable of spreading to cells initially not infected by the virus despite the absence in said protein cells. of the capsid.
  • the supernatants of cells infected with the vectors of the invention contain infectious material that is capable of being transmitted to neighboring cells sensitively to cell agitation, indicating that cell contact it is not required for said phenomenon and in a manner dependent on the El and E2 proteins of the spicule (since it is inhibited in the presence of antibodies against said proteins).
  • this infectious material gives us a much higher title when the vector is administered by infection with viral particles than by electroporation with the naked genetic material.
  • the invention relates to a method for obtaining a composition comprising infectious material comprising
  • the method for obtaining infectious material comprises the introduction into an appropriate permissive cell of an expression vector according to the invention, a polynucleotide according to the invention or a viral particle according to the invention.
  • permissive cell can incorporate the genetic material of the replicon either by direct transfer of the naked genetic material into the cell interior (either the AR replicon or the corresponding cDNA coupled to a promoter) or either by using viral particles that comprise replicon.
  • the host cells are infected by the use of viral particles, which surprisingly allows to obtain an infectious material of higher titre.
  • the number of viral particles can be determined experimentally although it is preferable that the MOI is high enough.
  • the cells are maintained in suitable conditions for the expression in said cells of the structural proteins of the alphavirus, of the non-structural proteins of the alphavirus and for the formation of infectious particles in the supernatant of the cells.
  • the culture is evaluated on a regular basis until the appearance of infectious material is detected in the supernatant or until it is observed that the existence of a cytopathic effect.
  • the detection of the appearance of infectious material is typically carried out by contacting said material with suitable receptor cells.
  • the detection of the appearance of cytopathic effect in the culture is typically carried out by visual inspection of the culture.
  • a third stage the supernatant of the cells is recovered.
  • this stage is carried out simply by collecting the culture medium.
  • the culture medium is recovered by removing the cells, for which it can be carried out by centrifugation, sedimentation, filtration or any other technique known to a person skilled in the art.
  • the invention relates to a composition of infectious material obtained by the method described above.
  • compositions and medical uses of the vectors of the invention are provided.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising:
  • an active ingredient selected from the group of a vector of the invention, a DNA polynucleotide of the invention, a viral particle of the invention or a composition of infectious material and
  • the invention relates to a vector of the invention, a DNA polynucleotide of the invention, a viral particle of the invention or a composition of infectious material for use in medicine.
  • any pharmaceutically acceptable carrier or excipient can be used in the present compositions (see, for example: Remington: The Science and Practice of Pharmacy, Alfonso R. Gennaro (Editor) Mack Publishing Company, April 1997).
  • Preferred dosage forms would be in combination with saline solution, solution. dextrose, or sterile buffered solution, or other pharmaceutically acceptable sterile liquids.
  • a solid support such as, for example, micro-support balls can be used.
  • the invention relates to a method for the treatment of cancer in a subject comprising the administration to said subject of a vector of the invention, a DNA polynucleotide of the invention, a viral particle of the invention or a composition. of infectious material.
  • the invention relates to the use of a vector of the invention, of a DNA polynucleotide of the invention, of a viral particle of the invention or of a composition of infectious material for the preparation of a medicament for the treatment.
  • the invention relates to a vector of the invention, to a DNA polynucleotide of the invention, to a viral particle of the invention or to a composition of infectious material for the preparation of a medically for use in the treatment of the Cancer.
  • cancer refers to a disease that is caused or results from inappropriately high levels of cell division, inappropriately low levels of apoptosis or both and includes both primary tumors and metastases.
  • primary tumor refers to a tumor that is located in the primary site where the tumor originated.
  • metalastasis refers to the process by which a tumor extends to tissues of the organism other than the primary site of origin of the tumor.
  • cancer treatment or “tumor treatment” means the administration of the compounds and compositions of the invention to prevent or delay the onset of symptoms, complications or biochemical indications of the cancer or tumor, to relieve their symptoms or to stop or inhibit their development and progression such as, for example, the appearance of metastases.
  • the treatment can be a prophylactic treatment to delay the onset of the disease or to prevent the manifestation of its clinical or subclinical symptoms or a therapeutic treatment to eliminate or alleviate the symptoms after the manifestation of the disease or in relation to its surgical or radiotherapy treatment.
  • the cancer to be treated in the context of the present invention can be any type of cancer or tumor.
  • These tumors or cancer include, and are not limited to, neoplasms located in the colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovaries, thymus, thyroid), eye, head and neck, nervous system (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax and genitourinary apparatus and, more particularly, childhood acute lymphoblastic leukemia, acute lymphoblastic leukemia, acute lymphocytic leukemia, myeloid leukemia acute, corticosuprarenal carcinoma, adult hepatocellular cancer (primary), adult liver cancer (primary), acute lymphocytic leukemia in adults, acute myeloid leukemia in adults, Hodgkin disease in adults, Hodgkin lymphoma
  • the invention contemplates the use of vectors, polynucleotides, particles and compositions of the present invention as therapeutic agents, the administration of viral particles is preferred.
  • the dosage of said viral particles is preferably adjusted according to the severity of the pathological conditions, sex, age, body weight and habits of the subject, and the like; however, said dosage is appropriately adjusted by a doctor or a veterinarian.
  • a single administration such as, for example, a single injection of a sufficient number of infectious particles to provide therapeutic benefit to the patient who undergo such treatment.
  • the number of viral particles administered to a mammal may be of the order of about
  • Suitable supports comprise, for example, phosphate buffered saline solutions, water, emulsions, for example oil / water emulsions, wetting agents, sterile solutions, etc.
  • the type of support depends on how to manage the vector alphaviral and / or alphaviral particle according to the invention.
  • the appropriate dose is determined by the doctor and depends on several factors, for example, the patient's age, sex and weight, the severity of the disease, the type of administration, etc.
  • the administration of viral particles according to the present invention to a human subject or an animal in need thereof can be by any means known in the art for administering viruses.
  • Exemplary modes of administration include oral, rectal, transmucosal, topical, transdermal, inhalation, parenteral administration (e.g., intravenous, subcutaneous, intradermal, intramuscular and intraarticular) and the like, as well as direct injection to tissue or organ, alternatively, intrathecal injections, direct intramuscular, intraventricular, intravenous, intraperitoneal, intranasal, or intraocular.
  • Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid before injection, or as emulsions.
  • the virus can be administered in a local rather than systemic manner, for example, in a depot or sustained release formulation.
  • the viral particles of the invention are capable of generating a delay in tumor growth also in the absence of a heterologous gene, probably because expression in the double-stranded RNA cell generates the so-called interferon response.
  • the invention relates to a method of treating cancer in a subject comprising the administration to said subject of a viral vector comprising an alphaviral replicon characterized in that the sequence encoding the structural polyprotein of said alphaviral replicon has been modified from form that is not able to give rise to a capsid protein capable of forming functional nucleocapsids.
  • said alphaviral replicon is SFV.
  • the alphaviral replicon is a vector like those described in the present invention which comprise, in addition to the typical replicon sequences, a gene heterologous that is operatively linked to a subgenomic alphaviral promoter.
  • the therapeutic method of the present invention can be carried out using any heterologous gene encoding a protein with antitumor activity such as those described above.
  • the therapeutic method is carried out using a viral vector or particle in which the heterologous gene encodes interleukin 12 or a variant thereof.
  • interleukin variants 12 that can be used in the present invention include, without limitation, those mentioned above in the context of the vectors of the invention.
  • the therapeutic method is carried out using a single chain interleukin 12.
  • the invention relates to an in vitro method for the production in a cell of a protein of interest comprising
  • the in vitro method for the production in a cell culture of a protein of interest comprises contacting said cell with a gene expression vector according to the invention, with a polynucleotide according to the invention, with a viral particle according to the invention or with an infectious material according to the invention wherein the heterologous gene encodes the protein of interest and where the contacting is carried out under conditions suitable for the entry of the vector of expression or of the genetic material contained in the viral particle in the cell.
  • This step is carried out essentially in the same manner as the first stage of the method for obtaining a viral particle of the invention or for obtaining a composition comprising infectious material according to the invention.
  • this step can be carried out using a vector or a polynucleotide, in which case the introduction into the cell is carried out by transfection of said vector using conventional techniques or a polynucleotide using any of the techniques mentioned above.
  • the transfection is carried out by electroporation.
  • the first stage is carried out using viral particles in which case the genetic material enters the cell through the infection of said cell by the viral particle.
  • step (i) the cell obtained in step (i) is maintained under conditions suitable for expression in the cell of the gene of interest. If the cell is part of a culture, step (ii) is also carried out so that the infection spreads to the cells of the culture that had not been initially infected. During the completion of this second stage, the culture is evaluated on a regular basis until it is detected that the expression of the protein has reached the desired levels. This can be accomplished by the detection in the culture of immunoreactive material using an antibody specific for the protein to be purified, mainly by a Western blot method (J. Bacteriol. 1988; 170: 3847).
  • the protein of interest is recovered.
  • the way to implement this stage will depend on whether the protein is a secretable protein, in which case it will be recovered from the culture medium in which the cell is located or if the Protein is intracellular, in which case it will be necessary to separate the cells from the culture medium, break the cells and purify the protein from the cell lysate.
  • step (iii) of the method of the invention requires separating the cell from the culture supernatant, usually by centrifugation or filtration, followed by lysis of the cells.
  • Host cells can be used using any conventional method including chemical / enzymatic cell lysis, mechanical lysis, thermal cycling lysis, boiling lysis, electrochemical lysis, electroporation lysis and ultrasonic lysis. Once the cells are lysed, the sample is treated in order to remove cell debris and non-broken cells, usually by centrifugation until a cell-free lysate containing the polypeptide of interest is obtained.
  • the cell-free lysate obtained as defined in the previous paragraph (if the polypeptide of interest is expressed intracellularly) or the cell culture supernatant (if the polypeptide of interest is secreted) is then subjected to one or more purification steps of proteins in order to isolate the polypeptide of interest.
  • Suitable protein purification methods include, without limitation, size fractionation using molecular exclusion chromatography; ion exchange chromatography; affinity chromatography using, for example, monoclonal antibodies directed to the polypeptide of interest, adsorption chromatography using non-specific supports, such as hydroxyapatite, silica, alumina, selective precipitation and the like.
  • the fractions obtained during the above purification procedures are then tested for the presence of the polypeptide of interest.
  • the identification of the polypeptide of interest after fractionation can be established using several methods known in the art, including but not limited to SDS-PAGE, Western blot and mass spectrometry assays to detect non-specific binding of antibodies including, but not limited to, radioimmunoassays, ELISA (enzyme-linked immunosorbent assay), "sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays, Western blots, precipitation reactions, immunoassays fluorescence polarization (FPIA), nephelometry inhibition immunoassay (NIA), agglutination assays, complement fixation assays, immuno fluorescence assays, protein A assays and immunoelectrophoresis assays and the like.
  • FPIA fluorescence polarization
  • NIA nephelometry inhibition immunoassay
  • agglutination assays
  • the protein incorporates a detection / purification tag (i.e., a sequence that encodes a peptide of known sequence and that is not present in native host cells that allows detection and / or purification of the antigenic peptide)
  • a detection / purification tag i.e., a sequence that encodes a peptide of known sequence and that is not present in native host cells that allows detection and / or purification of the antigenic peptide
  • the protein can be purified from the medium or cell lysate by affinity to commercial molecules that show high affinity for said tags.
  • Suitable purification detection tags include hexa-histidines (metal chelate moiety), glutathione affinity of hexa-hat GST (glutathione S-transferase), calmodulin-binding peptide (CBP), streptomycin label, cellulose binding domain, maltose binding protein, S-peptide tag, chitin binding tag, immunoreactive epitopes, epitope tags, E2tag, HA epitope tag, Myc epitope, FLAG epitope, AU1 and AU5 epitopes, GIu-GIu epitope, KT3 epitope , IRS epitope, Btag epitope, protein kinase-C epitope, VSV epitope or any other tag as long as the tag does not affect the stability of the protein.
  • the BHK-21 cell line (ATCC CCL-10) is derived from hamster kidney fibroblasts and was grown in Glasgow minimum essential medium (Glasgow-MEM, Gibco, BRL, Great Britain) supplemented with 5% fetal calf serum, 10% of "tryptose phosphate broth", 2 mM glutamine, 20 mM HEPES, 100 ⁇ g / ml streptomycin and 100 IU / ml penicillin (complete BHK medium).
  • Glasgow minimum essential medium Gibco, BRL, Great Britain
  • the Hep-3B cell line (ATCC HB8064) and the Huh-7 line (own laboratory stock) are derived from human hepatocarcinoma.
  • the cell line MC38 (Rodriguez-Madoz et al Mol Ther 2005; 12:... 153-163) derived from a colorectal adenocarcinoma mouse C57 / BL6 and have H-2b restriction b for the MHC-I molecule.
  • DMEM Dulbecco modification
  • Plasmids pSFV-LacZ and pSFV-GFP have been described and contain under the control of the SP6 promoter the sequence of an SFV vector carrying the LacZ gene or the GFP gene under the control of the viral subgenomic promoter, respectively (Liljestrom and Garoff. Biotechnology (NY) 1991; 9: 1356-1361). Plasmids pSFV-helper-S2 and pSFV-helper-C-S219A have been previously described (Smerdou and Liljestrom. J. Virol. 1999; 73: 1092-1098).
  • pSFV-helper-S2 contains the sequences of the viral envelope proteins (p62-6K-El) or of the SFV capsid, respectively, fused with the translation enhancer from the first 34 amino acids of the SFV capsid (bl ) and protease 2 A from the old fever virus (FMDV)
  • the plasmid pSFV-Helper-E differs from pSFV-helper-S2 in that the sequence of p62-6K-E1 is not fused with the enhancer bl and the Protease 2 A (Smerdou and Liljestrom. J. Virol. 1999; 73: 1092-1098). All "helper" plasmids carry an SFV vector under the transcriptional control of the SP6 promoter in which most of the replicase gene has been deleted.
  • plasmid pSFV-scIL-12 ( Figure 2C) the plasmid pSFG-IL-12.p40.LAp35 was started, which contains the sequences of the p40 and p35 subunits of the murine interleukin-12 phase-fused by a 45 bp (scIL-12) linker sequence (Lieschke et al. Nat. Biotechnol. 1997; 15: 35-40). From this plasmid, the murine scIL-12 gene was amplified by PCR using primers:
  • the area of these primers that hybridizes with the plasmid pSFV-IL-12.p40.LAp35 is indicated in bold.
  • the underlined area represents an Xmal site that was inserted into both primers to facilitate cloning in the pSFV-bl2A vector (Rodriguez-Madoz et al. Mol. Ther. 2005; 12: 153-163).
  • the termination codon of scIL-12 is indicated in the first "reverse".
  • Plasmids pSFV-scIL-12 (described above) and pSFV-GFP were used as templates for PCR, which in both cases was performed with primers 5 '- GCGCATCCTAGGGGGAC ATTAAGGCGTTTAAG-3' (forward) (SEQ ID NO: 17) and 5 '-CCGCTTCCTCGCTCACTGAC-3' (reverse) (SEQ ID NO: 18).
  • an Avrll site (underlined) was included in the first "forward".
  • the PCR reaction was performed using the high fidelity enzyme Pfu DNA polymerase in a total reaction volume of 50 ⁇ .
  • the amplification process was carried out by 30 cycles of 45 sec at 94 ° C, 1 min at 53 ° C and 5 min at 72 ° C with a final extension of 10 min at 72 ° C.
  • scIL-12 2.8 kb (scIL-12) and 1.9 kb (GFP) PCR fragments were obtained which were purified, digested with Avrll and Spel and ligated with the vector pSFV-enh-spikemcs digested with the same enzymes.
  • the regions cloned by PCR in pSFV-enh-spike-mcs containing the scIL-12 and GFP sequences were sequenced with an automatic sequencer (ABI PRISM 310, Genetic Analyzer, Perkin-Elmer) in order to rule out errors introduced by amplification by PCR.
  • Plasmid pSIN-GFP is derived from SINrep5 and contains the GFP sequence after the viral subgenomic promoter (Bredenbeek et al, 1993, J. Virol. 67, 6439-6446).
  • plasmid pSIN-spike a PCR fragment containing the p62-6K-El sequence of SIN was first synthesized using as a template the plasmid DHBB (5 'SIN) (Bredenbeek et al, 1993, J.
  • the obtained PCR fragment (2986 bp) was polyadenylated and cloned into the cloning vector pGEM-T-easy (Promega) generating the intermediate plasmid pGEM-T-sin-spike.
  • This plasmid was sequenced to verify that it did not contain mutations derived from the PCR reaction.
  • TO pGEM-T-sin-spike was then digested with Xbal and Apa I, the 2.9 kb fragment containing the SIN p62-6K-El ORF was purified and cloned into SINrep5 digested with the same enzymes, generating plasmid pSIN- spike ( Figure 2D). RNA transcription in vitro.
  • RNAs derived from the SFV or SIN plasmids were synthesized as previously described (Liljestrom and Garoff. Expression of proteins using Semliki Forest virus vectors. In: FM Ausubel, R. Brent, RE guitarist, DD Moore, JA Smith, JG Seidman, K. Struhl Eds., Current Protocols in Molecular Biology. Vol. 2. Greene Publishing Associates and Wiley Interscience, New York, NY 1994. pp. 16.20.11-16.20.16).
  • the plasmids were linearized by digestion with Spel (SFV) or Xhol (SIN) and the digested DNA was purified by double phenolization with a volume of phenol / chloroform followed by ethanol precipitation. The DNA was resuspended in water and used as a template for RNA synthesis in a reaction that included the following components in a volume of 50 ⁇ :
  • RNAse inhibitor Promega, USA (50 units)
  • Reaction buffer 40 mM Hepes-KOH pH 7.4, 6 mM MgOAc, 2 mM spermidine-HCl
  • the reaction was incubated at 37 ° C after which the RNA was frozen at -80 ° C until use.
  • the usual yield of this reaction was 1-2 ⁇ g RNA / ⁇ .
  • RNA electroporations described in this work were performed on BHK cells.
  • the cells were cultured to approximately 90% confluency, trypsinized, washed with a volume of PBS, and after centrifuge them 5 min at 400g were resuspended in PBS at a concentration of 10 7 cells / ml.
  • 800 ⁇ of cells that were mixed with about 25 ⁇ g-50 ⁇ g of the previously synthesized recombinant RNA were used and electroporated in 0.4 mm electroporation cuvettes using two 850 V and 25 ⁇ pulses at room temperature in a BioRad electroporator. After electroporation the cells were diluted in a volume of 10 ml of complete BHK medium and plated. Through this method, transfection efficiencies close to 100% were obtained.
  • recombinant viral particles (pv) of SFV was performed using the strategy described by Smerdou and Liljestróm (J. Viral. 1999; 73: 1092-1098), based on the coelectroporation of vector RNA together with the two helper RNAs that they provide trans capsid and envelope proteins, respectively.
  • RNA helper C-S219A which provides the protein from the capsid Helper RNAs were synthesized in vitro using the strategy described in the previous section, using plasmids pSFV-helperS2 and pSFV-helperC-S219A, respectively.
  • 10 7 BHK cells were electroparated with a mixture containing 50 ⁇ g of each of the RNAs.
  • adherent cells BHK, Hep-3B or Huh-7
  • the cells were expected to reach confluence, washed with PBS (with Ca 2+ Mg 2+ ) and the virus diluted in a minimum volume of infection medium was added to cover the monolayer (minimum MEM medium, Gibco with 0.2% BSA, 2 mM glutamine and Hepes 20 mM) (Liljestróm and Garoff. Expression of proteins using Semliki Forest virus vectors. In: FM Ausubel, R. Brent, RE guitarist, DD Moore, JA Smith, JG Seidman, K.
  • the cells were incubated with the virus or with the infectious material for 1 hour at 37 ° C to allow viral adsorption, shaking the plate every 10 min. Subsequently, complete BHK medium was added and the cells were incubated for the required time.
  • BHK cells as described in the previous sections, were electroporated or infected with vectors expressing viral envelope proteins. After 1 hour of adsorption, the inoculum was removed and the monolayers were washed 2 or 3 times with PBS (with Ca 2+ Mg 2+ ) to remove all remaining residual virus. Subsequently, complete BHK medium was added. One hour after adsorption, the complete BHK medium was removed again, washed again with PBS (with Ca 2+ Mg 2+ ) a couple of times, complete BHK medium was added and the required time was continued with the incubation.
  • PBS with Ca 2+ Mg 2+
  • the cells were incubated with complete BHK medium for 24h at 37 ° C with 5% C0 2 . After incubation, the supernatant was clarified by centrifugation at 2000g for 15 min and the purification of the viruses, or of the infectious material present in the supernatant, was carried out by ultracentrifugation through a sucrose mattress. For this, 2 ml of 20% sucrose was deposited in the bottom of a Beckman polyalomer tube (14x95 mm) and 10 ml of supernatant containing the virus was carefully added to this mattress.
  • the titration of the viral productions was performed by infection of BHK cells with serial dilutions of the virus and subsequent indirect immuno fluorescence against the viral replicase or against the proteins of the SFV envelope.
  • BHK cells were grown on glass coverslips located inside M6 plate wells until they reached confluence.
  • the cells were infected as described above starting from a 1: 20 dilution of the virus and with serial dilutions 1: 10. After the adsorption of the virus the plates were incubated for 24 hours, washed twice with PBS (with Ca 2+ Mg 2+ ) and the cells were fixed with methanol for 6 min at -20 ° C.
  • the cells were washed three times with PBS and blocked for 30 min at room temperature with PBS containing 0.5% gelatin and 0.25% bovine serum albumin (BSA). Subsequently, the cells fixed on coverslips were incubated for 30 min at room temperature with a specific rabbit antiserum of the SFV replicase diluted 1: 400 (Casales et al. Virology 2008; 376: 242-251) or with a specific mouse antiserum of the envelope proteins of SFV diluted 1: 500.
  • BSA bovine serum albumin
  • the coverslips were washed 3 times with PBS containing 0.25% BSA and incubated for 30 minutes at room temperature with a 1: 200 dilution of secondary antisera specific for mouse or rabbit Ig, respectively, conjugated in both cases with a molecule. Cy3 fluorescent. After this second incubation, three washes were done with PBS, one with water and the coverslips were mounted on slides by placing a drop of Vectashield (Vector Laboratories, USA) between them. The Vectashield contains DAPI that is intercalated in the DNA allowing to observe the cell nuclei in the presence of ultraviolet light. The preparations were observed in a fluorescence microscope (Olympus) using the appropriate filter for each case.
  • BHK cells were electroporated with 50 ⁇ of RA of the vector as described above. After electroporation electroporated cells were mixed with non-electroporated cells in a 1: 20 ratio. A total of 10 6 cells were plated per well of M6 on glass coverslips.
  • the cells were washed with PBS (with Ca 2+ Mg 2+ ), fixed with methanol for 6 min at -20 ° C and analyzed by immunofluorescence with a specific rabbit antiserum of the nsp2 subunit of SFV replicase (Casales et al, 2008, supra.), a murine polyclonal antiserum of the SFV envelope proteins generated in the laboratory (see section on transmission inhibition) or a specific monoclonal antibody of E2 protein SIN (Greiser-Wilke et al, 1989) as already described.
  • BHK cells were grown in M6 wells on previously sterilized glass coverslips until they reached confluence. They were infected with viral particles at an MOI of 0.05 as already described. At different post-infection times the cells were washed with PBS (with Ca 2+ Mg 2+ ) and fixed with methanol at -20 ° C for 6 min and analyzed by immunofluorescence with a specific antiserum of the replicase or the proteins of the SFV wrapped as described.
  • BHK cells were infected with an MOI of 0.5 of SFV-LacZ and with MOI of 0.1 for SFV-enh-spike.
  • the cells were washed with PBS (with Ca 2+ Mg 2+ ) and a decrease in pH was induced in the cell monolayer by adding a solution of PBS (Ca 2+ Mg 2+ ) at pH 7 or 5 for 3 minutes at 37 ° C.
  • the cells were then washed several times with PBS (with Ca 2+ Mg 2+ ) and 3 hours later they were fixed with methanol to be analyzed by immunofluorescence with a specific antiserum of the replicase or of the SFV envelope proteins as already It has been described. Inhibition of vector transmission with antibodies specific for envelope proteins.
  • Monolayers of BHK cells grown on glass coverslips with viral particles of SFV-enh-spike were infected at an MOI of 0.1 as described above. After 1 hour of adsorption, the inoculum was removed and complete BHK medium containing a specific murine antiserum for the proteins of the SFV envelope diluted 1: 50, 1: 100 or 1: 250, or a murine preimmune serum at a dilution 1 was added. : 50, as a negative control. After incubating 24h at 37 ° C with 5% C0 2 , the cells were fixed with methane 1 and analyzed by immuno fluorescence with the same antiserum specific to the viral envelope proteins, as described above.
  • the antiserum against the proteins of the SFV envelope was obtained by immunizing 12 female C57BL / 6 mice of 6 weeks of age with 10 7 SFV-enh-spike viral particles inoculated intravenously every two weeks for two months.
  • the sera were mixed in a pool and analyzed in immuno fluorescence and Western blot experiments to determine the optimal working dilutions.
  • Preimmune serum was extracted from mice that were not inoculated with SFV-enh-spike.
  • Monolayers of BHK cells grown on a glass coverslip were infected with an MOI of 0.2 of SFV-LacZ and SFV-enh-spike viral particles.
  • the infection was performed in duplicate on M6 plates, incubating one of the plates on a platform with orbital agitation at 50 rpm inside an incubator at 37 ° C with 5% C0 2 , while the other plate remained in the same incubator without agitation.
  • the cells were fixed and an immuno fluorescence was performed with a specific antiserum for viral replicase as described above.
  • Monolayers of confluent BHK cells were infected with viral particles of SFV-enh-spike-scIL-12, SFV-scIL-12 and SFV-LacZ at an MOI of 0.05.
  • the supernatant was collected every 6 hours, centrifuged at 2000 rpm for 5 minutes and stored at -20 ° C until analysis. At each time the cells were washed with PBS (with Ca 2+ Mg 2+ ) and New complete BHK medium was added.
  • the amount of IL-12 present in the supernatants was quantified by ELISA specific for the murine IL-12 p70 heterodimer (Pharmingen) following the manufacturer's recommendations.
  • Anti-tumor efficacy experiment
  • MC38 cells were cultured in culture flasks, mechanically collected and centrifuged at 1500 rpm for 5 min. The cell pellet was washed 3 times with a volume of HBSS (Gibco-BRL). After the last wash, the cells were resuspended in HBSS at a concentration of 10 7 cells / ml.
  • mice C57BL / 6 mice were anesthetized by an intraperitoneal injection of 40 ⁇ of a ketamine / xylazine mixture (9: 1), after which they were injected subcutaneously in the right dorsal flank with 10 6 cells in a volume of 100 ⁇ with a insulin syringe (Becton-Dickinson, USA). 7-10 days after inoculation, the tumors developed reaching a diameter of approximately 5 mm on average.
  • a ketamine / xylazine mixture 9: 1
  • a insulin syringe Becton-Dickinson, USA
  • mice were anesthetized as described and the animals were inoculated with viral vectors using insulin syringes (Becton-Dickinson). In all cases the final injection volume was 50 ⁇ using saline solution (0.9% NaCl) as diluent. Control animals were inoculated with 50 ⁇ of saline.
  • the tumor size was determined by measuring two perpendicular diameters of the nodule with a precision gauge, using the arithmetic mean of both diameters as a representative measure of the tumor size. The evolution of the size was followed for 30 days after treatment Those animals with tumors that exceeded 15 mm in both diameters, or 20 mm in one of them were sacrificed for ethical reasons.
  • Semliki Forest virus can spread from cell to cell in the absence of capsid
  • a vector was constructed that carries the polyprotein sequence p62-6K-The fused with the minimum capsid translation enhancer (SFV-enh-spike, Figure 2A). This The sequence encodes the first 34 amino acids of the SFV capsid and allows the expression levels of the proteins that are fused to it to be increased by about 8 times.
  • the self-protection sequence of the aged fever virus was introduced between it and the beginning of p62 (Smerdou and Liljestrom. J. Viral. 1999; 73: 1092-1098).
  • the SFV-enh-spike RA was packaged into viral particles by co-transfection into BHK cells with SFV-helper-C-S219A RNA, which provides the SFV capsid in trans (Smerdou and Liljestrom. J. Viral. 1999; 73 : 1092-1098).
  • SFV-helper-C-S219A RNA which provides the SFV capsid in trans
  • RNAs of SFV-enh-spike or SFV-spike were directly transfected into BHK cells.
  • the transfected cells were mixed with non-transfected cells in a 1: 20 ratio and the expression of the viral replicase and envelope proteins at different times was analyzed.
  • Sindbis virus can also spread from cell to cell in the absence of capsid
  • a vector derived from the alphavirus was constructed Sindbis (SIN) expressing the structural polyprotein p62-6K-El of SIN without the capsid (SIN-spike, Figure 3D).
  • SIN-spike RNA or a SIN vector expressing GFP in BHK cells was directly transfected. Transfected cells were mixed with non-transfected cells in a ratio of 1: 20 and the expression of the E2 protein of the SIN envelope or GFP was analyzed at different times.
  • the SIN-spike vector was able to propagate efficiently, leading to the formation of groups of cells expressing the E2 protein ( Figure 3D).
  • the SIN-GFP control vector that does not contain any structural protein of SIN showed no propagation ability.
  • SFV-enh-spike The propagation of SFV-enh-spike is independent of cell fusion and is mediated by envelope proteins
  • SFV envelope proteins are capable of promoting fusion between the viral envelope and the endosome membrane during the viral infection process (Strauss and Strauss. Microbiol. Rev. 1994; 58: 491-562).
  • a conformational change occurs in the proteins that form the spicules of the virus (E2 and El). This conformational change is induced by the acidic pH of the endosome, requiring a pH ⁇ 6 for fusion (White and Helenius. Proc. Nati. Acad. Sci. USA 1980; 77: 3273-3277).
  • the transmission of the SFV vectors that express the envelope proteins could occur through a mechanism that requires cell contact or by generating some type of infectious material from the cells in which these vectors replicate.
  • monolayers of BHK cells were infected with SFV-enh-spike at an MOI of 0.2 and the cells were incubated for 24 hours at rest or on a platform with continuous agitation. To our surprise we observed that the agitation of the culture medium inhibited the transmission of the vector strongly suggesting that cell contact is not required for said phenomenon (Figure 5A).
  • the amount of infective units (ui) present in the supernatants was quantified, observing that the titer was always higher in infected cells with respect to electroporated cells where it could only be detected in the case of SFV-enh-spike (Table 1). It was also observed that the ui titer was higher when the initial cells had been infected with higher MOI, reaching a maximum of 1.3 xlO 7 ui in the case of SFV-enh-spike. The fact that the ui titres are greater with this last vector could be because it is able to express the envelope proteins at a higher level, due to the translation enhancer.
  • SFV vectors that express envelope proteins can mediate the transmission of heterologous genes in vitro
  • the GFP (green fluorescent protein) gene was cloned after a second subgenomic promoter in the SFV-enh-spike vector, the vector being generated SFV-enh-spike-GFP ( Figure 2B).
  • the GFP gene is located between the end of the ORF that encodes the viral envelope proteins and the 3 ' untranslated end.
  • BHK cells were electroporated with SFV-enh-spike-GFP RA or with SFV-GFP as a control, mixed with non-electroporated cells in a 1: 20 ratio and after plating, the number of cells expressing GFP and protein was observed.
  • viral envelope at different times Figure 6A).
  • the SFV-enh-spike-GFP vector was able to propagate efficiently allowing 30 hours GFP expression was transmitted from a few cells initially transfected to most of the monolayer.
  • the SFV-enh-spike vector is capable of propagating in human tumor cells.
  • This propagative capacity could increase the therapeutic potential of this type of vector if it is used to express a gene with antitumor activity such as interleukin-12 (IL-12).
  • IL-12 interleukin-12
  • the gene that encodes murine single chain IL-12 was introduced into the SFV-enh-spike vector, generating the SFV-enh-spike-scIL-12 vector ( Figure 2B).
  • Figure 2B the propagative capacity and expression of IL-12 mediated by this vector in vitro was analyzed.
  • IL-12 expression increased more rapidly in cells infected with SFV-enh-spike-scIL-12, reaching levels that were twice higher than those of cells infected with SFV-scIL-12 at 24h post-infection
  • the levels of IL-12 produced by SFV-enh-spike-scIL-12 remained stable for longer, being 5 times higher than those of SFV-scIL-12 at 36h post-infection.
  • Analysis of the infected monolayers by immunofluorescence with an antiserum against viral envelope proteins showed that the SFV-enh-spike-scIL-12 vector propagated efficiently and similarly as the SFV-enh-spike vector does ( data not revealed).
  • tumors were induced in C57 / BL6 mice by subcutaneous injection of MC38 colon adenocarcinoma cells. When the tumors reached about 5 mm in diameter, they were injected with 1.5x10 6 or 6x10 6 viral particles of SFV-enh-spike-scIL-12 or SFV-scIL-12. As controls mice were injected with 10 8 vp of SFV-enh-spike or with saline solution. The SFV-enh-spike-scIL-12 vector induced a delay in tumor growth that was always greater than that induced by SFV-scIL-12 ( Figure 7).
  • the SFV-enh-spike vector used as a control also showed a slight antitumor effect although less than that produced by the SFV-enh-spike-IL-12 vector.

