WO2011162128A1 - 斜軸式液圧回転機 - Google Patents

斜軸式液圧回転機 Download PDF

Info

Publication number
WO2011162128A1
WO2011162128A1 PCT/JP2011/063586 JP2011063586W WO2011162128A1 WO 2011162128 A1 WO2011162128 A1 WO 2011162128A1 JP 2011063586 W JP2011063586 W JP 2011063586W WO 2011162128 A1 WO2011162128 A1 WO 2011162128A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cylinder block
cylinder
chemical conversion
surface side
Prior art date
Application number
PCT/JP2011/063586
Other languages
English (en)
French (fr)
Other versions
WO2011162128A9 (ja
Inventor
沼口 和弘
新留 隆志
高弘 坪
直之 奥野
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201180014548.6A priority Critical patent/CN102812245B/zh
Priority to EP11798014.4A priority patent/EP2587058B1/en
Publication of WO2011162128A1 publication Critical patent/WO2011162128A1/ja
Publication of WO2011162128A9 publication Critical patent/WO2011162128A9/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • F04B1/24Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons inclined to the main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2021Details or component parts characterised by the contact area between cylinder barrel and valve plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0804Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B27/0808Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • F04B27/0813Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons inclined to main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0804Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B27/0821Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block component parts, details, e.g. valves, sealings, lubrication
    • F04B27/0826Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block component parts, details, e.g. valves, sealings, lubrication particularities in the contacting area between cylinder barrel and valve plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/083Nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/24Heat treatment