Abstract

La invención se relaciona con un vector basado en un replicón alfaviral en el que la secuencia que codifica la poliproteína estructural se ha modificado mediante una deleción en la región que codifica la proteína de la cápsida de forma que dicha secuencia no es capaz de producir una proteína de la cápsida capaz de formar nucleocápsidas funcionales. Estos vectores son capaces de propagarse a células vecinas de forma dependiente de las proteínas de la espícula por lo que son adecuados para la expresión de genes heterólogos en una célula u organismo de interés. La invención se relaciona también con viriones que comprenden el vector de la invención así como con métodos para la generación de dichos viriones y con el uso del vector y de los viriones para expresar proteínas heterólogas en una célula de interés y para terapia.

Description

VECTORES ALFA VIRALE S Y USOS DE LOS MISMOS PARA LA EXPRESIÓN DE GENES HETERÓLOGOS
CAMPO TÉCNICO DE LA INVENCIÓN
La invención se relaciona con métodos de expresión génica usando vectores virales y, más concretamente, con un vector alfaviral que presenta una capacidad de propagación aumentada con respecto a vectores alfavirales conocidos hasta la fecha. La invención se relaciona con métodos para el tratamiento del cáncer y con métodos para la expresión in vitro de proteínas de interés usando dichos vectores alfavirales modificados.
ANTECEDENTES DE LA INVENCIÓN Los alfavirus son un género de virus pertenecientes a la familia togaviridae caracterizados por presentar un genoma de ARN de cadena sencilla y de polaridad positiva que se encuentra en una nucleocápsida que a su vez se encuentra recubierta por una envuelta que contiene proteínas virales que forman las espículas del virus (spikes). El género alfavirus comprende, entre otros, el virus Sindbis, el virus del bosque de Semliki (en adelante SFV por Semliki Forest virus), el virus del río Ross y los virus de la encefalitis equina Venezolana y de la encéfalo mielitis equina oriental.
Los alfavirus son capaces de replicarse de forma muy eficiente en células animales y son capaces de infectar un amplio espectro de células animales lo que les hace candidatos adecuados para ser usados como vectores de expresión génica para expresar genes de interés en células animales. Una revisión de los últimos avances en el desarrollo de vectores virales para terapia génica se puede encontrar en Atkins et al. (Expert Rev. Mol Med., 2008, 10:e33) y Lundstrom, K. (Gene Therapy, 2005, 12:S92- S97).
Los vectores de expresión génica basados en alfavirus consisten típicamente en moléculas de ARN autoreplicativas derivadas de genomas de alfavirus, en las que las secuencias 5' y 3' necesarias para la replicación y el gen de la replicasa (Rep) se han mantenido, mientras que los genes que codifican para las proteínas virales estructurales se han sustituido por un transgén. Después de la transfección de estos vectores en una célula, Rep será traducida y copiará el vector ARN en una hebra de ARN negativo, que será usada como molde para la amplificación del vector de ARN. Rep también puede reconocer un promotor subgenómico en la hebra de ARN negativo, de la cual hará un ARN subgenómico más pequeño, que puede ser traducido para producir proteínas heterólogas a niveles elevados.
Uno de los requisitos deseables para un vector con aplicación terapéutica es que sea incapaz de propagarse una vez administrado al paciente. Con el fin de conseguir alfavirus incapaces de propagarse, se han usado dos alternativas. En primer lugar, se han descrito vectores en los que los genes estructurales del genoma viral se han reemplazado por el gen de interés. De esta forma, el gen de interés queda bajo el control del promotor subgenómico 26S. Al carecer de proteínas estructurales, este tipo de vector es incapaz de generar virio nes infectivos. Este tipo de vector pude ser administrado bien en forma de ADN o como ARN. No obstante, esta solución tiene la desventaja de que la eficacia de transferencia génica es muy reducida puesto que se basa en la inserción de ADN o ARN desnudo en las células sin que exista una vehiculización mediada por las proteínas de la envuelta.
La segunda posibilidad consiste en la administración del vector alfaviral formando parte de partículas virales. Dichas partículas se generan in vitro mediante la transfección en células adecuadas de dos polinucleótidos: un primer componente formado por el genoma del virus en donde se han sustituido los genes estructurales por el gen de interés que queda bajo el control del promotor subgenómico viral y un segundo componente que aporta en trans las proteínas estructurales que se han eliminado en el primer componente. Cuando ambos componentes son introducidos en una misma célula, se generan partículas virales en la célula que encapsidan el genoma del alfavirus modificado con el gen de interés y que pueden ser usadas para infectar células diana.
No obstante, debido a que las partículas virales contienen un genoma que es deficiente en una o varias proteínas estructurales, este tipo de vectores solo se replican durante un único ciclo una vez administrados a animales, lo que resulta en una baja eficacia de expresión del gen heterólogo. Se han descrito replicones basados en SFV en los que todas las proteínas estructurales se han sustituido por la glicoproteína del virus de la estomatitis aviar (VSV). Este replicón (denominado SFVG), a pesar de carecer de todas las proteínas estructurales de SFV, es capaz de producir partículas infecciosas de baja densidad tras la infección de células en cultivo. Estas partículas son capaces de infectar y matar al resto de células del cultivo (Rolls MM et al. Cell, 1994, 79:497-506). Así, se ha propuesto el uso de esta estrategia para aumentar la infectividad de replicones alfavirales (véase, por ejemplo, WO03/072771). No obstante, existe una necesidad en la técnica de vectores de expresión génica basados en genomas alfavirales que permitan una infección más eficiente de las células diana.
COMPENDIO DE LA INVENCIÓN
En un primer aspecto, la invención se relaciona con un vector de expresión génica que comprende un replicón alfaviral
en donde dicho replicón comprende un gen heterólogo que se encuentra operativamente unido a un promotor subgenómico alfaviral y
en donde la secuencia que codifica la poliproteína estructural contiene una deleción en la región que codifica la proteína de la cápsida de forma que dicha secuencia no es capaz de producir una proteína de la cápsida capaz de formar nucleocápsidas funcionales.
En un segundo aspecto, la invención se relaciona con una partícula viral que comprende un vector de acuerdo a la invención.
En un tercer aspecto, la invención se relaciona con un polinucleótido de ADN que comprende la secuencia complementaria al vector de la invención.
En un cuarto aspecto, la invención se relaciona con un método para la obtención de una partícula viral que comprende un gen heterólogo de interés que comprende (i) expresar en una célula hospedadora un primer componente polinucleótido que codifica la proteína de la cápside de dicho alfavirus y un segundo componente seleccionado del grupo de un vector de acuerdo a la invención, una partícula viral de acuerdo a la invención o un polinucleótido de ADN de acuerdo a la invención,
(ii) mantener las células en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y de la proteína de la cápsida del alfavirus y para el ensamblaje de nucleocápsidas que comprenden el material genético en su interior y
(iii) recuperar las partículas virales del medio.
En un quinto aspecto, la invención se relaciona con un método para la obtención de una composición que comprende material infeccioso que comprende
(i) introducir en una célula hospedadora un vector de expresión génica de acuerdo a la invención, una partícula viral de acuerdo a la invención o un polinucleótido de acuerdo a la invención,
(ii) mantener las células en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y para la formación de partículas infecciosas en el sobrenadante de las células
(iii) recuperar el sobrenadante de las células.
En un sexto aspecto, la invención se relaciona con una composición obtenida mediante el método para la obtención de una composición que comprende material infeccioso de acuerdo a la invención.
En un séptimo aspecto, la invención se relaciona con una composición farmacéutica que comprende un vector de expresión génica de acuerdo a la invención, una partícula viral de acuerdo a la invención, un polinucleótido de acuerdo a la invención o una composición de acuerdo a la invención y un vehículo farmacéuticamente aceptable. En un octavo aspecto, la invención se relaciona con un vector de expresión génica de acuerdo a la invención, una partícula viral de acuerdo a la invención, un polinucleótido de acuerdo a la invención o una composición de acuerdo a la invención para su uso en medicina.
En un noveno aspecto, la invención se relaciona con el uso de un vector de expresión génica de acuerdo a la invención, una partícula viral de acuerdo a la invención, un polinucleótido de acuerdo a la invención o una composición de acuerdo a la invención para la preparación de un medicamento para el tratamiento del cáncer.
En un décimo aspecto, la invención se relaciona con un método in vitro para la producción en un cultivo celular de una proteína de interés que comprende
(i) poner en contacto dicho cultivo celular con un vector de expresión génica de acuerdo a la invención, una partícula viral de acuerdo a la invención, un polinucleótido de acuerdo a la invención o una composición de acuerdo a la invención en donde el gen heterólogo codifica la proteína de interés y en donde la puesta en contacto se lleva a cabo en condiciones adecuadas para la entrada del vector de expresión, del polinucleótido de ADN o del material genético contenido en la partícula viral o en el material infeccioso en al menos una célula del cultivo,
(ii) mantener el cultivo en condiciones adecuadas para la expresión en las células de dicho cultivo del gen de interés y para la propagación de las partículas desde las células inicialmente infectadas al resto de células y
(iii) recuperar la proteína de interés a partir del cultivo. En un undécimo aspecto, la invención se relaciona con un vector de expresión génica que comprende un replicón alfaviral
en donde dicho replicón comprende un sitio múltiple de cío naje que se encuentra asociado a un promotor subgenómico alfaviral de forma que permite la inserción de genes en dicho sitio múltiple de cío naje bajo el control operativo de dicho promotor subgenómico alfaviral y en donde la secuencia que codifica la proteína de la cápsida comprende una deleción de forma que dicha secuencia no es capaz de producir una proteína capaz de formar nucleocápsidas funcionales. BREVE DESCRIPCIÓN DE LAS FIGURAS
Figure 1. Esquema de vectores de SFV que contienen un gen heterólogo (HG) y una fase de lectura abierta (ORF) que codifica para la poliproteína estructural de SFV (p62- 6K-E1) en la que la secuencia de la cápsida ha sido delecionada. A-D, vectores que contienen las ORFs que codifican para HG y p62-6K-El bajo el control de promotores subgenómicos virales independientes (SG) y situados en los dos posibles órdenes. E-J, vectores que contienen las ORFs que codifican para HG y p62-6K-El bajo el control de un único promotor subgenómico viral (SG). HG y p62-6K-El se expresan como una única ORF mediante el uso de la secuencia de la autoproteasa del virus de la fiebre añosa (2A) usada como un conector entre ellas (E-F), o como dos ORFs independientes mediante la inclusión de una secuencia IRES entre ellas (G-J). En todos los casos se muestran los dos posibles órdenes. La secuencia que codifica para el aumentador de traducción de la cápsida de SFV (enh) seguido de 2A puede fusionarse al extremo amino de p62-6K-El y HG (A y G), sólo al extremo amino de HG (B y H), sólo al extremo amino de p62-6K-El (C e I) o a ninguna de las dos ORFs (D y J). Cuando HG y p62-6K-El se fusionan utilizando 2A la secuencia enh-2A sólo puede fusionarse al extremo amino de la primera ORF (E), o no estar presente (F). (2A) indica que el uso de 2A entre enh y HG es opcional, dependiendo de la proteína que se exprese.
Figura 2. Esquema de los vectores de SFV o SIN que expresan las proteínas de la envuelta viral. A) Vectores que llevan bajo el control del promotor subgenómico viral (SG) una fase de lectura abierta (ORF) que codifica la poliproteína estructural de SFV desprovista de la cápsida (SFV-spike) o que llevan la misma ORF fusionada con el enhancer mínimo de traducción de la cápsida de SFV (enh) usando la autoproteasa del virus de la fiebre añosa como linker (2A) (SFV-enh-spike). B) Vectores propagativos basados en un vector SFV-enh-spike con un segundo promotor subgenómico que controla la expresión de GFP (SFV-enh-spike-GFP) o de scIL-12 murina (SFV-enh- spike-scIL-12). C) Vector no propagativo que expresa scIL-12 murina. D) Vector de SIN que lleva bajo el control del promotor subgenómico viral (sinSG) una ORF que codifica la poliproteína estructural de SIN desprovista de la cápsida. An, polyA.
Figura 3. Análisis de la propagación de los vectores de SFV que expresan las proteínas de la envuelta viral. A) Monocapas confluentes de células BHK fueron infectadas con partículas virales de los vectores que se indican a una moi de 0.05. Las células fueron fijadas a los tiempos indicados y analizadas mediante inmuno fluorescencia con un antisuero específico para la replicasa de SFV. B) Células BHK fueron electroporadas con los vectores de SFV indicados, se mezclaron con células no electroporadas en proporción 1 :20, se plaquearon y se analizaron como en el apartado A. C) Monocapas confluentes de células Hep3B o Huh-7 fueron infectadas con partículas virales de SFV- enh-spike a una moi de 0.05 y analizadas a los tiempos indicados mediante inmunofluorescencia con un antisuero específico para las proteínas de la envuelta de SFV. D) Células BHK fueron electroporadas con los vectores de SIN indicados, se mezclaron con células no electroporadas en proporción 1 :20, se plaquearon y se analizó la expresión de GFP en un microscopio de fluorescencia (SIN-GFP) o la expresión de la proteína E2 de SIN mediante inmunofluorescencia con un anticuerpo monoclonal específico para esta proteína (SIN-spike). Figura 4. Análisis del papel de las proteínas de la envuelta de SFV en la propagación de SFV-enh-spike. A) Monocapas de células BHK fueron infectadas con partículas virales de SFV-enh-spike o SFV-LacZ a una moi de 0.1. A las 24h post-infección las monocapas se incubaron durante 3 minutos con PBS a pH 7 ó 5 durante 3 minutos. Tras esta incubación las células se volvieron a incubar con medio de cultivo durante tres horas, se fijaron y se analizaron mediante inmunofluorescencia con un antisuero específico para las proteínas de la envuelta de SFV (SFV-enh-spike) o para la replicasa viral (SFV-LacZ). B) Monocapas de células BHK fueron infectadas con partículas virales de SFV-enh-spike a una MOI de 0.1 y 1 h tras la infección se añadió al medio de cultivo suero murino preinmune o un antisuero murino específico para las proteínas de la envuelta de SFV (α-spikes) a las diluciones indicadas. A las 24h se fijaron las células y se analizaron mediante inmunofluorescencia con un antisuero específico para las proteínas de la envuelta de SFV. Figura 5. Mecanismo de transmisión del vector SFV-enh-spike. A) Monocapas de células BHK fueron infectadas con partículas virales de SFV-enh-spike o SFV-LacZ a una moi de 0.2. Las células se incubaron durante 24h en reposo (-agitación) o sobre una plataforma con agitación continua (+agitación), se fijaron y se analizaron mediante inmunofluorescencia con un antisuero específico para la replicasa de SFV. B) Células BHK fueron electroporadas con R A de los vectores SFV-enh-spike, SFV-Lac y SFVwt (e), o infectadas con SFV-enh-spike (i). Se recogió el sobrenadante a las 24h y se usó para infectar monocapas de células BHK que fueron fijadas a las 24h y analizadas mediante inmunofluorescencia con un antisuero específico para la replicasa viral.
Figura 6. Transmisión de genes heterólogos utilizando el vector SFV-enh-spike. A) Se electroporaron células BHK con RNA del vector SFV-enh-spike-GFP y se mezclaron con células no electroporadas en una proporción 1 :20. A los tiempos indicados se fijaron las células y se analizó la expresión de GFP en un microscopio de fluorescencia (GFP). Las mismas preparaciones fueron analizadas mediante inmunofluorescencia con un antisuero específico para las proteínas de la envuelta de SFV (α-spikes). B) Se infectaron monocapas de células BHK con una moi de 0.05 de los vectores indicados. Se recogió el sobrenadante celular cada 6 horas y se reemplazó por medio nuevo. Los niveles de IL-12 fueron determinados en los sobrenadantes mediante ELISA específico de IL-12 murina.
Figura 7. Efecto antitumoral del vector de SFV-enh-spike-scIL-12. Se inocularon ratones C57/BL6 con 5xl05 células de adenocarcinoma de colon murino MC38. Cuando los tumores tuvieron 5 mm de diámetro se inyectaron intratumoralmente con las dosis indicadas de SFV-enh-spike-scIL-12 o SFV-scIL-12, SFV-enh-spike o con un volumen similar de suero salino (8 ratones por grupo). Se monitorizó el tamaño tumoral a los tiempos indicados mediante la medición de dos diámetros perpendiculares. Se representa la media del diámetro medio tumoral en cada grupo.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Vector alfaviral de la invención
Los autores de la presente invención han observado que un genoma alfaviral en el que se ha eliminado la secuencia que codifica la proteína de la cápsida mantiene la capacidad de propagarse cuando se introduce en una célula receptora siendo capaz de infectar células vecinas de forma dependiente de la glicoproteínas virales (véanse los ejemplos de la presente invención). Este proceso se observa también en genomas alfavirales recombinantes en los que se ha introducido un gen de interés. De esta forma, el uso de genomas alfavirales deficientes en la cápsida supone una mejora en la expresión de proteínas de interés con respecto a vectores alfavirales que carecen de otras proteínas estructurales puesto que dicha expresión se produce tanto en las células inicialmente infectadas como en las células a las que la infección se propaga. Por tanto, en un primer aspecto, la invención se relaciona con un Un vector de expresión génica que comprende un replicón alfaviral
en donde dicho replicón comprende un gen heterólogo que se encuentra operativamente unido a un promotor subgenómico alfaviral y
en donde la secuencia que codifica la poliproteína estructural contiene una deleción en la región que codifica la proteína de la cápsida de forma que dicha secuencia no es capaz de producir una proteína de la cápsida capaz de formar nucleocápsidas funcionales.
El término "vector de expresión génica", según se usa en la presente invención, se refiere a una molécula de ADN lineal o circular que comprende un polinucleótido que codifica un polipéptido de interés y que está unido de forma operativa a secuencias adicionales que permiten la expresión de dicho polinucleótido cuando se encuentra en una célula o in vitro en presencia de los reactivos adecuados. Las expresiones "replicón alfaviral", "replicón alfaviral de AR "; "vector replicón de alfavirus de ARN", según se usa en la presente invención se refiere a un polinucleótido de ARN que expresa las proteínas estructurales y no estructurales del alfavirus del que deriva que permiten que dicho ARN dirija su propia replicación al ser introducido en una célula receptora. Típicamente, los replicones alfavirales comprenden los siguientes elementos:
- Una secuencia 5 ' no traducida,
- una secuencia nucleotídica que codifica una poliproteína que comprende las secuencias de las proteínas no estructurales nspl, nsp2, nsp3 y nsp4 de un alfavirus, denominada poliproteína no estructural,
- una secuencia nucleotídica que codifica una poliproteína que comprende las secuencias de las proteínas estructurales cápsida, p62, 6K y El de dicho alfavirus, denominada poliproteína estructural y
- Una secuencia 3 ' no traducida
El término "alfavirus", según se usa en la presente invención, se refiere a cualquier virus de ARN del género alfaviridae. Una descripción de miembros del género alfaviridae se puede encontrar en Strauss and Strauss, Microbiol. Rev., 58:491-562 (1994). Ejemplos de alfavirus incluyen, sin limitación, el virus Aura, el virus Bebaru, el virus Cabassou, el virus Chikungunya, el virus de la encefalomielitis equina oriental, el virus Fort Morgan, el virus Getah, el virus Kyzylagach, el virus Mayoaro, el virus Middleburg, el virus Mucambo, el virus Ndumu, el virus Pixuna, el virus Tonate, el virus Triniti, el virus de la encefalomielitis equina occidental, el virus Whataroa, el virus Sindbis (SIN), el virus del Bosque de Semliki, el virus de la encefalomielitis equina venezolana (VEE) y el virus del río Ross. Las secuencias genómicas de distintos alfavirus, así como las secuencias de distintas proteínas estructurales y no estructurales son conocidas en el estado de la técnica tales como las secuencias del virus de SIN (GenBank Accession Nos. J02363, NCBI Accession No. NC_001547), del SFV (GenBank Accession No. X04129, NCBI Acession No. NC_003215), del VEE (GenBank Accession No. L04653, NCBI Accession No. NC_001449), etc. cuyos contenidos se incorporan por referencia en el presente documento. Secuencia 5 ' no traducida del replicón alfaviral El primer elemento de los vectores de la invención comprende la secuencia de la región 5' no traducida del genoma de un alfavirus.
La expresión "secuencia 5' no traducida" o 5'-UTR, según se usa en la presente invención, se refiere a la secuencia que aparece en el extremo 5' del genoma de los alfavirus que no se traduce y que contiene la región necesaria para la replicación del alfavirus, esto es, la secuencia que es reconocida por la polimerasa durante la síntesis de la molécula de ARN a partir del molde de ARN de polaridad negativa. En una forma preferida de realización, la secuencia 5' no traducida comprende la secuencia definida por SEQ ID NO: 1.
Secuencia que codifica la poliproteína no estructural (secuencia A) El primer elemento del vector de la invención es una secuencia polinucleotídica (en adelante secuencia A) que codifica una poliproteína que comprende las secuencias de las proteínas no estructurales nspl, nsp2, nsp3 y nsp4 de un alfavirus.
La proteína nspl está implicada en la iniciación (o continuación) de la síntesis de la cadena de polaridad negativa del ARN viral y en la adición del cap al extremo 5' del ARN genómico y subgenómico durante la transcripción puesto que nsp 1 tiene actividad metiltransferasa y guaniltrasnferasa. nspl también modula la actividad de nsp2 puesto que las poliproteínas que contienen nspl no procesan de forma efectiva la unión entre nsp2 y nsp3. nsp2 es una proteína multifuncional implicada en la replicación del genoma viral y en el procesamiento de la poliproteína poliestructural. El extremo N-terminal de nsp2 tiene actividad helicasa. Asimismo, la síntesis del ARN subgenómico parece que requiere de la actividad de nsp2. El domino C-terminal de nsp2 es capaz de procesar proteo líticamente en trans y en cis la poliproteína estructural en las zonas de unión nspl/nsp2, nsp2/nsp3, y nsp3/nsp4 nsp3 es una proteína con dos dominios claramente diferenciados y cuya función en la replicación viral no está totalmente esclarecida aunque se sabe que nsp3 se requiere para la síntesis del ARN viral. nsp4 es la RNA polimerasa que contiene el motivo GDD característico de esta enzima. La secuencia del polipéptido de nsP4 tiene una longitud similar entre los distintos alfavirus (607 aminoácidos en VEE, 610 aminoácidos en SIN y 614 aminoácidos en SFV) presentando un elevado grado de consevación entre ellos (Kinney, et al, 1989, Virology, 170: 19-30).
En una forma preferida de realización, la secuencia que codifica la poliproteína no estructural pertenece a SFV. En una forma de realización aún más preferida, dicha secuencia comprende la secuencia representada en SEQ ID NO:2. Secuencia que codifica la poliproteína estructural modificada por medio de una deleción de forma que dicha secuencia no es capaz de producir una proteína de la cápsida capaz de formar nucleocápsidas funcionales (secuencia B)
El replicón alfaviral contiene una secuencia nucleotídica que codifica la poliproteína estructural donde dicha secuencia se encuentra modificada por medio de una deleción de forma que dicha secuencia no es capaz de producir una proteína de la cápsida capaz de formar nucleocápsidas funcionales. Esta secuencia modificada se denomina en adelante secuencia B. El término "poliproteína estructural de un alfavirus", según se usa en la presente invención, se refiere a un polipéptido que comprende las secuencias de las proteínas estructurales de dicho alfavirus y que se sintetiza a partir del promotor subgenómico de dicho alfavirus y que, tras su procesamiento, da lugar a las proteínas que forman parte de la estructura del virus.
La expresión "proteína estructural de un alfavirus", según se usa en la presente invención, se refiere a cualquier proteína del alfavirus necesaria para el empaquetamiento del replicón de ARN e incluyen, típicamente, la proteína de la cápsida, la glicoproteína El, la glicoproteína E2 y la proteína 6K, que aparecen en el virión maduro. Otros alfavirus, tales como el SFV contienen una proteína adicional (la proteína E3) en la envuelta. Las proteínas estructurales de los alfavirus se describen de forma general en Strauss et al. (Microbio 1. Rev. 1994, 58:491-562).
La proteína de la cápsida corresponde a la secuencia N-terminal de la poliproteína estructural y, tras el procesamiento de dicha poliproteína, interacciona con un ARN alfaviral y otros monómeros de la cápsida para formar las nucleocápsidas.
Las proteínas de la envuelta (El y E2) forman heterodímeros que se asocian en la envuelta en forma de trímeros para formar las espículas (spikes) que están implicadas en la interacción con el receptor celular y entrada en la célula diana. La expresión "proteína estructural de un alfavirus" se refiere también a una combinación de una o varias proteínas estructurales virales que proceden de la síntesis en forma de una poliproteína denominada C-E3-E2-6K-E1. E3, E2 y 6K actúan como señales de translocación/transporte de las glicoproteínas de la espícula E2, 6K y El, respectivamente.
Aunque la invención se ha ejemplificado con vectores en donde todas las proteínas estructurales derivan de SFV, el origen de las proteínas no es particularmente limitante. Así, la invención contempla vectores en los que la proteína El y la proteína E2 derivan de distintos alfavirus. Asimismo, tanto la proteína El como la proteína E2 pueden estar modificadas con respecto a la proteína nativa. Así, la invención contempla la posibilidad de usar vectores en donde la secuencia B codifique una o varias proteínas híbridas que comprenden regiones de proteínas estructurales de distintos alfavirus. Estas regiones pueden ser contiguas o no contiguas. Preferiblemente, una región particular de una proteína estructural (por ejemplo, regiones funcionales como el dominio citosólico) procede de un primer alfavirus y el resto de la proteína (el dominio transmembrana y/o el dominio luminal) puede proceder de otro alfavirus. Por "deleción en la región que codifica la proteína de la cápsida" se entiende, en el contexto de la presente invención, cualquier mutación consistente en la eliminación de uno o más aminoácidos en la región de la secuencia que codifica la poliproteína estructural que codifica la cápsida dando así lugar a una secuencia que codifica la poliproteína estructural que ha perdido la capacidad de codificar una proteína de la cápsida capaz de ensamblarse con otros monómeros igualmente modificados y de formar nucleocápsidas. La invención contempla tanto secuencias B modificadas en las que la secuencia que codifica la cápsida ha sufrido una deleción total así como variantes en las que la deleción da lugar a proteínas de la cápsida que han perdido la capacidad de ensamblarse para formar cápsidas.
Métodos adecuados para determinar si una variante de la cápsida es capaz de ensamblarse formando nucleocápsidas son ampliamente conocidos por el experto en la materia. Por ejemplo, Skoging-Nyberg y Liljestrom, (J. Viral, 2001 , 75:4625-4632) han descrito un método basado en la infección de células receptoras (BHK) con partículas virales seguido de análisis de la formación de las nucleocápsidas mediante centrifugación en gradiente de extractos celulares marcados metabólicamente. La formación de nucleocápsidas se detecta mediante la aparición de señal radiactiva en zonas de alta densidad en el gradiente. Mediante el fraccionamiento en paralelo de extractos celulares infectados con alfavirus nativo y con las variantes que comprenden mutaciones en la cápsida es posible determinar si dicha mutación afecta sustancialmente la capacidad de las cápsidas de ensamblarse y, por tanto, de ser de utilidad para los vectores de la presente invención. Secuencias B adecuadas para su uso en la presente invención incluyen aquellas en las que se ha delecionado el 100% de la secuencia que codifica la cápsida, o al menos el 95%, al menos el 90%>, al menos el 85%, al menos el 80%, al menos el 75%, al menos el 70%), al menos el 65%, al menos el 60%>, al menos el 55%, al menos el 50%, al menos el 45%, al menos el 40%, al menos el 35%, al menos el 30%, al menos el 25%, al menos el 20%, al menos el 15% o al menos el 10% de la secuencia con respecto al extremo 5' o al menos el 90% de la secuencia que codifica la cápsida, al menos el 85%, al menos el 80%, al menos el 75%, al menos el 70%, al menos el 65%, al menos el 60%, al menos el 55%, al menos el 50%>, al menos el 45%, al menos el 40%>, al menos el 35%), al menos el 30%>, al menos el 25%, al menos el 20%>, al menos el 15% o al menos el 10% de la secuencia con respecto al extremo 3'. Alternativa- o adicionalmente, la invención contempla secuencias B en las que la deleción resulta en una proteína de la cápsida que carece de al menos 10, al menos 20, al menos 30, al menos 40, al menos 50, al menos 60, al menos 80, al menos 90, al menos 100, al menos 150, al menos 200, al menos 250 aminoácidos del extremo N-terminal o al menos 10, al menos 20, al menos 30, al menos 40, al menos 50, al menos 60, al menos 80, al menos 90, al menos 100, al menos 150, al menos 200, al menos 235 y al menos al menos 250 aminoácidos del extremo C-terminal.
En una forma preferida de realización, la secuencia B ha sufrido una deleción total de la secuencia de la cápsida. En una forma preferida de realización, la región que se encuentra deleccionada de la secuencia que codifica la poliproteína estructural en SFFV es la región formada por los nucleótidos 7420 a 8220 (ambas incluidas) de la secuencia identificada como NC 003215 en la base de datos de NCBI. La identificación de las regiones correspondientes en otros alfavirus puede ser llevada a cabo por el experto a partir de la comparación de las secuencias del SFFV4 con el otro alfavirus usando algoritmos estándar de alineamiento de secuencias como por ejemplo el algoritmo BLASTP (BLAST Manual, Altschul, S. et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J., 1990, Mol. Biol. 215:403-410).
En otra forma preferida de realización, la región que se encuentra deleccionada de la secuencia que codifica la poliproteína estructural es la región formada por los nucleótidos 7522-8220 (ambas incluidas) de la secuencia identificada como NC_003215 en la base de datos de NCBI.
En una forma preferida de realización, la secuencia B ha sufrido una deleción total de la secuencia de la cápsida a excepción de la secuencia del extremo 5' y que comprende al menos los primeros 102 nucleótidos del gen. Esta secuencia codifica una péptido de 34 aminoácidos que es incapaz de formar cápsidas (véase ejemplo 1) pero que actúa como aumentador de la traducción del AR m (región enh) que se forma a partir de la secuencia que codifica la poliproteína modificada.
En otra forma preferida de realización, la región que se encuentra deleccionada de la secuencia que codifica la poliproteína estructural es la región formada por los nucleótidos 7522-8220 (ambas incluidas) de la secuencia identificada como NC 003215 en la base de datos de NCBI. La identificación de las regiones correspondientes en otros alfavirus puede ser llevada a cabo por el experto a partir de la comparación de las secuencias del SFFV4 con el otro alfavirus usando algoritmos estándar de alineamiento de secuencias como por ejemplo el algoritmo BLASTP (BLAST Manual, Altschul, S. et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J., 1990, Mol. Biol. 215:403-410).
En una forma preferida de realización, la secuencia que codifica la poliproteína estructural de acuerdo a la presente invención procede de SFV. En una forma de realización aún más preferida, dicha secuencia comprende la secuencia descrita en SEQ ID NO:3.
Las secuencias que codifican las proteínas estructurales del vector de la invención se encuentran bajo control operativo del promotor subgenómico alfaviral.
El término "control operativo", según se usa en la presente invención, se refiere a un ordenamiento de elementos en donde cada uno de dichos elementos se encuentra dispuesto de forma que desempeñe su función habitual. Así, un gen se encuentra bajo control operativo de un determinado promotor cuando el promotor es capaz de activar la transcripción de dicho gen en presencia de las enzimas adecuadas. El promotor no tiene porque encontrarse contiguo a la secuencia del gen siempre que mantenga la función activadora de la transcripción. Así, aún cuando aparezcan secuencias reguladoras de la traducción no traducidas entre el promotor y el extremo de la secuencia codificante del gen, el gen se considerará que se encuentra bajo control operativo si su transcripción se activa por dicho promotor Según se usa en la presente invención, un "promotor subgenómico alfaviral" o promotor 26S es un promotor definido originalmente en un genoma alfaviral que es capaz, junto con las polimerasas virales y celulares, de dirigir la transcripción de un AR m subgenómico de longitud inferior a la del genoma viral durante el proceso de replicación del genoma alfaviral. En los alfavirus, el promotor subgenómico procede de la región del genoma que se encuentra entre las regiones codificantes de las proteínas no estructurales y estructurales de dicho alfavirus. Típicamente, el promotor subgenómico comprende una región central o core que aporta la mayor parte de la actividad promotora y regiones flanqueantes (promotor extendido o nativo) que aumentan la capacidad activadora de la transcripción. En el caso del virus SFV (cepa SFV4) el promotor subgenómico está comprendido entre las posiciones 7348 y 7378 mientras que la región mínima que es necesaria para la transcripción se corresponde a los nucleótidos 7354-7378 (Rausalu K. et al. Virol J. 2009 Mar 24;6:33).
En el caso del virus Sindbis, el promotor core está comprendido entre las posiciones 7579 y 7612, mientras que la región mínima que es necesaria para la transcripción se corresponde a los nucleótidos 7579 a 7602.
El promotor subgenómico puede estar truncado (por ejemplo, para producir un promotor subgenómico mínimo) o modificado de forma que su actividad esté reducida, o aumentada usando métodos conocidos en la técnica.
En una forma preferida de realización, el promotor subgenómico procede de SFV. En una forma de realización aún más preferida, el promotor subgenómico de SFV comprende la secuencia indicada en SEQ ID NO:4.
Región 3 ' no traducida del replicón alfaviral
El cuarto elemento del replicón alfaviral es la región 3' no traducida de un genoma alfaviral. El término "región 3' no traducida", según se usa en la presente invención, corresponde a una región no traducida que aparece tras el codón de terminación y que comprende distintas señales incluyendo, sin limitación, señales de poliadenilación, señales de terminación y similares. La región 3 ' no traducida del vector de la invención contiene típicamente una secuencia de reconocimiento de la polimerasa de AR . Esta secuencia, denominada secuencia de reconocimiento de la polimerasa del alfavirus, CSE terminal 3' o secuencia de replicación 3' (véase Strauss and Strauss, 1994, supra.), proporciona un sitio de reconocimiento para el origen de replicación en la cadena negativa. La secuencia exacta que se use como secuencia de reconocimiento no es particularmente limitante así como la extensión de la misma siempre que mantenga la capacidad de funcionar como secuencia de reconocimiento.
La región 3' no traducida contiene típicamente una cola de poliadenina que permite aumentar la estabildiad del ARN y, por tanto, la cantidad de los productos resultantes de la traducción de dicha ARN. La cola de poli(A) puede ser de cualquier tamaño siempre que sea suficiente para aumentar la estabilidad en el citoplasma de la molécula del vector de la invención. La cola de poli(A) comprende al menos 10 nucleótidos de adenosina y, más preferiblemente, al menos 25 o 40 nucleótidos de adenosina.
En una forma preferida de realización, la región 3' no traducida procede de SFV. En una forma de realización aún más preferida, la región 3' no traducida comprende la secuencia indicada en SEQ ID NO :5.
Gen heterólogo (secuencia C del vector de la invención)
El replicón alfaviral que forma parte del vector de la invención comprende adicionalmente un gen que codifica un polipéptido heterólogo en donde dicho gen está operativamente unido a un promotor subgenómico de un alfavirus. Esta secuencia se denomina en adelante secuencia nucleotídica C de la invención.
El término "polipéptido heterólogo", según se usa en la presente invención, se refiere a un producto que no se encuentra codificado de forma natural por el genoma del alfavirus del que deriva del que procede el replicón. La naturaleza/función del polipéptido heterólogo no es particularmente limitante para la presente invención. Así, es posible el uso de péptidos heterólogos que son fácilmente detectables, lo que permite el uso de los vectores de la invención para el estudio de los procesos de infección mediante la visualización de células que expresan la proteína detectable. Polipéptidos heterólogos detectables cuyas secuencias codificantes pueden ser incorporados en la presente invención incluyen, sin limitación, luciferasa, proteína fluorescente (verde/roja) y variantes de la misma, como EGFP (proteína fluorescente verde mejorada), RFP (proteína fluorescente roja, como DsRed o DsRed2), CFP (proteína fluorescente cían), BFP (proteína fluorescente azul verde), YFP (proteína fluorescente amarilla), β-galactosidasa o cloranfenicol acetiltransferasa, y similares.
Alternativa- o adicionalmente, el polipéptido heterólogo puede ser un polipéptido de interés terapéutico de forma que los vectores de la invención pueden ser usados para la expresión in vitro de dicho polipéptido o para el tratamiento de enfermedades que requieran la expresión de dicho polipéptido, Así, la invención contempla vectores en los que la secuencia C contiene genes o cDNAs que codifican uno o varios polipéptidos de interés terapeútico que incluyen, sin limitación, eritropoietina (EPO), leptinas, hormona liberadora de hormona adrenocorticotropa (CRH), hormona liberadora de hormona somatotropa (GHRH), hormona liberadora de gonadotrofmas (GnRH), hormona liberadora de tirotropina (TRH), hormona liberadora de prolactina (PRH), hormona liberadora de melatonina (MRH), hormona inhibidora de prolactina (PIH), somatostatina, hormona adrenocorticotropa (ACTH), hormona somatotropa o del crecimiento (GH), hormona luteinizante (LH), hormona foliculoestimulante (FSH), tirotropina (TSH u hormona estimulante del tiroides), prolactina, oxitocina, hormona antidiurética (ADH o vasopresina), melatonina, factor inhibidor Mülleriano, calcitonina, hormona paratifoidea, gastrina, colecistoquinina (CCK), secretina, factor de crecimiento de tipo insulina tipo I (IGF-I), factor de crecimiento de tipo insulina tipo II (IGF-II), péptido natriurético atrial (PNA), gonadotrofina coriónica humana (GCH), insulina, glucagón, somatostatina, polipéptido pancreático (PP), leptina, neuropéptido Y, renina, angiotensina I, angiotensina II, factor VIII, factor IX, factor tisular, factor VII, factor X, trombina, factor V, factor XI, factor XIII, interleuquina 1 (IL-1), interleuquina 2 (IL-2), factor de necrosis tumoral alfa (TNF-α), interleuquina 6 (IL-6), interleuquina 7 (IL-7), interleukina 8 (IL-8 y chemoquinas), interleuquina 12 (IL-12), interleuquina 16 (IL-16), interleuquina 15 (IL-15), el receptor de IL-15, interleuquina 21 (IL-21), interleuquina 24 (IL-24), interferones alpha, beta, gamma, CD3, ICAM-1, LFA-1, LFA-3, quimioquinas incluyendo RANTES 1α, MIP-la, ΜΙΡ-Ιβ, factor de crecimiento neuronal (NGF), factor de crecimiento derivado de las plaquetas (PDGF), factor de crecimiento transformante beta (TGF-beta), proteínas morfogenéticas del hueso (BMPs), factores de crecimiento de los fibroblastos (FGF y KGF), factor de crecimiento epidérmico (EGF y relacionados), factor de crecimiento endotelial vascular (VEGF), factor estimulante de colonias de granulocitos (G-CSF), factor de crecimiento glial, factor de crecimiento de queratinocitos, factor de crecimiento endotelial, antitripsina 1 alfa, factor de necrosis tumoral, factor estimulante de colonias de granulocito y macrófagos (GM-CSF), cardiotrofina 1 (CT-1), oncostatina M (OSM), anfiregulina (AR), ciclosporina, fibrinógeno, lactoferrina, activador de plasminógeno tipo tisular (tPA), quimotripsina, inmunoglobinas, hirudina, superóxido dismutasa, imiglucerasa, β- Glucocerebrosidase, alglucosidasa-α, a-L-iduronidasa, iduronato-2-sulfatasa, galsulfasa, α-galactosidasa A humana, inhibidor de la proteinasa a-1, lactasa, enzimas pancreáticas (lipasa, amilasa, proteasa), adenosina deaminasa, inmunoglobulinas, albúmina, toxinas botulínicas de tipo A y B, colagenasa, deoxiribonucleasa I humana, hialouronidasa, papaína, L-asparaginasa, lepirudin, estreptoquinasa, el dominio extra de fibronectina (EDA), péptidos inhibidores del factor de transformación celular beta (TGF-β) tales como los descritos en WO0331155, WO200519244 and WO0393293, cuyo contenido se incorpora en la presente invención por referencia, cassettes de expresión apropiados para la transcripción de moléculas de RNA de interferencia (shRNA, siRNA, miRNA, RNA de ribonucleoproteínas Ul modificadas).
En una forma preferida de realización, el gen heterólogo codifica una proteína o un ARN que es capaz de detener la proliferación tumoral o de activar la respuesta inmune frente a la célula que expresa dicha proteína. Así, genes heterólogos adecuados para su uso en la presente invención incluyen genes que codifican polipéptidos con actividad anti-angiogénica (endostatinas), genes con actividad antitumoral no citoquinas (Granzyme B, TRAIL, PTEN, SHP1 y SHP2) y genes que codifican citoquinas y que actúan potenciando la respuesta inmune de un paciente contra células tumorales. Así, en una forma aún más preferida, el gen heterólogo codifica una citoquina con actividad inmunoestimuladora, incluyendo, IL-2, IL-7, IL-12, IL-15 (con o sin su receptor), IL- 21 , IL-23, GM-CSF, TRAIL o factor de necrosis tumoral-alfa). En una forma de realización más preferida, dicha interleuquina es la interleuquina 12 (IL-12) o una variante funcionalmente equivalente de la misma.
El término "interleuquina 12", según se usa en la presente invención, se refiere a una proteína producida por células dendríticas en respuesta a la estimulación por antígenos y que presenta estructura heterodimérica formada por una cadena A (IL-12A o p35) y una cadena B (IL-12B o p40). Por tanto, como entenderá el experto en la materia, el polinucleótido que comprende una secuencia que codifica IL-12, o una variante funcionalmente equivalente de la misma puede incluir un polinucleótido que comprende las secuencias de nucleótidos que codifica dichas subunidades p35 y p40 de IL-12, es decir ambas secuencias codificantes incluidas en el mismo polinucleótido y unidas operativamente a regiones promotoras de la transcripción separadas que pueden ser idénticas o diferentes entre ambas secuencias codificantes. Alternativamente, el polinucleótido que codifica IL-12 puede comprender un único marco abierto de lectura que codifica una proteína de fusión formada por un polipéptido resultante de la fusión de las cadenas A y B de la interleuquina 12. Esta variante de IL-12, denominada IL-12 de cadena sencilla (en adelante scIL-12) fue descrito por Lieschke et al. Nat. Biotechnol. 1997; 15 : 35-40) y comprende secuencias codificantes para las cadenas p35 y p40 de la IL-12 murina separada por un enlazador de 45 pares de bases. Alternativamente, la invención contempla el uso de una secuencia iii) que comprende, secuencialmente, las cadenas p40 y p35 de la IL-12 murina y el fragmento L19 de un ScFv humano tal y como ha sido descrita por Santimaria, M., et al., (Clin Cáncer Res, 2003. 9:571-9). Otras variantes de IL-12 adecuadas para su uso en la presente invención incluyen las variantes descritas en WO06119897A. En la presente invención "una variante funcionalmente equivalente de IL-12" se entiende como cualquier polipéptido cuya secuencia se puede obtener por medio de una inserción, sustitución o eliminación de uno o más aminoácidos de la secuencia de IL-12, y polipéptido que al menos en parte conserva la capacidad de aumentar la inmunidad antitumoral, determinada por ejemplo por medio del ensayo mencionado en el Ejemplo 6 de la presente invención, el ensayo citado en Rodríguez Madoz et al, [Mol. Ther. 2005, 12: 153-163] o el ensayo descrito en Leong et al. (Proc.Natl.Acad.Sci.USA, 2003, 100: 1163-1168) basado en la detección de la capacidad de la variante de IL-12 de promover la proliferación de células T activadas con PHA mediante la incorporación de timidina tritiada o la capacidad de la variante de IL-12 de promover la diferenciación de células T en células Thl en presencia de anticuerpos anti-CD28 y anticuerpos anti-CD3. Las variantes de IL-12 preferiblemente tienen una identidad de secuencia con dicha citoquina inmunoestimuladora de al menos el 50%, al menos el 60%, al menos el 70%>, al menos el 80%>, al menos el 90%>, al menos el 91%>, al menos el 92%, al menos el 93%), al menos el 94%>, al menos el 95%, al menos el 96%>, al menos el 97%, al menos el 98%o o al menos el 99%. El grado de identidad entre las variantes y las citoquinas inmunoestimuladoras se determina utilizando algoritmos y métodos de ordenador que son ampliamente conocidos por los expertos en la materia. La identidad entre dos secuencias de aminoácidos se determina preferiblemente utilizando el algoritmo BLASTP [BLASTManual, Altschul, S., et al, NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al, J Mol Biol, 215: 403-410 (1990)].
En otra forma preferida de realización, el gen heterólogo no comprende la secuencia que codifica la cápsida de un alfavirus distinto al alfavirus del que procede el replicón. Así, en el caso de que el replicón viral proceda de SFV, el gen heterólogo no comprende la secuencia que codifica la cápsida del virus de Sindbis o la secuencia que codifica la cápsida del virus de Ross River. En caso de que el replicón alfaviral proceda del virus de Sindbis, el gen heterólogo no comprende la secuencia que codifica la cápsida del SFV o la secuencia que codifica la cápsida del virus de Ross River. Alternativa o adicionalmente, el gen heterólogo no comprende una secuencia que codifica una proteína de fusión formada por parte de la proteína de la cápsida del alfavirus del que se ha obtenido el replicón y parte de la proteína de la cápsida de un segundo alfavirus. El polipéptido heterólogo se encuentra unido operativamente a un promotor subgenómico de un alfavirus.
Los términos "unido operativamente" y "promotor subgenómico" se han descrito con anterioridad y se usan de la misma forma en el contexto del elemento (iii) de los vectores de la invención.
Variantes del vector de la invención Las secuencias B y C del vector de la invención pueden ordenarse de distinta forma en el replicón de la invención. Asimismo, independientemente de su ordenamiento en el vector, las secuencias pueden estar asociadas a regiones reguladoras de la expresión adicionales al promotor subgenómico mencionado anteriormente. Así, la invención contempla vectores que comprenden dos promotores subgenómicos, estando el gen heterólogo (secuencia C) operativamente unido a un primer promotor subgenómico y la secuencia del que codifica la poliproteína estructural (secuencia B) operativamente unida a un segundo promotor subgenómico alfaviral. Alternativamente, la invención contempla vectores en los que la secuencia que codifica la poliproteína estructural (B) y la secuencia del gen heterólogo (C) se encuentran operativamente unidas a un único promotor subgenómico alfaviral dando lugar así a la secuencia D, que está formada por un promotor subgenómico alfaviral y por una secuencia que da lugar a un único transcrito que contendrá la región que codifica la poliproteína estructural y la secuencia del gen heterólogo..
En ambos casos, la secuencia B puede encontrarse en posición 5 ' con respecto a la secuencia C (figura ID, panel superior) o viceversa, es decir, la secuencia B puede encontrarse en posición 3' con respecto a la secuencia C (figura ID, panel inferior).
Las secuencias B, C y/o D del vector de la invención pueden contener, entre el promotor subgenómico del alfavirus y la región de inicio de la traducción, elementos adicionales que contribuyan a aumentar la eficacia con la que dichas secuencias codificantes, una vez transcritas, se traduzcan para dar lugar, respectivamente, a la poliproteína estructural modificada o al polipéptido codificada por el gen heterólogo. Este tipo de elementos se denominan de forma general secuencias aumentadoras de la traducción.
El término "secuencias aumentadoras de la traducción", según se usa en la presente invención, se refiere a secuencias que actúan en cis y que provocan un aumento en la cantidad de polipéptido o proteína que se produce a partir de un ARN con respecto a la traducción que tiene lugar cuando la traducción se inicia a través de una estructura cap en ausencia de dicho aumentador. Secuencias aumentadoras de la traducción incluyen, sin limitación, el extremo 5' de la proteína homeodominio Gtx (Chappell et al, Proc. Natl.Acad.Sci. USA, 101 :9590-9594, 2004), el aumentador de la traducción de secuencia AGGT que aparece en los ARNm del virus de la gripe (Kash et al, J. Virol. 76: 10417-10426). En una forma preferida de realización, el aumentador de la traducción es el aumentador de la traducción de la proteína de la cápsida de SFV y que comprende la secuencia que codifica los primeros 34 aminoácidos de la cápsida de SFV tal y como ha sido descrito por Sjóberg y col. (Biotechnology (N. Y.), 1994, 12, 1127-1131). En una forma de realización aún más preferida, la secuencia aumentadora de la traducción corresponde a la secuencia SEQ ID NO:6.
En aquellos casos en los que se usa el aumentador traduccional de la cápsida de SFV, puesto que la secuencia capaz de aumentar la eficacia de la traducción aparece en posición 3' con respecto al codón AUG de iniciación, las proteínas cuya secuencia codificante se encuentra bajo control operativo de la secuencia aumentadora se sintetizan con una región de 34 aminoácidos adicionales en posición N-terminal. En este caso, y con el fin de evitar que dicha secuencia adicional pueda interferir con la actividad de la proteína, la invención contempla la posibilidad de insertar en el polinucleótido la secuencia que codifica una secuencia diana de una proteasa o la secuencia que codifica una autoproteasa.