Definitions

  • the present invention relates to, for example, a hydraulic hydraulic rotary machine used as a hydraulic pump or hydraulic motor in construction machines and other general machines.
  • hydraulic rotary machines used as hydraulic pumps or hydraulic motors.
  • a prior art oblique shaft type hydraulic rotary machine of this kind comprises a casing, a rotary shaft rotatably provided in the casing, and a casing rotatably provided in the casing so as to rotate with the rotary shaft.
  • a cylinder block having a plurality of axially extending cylinder holes spaced apart in the direction, and one end side in the axial direction is supported by the rotary shaft, and the other side is slidably fitted in each cylinder hole of the cylinder block
  • a plurality of pistons that reciprocate in each cylinder hole as the cylinder block rotates is configured.
  • a valve plate provided on the other side and provided between the casing and the cylinder block and communicating with the respective cylinder holes is provided with a supply / discharge port (low pressure port, high pressure port).
  • a spring for biasing the cylinder block toward the valve plate is provided.
  • a drive disk is integrally provided at the proximal end of the rotary shaft located in the casing, and the drive disk includes a protruding side end of each piston and a center shaft projecting from the cylinder block.
  • the protruding side end portion is swingably connected (Patent Document 1).
  • the base material of a cylinder block is formed using a cast, a steel material etc., and the nitriding treatment layer which performed heat treatment of nitriding system, for example is provided in the surface side of a base material.
  • the nitrided layer is constituted of, for example, a diffusion layer and a compound layer.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to suppress the wear at the contact points between the cylinder holes of each cylinder block and the piston and to prevent the occurrence of galling and seizure. It is an object of the present invention to provide an inclined shaft type hydraulic rotating machine which is capable of
  • the present invention provides a cylindrical casing, a rotary shaft rotatably provided on the casing, and a circumferential direction provided in the casing so as to rotate integrally with the rotary shaft.
  • a cylinder block having a plurality of spaced apart and axially extending cylinder holes, and one side in the axial direction is swingably supported by the rotary shaft, and the other side is reciprocably inserted in each cylinder hole of the cylinder block.
  • the present invention is applied to an inclined shaft type hydraulic rotating machine comprising a plurality of tapered pistons.
  • the feature of the configuration adopted in the present invention is that the cylinder block is formed with a nitriding treated layer including the respective cylinder holes and treated with nitriding system, and phosphoric acid is provided on the surface side of the nitriding treated layer. This is to form a chemical conversion film composed of a manganese film.
  • a chemical conversion film composed of a manganese phosphate film is formed so as to cover the nitrided layer.
  • the conversion coating of manganese phosphate quickly adapts to the shape of the tapered piston which is slidingly displaced in the cylinder hole.
  • the surface pressure at the contact portion between the cylinder hole and the piston can be reduced, and wear can be reduced.
  • the chemical conversion film of manganese phosphate to a film thickness equal to or more than the amount of wear, it is possible that the wear reaches near the interface between the compound layer and the diffusion layer in the nitrided layer.
  • a chemical conversion film can be formed in a state where the surface area is increased, so that the chemical conversion film is more easily attached.
  • the formation of a bias in the contact area between the peripheral edge of the opening of the cylinder hole and the taper piston can be suppressed by the early conversion of the manganese phosphate conversion coating to the shape of the piston slidingly displaced in the cylinder hole. For this reason, it can suppress that the contact area
  • the nitrided layer formed on the cylinder block is composed of a diffusion layer formed on the surface side of the base material and a compound layer formed on the surface side of the diffusion layer,
  • the chemical conversion film comprising an acid manganese film is formed on the surface side of the compound layer.
  • the nitrided layer formed on the cylinder block is composed of a diffusion layer formed on the surface side of the base material and a compound layer formed on the surface side of the diffusion layer, and the cylinder In the cylinder hole of the block, the chemical conversion film composed of the manganese phosphate film is formed in a state where the compound layer located on the surface side of the nitrided layer is removed by a polishing means.
  • the polishing means by removing the compound layer located on the surface side of the nitrided layer by the polishing means, for example, when the cylinder block repeats the forward rotation and the reverse rotation, the cylinder hole is formed. Even if an impact load is generated at the contact portion between the peripheral edge of the opening and the taper piston, it is possible to eliminate the peeling of the compound layer accompanying this, and it is possible to reduce the occurrence of galling, seizure and the like. In addition, it is possible to secure and leave a chemical conversion coating of manganese phosphate in a stable state on the periphery of the opening of the cylinder hole.
  • the nitrided layer formed on the cylinder block may be damaged by abrasion by forming a chemical conversion film at least as large as the amount of wear on the periphery of the opening. It can be suppressed. For this reason, it can suppress that the roughness of a sliding face worsens in the opening peripheral edge of a cylinder hole, and can maintain the sliding characteristic of a taper piston favorably.
  • the tapered piston is configured to be provided with a nitrided layer formed by performing a nitriding process and an oxide film formed on the surface side of the nitrided layer.
  • FIG. 1 is a longitudinal sectional view showing a diagonal axis hydraulic motor according to a first embodiment of the present invention. It is an expanded sectional view which shows the cylinder block in FIG. 1 as a single-piece
  • FIG. 5 is a cross-sectional view showing a state in which a plurality of pistons are inserted into each cylinder hole of a cylinder block, as viewed in the direction of arrows IV-IV in FIG. It is the elements on larger scale of the cylinder block which expands and shows the wear shape of the opening peripheral part formed in the cylinder hole in FIG.