En el primer caso (sitio diana de proteasa en posición 3 ' con respecto a las secuencia del aumentador traduccional), los sitios de corte de proteasas adecuados para su incorporación en los polipéptidos de la invención incluyen, sin limitación, sitio de corte de enteroquinasa (DDDDK), sitio de corte de factor Xa (IEDGR), sitio de corte de trombina (LVPRGS), sitio de corte de la proteasa TEV (ENLYFQG), el sitio de corte de la proteasa PreScission (LEVLFQGP), el sitio de corte de la proteasa flaggrin (RKRR), de la proteasa HGF-SF (KQLR), de la proteasa MT- SPl/matriptasa (RQAR), de la proteasa PAR2 (SKGR) o de la proteasa uPA/uroquinasa (PRFK).
No obstante, es preferible el uso de proteasas que aparezcan de forma natural en las células en las que se va a usar el vector génico de expresión de acuerdo a la presente invención, de forma que el procesamiento tenga lugar en la propia célula en donde se lleva a cabo la expresión. Así, sitios de corte adecuados para proteasas celulares incluyen el sitio de corte de la ubiquitina hidrolasa, el sitio de corte de la proteasa NS2B/NS3 de HCV, el sitio de corte de la proteasa específica de la próstata y similares. En una realización particular, la secuencia del aumentador traduccional y la secuencia B, C o D de acuerdo a la invención se encuentran separados por una secuencia que codifica una autoproteasa. De esta forma se genera una proteína de fusión que comprende la secuencia derivada del aumentador traduccional de la cápsida del alfavirus, la secuencia de la autoproteasa y la secuencia de la proteína o poliproteina codificada por el polinucleótido B, C o D de la invención.
Las autoproteasas actúan en cis sobre la proteína de fusión eliminando las secuencias procedentes de la proteasa y de la secuencia aumentadora de la traducción dando lugar a una proteína cuyo extremo N-terminal sólo lleva una pro lina adicional (Smerdou, C. and P. Liljestrom. (1999) J. Virol. 73: 1092-1098). A modo ilustrativo, no limitativo, dicha secuencia de nucleótidos que codifica una (auto)proteasa que actúa en cis entre la secuencia de dicha autoproteasa y la secuencia codificada por los polinucleótidos que forman el vector de la invención procede de un virus, por ejemplo, un picornavirus, un alfavirus, etc. En una realización particular, dicho secuencia comprende la secuencia nucleotídica que codifica la región 2A de la poliproteina del virus de la fiebre añosa (FMDV) o autoproteasa 2A del FMDV tal y como ha sido descrito, entre otros, en EP 736099, cuyo contenido se incluye en su integridad por referencia. En una forma preferida de realización, la secuencia que codifica la autoproteasa 2A de FMDV comprende la secuencia identificada en SEQ ID NO:7.
Preferiblemente, la secuencia aumentadora de la traducción de la cápsida del alfavirus se encuentra junto con la secuencia que codifica una autoproteasa formando parte de un cassette que se puede insertar a voluntad en posición 5 ' con respecto al marco de lectura de la proteína de interés, siendo esta tanto la secuencia que codifica la poliproteína modificada o la secuencia del gen de interés. En una forma preferida de realización, el cassette está formado por la secuencia aumentadora de la traducción de la cápsida de SFV seguido de la secuencia que codifica la autoproteasa 2A de FMDV. En una forma aún más preferida de realización, la secuencia del cásete aumentador de la traducción - autoproteasa comprende la secuencia identificada en SEQ ID NO:8.
Así, en una forma preferida de realización, la secuencias B, C y/o D comprenden la región aumentadora de la traducción del gen de la cápsida del alfavirus, seguida de la secuencia que codifica una autoproteasa.
En una forma de realización aún más preferida, las secuencias B, C y/o D comprenden la región aumentadora de la traducción del gen de la cápsida del alfavirus, seguida de la secuencia que codifica la autoproteasa 2A de FMDV.
Las secuencias aumentadoras de la traducción pueden incorporarse en los vectores de la invención unidos operativamente a la secuencia B, unidos operativamente a la secuencia C, unidos operativamente a las secuencias B y C o unidos de forma operativa a la secuencia D.
Así, en una forma de realización, las secuencias B y C se encuentran cada una operativamente unidas a un promotor subgenómico y comprenden cada una de ellas, en posición 3' con respecto al respectivo promotor subgenómico un aumentador de la traducción de la cápsida de SFV y, opcionalmente, la secuencia que codifica la autoproteasa 2A de FMDV. Este tipo de construcciones se representa de forma esquemática en la figura 1A, tanto cuando la secuencia B se encuentra en posición 5' con respecto a la secuencia C (panel superior) o cuando la secuencia C se encuentra en posición 5' con respecto a la secuencia B (panel inferior). En una forma preferida de realización, cuando el gen heterólogo codifica EGFP, el vector de la invención comprende la secuencia indicada en SEQ ID NO: 10) compuesta por:
- extremo 5 'no traducido (nucleótidos 1-86)
- secuencia A codificante para poliproteína no estructural (nucleótidos 87-7385)
- primer promotor subgenómico (nucleótidos 7354-7378, que solapa con el extremo de la secuencia que codifica la poliproteína no estructural)
- secuencia espaciadora que incluye un sitio de unión a ribosoma (nucleótidos 7386-7423)
- secuencia del primer enhancer de traducción (nucleótidos 7424-7525)
- secuencia que codifica la proteasa 2A de FMDV (nucleótidos 7526-7576)
secuencia que codifica la proteína estructural modificada p62-6K-El (nucleótidos 7577-10534)
- secuencia espaciadora (nucleótidos 10535-10585)
- segundo promotor subgenómico (nucleótidos 10586-10610)
- secuencia espaciadora (nucleótidos 10611 - 10655)
- segundo enhancer de traducción (nucleótidos 10656-10799)
- secuencia que codifica GFP mejorada (EGFP) (nucleótidos 10800-11545)
extremo 3 'no traducido (nucleótidos 11546-12422)
En otra forma preferida de realización, cuando el gen heterólogo codifica scIL12, el vector de la invención comprende la secuencia indicada en SEQ ID NO: 1 1) compuesta por:
- extremo 5 'no traducido (nucleótidos 1-86)
- secuencia A codificante para poliproteína no estructural (nucleótidos 87-7385)
- primer promotor subgenómico (nucleótidos 7354-7378, que solapa con el extremo de la secuencia que codifica la poliproteína no estructural)
- secuencia espaciadora que incluye un sitio de unión a ribosoma (nucleótidos 7386-7423)
- secuencia del primer enhancer de traducción (nucleótidos 7424-7525) - secuencia que codifica la proteasa 2A de FMDV (nucleótidos 7526-7576) secuencia que codifica la proteínas estructural modificada p62-6K-El (nucleótidos 7577-10534)
- secuencia espaciadora (nucleótidos 10535-10585)
- segundo promotor subgenómico (nucleótidos 10586-10610)
- secuencia espaciadora que incluye un sitio de unión a ribosoma (nucleótidos 10611-10655)
- segundo enhancer de traducción (nucleótidos 10656-10757)
- secuencia que codifica la proteasa 2A de FMDV (nucleótidos 10758-10808) - secuencia que codifica scIL12 (nucleótidos 10809 - 12440)
extremo 3 'no traducido (nucleótidos 12441-13234)
En otra forma de realización, únicamente una de las secuencias B o C se encuentran bajo control operativo del cásete formado por el aumentador de la traducción y la secuencia que codifica la autoproteasa 2A de FMDV. Así, la invención contempla vectores en los que únicamente la secuencia del gen heterólogo C se encuentra operativamente unida al cásete aumentador-autoproteasa, en cuyo caso, éste puede encontrarse en posición 3' con respecto al polmucleótido B) (figura IB, panel superior) o en posición 5' con respecto al polmucleótido B (figura IB, panel inferior).
Por otro lado, la invención contempla que el cásete formado por el aumentador de la traducción y la secuencia que codifica la autoproteasa 2A de FMDV se encuentre regulando la traducción únicamente del polmucleótido que codifica la poliproteína estructural (secuencia B), en cuyo caso, este puede encontrarse en posición 3' con respecto al polmucleótido C) (figura 1C, panel superior) o en posición 5' con respecto a la secuencia C) (figura 1C, panel inferior). En una forma preferida de realización, la secuencia B comprende un cásete regulador de la traducción en posición 5' que comprende la secuencia aumentadora de la traducción de la cápsida de SFV y la secuencia que codifica la autoproteasa 2A de FMDV. En una forma de realización aún más preferida, dicha secuencia B comprende la secuencia indicada en SEQ ID NO:9. Por último, es posible que ninguno de las secuencias B o C contengan elementos reguladores de la traducción. Este tipo de construcciones se representa de forma esquemática en la figura ID, tanto cuando la secuencia B se encuentra en posición 5' con respecto a la secuencia C (panel superior) como cuando la secuencia C se encuentra en posición 5' con respecto a la secuencia B (panel inferior).
En aquellos vectores en los que las secuencias B y C aparecen acopladas operativamente a un único promotor subgenómico (secuencia D), la invención contempla la posibilidad de que dicha secuencia sea policistróncia, esto es, una secuencia en donde la secuencia que codifica la poliproteína estructural y la secuencia que codifica la proteína heteróloga aparecen en marcos de lectura separados, de forma que cada una de ellas se encuentre precedida de elementos reguladores de la traducción. En el caso de la secuencia D de tipo policistrónico, la invención contempla la presencia de secuencias reguladoras de la traducción que actúan sobre cada una de las secuencias de forma independiente. Este tipo de secuencias ha sido descrito en detalle con anterioridad e incluyen sitios internos de entrada ribosomal o IRES {infernal ribosomal entry sites). En el contexto de la presente invención, el término IRES se usa para indicar secuencias que aparecen en los ARNm y que son capaces de reclutar la maquinaria traduccional a un codón de iniciación de la traducción interno con ayuda de factores que actúan en trans (reviewed in Jackson. Translational Control of Gene Expression, pp. 127-184. Cold Spring Harbor Laboratory Press. 2000). Los elementos IRES aparecen frecuentemente en ARNm de origen viral.
Elementos IRES útiles para su uso en la presente invención incluyen, sin limitación, IRES de picornavirus (por ejemplo, poliovirus), virus de la encefalomiocarditis (EMCV), FMDV, IRES de flavivirus (por ejemplo del virus de la hepatitis C), IRES de pestivirus (por ejemplo, el virus de la peste porcina clásica (CSFV)), IRES de retrovirus (por ejemplo, el virus de le leucemia murina o MLV), de lentivirus (por ejemplo, el virus de la inmunodeficiencia del simio o SIV) o IRES de ARNm celulares tales como los que aparecen en factores de traducción (eIF4G), en factores de transcripción (c- Myc), IRES de factores de crecimiento (por ejemplo, VEGF, IGF-II, PDGF-2 o FGF-2), de genes homeóticos (por ejemplo, el IRES de Antennapedia), de proteínas de supervivencia (por ejemplo del inhibidor de la apoptosis asociado a X (XIAP) o Apaf- 1), IRES de chaperonas (por ejemplo, el IRES de la proteína de unión a la cadena pesada de la inmunoglobulina o BiP). Así, en una forma preferida, la invención contempla vectores en los que la secuencia D es de tipo policistrónica y comprende, en sentido 5 ' a 3 ' :
un primer cásete formado por un aumentador traduccional y la secuencia codificante de una autoproteasa,
la secuencia del gen heterólogo fusionado en fase con dicho primer cásete, - la secuencia de un IRES,
- un segundo cásete formado por un aumentador traduccional y la secuencia codificante de una autoproteasa unido de forma operativa con dicho IRES y la secuencia que codifica la poliproteína estructural (modificada en la secuencia que codifica la proteína de la cápsida) fusionado en fase con dicho segundo cásete.
Este tipo de vector se muestra de forma esquemática en la figura 1G (panel superior).
Alternativamente, el gen heterólogo puede estar en posición 3 ' con respecto al gen que codifica la poliproteína estructural, en cuyo caso la disposición de elementos en el vector de la invención sería tal y como se indica en la figura 1G (panel inferior):
un primer cásete formado por un aumentador traduccional y la secuencia codificante de una autoproteasa,
la secuencia que codifica la poliproteína estructural (modificada en la secuencia que codifica la proteína de la cápsida) fusionada en fase con dicho primer cásete, - la secuencia de un IRES,
- un segundo cásete formado por un aumentador traduccional y la secuencia codificante de una autoproteasa unido de forma operativa con dicho IRES y la secuencia del gen heterólogo fusionado en fase con dicho segundo cásete. En otra forma de realización, la secuencia D de la invención comprende un único cásete formado por el aumentador de la traducción y la secuencia que codifica una autoproteasa que puede estar acoplado de forma operativa con la secuencia B de acuerdo a la invención o acoplada de forma operativa a la secuencia C. Así, el vector que se describe de forma esquemática en la figura 1H (panel superior) comprende el cásete formado por el aumentador de la traducción la secuencia que codifica una autoproteasa acoplado operativamente al gen heterólogo seguido del gen que codifica la poliproteína modificada bajo el control de un IRES. Alternativamente, la secuencia que codifica la poliproteína modificada se encuentra unida de forma operativa a un cásete formado por el aumentador de la traducción y la secuencia que codifica una autoproteasa y es el gen heterólogo el que se encuentra unido de forma operativa a un IRES (figura II, panel superior).
Alternativamente, el gen de interés puede encontrarse unido de forma operativa a un IRES y a un cásete formado por el aumentador de la traducción y la secuencia que codifica una autoproteasa y la secuencia que codifica la poliproteína estructural de acuerdo a la invención (secuencia B) puede carecer de ningún tipo de elemento aumentador de la traducción. Este tipo de vectores se muestran de forma esquemática en la figura 1H (panel inferior). Alternativamente, la secuencia que codifica la poliproteína modificada puede encontrarse unida de forma operativa a un IRES y a un cásete formado por el aumentador de la traducción y la secuencia que codifica una autoproteasa y el gen heterólogo puede carecer de elementos adicionales de regulación traduccional (figura II, panel inferior).
En otra forma de realización, la secuencia (iv) incluye un IRES como único elemento regulador de la traducción. El IRES puede estar acoplado de forma operativa al gen heterólogo (figura 1J, panel superior) o al gen que codifica la poliproteína modificada (figura 1J, panel inferior). Evidentemente, tanto si el IRES se encuentra acoplado de forma operativa al gen heterólogo o al gen que codifica la poliproteína modificada, la invención contempla tanto vectores en donde el gen heterólogo se encuentra en posición 5' con respecto al gen que codifica la poliproteína modificada como en posición 3'. Alternativamente, la secuencia D puede ser una secuencia monocistrónica, es decir, que comprende un único marco de lectura que codifica una poliproteína formada por las proteínas estructurales del alfavirus y la proteína codificada por el gen heterólogo. En este caso, la secuencia D está provista de secuencias que codifican sitios diana para proteasas o secuencias que codifican autoproteasas, de forma que tras la síntesis de la poliproteína por la traducción del transcrito de la secuencia D, ésta pueda ser procesada para separar la proteína codificada por el gen heterólogo del resto de proteínas que forman parte de la poliproteína.
En el caso de que la secuencia D sea monocistrónica, la invención contempla distintas formas de realización dependiendo de la organización relativa de los secuencias que codifican cada uno de los elementos de la poliproteína. Así, en una forma de realización, la secuencia D codifica una poliproteína que comprende, en sentido N- a C- terminal:
el polipéptido codificado por el gen heterólogo
la secuencia de una autoproteasa
la poliproteína estructural modificada en donde la secuencia de la cápsida se ha modificado de forma que sea incapaz de ensamblarse
Este tipo de vectores se refleja de forma esquemática en la figura 1F (panel superior). Preferiblemente, la secuencia D se encuentra unida operativamente a un cásete formado por el aumentador de la traducción y la secuencia que codifica una autoproteasa tal y como queda reflejado de forma esquemática en la figura 1E (panel superior).
En otra forma de realización, la secuencia D codifica una poliproteína que comprende, en sentido N- a C-terminal:
la poliproteína estructural modificada en donde la secuencia de la cápsida se ha modificado de forma que sea incapaz de ensamblarse,
la secuencia de una autoproteasa y
el polipéptido codificado por el gen heterólogo
Este tipo de vectores se refleja de forma esquemática en la figura 1F (panel inferior). Preferiblemente, la secuencia D se encuentra unida operativamente a un cásete formado por el aumentador de la traducción y la secuencia que codifica una autoproteasa tal y como queda reflejado de forma esquemática en la figura 1E (panel inferior). Vectores de clonaje de la invención
Aunque los vectores de la invención se han definido anteriormente como que comprenden un gen heterólogo bajo el control de un promotor subgenómico alfaviral, el experto en la materia apreciará que los vectores de la invención pueden presentar en lugar de dicho gen heterólogo una secuencia que contenga un sitio múltiple de clonaje en donde sería posible insertar un gen de interés de forma que dicho gen de interés quede bajo control operativo de dicho promotor subgenómico.. Así, en otro aspecto, la invención se relaciona con un vector de expresión génica que comprende un replicón alfaviral
en donde dicho replicón comprende un sitio múltiple de clonaje que se encuentra operativamente unido a un promotor subgenómico alfaviral de forma que permite la inserción de genes en dicho sitio múltiple de clonaje bajo el control operativo de dicho promotor subgenómico alfaviral y
en donde la secuencia que codifica la poliproteína estructural comprende una deleción en la región que codifica la proteína de la cápsida de forma que dicha secuencia no es capaz de producir una proteína capaz de formar nucleocápsidas funcionales. El término "sitio múltiple de clonaje", según se usa en la presente invención, se refiere a un fragmento de ADN que comprende varios de sitios diana para endonucleasas de restricción próximos entre sí de forma y que corten el replicón viral en una única posición. De esta forma, tras el tratamiento del vector con dichas endonucleasas es posible insertar un gen de interés que presente extremos compatibles, siendo dichos extremos romos, 5' protuberantes o 3' protuberantes. En principio, es posible el uso de cualquier sitio múltiple de clonaje conocido en el arte como el que puede ser obtenido de vectores del tipo de pUC18, pUC19, etc. La inserción de polinucleótidos de interés se lleva a cabo usando métodos estándar de biología molecular tal y como se describen, por ejemplo, por Sambrook et al (Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes 1 and II). Preferiblemente, el sitio múltiple de clonaje comprende al menos 1, 2, 3, 4, 5, 6, 7, 8, 9 ó 10 dianas de restricción formadas cada una de ellas por al menos 4, al menos 5 o al menos 6 nucleótidos. El experto en la materia apreciará que los vectores de clonaje de la invención pueden presentar distintas ordenaciones de los elementos que lo integran. Así, la invención contempla vectores que comprenden dos promotores subgenómicos, estando el sitio múltiple de clonaje asociado al primer promotor subgenómico y la secuencia del replicón que codifica la poliproteína estructural asociada al segundo promotor subgenómico. Alternativamente, la invención contempla la posibilidad de que el vector contenga un único promotor subgenómico alfaviral de forma que tanto la secuencia que codifica la poliproteína estructural como el sitio múltiple de clonaje se encuentren operativamente unidas a dicho único promotor subgenómico alfaviral.
En formas alternativas de realización, el vector de clonaje de la invención comprende variantes en las que el segundo promotor subgenómico y el sitio múltiple de clonaje se encuentran en posición 5' o en posición 3' con respecto a la secuencia que codifica la poliproteína estructural (secuencia B) así como variantes en las que la secuencia B y/o el cásete formado por el promotor subgenómico y el sitio múltiple de clonaje se encuentra asociados adicionalmente a elementos reguladores de la traducción tales como un aumentador de la traducción, en particular, el aumentador del gen de la cápsida de SFV opcionalmente acoplado a una secuencia que codifica una autoproteasa.
En principio, la invención contempla variantes en las que el sitio múltiple de clonaje puede localizarse en distintas posiciones en el vector y asociado a distintos tipos de elementos reguladores adicionales. Así, variantes contempladas en la presente invención incluyen todas las que aparecen en los esquemas de la figura 1, en donde el HG indicaría en este caso la posición del sitio múltiple de clonaje.
Así, la invención contempla vectores en los que el sitio múltiple de clonaje y/o la secuencia que codifica la poliproteína estructural comprenden un aumentador de la traducción en posición 5' con respecto dicha secuencia. En una forma preferida de realización, dicho aumentador de la traducción es el aumentador de la traducción de la cápside de un alfavirus. En otra forma preferida de realización, el aumentador de la traducción se encuentra unido a una secuencia que codifica una autoproteasa, en donde la autoproteasa se encuentra en posición 3 ' con respecto a dicho elemento aumentador. En este caso, la inserción del gen en el sitio de clonaje múltiple se debe llevar a cabo de forma el marco abierto de lectura del gen se encuentre en fase con la secuencia que codifica la autoproteasa y, en caso de que la secuencia aumentadora contenga secuencia codificante, también en el mismo marco de lectura que dicha secuencia aumentadora. En una forma preferida de realización, la autoproteasa es la autoproteasa 2A de FMDV.
En el caso de que el sitio múltiple de clonaje y la secuencia B se encuentren asociados a un único promotor subgenómico, la invención contempla la posibilidad de que el vector comprenda un IRES entre la secuencia B y el sitio múltiple de clonaje.
En otra forma de realización, sitio múltiple de clonaje en el vector de la invención se encuentra diseñado de forma que al insertar la secuencia del gen heterólogo, la secuencia codificada por éste y la secuencia que codifica la poliproteína estructural modificada den lugar a una única poliproteína que comprende además, entre el extremo de dicha poliproteína que se encuentra más próxima al sitio múltiple de clonaje y dicha poliproteína un enlazador seleccionado entre la secuencia de la autoproteasa 2A de FMDV y la secuencia de un sitio de corte para una proteasa. En este caso, el vector comprende una secuencia D bajo el control de un único promotor subgenómico y en donde dicha secuencia D es monocistrónica. En este caso, es necesario tener en cuenta que el clonaje del gen de interés debe ser llevado a cabo de forma que se mantenga el marco de lectura entre la secuencia que codifica dicho gen y la secuencia que codifica el resto de la glicoproteína. En una forma preferida, la invención contempla familias formadas por 3 vectores en los que el sitio múltiple de clonaje se encuentra desplazado un nucleótido con respecto al anterior. De esta forma, mediante el clonaje del gen de interés en los 3 vectores, se asegura que al menos uno de ellos contenga dicho gen en el marco de lectura adecuado.
En este tipo de vectores en los que existe un único promotor subgenómico que se encuentra unido operativamente a una secuencia monocistrónica, la secuencia de la que codifica la proteína estructural y la secuencia del sitio múltiple de clonaje se encuentran separados por una secuencia que codifica una autoproteasa, de forma que tras la síntesis de la proteína, esta sea procesada para dar lugar a la proteína codificada por el gen de interés. En una forma preferida de realización, dicha autoproteasa es la autoproteasa 2A de FMDV. En otra forma de realización, el vector de expresión génica de la invención que codifica una única poliproteína comprende un aumentador de la traducción en posición 5 ' con respecto a dicha secuencia. En una forma de realización aún más preferida, el aumentador de la traducción es el aumentador de la traducción de la cápside de alfavirus (enh). En una forma de realización aún más preferida, el vector comprende, adicionalmente, entre la secuencia del potenciador del aumentador de la traducción de la cápside de alfavirus y la secuencia que codifica una única poliproteína estructural una secuencia que codifica una autoproteasa.
En una forma preferida de realización, el vector de clonaje de la invención comprende la secuencia caracterizada por SEQ ID NO: 12 (vector SFV-spike) que comprende: extremo 5 'no traducido (nucleótidos 1-86)
secuencia que codifica la poliproteína no estructural (nucleótidos 87-7385) - promotor subgenómico (nucleótidos 7354-7378, que solapan con el extremo de las proteínas no estructurales)
secuencia espaciadora que incluye un sitio de unión a ribosoma (nucleótidos 7386- 7405)
secuencia que codifica la poliproteína estructural modificada p62-6K-El (nucleótidos 7404-10367)
- extremo 3 'no traducido (nucleótidos 10368-10628)
En una forma de realización aún más preferida, el vector SFV-spike se encuentra modificado por un sitio múltiple de clonaje que se encuentra en posición 3' con respecto al promotor subgenómico y en posición 5 ' o 3 ' con respecto a la secuencia que codifica la poliproteína estructural modificada. En una forma preferida de realización, el vector de clonaje de la invención comprende la secuencia caracterizada por SEQ ID NO: 14 (vector SIN-spike) que comprende: extremo 5 'no traducido (nucleótidos 1-59)
- secuencia que codifica la poliproteína no estructural (nucleótidos 60-7601)
- promotor subgenómico (nucleótidos 7579-7597)
secuencia que codifica la poliproteína estructural modificada p62-6K-El
(nucleótidos 7658-10606)
extremo 3 'no traducido : 10607-10919
En una forma de realización aún más preferida, el vector SIN-spike se encuentra modificado por un sitio múltiple de clonaje que se encuentra en posición 3' con respecto al promotor subgenómico y en posición 5 ' o 3 ' con respecto a la secuencia que codifica la poliproteína estructural modificada.
En una forma preferida de realización, el vector de clonaje de la invención comprende la secuencia caracterizada por SEQ ID NO: 13 (vector SFV-enh-spike) que comprende: extremo 5 'no traducido (nucleótidos 1-86),
- secuencia que codifica la poliproteína no estructural (nucleótidos 87-7385),
- promotor subgenómico (nucleótidos 7354-7378, que solapan con el extremo de las proteínas no estructurales),
secuencia espaciadora que incluye un sitio de unión a ribosoma (nucleótidos 7386- 7423),
- secuencia aumentadora de la traducción (nucleótidos 7424-7525),
secuencia que codifica la proteasa 2A (nucleótidos 7526-7576),
secuencia que codifica la poliproteína estructural modificada p62-6K-El (nucleótidos 7577-10534),
extremo 3 'no traducido (nucleótidos 10535-10795),
En una forma de realización aún más preferida, el vector SFV-enh-spike se encuentra modificado por un sitio múltiple de clonaje que se encuentra en posición 3' con respecto a promotor subgenómico y en posición 5 Ό 3 'con respecto a la secuencia que codifica la poliproteína estructural modificada.
El vector de la invención que comprende el sitio de clonaje múltiple puede comprender un replicón alfaviral seleccionado del grupo de Semliki Forest (SFV) y del virus Sindbis (SIN).
Partículas virales y polinucleótidos de ADN El vector de la invención tal y como se define anteriormente comprende un replicón alfaviral modificado mediante (i) la presencia de un gen heterólogo que se encuentra operativamente unido a un promotor subgenómico alfaviral y (ii) una deleción en la secuencia que codifica la poliproteína estructural de dicho replicón alfaviral de forma que dicha secuencia no sea capaz de dar lugar a una proteína de la cápsida capaz de formar nucleocápsidas funcionales. Por tanto, dado que los alfavirus tienen un ARN de polaridad positiva como genoma, el vector de la invención es típicamente una molécula de ARN.
No obstante, aunque los ARNs pueden introducirse en el interior de una célula tanto in vitro como in vivo usando la tecnología adecuada, la alta sensibilidad de éstos a RNAsas hace que sea preferible que el vector viral se administre formando parte de una partícula viral o en forma de ADN. Así, en otro aspecto, la invención se relaciona con un polinucleótido de ADN de secuencia complementaria al replicón de la invención de forma que, tras la transcripción, se genere el ARN con el replicón alfaviral.
Por "secuencia complementaria a una determinada secuencia" se entiende, en el contexto de la presente invención, al inverso de una secuencia resultante de reemplazar cada nucleótido en dicha determinada secuencia por el nucleótido complementario de acuerdo a las reglas establecidas por Watson-Crick. Por tanto, dos secuencias son complementarias cuando se pueden unir entre sí en sentido antiparalelo (el extremo 5' de una de ellas con el extremo 3 ' de la otra y cada A, T(U), G y C de una secuencia se aparea, respectivamente, con un T(U), A, C y G. Así, el polinucleótido de ADN de la presente invención tendría la secuencia del vector de la invención leído en sentido inverso (3' a 5') y reemplazando cada U, A, C y G del vector por A, T, G y C, respectivamente. De esta forma, cuando este ADN es copiado por una ARN polimerasa, ésta inserta en cada posición la base complementaria a la que aparece en el molde se genera una molécula de ARN cuya secuencia coincide con la del vector de la invención.
En una forma preferida de realización, la invención contempla que dicho ADN se encuentre asociado operativamente a un promotor transcripcional, de forma que sea posible generar el ARN alfa viral mediante transcripción in vivo o in vitro. De esta forma, el promotor actúa sobre la secuencia en posición 3' danto lugar a un replicón alfaviral que es capaz de dirigir su propia replicación en la célula y de expresar una proteína de interés.
En principio, el tipo de promotor que se encuentra operativamente unido al ADN de la invención no es particularmente limitante para la presente invención. Así, la invención contempla el uso de promotores adecuados para la transcripción in vitro tales como los promotores de la ARN polimerasa de los fagos T7, T3 y SP6, así como promotores adecuados constitutivos para la expresión in vivo, incluyendo tanto promotores derivados de los genomas de virus eucariotas tales como el virus del polioma, adenovirus, SV40, CMV (temprano o tardío), el promotor del virus de la leucemia de Moloney, el promotor del LTR del virus del sarcoma de Rous (RSV), el promotor del virus del sarcoma aviar, virus de la hepatitis B, el promotor del gen de la metalotioneína, el promotor del gen de la timidina kinasa del virus del herpes simplex, regiones LTR de otros retrovirus, el promotor del gen de la inmunoglobulina, el promotor del gen de la actina, el promotor del gen EF-lalpha así como promotores inducibles en los que la expresión de la proteína depende de la adición de una molécula o de una señal exógena, tales como el sistema tetraciclina, el sistema NFKB/IUZ UV, el sistema Cre/Lox y el promotor de los genes de choque térmico, los promotores regulables de la ARN polimerasa II descritos en WO/2006/135436 así como promotores específicos de tejido. En este tipo de construcciones, el polinucleótido que se encuentra asociado operativamente al promotor comprende, además de las secuencias que codifican las poliproteínas no estructurales y estructurales del alfavirus, otros elementos reguladores tales como secuencias de poliadenilación, secuencias no traducidas necesarias para la replicación, secuencias de procesamiento o ajuste, secuencias de export nuclear y secuencias de terminación de la transcripción.
En otro aspecto, la invención se relaciona con una partícula viral que comprende un vector de la invención. El término "partícula viral", según se usa en la presente invención, se refiere a una unidad de virión que contiene el vector de la invención en forma de AR , una estructura de nucleocápsida formada por la proteína de la cápsida que engloba dicho ARN y una envuelta lipídica en la que se encuentran las glicoproteínas codificadas por el genoma alfaviral y que procede de la membrana plasmática de la célula en la que se ha formado dicha partícula. La partícula puede contener otros elementos (por ejemplo, elementos de direccionamiento tales como biotina, otras proteínas virales estructurales y no estructurales y otros ligandos de unión a receptores). En el caso de que el vector de la invención sea SFV, las partícula virales comprenden una envuelta que contiene las glicoproteínas El y E2 formando las llamadas espículas virales y la proteína minoritaria de la envuelta 6K, una cápsida formada por una ordenación regular de la proteína C y el RNA vector de la invención con los elementos definidos anteriormente.
Método para la obtención de una partícula viral de la invención En otro aspecto, la invención se relaciona con un método para la obtención de una partícula viral de acuerdo a la invención que comprende
(a) expresar en una célula hospedadora un vector de expresión génica que comprende un replicón alfaviral de acuerdo a la invención y un polinucleótido que codifica la proteína de la cápside de dicho alfavirus, (b) mantener las células en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y de las proteína de la cápsida del alfavirus y para el ensamblaje a partir de la proteína de la cápsida de nucleocápsidas con el material genético en su interior y
(c) recuperar las partículas virales del medio. En una primera etapa, el método para la obtención de una partícula viral de la invención comprende expresar en una célula hospedadora
(i) un polinucleótido que codifica la proteína de la cápside de dicho alfavirus y
(ii) un vector de expresión génica que comprende un replicón alfaviral de acuerdo a la invención
El término "vector de expresión génica que comprende un replicón alfaviral" ha sido definido en detalle con anterioridad. El tipo de vector usado en el método de la invención no es particularmente limitativo por lo que la invención contempla el llevar a cabo la primera etapa con cualquiera de los vectores mostrados esquemáticamente en la figura 1 de la presente invención.
La expresión de las distintas secuencias en la célula receptora puede llevarse a cabo de distintas maneras. En primer lugar, es posible introducir el replicón viral mediante transfección. La transfección se puede llevar a cabo mediante microinyección de una composición que comprende el vector o, alternativamente, mediante co-precipitación en presencia de fosfato calcio o cloruro cálcico, mediante transfección mediada por DEAE- dextrano, lipofección, electroporación así como toda una serie de kits de transfección basados en las técnicas anteriores y que se encuentran comercialmente disponibles. La eficacia de la transfección dependerá de una serie de factores que incluyen el tipo de célula, el número de pases, el estado de confluencia así como las condiciones (tiempo, forma de preparación de los liposomas o de los precipitados, etc.) de la transfección. Todos estos parámetros pueden ser determinados y ajustados mediante experimentación rutinaria.
La transfección se lleva a cabo a partir de cultivos de células que comprenden al menos 107 células/mL de medio, preferiblemente entre 5 x l07 y 5 x l08 células/mL de medio. El replicón que se usa en el contexto de la presente invención es cualquiera de los vectores de expresión génica que se han descrito con detalle en el apartado anterior. En particular, es posible usar vectores en los que la ordenación de elementos coincide con la de los vectores que aparecen descritos de forma esquemática en la figura 1.
Una aproximación alternativa es introducir el replicón a través de una molécula de ADNc que codifica el replicón y que se encuentra operativamente acoplada a un promotor transcripcional funcional en dicha célula, Este tipo de vectores se denominan de forma genérica "Sistemas de iniciación de vectores en capas" o "EL VIS" (por "Eukaryotic layered vector initiation system") según se han descrito en US5814482 y US6015686.
En caso de que el replicón alfaviral se aporte en forma de partícula viral, es suficiente con poner en contacto la partícula con la célula permisiva de forma que el replicón infecte la célula de forma natural. Preferiblemente, el virus se pone en contacto con las células usando una relación de número de partículas virales a células (multiplicidad de infección o MOI) de al menos aproximadamente 1, 2, 10, 20, 30, 50, 100, 200, 2000 o cualquier otro valor de MOI adecuado para que se infecten sustancialmente todas las células del cultivo.
El término "célula hospedadora" se refiere a una célula que ha sido modificada mediante introducción de al menos uno de los vectores de la invención. Típicamente, la célula hospedadora es una célula de mamífero en cultivo tales como células Vero, células BHK, fibroblastos de embrión de pollo (CEF), células DF-1, 293, 293T, células CHO, células 293T/17 (ATCC: CRL-11268), células UMNSAH/DF-1 (CRL-12203) y células de insecto tales como células SF21 de Spodoptera frugiperda; C6/36 de Aedes albopictus; células TRA-171 de Toxorhynchites amboinensis; células RML-12 de Aedes aegypti; células AP-61 de Aedes pseudoscutellaris; y células MOS-55 de células de Anopheles gambiae.
En cuanto a las proteína de la cápsida, estás pueden proceder de un polinucleótido que se encuentre integrado de forma estable en el genoma de la célula hospedadora o bien que se exprese de forma transitoria al haber sido co-transfectada conjunta- o separadamente con los vectores de la invención. Así, cuando el vector se introduce en la célula mediante electroporación, el polinucleótido que codifica la proteína de la cápsida puede introducirse mediante la co-electroporación con un vector que contiene la secuencia codificante de la proteína de la cápsida (denominado vector o ácido nucleico auxiliar). Para la puesta en práctica de este método, es posible usar una relación de replicón viral/ácido nucleico auxiliar entre 1 :2 y 1 :8, aunque la concentración óptima tanto del replicón como del ácido nucleico auxiliar se puede determinar mediante experimentación rutinaria. El ácido nucleico auxiliar se puede encontrar en la mezcla de electroporación a una concentración de 20-500 μg en cada 0.8 mL de mezcla de electroporación, preferiblemente en torno a 50 μ de mezcla de electroporación en donde dicha mezcla contiene entre 5xl06 y 2xl07 células, preferiblemente en torno a lxlO7 células. En una segunda etapa, las células se mantienen en condiciones adecuadas para la replicación del replicón viral, para la expresión de las proteínas estructurales y no estructurales del alfavirus codificadas en el replicón y para la expresión de la proteína de la cápsida del alfavirus y para el ensamblaje a partir de la proteína de la cápsida de nucleocápsidas con el material genético en su interior. La expresión "condiciones adecuadas" se refiere a las condiciones de tiempo, temperatura y medios de cultivo que permiten un crecimiento continuado de las células para que tenga lugar la síntesis de los componentes de los viriones y el ensamblaje las partículas virales. Estas condiciones pueden determinarse de forma particular para cada caso mediante experimentación rutinaria.
En una tercera etapa, las partículas virales se recogen a partir del sobrenadante de las células hospedadores. Para ello, es necesario purificar las partículas virales por métodos conocidos como pueden ser la ultracentrifugación en gradiente de CsCl o los métodos descritos en US7078218, US5492462 y US6156558).
Estas partículas son evaluadas por su capacidad infectiva usando cultivos de células permisivas a alfavirus mediante métodos conocidos en la literatura. Por partícula alfaviral infecciosa se entiende una partícula que es capaz de introducir el ARN genómico en una célula, típicamente mediante transducción.
Método para la obtención de una composición que comprende material infeccioso
Los autores de la presente invención han observado que los sobrenadantes de cultivos celulares infectados con vectores virales de acuerdo a la presente invención contienen un material que es capaz de propagarse a células inicialmente no infectadas por el virus a pesar de la ausencia en dichas células de proteínas de la cápsida. Así, según se observa en los ejemplos 3 y 4 de la presente invención, los sobrenadantes de células infectadas con los vectores de la invención contienen material infeccioso que es capaz de transmitirse a células vecinas de forma sensible a agitación celular, indicando que el contacto celular no se requiere para dicho fenómeno y de forma dependiente de las proteínas El y E2 de la espícula (puesto que se inhibe en presencia de anticuerpos contra dichas proteínas). Además, este material infeccioso nuestra un título muy superior cuando el vector se administra mediante infección con partículas virales que mediante electroporación con el material genético desnudo.
Por tanto, en otro aspecto, la invención se relaciona con un método para la obtención de una composición que comprende material infeccioso que comprende
(a) introducir en una célula hospedadora un vector de expresión génica de acuerdo a la invención o un polinucleótido de ADN de acuerdo a la invención,
(b) mantener las células en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y para la formación de partículas infecciosas en el sobrenadante de las células
(c) recuperar el sobrenadante de las células. En una primera etapa, el método para obtener material infeccioso comprende la introducción en una célula permisiva adecuada un vector de expresión de acuerdo a la invención, un polinucleótido de acuerdo a la invención o una partícula viral de acuerdo a la invención.
Los términos "célula permisiva", "vector de expresión", "polinucleótido de la invención" y "partícula viral" han sido definidos en detalle anteriormente en el contexto de los métodos para producir partículas virales infecciosas de acuerdo a la invención y se usan de la misma manera en el presente método. Según se demuestra en el ejemplo 4 de la invención, las células permisivas pueden incorporar el material genético del replicón bien mediante la transferencia directa del material genético desnudo al interior celular (bien el replicón de AR o bien el ADNc correspondiente acoplado a un promotor) o bien mediante el uso de partículas virales que comprenden el replicón. En una forma preferida de realización, las células hospedadoras son infectadas mediante el uso de partículas virales, lo que sorprendentemente permite obtener un material infeccioso de mayor título. En este caso, el número de partículas virales puede ser determinado de forma experimental aunque es preferible que la MOI sea lo suficientemente alta.
En una segunda etapa, las células se mantienen en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y para la formación de partículas infecciosas en el sobrenadante de las células. Durante la realización de esta segunda etapa, el cultivo es evaluado de forma regular hasta que se detecte la aparición de material infeccioso en el sobrenadante o hasta que se observe que la existencia de un efecto citopático. La detección de la aparición de material infeccioso se lleva a cabo típicamente mediante la puesta en contacto de dicho material con células receptoras adecuadas. La detección de la aparición de efecto citopático en el cultivo se lleva a cabo típicamente mediante inspección visual del cultivo.
En una tercera etapa, se recupera el sobrenadante de las células. Para ello, en el caso de que se usen células adherentes y si no se han despegado del sustrato durante las etapas previas, esta etapa se lleva a cabo simplemente mediante la recogida del medio de cultivo. En caso de que las células que se usen crezcan en suspensión o se despeguen del sustrato durante las etapas previas, el medio de cultivo se recupera mediante la eliminación de las células, para lo cual se puede llevar a cabo mediante centrifugación, sedimentación, filtración o cualquier otra técnica conocida para un experto en la materia.
En otro aspecto, la invención se relaciona con una composición de material infeccioso obtenida mediante el método descrito anteriormente.
Composiciones farmacéuticas y usos médicos de los vectores de la invención
Los autores de la presente invención han observado que la administración de los vectores de la invención que contienen IL-12 como gen heterólogo a animales en los que se ha inducido la formación de tumores resulta en una inhibición del crecimiento tumoral y que este retraso es superior en aquellos animales que habían recibido los vectores de la invención con respecto a aquellos animales a los que se les había administrado un vector alfaviral convencional en el que la totalidad de la poliproteína estructural se había reemplazado por el gen terapeútico (IL-12) (véase ejemplo 6). Por tanto, en otro aspecto, la invención se relaciona con una composición farmacéutica que comprende:
(i) un principio activo seleccionado del grupo de un vector de la invención, un polinucleótido de ADN de la invención, una partícula viral de la invención o una composición de material infeccioso y
(ii) vehículo farmacéuticamente aceptable. Asimismo, en otro aspecto, la invención se relaciona con un vector de la invención, un polinucleótido de ADN de la invención, una partícula viral de la invención o una composición de material infeccioso para su uso en medicina.
Se puede usar cualquier soporte o excipiente farmacéuticamente aceptable en las presentes composiciones (ver, por ejemplo: Remington: The Science and Practice of Pharmacy, Alfonso R. Gennaro (Editor) Mack Publishing Company, Abril 1997). Las formas farmacéuticas preferidas estarían en combinación con solución salina, solución dextrosa, o solución tamponada estéril, u otros líquidos estériles farmacéuticamente aceptables. Alternativamente, se puede usar un soporte sólido tal como, por ejemplo, bolas microsoporte. En otro aspecto, la invención se refiere a un método para el tratamiento del cáncer en un sujeto que comprende la administración a dicho sujeto de un vector de la invención, una polinucleótido de ADN de la invención, una partícula viral de la invención o una composición de material infeccioso. En otro aspecto, la invención se refiere a al uso de un vector de la invención, de un polinucleótido de ADN de la invención, de una partícula viral de la invención o de una composición de material infeccioso para la preparación de un medicamento para el tratamiento del cáncer. En otro aspecto, la invención se refiere a un vector de la invención, a un polinucleótido de ADN de la invención, a una partícula viral de la invención o a una composición de material infeccioso para la preparación de un médicamente para su uso en el tratamiento del cáncer. El término cáncer, según se usa en la presente invención, se refiere a una enfermedad que está causada o resulta de niveles inapropiadamente altos de división celular, de niveles inapropiadamente bajos de apoptosis o de ambos e incluye tanto tumores primarios como metástasis. El término "tumor primario" se refiere a un tumor que se encuentra en el sitio primario en el que se originó dicho tumor. El término "metástasis", según se usa en la presente invención, se refiere al proceso por el que un tumor se extiende a tejidos del organismo distintos al sitio primario de origen del tumor.
En el contexto de la invención, se entiende por "tratamiento del cáncer" o "tratamiento de un tumor" la administración de los compuestos y composiciones de la invención para prevenir o retrasar la aparición de síntomas, complicaciones o indicaciones bioquímicas del cáncer o tumor, para aliviar sus síntomas o para detener o inhibir su desarrollo y progresión tal como, por ejemplo, la aparición de metástasis. El tratamiento puede ser un tratamiento profiláctico para retrasar la aparición de la enfermedad o para prevenir la manifestación de sus síntomas clínicos o subclínicos o un tratamiento terapéutico para eliminar o aliviar los síntomas después de la manifestación de la enfermedad o en relación con su tratamiento quirúrgico o con radioterapia.
El cáncer que va a tratarse en el contexto de la presente invención puede ser cualquier tipo de cáncer o tumor. Estos tumores o cáncer incluyen, y no se limitan a, neoplasias ubicadas en colon, abdomen, hueso, mama, sistema digestivo, hígado, páncreas, peritoneo, glándulas endocrinas (suprarrenales, paratiroideas, hipófisis, testículos, ovarios, timo, tiroides), ojo, cabeza y cuello, sistema nervioso (central y periférico), sistema linfático, pelvis, piel, tejido blando, bazo, tórax y aparato genitourinario y, más particularmente, leucemia linfoblástica aguda infantil, leucemia linfoblástica aguda, leucemia linfocítica aguda, leucemia mieloide aguda, carcinoma corticosuprarrenal, cáncer hepatocelular en adultos (primario), cáncer de hígado en adultos (primario), leucemia linfocítica aguda en adultos, leucemia mieloide aguda en adultos, enfermedad de Hodgkin en adultos, linfoma de Hodgkin en adultos, leucemia linfocítica en adultos, linfoma no de Hodgkin en adultos, sarcoma del tejido blando en adultos, linfoma relacionado con el SIDA, tumores malignos relacionados con el SIDA, cáncer de ano, astrocitoma, cáncer de las vías biliares, cáncer de vejiga, cáncer de huesos, glioma del tallo cerebral, tumores cerebrales, cáncer de la pelvis renal y uréter, linfoma del sistema nervioso central (primario), linfoma del sistema nervioso central, astrocitoma cerebeloso, astrocitoma cerebral, cáncer de cuello uterino, cáncer hepatocelular infantil (primario), cáncer de hígado infantil (primario), leucemia linfoblástica aguda infantil, leucemia mieloide aguda infantil, glioma del tallo cerebral infantil, astrocitoma cerebeloso infantil, astrocitoma cerebral infantil, tumores de células germinales extracraneales infantiles, enfermedad de Hodgkin infantil, linfoma de Hodgkin infantil, glioma de la vía óptica y e hipotalámico infantil, leucemia linfoblástica infantil, meduloblastoma infantil, linfoma no de Hodgkin infantil, tumores neuroectodérmicos primitivos supratentoriales y pineales infantiles, cáncer de hígado primario infantil, rabdomiosarcoma infantil, sarcoma del tejido blando infantil, glioma hipotalámico y de la vía óptica infantil, leucemia linfocítica crónica, leucemia mielógena crónica, cáncer de colon, linfoma de células T cutáneo, carcinoma de células de los islotes del páncreas endocrino, cáncer de endometrio, ependimoma, cáncer epitelial, cáncer de esófago, sarcoma de Ewing y tumores relacionados, cáncer de páncreas exocrino, tumor de células germinales extracraneales, tumor de células germinales extragodanales, cáncer de las vías biliares extrahepáticas, cáncer de ojo, cáncer de mama, enfermedad de Gaucher, cáncer de vesícula biliar, cáncer gástrico, tumor carcinoide gastrointestinal, tumores gastrointestinales, tumores de células germinales, tumor trofoblástico gestacional, trico leucemia, cáncer de cabeza y cuello, cáncer hepatocelular, hipergammaglobulinemia, cáncer hipofaríngeo, cánceres intestinales, melanoma intraocular, carcinoma de células de los islotes, cáncer pancreático de células de los islotes, sarcoma de Kaposi, cáncer de riñon, cáncer de laringe, cáncer de labio y cavidad oral, cáncer de hígado, cáncer de pulmón, trastornos linfoproliferativos, macroglobulinemia, cáncer de mama en el hombre, mesotelioma maligno, timoma maligno, meduloblastoma, melanoma, mesotelioma, cáncer metastásico escamoso de cuello con primario oculto, cáncer metastásico escamoso de cuello primario, cáncer metastásico escamoso de cuello, mieloma múltiple, mieloma múltiple/neoplasia de células plasmáticas, síndrome mielodisplásico, leucemia mielógena, leucemia mieloide, trastornos mieloproliferativos, cáncer de seno paranasal y cavidad nasal, cáncer nasofaríngeo, neuroblastoma, linfoma no de Hodgkin durante el embarazo, cáncer de piel no melanoma, cáncer de pulmón de células no pequeñas, cáncer metastásico escamoso de cuello con primario oculto, cáncer bucofaríngeo, osteosarcoma-Z fibroso maligno, osteosarcoma-W histiocitoma fibroso maligno, osteosarcoma/histiocitoma fibroso maligno de hueso, cáncer epitelial de ovario, tumor de células germinales de ovario, tumor de bajo potencial maligno de ovario, cáncer pancreático, paraproteinemias, púrpura, cáncer paratiroideo, cáncer de pene, feocromocitoma, tumor hipofisario, neoplasia de células plasmáticas/mieloma múltiple, linfoma del sistema nervioso central primario, cáncer de próstata, cáncer rectal, cáncer de células renales, cáncer de pelvis renal y uréter, retinoblastoma, rabdomiosarcoma, cáncer de las glándulas salivares, sarcoidosis, sarcomas, síndrome de Sezary, cáncer de piel, cáncer de pulmón de células pequeñas, cáncer de intestino delgado, sarcoma del tejido blando, cáncer de cuello escamoso, cáncer de estómago, tumores pineales y neuroectodérmicos primitivos supratentoriales, linfoma de células T, cáncer testicular, timoma, cáncer tiroideo, cáncer de la pelvis renal y uréter de células de transición, cáncer de pelvis renal y uréter de transición, tumores trofoblásticos, cáncer de células de uréter y pelvis renal, cáncer de uretra, cáncer de útero, sarcoma de útero, cáncer de vagina, glioma hipotalámico y de la vía óptica, cáncer de vulva, macroglobulinemia de Waldenstrom, tumor de Wilms y cualquier otra enfermedad hiperproliferativa, además de neoplasia, ubicada en un sistema de órgano enumerado anteriormente.
Aunque la invención contempla la posibilidad de usar vectores, polinucleótidos, partículas y composiciones de la presente invención como agentes terapéuticos, se prefiere la administración de partículas virales. La dosificación de dichas partículas virales se ajusta preferiblemente según la gravedad de las dolencias patológicas, sexo, edad, peso corporal y hábitos del sujeto, y similares; sin embargo, dicha dosificación se ajusta apropiadamente por un médico o un veterinario.
De hecho, los inventores contemplan que la administración de cantidades terapéuticamente eficaces de partículas virales de la invención se pueda alcanzar mediante una única administración, tal como por ejemplo, una única inyección de un número suficiente de partículas infecciosas para proporcionar beneficio terapéutico al paciente que se somete a tal tratamiento. De forma alternativa, en algunas circunstancias, puede ser deseable proporcionar administraciones múltiples o sucesivas de las composiciones de partículas virales, bien durante un periodo de tiempo relativamente corto o relativamente prolongado, como puede ser determinado por el médico que supervisa la administración de tales composiciones. Por ejemplo, el número de partículas virales administrado a un mamífero puede ser del orden de alrededor de
7 8 9 10 1 1 12 13
10', 10°, 10*, 10 , 10 , 10 , 10 , o incluso mayor, partículas virales /mi dadas como una dosis única, o divididas en dos o más administraciones como se pueda requerir para alcanzar la terapia de la enfermedad o trastorno particular que se va a tratar. De hecho, en ciertas formas de realización, puede ser deseable administrar dos o más composiciones diferentes de partículas virales, bien solas o en combinación con uno o más fármacos para alcanzar los efectos deseados de la pauta terapéutica particular. Los soportes adecuados comprenden, por ejemplo, soluciones salinas tamponadas con fosfato, agua, emulsiones, por ejemplo emulsiones aceite/agua, agentes humectantes, soluciones estériles, etc. El tipo de soporte depende en cómo administrar el vector alfaviral y/o partícula alfaviral según la invención. Se determina la dosis adecuada por el médico y depende de varios factores, por ejemplo, la edad, sexo y peso del paciente, la gravedad de la enfermedad, el tipo de administración, etc. La administración de partículas virales de acuerdo a la presente invención a un sujeto humano o un animal en necesidad de las mismas puede ser por cualquier medio conocido en la técnica para administrar virus. Modos ejemplares de administración incluyen administración oral, rectal, transmucosa, tópica, transdérmica, inhalación, parenteral (por ejemplo, intravenosa, subcutánea, intradérmica, intramuscular e intraarticular) y similares, así como inyección directa al tejido u órgano, alternativamente, inyecciones intratecal, intramuscular directa, intraventricular, intravenosa, intraperitoneal, intranasal, o intraocular. Los inyectables se pueden preparar en formas convencionales, bien como soluciones o suspensiones líquidas, formas sólidas adecuadas para solución o suspensión en líquido antes de la inyección, o como emulsiones. De forma alternativa, se puede administrar el virus en una manera local más que sistémica, por ejemplo, en una formulación en depósito o de liberación sostenida.
Las partículas virales de la invención son capaces de generar un retraso en el crecimiento del tumor también en ausencia de un gen heterólogo, probablemente porque la expresión en la célula de ARN de doble cadena genera la llamada respuesta interferón. Además, es conocido que la expresión en células de las glicoproteínas de la espícula y de la replicasa viral pueden inducir apoptosis. Por tanto, la invención se relaciona con un método de tratamiento del cáncer en un sujeto que comprende la administración a dicho sujeto de un vector viral que comprende un replicón alfaviral caracterizado porque la secuencia que codifica la poliproteína estructural de dicho replicón alfaviral se ha modificado de forma que no es capaz de dar lugar a una proteína de la cápsida capaz de formar nucleocápsidas funcionales. En una forma preferida de realización, dicho replicón alfaviral es SFV. En una forma aún más preferida, el replicón alfaviral es un vector como los descritos en la presente invención que comprenden, además de las secuencias típicas del replicón, un gen heterólogo que se encuentra operativamente unido a un promotor subgenómico alfaviral.
En principio, el método terapéutico de la presente invención se puede llevar a cabo usando cualquier gen heterólogo que codifique una proteína con actividad antitumoral tales como las que se han descrito con anterioridad. No obstante, en una forma preferida de realización, el método terapéutico se lleva a cabo usando un vector o partícula viral en la que el gen heterólogo codifique interleuquina 12 o una variante de la misma. Ejemplos de variantes de interleuquina 12 que pueden ser usados en la presente invención incluyen, sin limitación, las mencionadas anteriormente en el contexto de los vectores de la invención. En una forma preferida de realización, el método terapéutico se lleva a cabo usando una interleuquina 12 de cadena sencilla.
Método in vitro para la producción en una célula de una proteína de interés
En otro aspecto, la invención se relaciona con un método in vitro para la producción en una célula de una proteína de interés que comprende
(i) poner en contacto dicho dicha célula con un vector de expresión génica de acuerdo a la invención, con un polinucleótido de acuerdo a la invención, con una partícula viral de acuerdo a la invención o con un material infeccioso de acuerdo a la invención en donde el gen heterólogo codifica la proteína de interés y en donde la puesta en contacto se lleva a cabo en condiciones adecuadas para la entrada en dicha célula del vector de expresión, del polinucleótido o del material genético contenido en la partícula viral o en la composición de material infeccioso,
(ii) mantener la célula en condiciones adecuadas para la expresión en las células de dicho cultivo del gen de interés y para la propagación de las partículas desde las células inicialmente infectadas al resto de células y
(iii) recuperar la proteína de interés. En una primera etapa, el método in vitro para la producción en un cultivo celular de una proteína de interés comprende poner en contacto dicha célula con un vector de expresión génica de acuerdo a la invención, con un polinucleótido de acuerdo a la invención, con una partícula viral de acuerdo a la invención o con un material infeccioso de acuerdo a la invención en donde el gen heterólogo codifica la proteína de interés y en donde la puesta en contacto se lleva a cabo en condiciones adecuadas para la entrada del vector de expresión o del material genético contenido en la partícula viral en la célula.
Esta etapa se lleva a cabo esencialmente de la misma manera que la primera etapa del método para la obtención de una partícula viral de la invención o para la obtención de una composición que comprende material infeccioso de acuerdo a la invención. Así, esta etapa se puede llevar a cabo usando un vector o un polinucleótido, en cuyo caso la introducción en la célula se lleva a cabo mediante transfección de dicho vector usando técnicas convencionales o un polinucleótido usando cualquiera de las técnicas mencionadas anteriormente. Preferiblemente, la transfección se lleva a cabo mediante electroporación. Alternativamente, la primera etapa se lleva a cabo usando partículas virales en cuyo caso el material genético entra en la célula por medio de la infección de dicha célula por la partícula viral.
En una segunda etapa, la célula obtenida en la etapa (i) se mantiene en condiciones adecuadas para la expresión en la célula del gen de interés. Si la célula se encuentra formando parte de un cultivo, la etapa (ii) se lleva a cabo también de forma que la infección se propague a las células del cultivo que no habían sido infectadas inicialmente. Durante la realización de esta segunda etapa, el cultivo es evaluado de forma regular hasta que se detecte que la expresión de la proteína ha alcanzado los niveles deseados. Esto puede llevarse a cabo mediante la detección en el cultivo de material immunoreactivo usando un anticuerpos específico para la proteína que se desea purificar, principalmente mediante un método de inmunotransferencia de tipo Western (J. Bacteriol. 1988; 170:3847).
Por último, en una tercera etapa, se recupera la proteína de interés. La forma de poner en práctica esta etapa dependerá de si la proteína es una proteína secretable, en cuyo caso se recuperará del medio de cultivo en el que se encuentra la célula o de si la proteína es intracelular, en cuyo caso será necesario separar las células del medio de cultivo, romper las células y purificar la proteína a partir del lisado celular.
En el caso en el que el polipéptido de interés se exprese intracelularmente, la etapa (iii) del método de la invención requiere separar la célula del sobrenadante del cultivo, habitualmente mediante centrifugación o filtración, seguido por la lisis de las células. Las células huésped pueden Usarse usando cualquier método convencional incluyendo lisis celular química/enzimática, lisis mecánica, lisis por ciclado térmico, lisis por ebullición, lisis electroquímica, lisis por electroporación y lisis ultrasónica. Una vez que las células se lisan, se trata la muestra con el fin de eliminar desechos celulares y células no rotas, normalmente mediante centrifugación hasta que se obtiene un lisado libre de células que contiene el polipéptido de interés.
El lisado libre de células obtenido tal como se definió en el párrafo anterior (si el polipéptido de interés se expresa intracelularmente) o el sobrenadante del cultivo celular (si el polipéptido de interés se secreta) se somete entonces a una o más etapas de purificación de proteínas con el fin de aislar el polipéptido de interés. Los métodos de purificación de proteínas adecuados incluyen, sin limitación, fraccionamiento por tamaño usando cromatografía de exclusión molecular; cromatografía de intercambio iónico; cromatografía de afinidad usando, por ejemplo, anticuerpos monoclonales dirigidos al polipéptido de interés, cromatografía de adsorción usando soportes no específicos, tales como hidroxiapatita, sílice, alúmina, precipitación selectiva y similares. Las fracciones obtenidas durante los procedimientos de purificación anteriores se someten a ensayo entonces para detectar la presencia del polipéptido de interés. La identificación del polipéptido de interés tras el fraccionamiento puede establecerse usando varios métodos conocidos en la técnica, incluyendo pero sin limitarse a ensayos de SDS-PAGE, inmunotransferencia de tipo Western y espectrometría de masas para detectar la unión no específica de anticuerpos incluyendo, pero sin limitarse a, radioinmunoensayos, ELISA (ensayo inmunoabsorbente ligado a enzimas), inmunoensayos tipo "sándwich", ensayos inmunorradiométricos, reacciones de precipitación por difusión en gel, ensayos de inmunodifusión, inmunoensayos in situ, inmunotransferencias de tipo Western, reacciones de precipitación, inmunoensayo de polarización de fluorescencia (FPIA), inmunoensayo de inhibición por nefelometría (NIA), ensayos de aglutinación, ensayos de fijación del complemento, ensayos de inmuno fluorescencia, ensayos de proteína A y ensayos de inmunoelectroforesis y similares. Tales métodos se describen en, por ejemplo, Clinical Immunology (Stites and Terr, eds., 7a ed. 1991), Methods in Cell Biology: Antibodies in Cell Biology, volumen 37 (Asai, ed. 1993); y Harlow and Lañe (Eds) Antibodies - A Laboratory Manual, (1988), Cold Spring Harbor Laboratory, N.Y.
En el caso de que la proteína incorpore una etiqueta de detección/purificación (es decir, una secuencia que codifica para un péptido de secuencia conocida y que no está presente en células huésped nativas que permite la detección y/o la purificación del péptido antigénico), la proteína se puede purificar a partir del medio o del lisado celular mediante afinidad a moléculas comerciales que muestran una alta afinidad por dichas etiquetas. Etiquetas de detección purificación adecuadas incluyen hexa-histidinas (resto de quelato metálico), afinidad por glutatión de hexa-hat GST (glutatión S-transferasa), péptido de unión a calmodulina (CBP), etiqueta de estreptomicina, dominio de unión a celulosa, proteína de unión a maltosa, etiqueta de S-péptido, etiqueta de unión a quitina, epítopos inmunorreactivos, etiquetas de epítopo, E2tag, etiqueta de epítopo HA, epítopo Myc, epítopo FLAG, epítopos AU1 y AU5, epítopo GIu-GIu, epítopo KT3, epítopo IRS, epítopo Btag, epítopo de proteína cinasa-C, epítopo de VSV o cualquier otra etiqueta siempre que la etiqueta no afecte a la estabilidad de la proteína.
La invención se describe a continuación por medio de los siguientes ejemplos que tienen carácter meramente ilustrativos y en ningún caso limitativo del ámbito de la invención.
EJEMPLOS
MATERIALES Y MÉTODOS
Líneas celulares La línea celular BHK-21 (ATCC CCL-10) deriva de fibroblastos de riñon de hámster y se cultivó en medio mínimo esencial de Glasgow (Glasgow-MEM, Gibco, BRL, Gran Bretaña) suplementado con 5% de suero fetal de ternera, 10% de "tryptose phosphate broth", glutamina 2 mM, HEPES 20 mM, estreptomicina 100 μg/ml y penicilina 100 IU/ml (medio BHK completo).
La línea celular Hep-3B (ATCC HB8064) y la línea Huh-7 (stock propio del laboratorio) son derivadas de hepatocarcinoma humano. La línea celular MC38 (Rodriguez-Madoz et al. Mol. Ther. 2005; 12: 153-163) deriva de un adenocarcinoma colorectal de ratón C57/BL6 y tiene restricción H-2b para la molécula de MHC-I. Estas tres últimas líneas se cultivaron en medio Eagle con la modificación de Dulbecco (DMEM) suplementado con 10% de suero fetal de ternera, glutamina 2mM, estreptomicina 100μg/ml y penicilina 100 IU/ml. Plásmidos
Los plásmidos pSFV-LacZ y pSFV-GFP han sido descritos y contienen bajo el control del promotor SP6 la secuencia de un vector de SFV que porta el gen LacZ o el gen GFP bajo el control del promotor subgenómico viral, respectivamente (Liljestrom and Garoff. Biotechnology (N.Y.) 1991; 9: 1356-1361). Los plásmidos pSFV-helper-S2 y pSFV-helper-C-S219A han sido descritos previamente (Smerdou and Liljestrom. J. Virol. 1999; 73: 1092-1098). pSFV-helper-S2 contiene las secuencias de las proteínas de la envuelta viral (p62-6K-El) o de la cápsida de SFV, respectivamente, fusionadas con el enhancer de traducción proveniente de los 34 primeros aminoácidos de la cápsida de SFV (bl) y la proteasa 2 A proveniente del virus de la fiebre añosa (FMDV) El plásmido pSFV-Helper-E se diferencia de pSFV-helper-S2 en que la secuencia de p62- 6K-E1 no está fusionada con el enhancer bl y la proteasa 2 A (Smerdou and Liljestrom. J. Virol. 1999; 73: 1092-1098). Todos los plásmidos "helper" llevan bajo el control transcripcional del promotor SP6 un vector de SFV en el que se ha delecionado la mayor parte del gen de la replicasa.
Para la construcción del plásmido pSFV-scIL-12 (Figura 2C) se partió del plásmido pSFG-IL-12.p40.LAp35, que contiene la secuencias de las subunidades p40 y p35 de la interleucina-12 murina fusionadas en fase mediante una secuencia conectora de 45 pb (scIL-12) (Lieschke et al. Nat. Biotechnol. 1997; 15: 35-40). A partir de este plásmido se amplificó el gen de la scIL-12 murina mediante PCR utilizando los primers:
5 -AGGATCCCGGGCCTCAGAAGCTAACCATCT-3 ' (forward) (SEQ ID NO: 15), y
5 '-TCCACCCGGGTCGCGACTArC4GGCGGAGCTCAGATAG-3 ' (reverse) (SEQ ID NO: 16).
La zona de estos primers que híbrida con el plásmido pSFV-IL-12.p40.LAp35 está indicada en negrita. La zona subrayada representa un sitio Xmal que se insertó en ambos primers para facilitar el clonaje en el vector pSFV-bl2A (Rodriguez-Madoz et al. Mol. Ther. 2005; 12: 153-163). En cursiva se indica el codón de terminación de scIL-12 en el primer "reverse". De esta forma se obtuvo un fragmento de 1.6 kb que contenía la secuencia de scIL-12, se digirió con Xmal y se clonó en el plásmido pSFV- bl2A digerido con el mismo enzima, obteniéndose el plásmido pSFV-scIL-12.
Para construir el plásmido pSFV-spike (Figura 2A) se digirió el plásmido de clonaje pSFV-1 (Liljestrom and Garoff. Biotechnology (N.Y.) 1991; 9: 1356-1361) con Xbal y Spel, obteniéndose una banda de 9.4 kb que se ligó con el fragmento de 3.9 kb procedente de digerir pSFV-Helper-E con los mismos enzimas. Para construir el vector pSFV-enh-spike (Figura 2A) se ligó la misma banda de 9.4 kb procedente de digerir de pSFV-1 con Xbal y Spel con el fragmento de 4.2 kb procedente de digerir el plásmido pSFV-helper-S2 con los mismos enzimas. Para la construcción de los vectores pSFV-enh-spike-scIL-12 y pSFV-enh-spike-GFP (Figura 2B) se generó primero un plásmido intermedio mediante la introducción de un sitio múltiple de clonaje (mes) entre el final de la secuencia de El y el extremo 3' no traducido en pSFV-enh-spike. Para ello se sustituyó el fragmento de 0.48 kb comprendido entre Ndel y Spel en pSFV-enh-spike por un fragmento pequeño de DNA que lleva los sitios de restricción: Ndel, Avrll, BamHI, BstBI, Smal y Spel. El plásmido generado de esta forma se denominó pSFV-enh-spike-mcs. A continuación se obtuvieron por PCR dos casetes que contenían el promotor subgenómico viral seguido del gen scIL-12 o GFP, respectivamente, seguidos del extremo 3 'UTR de SFV. Los plásmidos pSFV-scIL-12 (descrito anteriormente) y pSFV-GFP fueron usados como moldes para la PCR, que en ambos casos se realizó con los primers 5 '- GCGCATCCTAGGGGGAC ATTAAGGCGTTTAAG-3 ' (forward) (SEQ ID NO: 17) y 5 '-CCGCTTCCTCGCTCACTGAC-3 '(reverse) (SEQ ID NO: 18). Para facilitar la inserción de los fragmentos de PCR dentro del vector de clonaje pSFV-enh-spike-mcs se incluyó en el primer "forward" un sitio Avrll (subrayado). La reacción de PCR se realizó utilizando la enzima de alta fidelidad Pfu DNA polimerasa en un volumen total de reacción de 50 μΐ. El proceso de amplificación se llevó a cabo mediante 30 ciclos de 45 seg a 94°C, 1 min a 53°C y 5 min a 72°C con una extensión final de 10 min a 72°C. Se obtuvieron fragmentos de PCR de 2.8 kb (scIL-12) y 1.9 kb (GFP) que se purificaron, se digirieron con Avrll y Spel y se ligaron con el vector pSFV-enh-spike- mcs digerido con los mismos enzimas. Las regiones clonadas por PCR en pSFV-enh- spike-mcs que contenían las secuencias de scIL-12 y GFP fueron secuenciadas con un secuenciador automático (ABI PRISM 310, Genetic Analyzer, Perkin-Elmer) con objeto de descartar errores introducidos mediante la amplificación por PCR.
El plásmido pSIN-GFP deriva de SINrep5 y contiene la secuencia de GFP tras el promotor subgenómico viral (Bredenbeek et al, 1993, J. Virol. 67, 6439-6446). Para la construcción del plásmido pSIN-spike en primer lugar se sintetizó un fragmento de PCR que contenía la secuencia de p62-6K-El de SIN utilizando como molde el plásmido DHBB (5 'SIN) (Bredenbeek et al, 1993, J. Virol. 67, 6439-6446) y usando los primers 5 -rC7¾G^CCACCATGTCCGCAGCACCACTGGTCAC-3 ' (forward) (SEQ ID NO: 19) y 5 '- GGGCCCTCATCTTCGTGTGCTAGTC-3 ' (reverse) (SEQ ID NO:20). Estos primers hibridan con el inicio de p62 (forward) y con el final de El (reverse), respectivamente. En el primer "forward" se incluyó un triplete ATG de iniciación (subrayado) y una secuencia de unión al ribosoma (negrita) que no existen de forma natural en la secuencia de p62. En los primers se incluyeron los sitios de restricción únicos Xbal y Apa I, respectivamente (en cursiva). El fragmento de PCR obtenido (2986 bp) se poliadeniló y se clonó en el vector de clonaje pGEM-T-easy (Promega) generándose el plásmido intermedio pGEM-T-sin-spike. Este plásmido se secuenció para comprobar que no contenía mutaciones derivadas de la reacción de PCR. A continuación se digirió pGEM-T-sin-spike con Xbal y Apa I, se purificó el fragmento de 2.9 kb que contiene la ORF p62-6K-El de SIN y se clonó en SINrep5 digerido con los mismos enzimas, generándose el plásmido pSIN-spike (Figura 2D). Transcripción de RNA in vitro.
La síntesis de los RNAs recombinantes derivados de los plásmidos de SFV o SIN se realizó como ha sido previamente descrita (Liljestrom and Garoff. Expression of proteins using Semliki Forest virus vectors. En: F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, K. Struhl Eds., Current Protocols in Molecular Biology. Vol. 2. Greene Publishing Associates and Wiley Interscience, New York, N.Y. 1994. pp. 16.20.11-16.20.16). Brevemente, se linealizaron los plásmidos mediante digestión con Spel (SFV) o Xhol (SIN) y se purificó el DNA digerido mediante una doble fenolización con un volumen de fenol/cloroformo seguida de precipitación con etanol. El DNA se resuspendió en agua y se utilizó como molde para la síntesis de RNA en una reacción que incluía los siguientes componentes en un volumen de 50 μΐ:
- DNA molde (1.5 μg)
- Análogo de estructura de cap (m7G(5 ')ppp(5 ')G) (1 mM) (New England Biolabs, EEUU).
- ATP, CTP, UTP (1 mM) y GTP (0.5 mM) (Amersham-Pharmacia)
Inhibidor de RNAsa (Promega, EEUU) (50 unidades)
RNA polimerasa de SP6 (30 unidades) (New England Biolabs)
- DTT (5 mM)
Buffer de reacción (Hepes-KOH 40 mM pH 7.4, MgOAc 6 mM, espermidina-HCl 2 mM)
La reacción se incubó lh a 37°C tras lo cual se congeló el RNA a -80°C hasta su utilización. El rendimiento habitual de esta reacción fue de 1-2 μg RNA/μΙ.
Electroporación de RNA recombinante
Todas las electroporaciones de RNA que se describen en este trabajo fueron realizadas en células BHK. Para ello se cultivaron las células hasta alcanzar aproximadamente un 90% de confluencia, se tripsinizaron, se lavaron con un volumen de PBS, y tras centrifugarlas 5 min a 400g se resuspendieron en PBS a una concentración de 107 células/ml. Para cada electroporación se utilizaron 800 μΐ de células que se mezclaron con unos 25μg-50μg del RNA recombinante sintetizado previamente y se electroporaron en cubetas de electroporación de 0.4 mm mediante dos pulsos de 850 V y 25 μΡ a temperatura ambiente en un electroporador BioRad. Tras la electroporación se diluyeron las células en un volumen de 10 mi de medio BHK completo y se plaquearon. Mediante este método se obtuvieron eficiencias de transfección próximas al 100%.
Empaquetamiento de los vectores
La producción de partículas virales (pv) recombinantes de SFV se realizó mediante la estrategia descrita por Smerdou y Liljestróm (J. Viral. 1999; 73 : 1092-1098), basada en la coelectroporación del RNA del vector junto con los dos RNAs helper que aportan en trans las proteínas de la cápsida y de la envuelta, respectivamente. Para empaquetar los vectores de SFV que contienen la secuencias de las proteínas de la envuelta viral (p62- 6K-E1) se siguió una estrategia similar pero electroporando las células con el RNA vector y el RNA helper C-S219A, que aporta la proteína de la cápsida. Los RNA helper se sintetizaron in vitro mediante la estrategia descrita en el apartado anterior, utilizando como molde los plásmidos pSFV-helperS2 y pSFV-helperC-S219A, respectivamente. Para la producción de partículas virales se electropararon 107 células BHK con una mezcla que contenía 50 μg de cada unos de los RNAs.
Infección in vitro con partículas virales recombinantes y con material infeccioso presente en los sobrenadantes.
Para infectar células adherentes (BHK, Hep-3B o Huh-7) con partículas recombinantes de SFV o con el material infeccioso presente en el sobrandante de células infectadas con los vectores que expresan las proteínas de la envuelta viral se esperó a que las células alcanzaran confluencia, se lavaron con PBS (con Ca2+Mg2+) y se añadió el virus diluido en un volumen mínimo de medio de infección para cubrir la monocapa (medio mínimo MEM, Gibco con BSA 0.2%, glutamina 2 mM y Hepes 20 mM) (Liljestróm and Garoff. Expression of proteins using Semliki Forest virus vectors. En: F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, K. Struhl Eds., Current Protocols in Molecular Biology. Vol. 2. Greene Publishing Associates and Wiley Interscience, New York, N.Y. 1994. p. 16.20.11-16.20.16). Las células se incubaron con el virus o con el material infeccioso durante 1 hora a 37° C para permitir la adsorción viral, agitando la placa cada 10 min. Posteriormente se añadió medio BHK completo y se incubaron las células durante el tiempo requerido.
Obtención de material infeccioso presente en los sobrenadantes
Se electroporaron o infectaron células BHK, como se describe en los apartados anteriores, con los vectores que expresan las proteínas de la envuelta viral. Tras 1 hora de adsorción se retiró el inoculo y se lavaron las monocapas 2 ó 3 veces con PBS (con Ca2+Mg2+) para retirar todo el virus residual que pudiera haber quedado. A continuación se añadió medio BHK completo. Una hora después de la adsorción se volvió a retirar el medio BHK completo, se volvió a lavar con PBS (con Ca2+Mg2+) un par de veces, se añadió medio BHK completo y se siguió con la incubación el tiempo requerido. Purificación de partículas virales y de material infeccioso presente en el sobrenadante Tras la electroporación, o infección, se incubaron las células con medio BHK completo durante 24h a 37°C con 5% C02. Tras la incubación se clarificó el sobrenadante mediante centrifugación a 2000g durante 15 min y se procedió a la purificación de los virus, o del material infeccioso presente en el sobrenadante, mediante ultracentrifugación a través de un colchón de sacarosa. Para ello se depositaron 2 mi de sacarosa al 20% en el fondo de un tubo Beckman de polialómero (14x95 mm) y sobre este colchón se añadieron con cuidado 10 mi de sobrenadante que contenía el virus. Los tubos se centrifugaron durante lh 30 min a 30000 rpm (~100000g) en un rotor SW40TÍ (Beckman), tras lo cual se resuspendió el sedimento, que contenía los virus, en tampón TN (50mM Tris-HCl, pH=7.4, lOOmM NaCl), se congeló en N2 liquido y se guardó a - 80°C hasta su utilización. Para las producciones de partículas virales se partió de 6 electroporaciones, resuspendiéndose el sedimento obtenido tras la ultracentrifugación en un volumen total de 1 mi. En el caso de la purificación de material infeccioso se partió del sobrenadante prodecente de 3 botellas previamente infectadas con una multiplicidad de infección (MOI) de 10 resuspendiéndose el sedimento en 50μ1. Titulación de las partículas virales recombinantes de SFV y del material infeccioso presente en los sobrenadantes
La titulación de las producciones virales se realizó mediante infección de células BHK con diluciones seriadas del virus y posterior inmuno fluorescencia indirecta frente a la replicasa viral o frente a las proteínas de la envuelta de SFV. Para ello se crecieron células BHK sobre cubreobjetos de vidrio situados dentro de pocilios de placas M6 hasta alcanzar confluencia. Las células se infectaron como se ha descrito anteriormente partiendo de una dilución 1 :20 del virus y con diluciones seriadas 1 : 10. Tras la adsorción del virus se incubaron las placas durante 24 horas, se lavaron 2 veces con PBS (con Ca2+Mg2+) y se fij aron las células con metanol durante 6 min a -20°C. Tras la fijación se lavaron las células tres veces con PBS y se bloquearon durante 30 min a temperatura ambiente con PBS que contenía 0.5 % de gelatina y 0.25 % de seroalbúmina bovina (BSA). Posteriormente las células fijadas en cubreobjetos se incubaron durante 30 min a temperatura ambiente con un antisuero de conejo específico de la replicasa de SFV diluido 1 :400 (Casales et al. Virology 2008; 376: 242-251) o con un antisuero de ratón específico de las proteínas de la envuelta de SFV diluido 1 :500. Se lavaron los cubreobjetos 3 veces con PBS conteniendo 0.25 % de BSA y se incubaron durante 30 minutos a temperatura ambiente con una dilución 1 :200 de antisueros secundarios específicos para Ig de ratón o de conejo, respectivamente, conjugados en ambos casos con una la molécula fluorescente Cy3. Tras esta segunda incubación se hicieron tres lavados con PBS, uno con agua y se montaron los cubreobjetos sobre portaobjetos poniendo una gota de Vectashield (Vector Laboratories, EE.UU.) entre ambos. El Vectashield contiene DAPI que se intercala en el DNA permitiendo observar los núcleos celulares en presencia de luz ultravioleta. Las preparaciones se observaron en un microscopio de fluorescencia (Olympus) utilizando el filtro apropiado para cada caso. Para calcular los títulos virales se eligió una dilución y un objetivo que permitiera contar entre 20-30 células positivas por campo (en el caso de los vectores propagativos se contaron grupos de células). Se contaron al menos 10 campos diferentes al azar y se calculó el título viral según la siguiente fórmula:
Figure imgf000063_0001
Análisis de la transmisión del vector
-A partir de células electroporadas. Se electroporaron células BHK con 50μ§ de R A del vector tal y como se ha descrito anteriormente. Tras la electroporación se mezclaron las células electroporadas con células no electroporadas en una proporción 1 :20. Se plaquearon un total de 106 células por pocilio de M6 sobre cubreobjetos de vidrio. A diferentes tiempos tras la electroporación se lavaron las células con PBS (con Ca2+Mg2+), se fijaron con metanol durante 6 min a -20°C y se analizaron mediante inmunofluorescencia con un antisuero de conejo específico de la subunidad nsp2 de la replicasa de SFV (Casales et al, 2008, supra.), un antisuero policlonal murino de las proteínas de la envuelta de SFV generado en el laboratorio (ver apartado de inhibición de la transmisión) o un anticuerpo monoclonal específico de la proteína E2 de SIN (Greiser-Wilke et al, 1989) como ya se ha descrito.
- A partir de células infectadas. Se crecieron células BHK en pocilios de M6 sobre cubreobjetos de vidrio previamente esterilizados hasta alcanzar confluencia. Se infectaron con partículas virales a una MOI de 0.05 tal y como ya se ha descrito. A diferentes tiempos postinfección se lavaron las células con PBS (con Ca2+Mg2+) y se fijaron con metanol a -20°C durante 6 min y se analizaron mediante inmunofluorescencia con un antisuero específico de la replicasa o de las proteínas de la envuelta de SFV como ya se ha descrito.
Estudio de fusión celular.
Se infectaron células BHK con una MOI de 0.5 de SFV-LacZ y con MOI de 0.1 para SFV-enh-spike. A las 16 horas tras la infección se lavaron las células con PBS (con Ca2+Mg2+) y se indujo una bajada de pH en la monocapa celular añadiendo una solución de PBS (Ca2+Mg2+) a pH 7 ó 5 durante 3 minutos a 37°C. A continuación se lavaron las células varias veces con PBS (con Ca2+Mg2+) y 3 horas después se fijaron con metanol para ser analizadas mediante inmunofluorescencia con un antisuero específico de la replicasa o de las proteínas de la envuelta de SFV como ya se ha descrito. Inhibición de la transmisión del vector con anticuerpos específicos de las proteínas de la envuelta.
Se infectaron monocapas de células BHK crecidas sobre cubreobjetos de cristal con partículas virales de SFV-enh-spike a una MOI de 0.1 según se ha descrito anteriormente. Tras 1 hora de adsorción se retiró el inoculo y se añadió medio BHK completo conteniendo un antisuero murino específico para las proteínas de la envuelta de SFV diluido 1 :50, 1 : 100 ó 1 :250, o un suero preinmune murino a una dilución 1 :50, como control negativo. Tras incubar 24h a 37°C con 5% de C02, se fijaron las células con metano 1 y se analizaron mediante inmuno fluorescencia con el mismo antisuero específico de las proteínas de la envuelta viral , tal y como se ha descrito anteriormente. El antisuero contra las proteínas de la envuelta de SFV se obtuvo inmunizando 12 ratones hembra C57BL/6 de 6 semanas de edad con 107 partículas virales SFV-enh- spike inoculadas por vía intravenosa cada dos semanas durante dos meses. Los sueros se mezclaron en un pool y se analizaron en experimentos de inmuno fluorescencia y Western blot para determinar las diluciones óptimas de trabajo. El suero preinmune se extrajo de ratones que no fueron inoculados con SFV-enh-spike.
Inhibición de la transmisión del vector mediante agitación.
Se infectaron monocapas de células BHK crecidas sobre un cubreobjetos de cristal con una MOI de 0.2 de partículas virales de SFV-LacZ y SFV-enh-spike. La infección se realizó por duplicado en placas de M6, incubando una de las placas en una plataforma con agitación orbital a 50 rpm dentro un incubador a 37°C con 5% de C02, mientras que la otra placa permaneció en el mismo incubador sin agitación. A las 24 h post-infección se fijaron las células y se realizó una inmuno fluorescencia con un antisuero específico para la replicasa viral tal y como se describió anteriormente.
Expresión de IL-12
Se infectaron monocapas de células BHK confluentes con partículas virales de SFV- enh-spike-scIL-12, SFV-scIL-12 y SFV-LacZ a una MOI de 0.05. Cada 6 horas se recogió el sobrenadante, se centrifugó a 2000 rpm durante 5 minutos y se guardó a - 20°C hasta su análisis. A cada tiempo las células se lavaron con PBS (con Ca2+Mg2+) y se les añadió medio BHK completo nuevo. Se cuantificó la cantidad de IL-12 presente en los sobrenadantes mediante ELISA específico del heterodímero p70 de IL-12 murina (Pharmingen) siguiendo las recomendaciones del fabricante. Experimento de eficacia antitumoral
-Inducción de nodulos tumorales: Se cultivaron células MC38 en frascos de cultivo, se recogieron mecánicamente y se centrifugaron a 1500 rpm durante 5 min. El sedimento celular se lavó 3 veces con un volumen de HBSS (Gibco-BRL). Tras el último lavado se resuspendieron las células en HBSS a una concentración de 107 células/ml. Los ratones C57BL/6 se anestesiaron mediante una inyección intraperitoneal de 40 μΐ de una mezcla de ketamina/xilacina (9: 1), tras lo cual fueron inyectados subcutáneamente en el flanco dorsal derecho con 106 células en un volumen de 100 μΐ con una jeringa de insulina (Becton-Dickinson, USA). A los 7-10 días de la inoculación los tumores se desarrollaron alcanzando un diámetro de aproximadamente 5 mm de media.
-Tratamiento de nodulos tumorales: Una vez los tumores alcanzaron 5 mm de diámetro, se anestesiaron los ratones como se ha descrito y se inocularon los animales con los vectores virales usando para ello jeringas de insulina (Becton-Dickinson). En todos los casos el volumen de inyección final fue de 50 μΐ utilizándose solución salina (NaCl 0.9%) como diluyente. Los animales control fueron inoculados con 50 μΐ de solución salina. La determinación del tamaño tumoral se realizó mediante la medición de dos diámetros perpendiculares del nodulo con un calibre de precisión, utilizándose la media aritmética de ambos diámetros como medida representativa del tamaño tumoral. La evolución del tamaño se siguió durante 30 días tras el tratamiento Aquellos animales con tumores que sobrepasaron los 15 mm en ambos diámetros, o 20 mm en uno de ellos fueron sacrificados por razones éticas.
EJEMPLO 1
El virus del Bosque de Semliki (SFV) puede propagarse de célula a célula en ausencia de cápsida
Con objeto de generar anticuerpos contra las proteínas de la envuelta de SFV se construyó un vector que lleva la secuencia de la poliproteína p62-6K-El fusionada con el enhancer mínimo de traducción de la cápsida (SFV-enh-spike, Figura 2A). Esta secuencia codifica los primeros 34 aminoácidos de la cápsida de SFV y permite aumentar unas 8 veces los niveles de expresión de las proteínas que se encuentran fusionadas a ella. Para la eliminación de la secuencia codificada por el enhancer se introdujo entre éste y el comienzo de p62 la secuencia de la autoproteasa del virus de la fiebre añosa (Smerdou and Liljestrom. J. Viral. 1999; 73 : 1092- 1098). El R A de SFV- enh-spike fue empaquetado en partículas virales mediante su cotransfección en células BHK con RNA de SFV-helper-C-S219A, que aporta la cápsida de SFV en trans (Smerdou and Liljestrom. J. Viral. 1999; 73 : 1092-1098). Cuando se infectaron monocapas de células BHK con partículas virales de SFV-enh-spike se observó que el vector podía propagarse desde las células inicialmente infectadas a las vecinas, dando lugar a "grupos" de células que expresaban tanto la replicasa viral (Figura 3A), como las proteínas de la envuelta (dato no mostrado). El tamaño de estos grupos aumentaba con el tiempo, llegándose a extender el vector por toda la monocapa a las 48h. El efecto era específico del vector SFV-enh-spike, puesto que partículas virales de SFV-LacZ usadas como control no pudieron propagarse (Figura 3 A). Este resultado en principio podría atribuirse a que en el proceso de empaquetamiento de SFV-enh-spike se hubiera generado virus SFV silvestre (wtSFV) mediante recombinación entre los RNAs del vector y del helper. Sin embargo, ensayos de formación de placas de lisis descartaron la presencia de virus wtSFV en el stock de SFV-enh-spike así como en los sobrenadantes de células infectadas con partículas virales de SFV-enh-spike. Otro dato que demuestra que la propagación de SFV-enh-spike no se debe a la presencia de virus silvestre es el hecho de que éste último se propaga muy rápidamente, extendiéndose por toda la monocapa a partir de las 10 horas postinfección, incluso cuando se usa una baja MOI (multiplicidad de infección) (Figura 3A). Otra posible explicación para la transmisión de SFV-enh-spike es que los 34 aminoácidos de la cápsida usados como enhancer estuvieran empaquetando el RNA del vector. Esta explicación no parece muy probable puesto que numerosos estudios han mostrado que para la formación de nucleocápsidas son indispensables tanto el dominio de unión a RNA (residuos 63-112), como el dominio carboxi-terminal (residuos 1 19-267) de la cápsida, ambos ausentes en el vector SFV-enh-spike (Garoff et al.Virus Res. 2004; 106: 103-116). De cualquier forma, para descartar que los 34 aminoácidos del inicio de la cápsida pudieran estar empaquetando el RNA de SFV-enh-spike se construyó un segundo vector completamente desprovisto de secuencias de la cápsida. Este vector, denominado SFV-spike (Figura 3A), ya había sido descrito (Suomalainen et al. J. Virology 1992; 66: 4737-4747) como defectivo para propagación Sin embargo, nosotros observamos que las partículas virales de SFV-spike eran capaces de propagarse de forma semejante a como lo hace el SFV-enh-spike. Pensamos que está observación fue pasada por alto en los citados estudios debido a que dichos ensayos se habían realizado a tiempos cortos postinfección (obsérvese en la figura 3 A como a las 6 h todavía no se observa propagación de SFV-spike).
Para descartar que la propagación de partículas virales de SFV-enh-spike o SFV-spike sea debida a contaminación con un vector recombinante generado por recombinación entre los R As que llevan las secuencias de las proteínas de la envuelta y el R A helper que aporta la cápsida se transfectaron directamente los RNAs de SFV-enh-spike o SFV-spike en células BHK. Las células transfectadas fueron mezcladas con células no transfectadas en una proporción de 1 :20 y se analizó la expresión de la replicasa viral y de las proteínas de la envuelta a diferentes tiempos. Ambos vectores fueron capaces de propagarse dando lugar a la formación de grupos de células que expresan tanto la replicasa (Figura 3B) como las proteínas de la envuelta (dato no mostrado), indicando que esta propiedad no se debe a recombinación con el gen de la cápsida. La velocidad de propagación en células transfectadas fue algo inferior a la observada en células infectadas con partículas virales de los mismos vectores.
Con objeto de comprobar si la propiedad de propagarse de los vectores de SFV que expresan las proteínas de la envuelta era específica para células BHK se infectaron monocapas de dos líneas tumorales humanas (Hep3B y Huh-7) con partículas virales de SFV-enh-spike. En ambos casos el vector se propagó eficientemente dando lugar a la formación de grupos de células que expresan proteínas virales (Figura 3C).
EJEMPLO 2
El virus Sindbis (SIN) también puede propagarse de célula a célula en ausencia de cápsida
Con objeto de determinar si la capacidad de propagación en ausencia de cápsida es una propiedad presente en otros alfavirus se construyó un vector derivado del alfavirus Sindbis (SIN) que expresaba la poliproteína estructural p62-6K-El de SIN desprovista de la cápsida (SIN-spike, Figura 3D). Se transfectó directamente el RNA de SIN-spike o de un vector de SIN que expresa GFP en células BHK. Las células transfectadas fueron mezcladas con células no transfectadas en una proporción de 1 :20 y se analizó la expresión de la proteína E2 de la envuelta de SIN o de GFP a diferentes tiempos. El vector SIN-spike fue capaz de propagarse eficientemente, dando lugar a la formación de grupos de células que expresan la proteína E2 (Figura 3D). Sin embargo, el vector control SIN-GFP que no contiene ninguna proteína estructural de SIN no mostró capacidad de propagación.
EJEMPLO 3
La propagación de SFV-enh-spike es independiente de fusión celular y está mediada por las proteínas de la envuelta
Las proteínas de la envuelta de SFV son capaces de promover fusión entre la envuelta viral y la membrana del endosoma durante el proceso de infección viral (Strauss and Strauss. Microbiol. Rev. 1994; 58: 491-562). Para que se produzca la fusión de membranas es necesario que se produzca un cambio conformacional en las proteínas que foman las espículas del virus (E2 y El). Este cambio conformacional es inducido por el pH ácido del endosoma, siendo necesario un pH<6 para que haya fusión (White and Helenius. Proc. Nati. Acad. Sci. U.S.A. 1980; 77: 3273-3277). Una posible explicación para la propagación de los vectores de SFV que expresan las proteínas de la envuelta podría ser que las células se estuvieran fusionando entre sí por la acción de las proteínas virales expresadas en la membrana celular. Sin embargo, para ello sería necesaria una acidificación del medio extracelular, hecho que no fue observado en nuestros experimentos, ya que mediciones del pH del sobrenadante celular a diferentes tiempos postinfección siempre arrojaron valores de pH superiores a 6.6. Para corroborar que no se estaba produciendo fusión celular se infectaron células BHK con el vector SFV-enh-spike a una MOI de 0.1 y a diferentes tiempos posinfección se incubaron las células durante tres minutos con una solución de PBS a ph 7 ó 5. La incubación a pH ácido indujo fusión de forma específica en las células infectadas con SFV-enh-spike, dando lugar a la formación de grandes sincitios (Figura 4A). Así pues, no parece que la transmisión del vector sea debido a la fusión de las células, pues ésta no se produce sin acidificación externa del medio extracelular. No se observó ningún fenómeno de fusión en las células infectadas con el vector SFV-LacZ, indicando que la expresión de las proteínas de la envuelta es necesaria para que se produzca este fenómeno. Para determinar hasta que punto las proteínas de la envuelta son requeridas para la transmisión del vector se infectaron monocapas de células BHK con partículas virales de SFV-enh-spike a MOI 0.1 y lh tras la infección se incubaron durante 24h en presencia de diferentes cantidades de un antisuero murino específico para las proteínas de la envuelta viral. Se observó que la transmisión del vector de célula a célula se inhibía con la presencia del antisuero, siendo el grado de inhibición directamente proporcional a la concentración del mismo (Figura 4B). Un suero preinmune murino usado a la mayor concentración no produjo ninguna inhibición. Este experimento indica que las proteínas de la envuelta son necesarias para la propagación del vector.
EJEMPLO 4
Los sobrenadantes de células infectadas o transfectadas con los vectores SFV-spike y SFV-enh-spike contienen material infeccioso
La transmisión de los vectores de SFV que expresan las proteínas de la envuelta podría producirse mediante un mecanismo que requiera contacto celular o mediante la generación de algún tipo de material infeccioso a partir de las células en las que se replican estos vectores. Con objeto de determinar si el contacto celular era suficiente para la transmisión del vector se infectaron monocapas de células BHK con SFV-enh- spike a una MOI de 0.2 y se incubaron las células durante 24h en reposo o sobre una plataforma con agitación continua. Para nuestra sorpresa observamos que la agitación del medio de cultivo inhibía la transmisión del vector sugiriendo fuertemente que el contacto celular no se requiere para dicho fenómeno (Figura 5A). Se analizó a continuación la presencia de material infeccioso en los sobrenadantes de células BHK electroporadas o infectadas con los vectores SFV-spike y SFV-enh-spike usando el vector SFV-LacZ como control negativo y wtSFV como control positivo. Se observó que los sobrenadantes de células en las que se replica el vector SFV-enh-spike o SFV- spike contienen material infeccioso que es capaz de expresar la replicasa y las proteínas de la envuelta viral y que conserva la capacidad propagativa (Figura 5B). Se cuantificó la cantidad de unidades infectivas (u.i.) presente en los sobrenadantes observándose que el título siempre era mayor en células infectadas con respecto a células electroporadas donde solo se pudo detectar en el caso de SFV-enh-spike (Tabla 1). Asimismo se observó que el título de u.i. era mayor cuando las células iniciales habían sido infectadas con mayor MOI, llegándose a un máximo de 1.3 xlO7 u.i. en el caso de SFV- enh-spike. El hecho de que los títulos de u.i. sean mayores con este último vector podría ser debido a que es capaz de expresar las proteínas de la envuelta a mayor nivel, debido al enhancer de traducción.
Tabla 1. Análisis de infectividad en el sobrenadante de células transfectadas infectadas con vectores de SFV
Título (u.i./ml)
Electroporación Infección (MOI=0.1) Infección (MOI=l)
Vector 24h 48h 24h 48h 24b 48h
SFV-enh-spike 1 .9x10- 2.4x 1o-1 S.5x l 04 2.2x l 03 l . l xl O7 1 .3x l 07
SFV-spike <10° <10 1.4x102 <10 4.5x10-' 2.8x10'
SFV-LacZ <10 <I 0 <10 <10 <I 0 < 10
"10 u.i. /mi es el limite de detección del ensayo
EJEMPLO 5
Los vectores de SFV que expresan las proteínas de la envuelta pueden mediar la transmisión de genes heterólogos in vitro
Con objeto de determinar si los vectores de SFV que expresan las proteínas de la envuelta pueden ser utilizados para expresar genes heterólogos se clonó el gen GFP (green fluorescent protein) tras un segundo promotor subgenómico en el vector SFV- enh-spike, generándose el vector SFV-enh-spike-GFP (Figura 2B). En este vector el gen GFP está situado entre el final de la ORF que codifica las proteínas de la envuelta viral y el extremo 3' no traducido. Se electroporaron células BHK con R A de SFV-enh- spike-GFP o con SFV-GFP como control, se mezclaron con células no electroporadas en una proporción 1 :20 y tras plaquearlas se observó el número de células que expresaban GFP y proteínas de la envuelta viral a diferentes tiempos (Figura 6A). El vector SFV-enh-spike-GFP fue capaz de propagarse eficientemente permitiendo que en 30 horas la expresión de GFP se transmitiera de unas pocas células transfectadas inicialmente a la mayor parte de la monocapa.
EJEMPLO 6
La co-expresión de las proteínas de la envuelta y el gen de la IL-12 incrementa el efecto antitumoral de SFV
En los experimentos mostrados en la Figura 3C se observó que el vector SFV-enh-spike es capaz de propagarse en células tumorales humanas. Esta capacidad propagativa podría aumentar el potencial terapéutico de este tipo de vector si se utiliza para expresar un gen con actividad antitumoral como el de la interleucina-12 (IL-12). Para probar esta hipótesis se introdujo el gen que codifica la IL-12 murina de cadena sencilla en el vector SFV-enh-spike, generándose el vector SFV-enh-spike-scIL-12 (Figura 2B). En primer lugar se analizó la capacidad propagativa y la expresión de IL-12 mediada por este vector in vitro. Para ello se infectaron monocapas de células BHK con partículas virales de SFV-enh-spike-scIL-12, o de los vectores no propagativos SFV-scIL-12 (Figura 1C) o SFV-LacZ a una moi de 0.05. Se recogió el sobrenadante celular cada 6 horas y se determinaron los niveles de IL-12 mediante ELISA (Figura 6B). Se observó que los niveles de expresión de IL-12 a tiempos cortos (6h) eran menores en las células infectadas con SFV-enh-spike-scIL-12, posiblemente debido al hecho de que este vector tiene que expresar simultáneamente IL-12 y las proteínas de la envuelta viral. Sin embargo, la expresión de IL-12 aumentó más rápidamente en las células infectadas con SFV-enh-spike-scIL-12, llegando a niveles que fueron dos veces superiores a los de las células infectadas con SFV-scIL-12 a las 24h postinfección. Además, los niveles de IL- 12 producidos por SFV-enh-spike-scIL-12 se mantuvieron estables durante más tiempo, siendo 5 veces mayores que los de SFV-scIL-12 a las 36h postinfección. El análisis de las monocapas infectadas mediante inmunofluorescencia con un antisuero contra las proteínas de la envuelta viral mostró que el vector SFV-enh-spike-scIL-12 se propagaba eficientemente y de forma similar a como lo hace el vector SFV-enh-spike (datos no mostrados). Con objeto de evaluar el efecto antitumoral del vector de SFV-enh-spike-scIL-12 se indujeron tumores en ratones C57/BL6 mediante la inyección subcutánea de células de adenocarcinoma de colon MC38. Cuando los tumores alcanzaron unos 5 mm de diámetro se inyectaron con 1.5x106 o 6x106 partículas virales de SFV-enh-spike-scIL- 12 o SFV-scIL-12. Como controles se inyectaron ratones con 108 vp de SFV-enh-spike o con solución salina. El vector SFV-enh-spike-scIL-12 indujo un retraso en el crecimiento tumoral que fue siempre mayor que el inducido por SFV-scIL-12 (Figura 7). Este efecto fue especialmente evidente cuando se usó la dosis más baja de vector (1.5xl06 vp). El vector SFV-enh-spike usado como control, también mostró un leve efecto antitumoral aunque menor que el producido por el vector SFV-enh-spike-IL-12.

Claims

REIVINDICACIONES
1. Un vector de expresión génica que comprende un replicón alfaviral
en donde dicho replicón comprende un gen heterólogo que se encuentra operativamente unido a un promotor subgenómico alfaviral y
en donde la secuencia que codifica la poliproteína estructural contiene una deleción en la región que codifica la proteína de la cápsida de forma que dicha secuencia no es capaz de producir una proteína de la cápsida capaz de formar nucleocápsidas funcionales.
2. Un vector según la reivindicación 1 en donde dicho vector comprende dos promotores subgenómicos, estando el primer promotor subgenómico operativamente unido al gen heterólogo y estando el segundo promotor subgenómico operativamente unido a la secuencia del replicón que codifica la poliproteína estructural.
3. Un vector de expresión génica según la reivindicación 1 en donde la secuencia que codifica la poliproteína estructural y la secuencia del gen heterólogo se encuentran operativamente unidas a un único promotor subgenómico alfaviral.
4. Un vector de expresión génica según cualquiera de las reivindicaciones 1 a 3 en donde la secuencia del gen heterólogo está localizada en posición 5' o en posición 3' respecto a la secuencia que codifica la poliproteína estructural del alfavirus.
5. Un vector de expresión génica según cualquiera de las reivindicaciones 1 a 4 en donde la secuencia del gen heterólogo y/o la secuencia que codifica la poliproteína estructural comprende un aumentador de la traducción en posición 5 ' con respecto al codón de inicio de la traducción de dicha secuencia.
6. Un vector de expresión génica según la reivindicación 5 en donde el aumentador de la traducción es el aumentador de la traducción de la cápside de un alfavirus.
7. Un vector de expresión génica según la reivindicación 6 que comprende adicionalmente, en posición 3 ' con respecto a al menos una de las secuencias aumentadoras de la traducción, una secuencia que codifica una autoproteasa.
8. Un vector de expresión génica según la reivindicación 7 en el que dicha autoproteasa es la autoproteasa 2 A de FMDV.
9. Un vector de expresión génica según cualquiera de las reivindicación 1 a 8 en donde la secuencia que codifica la poliproteína estructural y/o la secuencia del gen heterólogo se encuentra precedida de un IRES.
10. Un vector según cualquiera de las reivindicaciones 1 y 3 a 9 en donde la secuencia del gen heterólogo y la secuencia que codifica la poliproteína estructural codifican una única poliproteína estando ambas secuencias conectadas por una secuencia enlazadora que codifica un polipéptido seleccionado del grupo de la autoproteasa
2A de FMDV y la secuencia de un sitio de corte para una proteasa.
1 1. Un vector de expresión génica según la reivindicación 10 en donde la secuencia que codifica dicha única poliproteína comprende un aumentador de la traducción en posición 5 ' con respecto a dicha secuencia.
12. Un vector de expresión génica según la reivindicación 1 1 en donde el aumentador de la traducción es el aumentador de la traducción de la cápside de alfa virus (enh).
13. Un vector de expresión génica según la reivindicación 12 que comprende adicionalmente, entre la secuencia del potenciador del aumentador de la traducción de la cápside de alfavirus y la secuencia que codifica una única poliproteína una secuencia que codifica una autoproteasa.
14. Un vector de expresión génica según la reivindicación 13 en el que dicha autoproteasa es la autoproteasa 2 A de FMDV.
15. Un vector de expresión génica según cualquiera de las reivindicaciones 1 a 14, en donde el alfavirus se selecciona del grupo del virus Semliki Forest (SFV) y del virus Sindbis (SIN).
16. Un vector de expresión génica según cualquiera de las reivindicaciones 1 a 15 en donde el gen heterólogo codifica IL-12 o una variante funcionalmente equivalente de IL-12.
17. Una partícula viral que comprende un vector según cualquiera de las reivindicaciones 1 a 16.
18. Un polinucleótido de ADN que comprende la secuencia complementaria al vector según cualquiera de las reivindicaciones 1 a 16.
19. Un polinucleótido de ADN según la reivindicación 18 en donde el polinucleótido se encuentra operativamente unido a un promotor transcripcional.
20. Un método para la obtención de una partícula viral que comprende un gen heterólogo de interés que comprende
(i) expresar en una célula hospedadora un primer componente polinucleótido que codifica la proteína de la cápside de dicho alfavirus y un segundo componente seleccionado del grupo de un vector según una cualquiera de las reivindicaciones 1 a 16, una partícula viral según la reivindicación 17 y un polinucleótido de ADN según las reivindicaciones 18 o 19,
(ii) mantener las células en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y de la proteína de la cápsida del alfavirus y para el ensamblaje de nucleocápsidas que comprenden el material genético en su interior y
(iii) recuperar las partículas virales del medio.
Un método para la obtención de una composición que comprende material infeccioso que comprende
(i) introducir en una célula hospedadora un vector de expresión génica según cualquiera de las reivindicaciones 1 a 16, una partícula viral según la reivindicación 17 o un polinucleótido según las reivindicaciones 18 ó 19,
(ii) mantener las células en condiciones adecuadas para la expresión en dichas células de las proteínas estructurales del alfavirus, de las proteínas no estructurales del alfavirus y para la formación de partículas infecciosas en el sobrenadante de las células
(iii) recuperar el sobrenadante de las células.
Una composición obtenida mediante el método de la reivindicación 21
23. Una composición farmacéutica que comprende un vector de expresión génica según cualquiera de las reivindicaciones 1 a 16, una partícula viral según la reivindicación 17, un polinucleótido según las reivindicaciones 18 o 19 o una composición según la reivindicación 22, y un vehículo farmacéuticamente aceptable.
24. Un vector de expresión génica según cualquiera de las reivindicaciones 1 a 16, una partícula viral según la reivindicación 17, un polinucleótido según las reivindicaciones 18 ó 19 o una composición según la reivindicación 22 para su uso en medicina.
25. Uso de un vector de expresión génica según cualquiera de las reivindicaciones 1 a 16, una partícula viral según la reivindicación 17, un polinucleótido según las reivindicaciones 18 ó 19 o una composición según la reivindicación 22 para la preparación de un medicamento para el tratamiento del cáncer.
26. Uso según la reivindicación 25 en donde el gen heterólogo es IL-12 o una variante funcionalmente equivalente del mismo.
Un método in vitro para la producción en una célula de una proteína de interés que comprende
(i) poner en contacto dicha célula con un vector de expresión génica según cualquiera de las reivindicaciones 1 a 16, con una partícula viral según la reivindicación 17, con un polinucleótido de ADN según las reivindicaciones 18 ó 19 o con una composición según la reivindicación 22 en donde el gen heterólogo codifica la proteína de interés y en donde la puesta en contacto se lleva a cabo en condiciones adecuadas para la entrada del vector de expresión, del polinucleótido de ADN o del material genético contenido en la partícula viral o en el material infeccioso en la célula,
(ii) mantener el cultivo en condiciones adecuadas para la expresión en la célula del gen de interés y
(iii) recuperar la proteína de interés.
Un vector de expresión génica que comprende un replicón alfaviral
en donde dicho replicón comprende un sitio múltiple de clonaje que se encuentra asociado a un promotor subgenómico alfaviral de forma que permite la inserción de genes en dicho sitio múltiple de clonaje bajo el control operativo de dicho promotor subgenómico alfaviral y
en donde la secuencia que codifica la proteína de la cápsida comprende una deleción de forma que dicha secuencia no es capaz de producir una proteína capaz de formar nucleocápsidas funcionales.
Un vector según la reivindicación 28 en donde dicho vector comprende dos promotores subgenómicos, estando dicho sitio múltiple de clonaje asociado al primer promotor subgenómico y estando la secuencia del replicón que codifica la poliproteína estructural asociada al segundo promotor subgenómico.
Un vector de expresión génica según la reivindicación 28 en donde la secuencia que codifica la poliproteína estructural y el sitio múltiple de clonaje se encuentran operativamente unidas a un único promotor subgenómico alfaviral.
Un vector de expresión génica según cualquiera de las reivindicaciones 28 a 30 en donde el sitio múltiple de clonaje está localizado en posición 5 ' o en posición 3' respecto a la secuencia que codifica la poliproteína estructural del alfavirus.
Un vector de expresión génica según cualquiera de las reivindicaciones 28 a 31 en donde el sitio múltiple de clonaje y/o la secuencia que codifica la poliproteína estructural comprende un aumentador de la traducción en posición 5 ' con respecto dicha secuencia.
33. Un vector de expresión génica según la reivindicación 32 en donde el aumentador de la traducción es el aumentador de la traducción de la cápside de un alfavirus.
34. Un vector de expresión génica según la reivindicación 33 que comprende adicionalmente, en posición 3' con respecto a al menos una de las secuencias aumentadoras de la traducción, una secuencia que codifica una autoproteasa.
35. Un vector de expresión génica según la reivindicación 34 en el que dicha autoproteasa es la autoproteasa 2 A de FMDV.
Un vector de expresión génica según cualquiera de las reivindicación 28 a 35 en donde la secuencia que codifica la poliproteína modificada y/o la secuencia del sitio múltiple de clonaje se encuentra precedida de un IRES.
37. Un vector según la reivindicación 28 en donde el sitio múltiple de clonaje se encuentra diseñado de forma que al insertar en dicho sitio la secuencia del gen heterólogo, la secuencia codificada por éste y la secuencia que codifica la poliproteína estructural den lugar a una única poliproteína estando ambas secuencias conectadas por una secuencia enlazadora que codifica un polipéptido seleccionado del grupo de la autoproteasa 2A de FMDV y la secuencia de un sitio de corte para una proteasa.
38. Un vector de expresión génica según la reivindicación 37 en donde la secuencia que codifica dicha única poliproteína comprende un aumentador de la traducción en posición 5 ' con respecto a dicha secuencia.
39. Un vector de expresión génica según la reivindicación 38 en donde el aumentador de la traducción es el aumentador de la traducción de la cápside de alfavirus (enh).
40. Un vector de expresión génica según la reivindicación 39 que comprende adicionalmente, entre la secuencia del potenciador del aumentador de la traducción de la cápside de alfavirus y la secuencia que codifica una única poliproteína estructural una secuencia que codifica una autoproteasa.
41. Un vector de expresión génica según la reivindicación 40 en el que dicha autoproteasa es la autoproteasa 2 A de FMDV.
42. Un vector de expresión génica según cualquiera de las reivindicaciones 28 a 41 , en donde el alfavirus se selecciona del grupo del virus Semliki Forest (SFV) y del virus Sindbis (SIN).
PCT/ES2011/070462 2010-06-28 2011-06-27 Vectores alfavirales y usos de los mismos para la expresión de genes heterólogos WO2012001196A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201030998 2010-06-28
ES201030998 2010-06-28

Publications (2)

Publication Number Publication Date
WO2012001196A2 true WO2012001196A2 (es) 2012-01-05
WO2012001196A3 WO2012001196A3 (es) 2012-02-23

Family

ID=44677910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070462 WO2012001196A2 (es) 2010-06-28 2011-06-27 Vectores alfavirales y usos de los mismos para la expresión de genes heterólogos

Country Status (1)

Country Link
WO (1) WO2012001196A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2523016A1 (es) * 2013-05-20 2014-11-20 3P Biopharmaceuticals Vectores alfavirales y líneas celulares para la producción de proteínas recombinantes
CN105176936A (zh) * 2015-10-23 2015-12-23 中国科学院武汉物理与数学研究所 复制耐受型的西门利克森林病毒的亚克隆及制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492462A (en) 1993-08-23 1996-02-20 Uralsky Elektromekhanichesky Kombinat Method for the production of low enriched uranium hexafluoride from highly-enriched metallic uranium
EP0736099A1 (en) 1993-12-23 1996-10-09 Zeneca Limited Expression of self-processing polyproteins in transgenic plants
US5814482A (en) 1993-09-15 1998-09-29 Dubensky, Jr.; Thomas W. Eukaryotic layered vector initiation systems
US6156558A (en) 1995-05-23 2000-12-05 The University Of North Carolina At Chapel Hill Alphavirus RNA replicon systems
WO2003031155A1 (de) 2001-09-29 2003-04-17 Unicor Gmbh Rahn Plastmaschinen Formbackenhälfte für einen corrugator zum herstellen von querrippenrohren
WO2003072771A2 (en) 2002-02-27 2003-09-04 Jarmo Wahlfors Method of preparing a treatment product using a togaviridae expression construct
WO2003093293A2 (en) 2002-04-29 2003-11-13 Saint Louis University Peptide antagonists of tgf-beta family members and therapeutic uses thereof
WO2005019244A1 (es) 2003-08-22 2005-03-03 Proyecto De Biomedicina Cima S.L. Péptidos con capacidad de unirse al factor transformante de crecimiento beta 1 (tgf-beta1)
US7078218B2 (en) 2002-12-13 2006-07-18 Alphavax, Inc. Alphavirus particles and methods for preparation
WO2006119897A2 (en) 2005-05-11 2006-11-16 Philogen S.P.A Fusion protein of antibody l19 against fibronectin ed-b and interleukin 12
WO2006135436A2 (en) 2004-10-22 2006-12-21 University Of Florida Research Foundation, Inc. Inhibition of gene expression and therapeutic uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2518546C (en) * 2003-03-20 2012-11-13 Alphavax, Inc. Improved alphavirus replicons and helper constructs
WO2007102140A2 (en) * 2006-03-08 2007-09-13 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A semliki forest virus replication competent vector with enhanced biosafety
WO2011064437A2 (es) * 2009-11-26 2011-06-03 Proyecto De Biomedicina Cima, S.L. Vectores virales y procedimientos útiles en la preparación de gdnf

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492462A (en) 1993-08-23 1996-02-20 Uralsky Elektromekhanichesky Kombinat Method for the production of low enriched uranium hexafluoride from highly-enriched metallic uranium
US5814482A (en) 1993-09-15 1998-09-29 Dubensky, Jr.; Thomas W. Eukaryotic layered vector initiation systems
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
EP0736099A1 (en) 1993-12-23 1996-10-09 Zeneca Limited Expression of self-processing polyproteins in transgenic plants
US6156558A (en) 1995-05-23 2000-12-05 The University Of North Carolina At Chapel Hill Alphavirus RNA replicon systems
WO2003031155A1 (de) 2001-09-29 2003-04-17 Unicor Gmbh Rahn Plastmaschinen Formbackenhälfte für einen corrugator zum herstellen von querrippenrohren
WO2003072771A2 (en) 2002-02-27 2003-09-04 Jarmo Wahlfors Method of preparing a treatment product using a togaviridae expression construct
WO2003093293A2 (en) 2002-04-29 2003-11-13 Saint Louis University Peptide antagonists of tgf-beta family members and therapeutic uses thereof
US7078218B2 (en) 2002-12-13 2006-07-18 Alphavax, Inc. Alphavirus particles and methods for preparation
WO2005019244A1 (es) 2003-08-22 2005-03-03 Proyecto De Biomedicina Cima S.L. Péptidos con capacidad de unirse al factor transformante de crecimiento beta 1 (tgf-beta1)
WO2006135436A2 (en) 2004-10-22 2006-12-21 University Of Florida Research Foundation, Inc. Inhibition of gene expression and therapeutic uses thereof
WO2006119897A2 (en) 2005-05-11 2006-11-16 Philogen S.P.A Fusion protein of antibody l19 against fibronectin ed-b and interleukin 12

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
ALFONSO R. GENNARO: "Remington: The Science and Practice of Pharmacy", April 1997, MACK PUBLISHING COMPANY
ALTSCHUL, S. ET AL., J MOL BIOL, vol. 215, 1990, pages 403 - 410
ALTSCHUL, S. ET AL., MOL. BIOL., vol. 215, 1990, pages 403 - 410
ASAI,: "Methods in Cell Biology: Antibodies in Cell Biology", vol. 37, 1993
ATKINS ET AL., EXPERT REV. MOL MED., vol. 10, 2008, pages E33
BREDENBEEK ET AL., J. VIROL., vol. 67, 1993, pages 6439 - 6446
CASALES ET AL., VIROLOGY, vol. 376, 2008, pages 242 - 251
CHAPPELL ET AL., PROC. NATL.ACAD.SCI. USA, vol. 101, 2004, pages 9590 - 9594
D.M.GLOVER ET AL.: "DNA Cloning: A Practical Approach", vol. I, II, OXFORD UNIVERSITY PRESS
GAROFF ET AL., VIRUS RES., vol. 106, 2004, pages 103 - 116
HARLOW AND LANE: "Antibodies - A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
J. BACTERIOL., vol. 170, 1988, pages 3847
JACKSON: "Translational Control of Gene Expression", 2000, COLD SPRING HARBOR LABORATORY PRESS, pages: 127 - 184
KASH ET AL., J. VIROL., vol. 76, pages 10417 - 10426
KINNEY ET AL., VIROLOGY, vol. 170, 1989, pages 19 - 30
LEONG ET AL., PROC.NATL.ACAD.SCI.USA, vol. 100, 2003, pages 1163 - 1168
LIESCHKE ET AL., NAT. BIOTECHNOL., 1997, pages 15
LIESCHKE ET AL., NAT. BIOTECHNOL., vol. 15, 1997, pages 35 - 40
LILJESTROM, GAROFF, BIOTECHNOLOGY, vol. 9, 1991, pages 1356 - 1361
LILJESTROM, GAROFF: "Current Protocols in Molecular Biology", vol. 2, 1994, GREENE PUBLISHING ASSOCIATES AND WILEY INTERSCIENCE, article "Expression of proteins using Semliki Forest virus vectors", pages: 16.20.11 - 16.20.16
LUNDSTROM, K., GENE THERAPY, vol. 12, 2005, pages S92 - S97
RAUSALU K. ET AL., VIROL J., vol. 6, 24 March 2009 (2009-03-24), pages 33
RODRIGUEZ MADOZ ET AL., MOL. THER., vol. 12, 2005, pages 153 - 163
RODRIGUEZ-MADOZ ET AL., MOL. THER., vol. 12, 2005, pages 153 - 163
ROLLS MM ET AL., CELL, vol. 79, 1994, pages 497 - 506
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1982
SANTIMARIA, M. ET AL., CLIN CANCER RES, vol. 9, 2003, pages 571 - 9
SJ6BERG ET AL., BIOTECHNOLOGY, vol. 12, 1994, pages 1127 - 1131
SKOGING-NYBERG, LILJESTROM, J.VIROL., vol. 75, 2001, pages 4625 - 4632
SMERDOU, C., P. LILJESTROM, J. VIROL., vol. 73, 1999, pages 1092 - 1098
SMERDOU, LILJESTROM, J. VIROL., vol. 73, 1999, pages 1092 - 1098
STITES AND TERR,: "Clinical Immunology, 7th ed.", 1991
STRAUSS ET AL., MICROBIOL. REV., vol. 58, 1994, pages 491 - 562
STRAUSS, STRAUSS, MICROBIOL. REV., vol. 58, 1994, pages 491 - 562
SUOMALAINEN ET AL., J. VIROLOGY, vol. 66, 1992, pages 4737 - 4747
WHITE, HELENIUS, PROC. NATL. ACAD. SCI. U.S.A., vol. 77, 1980, pages 3273 - 3277

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2523016A1 (es) * 2013-05-20 2014-11-20 3P Biopharmaceuticals Vectores alfavirales y líneas celulares para la producción de proteínas recombinantes
WO2014188042A1 (es) * 2013-05-20 2014-11-27 3P Biopharmaceuticals Vectores alfavirales y líneas celulares para la producción de proteínas recombinantes
US10011847B2 (en) 2013-05-20 2018-07-03 3P Biopharmaceuticals, S.L. Alphaviral vectors and cell lines for producing recombinant proteins
CN105176936A (zh) * 2015-10-23 2015-12-23 中国科学院武汉物理与数学研究所 复制耐受型的西门利克森林病毒的亚克隆及制备方法和应用
CN105176936B (zh) * 2015-10-23 2019-01-11 中国科学院武汉物理与数学研究所 复制耐受型的西门利克森林病毒的亚克隆及制备方法和应用

Also Published As

Publication number Publication date
WO2012001196A3 (es) 2012-02-23

Similar Documents

Publication Publication Date Title
ES2328424T3 (es) Vectores de alfavirus recombinantes.
KR101790187B1 (ko) 신드비스 바이러스 외피 당단백질로 가성형태화된 렌티바이러스 벡터
US7235235B2 (en) Alphavirus RNA replicon systems
ES2588906T3 (es) Casetes sin promotor para la expresión de proteínas estructurales de alfavirus
JP5065024B2 (ja) Tc−83由来アルファウイルスベクター、粒子および方法
AU698976B2 (en) Alphavirus expression vector
Quetglas et al. Alphavirus vectors for cancer therapy
US8614082B2 (en) Attenuation of encephalitogenic alphavirus and uses thereof
Bell et al. Control of alphavirus-based gene expression using engineered riboswitches
US20210346492A1 (en) SARS-CoV-2 Vaccines
WO2008119827A1 (en) Transreplicase constructs
JP2023525785A (ja) 安定化コロナウイルススパイクタンパク質をコードするrnaレプリコン
US20220313815A1 (en) Self-replicating rna molecules for hepatitis b virus (hbv) vaccines and uses thereof
EP2097533A2 (en) Viral vector and uses thereof
WO2012001196A2 (es) Vectores alfavirales y usos de los mismos para la expresión de genes heterólogos
US7378272B2 (en) Packaging cell lines for the continuous production of alphavirus vectors
ES2759916T3 (es) Vectores alfavirales y líneas celulares para la producción de proteínas recombinantes
US9365865B2 (en) Vector utilizing borna disease virus and use thereof
ES2351532T3 (es) Vector viral y sus aplicaciones.
CA2407050A1 (en) Alphavirus-based vectors for persistent infection
Atkins et al. Alphaviruses and their derived vectors as anti-tumor agents
Anraku et al. Kunjin replicon-based simian immunodeficiency virus gag vaccines
JP2023523411A (ja) 組換えロタウイルス発現系および組換えロタウイルス
EP2900685B1 (en) Attenuated chikungunya virus
Kelly et al. Potential of alphavirus vectors in the treatment of advanced solid tumors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761097

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761097

Country of ref document: EP

Kind code of ref document: A2