  • FIG. 9 which shows the state which formed the nitriding treatment layer in the surrounding wall surface of a cylinder hole. It is an expanded sectional view in the arrow XII part in FIG. 3 which shows the surface treatment layer etc. which contain the oxide film formed in the outer peripheral surface side of a taper piston. It is an expanded sectional view in the position similar to FIG. 12 which shows the outer peripheral surface etc. of a taper piston in the state before forming a surface treatment layer. It is an expanded sectional view in the same position as Drawing 12 showing the state where the nitriding treatment layer was formed in the peripheral face side of a taper piston. It is a characteristic diagram which shows the change of the surface roughness in the opening peripheral part of a cylinder hole in relation to test time.
  • FIG. 19 is an enlarged cross-sectional view showing a state in which the compound layer has been removed from the nitrided layer in FIG. 18; It is an expanded sectional view in the same position as FIG. 18 which shows the state which formed the chemical conversion film on the nitriding treatment layer from which the compound layer was removed.
  • FIGS. 1 to 16 show a first embodiment of a diagonal shaft type hydraulic rotating machine according to the present invention.
  • reference numeral 1 denotes a casing of a hydraulic motor which is a typical example of the oblique shaft type hydraulic rotating machine.
  • the casing 1 is constituted by a cylindrical casing main body 2 having a cylindrical shape in which the middle in the length direction is bent, and a head casing 3 described later.
  • the casing main body 2 is constituted by one side cylindrical portion 2A located on one side in the axial direction and the other side cylindrical portion 2B on the other side in the axial direction, and an intermediate portion between the one side cylindrical portion 2A and the other side cylindrical portion 2B Is bent.
  • a shaft insertion hole 2 ⁇ / b> C is formed in one axial end of the one side cylindrical portion 2 ⁇ / b> A of the casing main body 2.
  • a head casing 3 is fixed to an end face (head end face) on the other side cylindrical portion 2B side of the casing main body 2 and a pair of supply and discharge passages (not shown) are formed in the head casing 3 .
  • the supply and discharge passage on the high pressure side among these supply and discharge passages supplies the pressure oil discharged from the hydraulic pump (not shown) into each cylinder hole 8 through the supply and discharge port 13B of the valve plate 13 described later.
  • the low pressure side supply / discharge passage discharges the return oil from the side of the supply / discharge port 13C of the valve plate 13 described later toward the tank (not shown) side.
  • Reference numeral 4 denotes a rotary shaft provided in the one side cylindrical portion 2A of the casing main body 2, and the rotary shaft 4 constitutes an output shaft of the hydraulic motor.
  • the rotating shaft 4 is rotatably supported in the one side cylindrical portion 2A of the casing main body 2 via a bearing.
  • One end side of the rotating shaft 4 protrudes to the outside of the casing main body 2 through the shaft insertion hole 2C.
  • the other end side of the rotating shaft 4 extends in the one side cylindrical portion 2A of the casing main body 2 toward the other side cylindrical portion 2B, and at its end portion, the drive disc 5 rotates integrally with the rotating shaft 4 Are integrally provided.
  • the drive disk 5 is disposed at a position near the boundary between the one side cylindrical portion 2A of the casing body 2 and the other side cylindrical portion 2B.
  • the drive disk 5 has a concave spherical surface portion 5A on the center side located on the center side of the other side end surface, and a plurality of concaves for rotation transmission located circumferentially outside of the concave spherical surface portion 5A.
  • the spherical portions 5B are provided respectively.
  • the concave spherical portion 5A on the center side is slidably connected to a spherical portion 9A of a center shaft 9 described later.
  • the spherical portions 10B of each of the tapered pistons 10, which will be described later, are swingably connected to the plurality of concave spherical portions 5B.
  • the cylinder block 6 denotes a cylinder block rotatably provided in the casing 1.
  • the cylinder block 6 is connected to the drive disc 5 via a center shaft 9 and each taper piston 10 described later and rotates integrally with the rotation shaft 4 It is a thing.
  • the cylinder block 6 is formed in a thick cylindrical shape, and a center hole 7 in which a center shaft 9 described later is slidably fitted is drilled in the center portion along the rotation center axis OO. ing.
  • the cylinder block 6 has a plurality of (usually five, seven or nine odd-numbered) cylinder holes 8 spaced apart in the circumferential direction centering on the center hole 7 with a constant interval and extending in the axial direction. It is drilled.
  • the cylinder block 6 is configured by subjecting, as surface treatment, a nitriding treatment and a conversion coating treatment of manganese phosphate to a base material 16 described later formed of an iron-based material such as cast iron or cast steel, for example. It is done.
  • An end surface of the cylinder block 6 on the side of the head casing 3 is a sliding surface 6A in the form of a concavely curved surface that slidably contacts the valve plate 13 described later.
  • each cylinder hole 8 has an opening peripheral edge 8 B, and the opening peripheral edge 8 B is also an inlet peripheral edge for inserting a taper piston 10 described later into the cylinder hole 8.
  • a center shaft 9 is inserted into the center hole 7 to center the cylinder block 6. As shown in FIG. 1, this center shaft 9 has a spherical portion 9A at one end side, and a bottomed spring accommodation hole 9B is formed at the other end side.
  • the spherical portion 9A of the center shaft 9 is slidably fitted in a concave spherical portion 5A formed on the center side of the drive disk 5.
  • a spring 14 described later is disposed in the spring receiving hole 9B of the center shaft 9.
  • a plurality of tapered pistons 10 are reciprocably inserted into the respective cylinder holes 8 of the cylinder block 6.
  • a tapered shaft portion 10A which is formed by expanding in a tapered shape from one end side to the other end side, and one end (small diameter portion) side of the tapered shaft portion 10A.
  • a piston portion 10C formed on the other end (large diameter portion) side of the tapered shaft portion 10A, and a taper piston from an end face on the piston portion 10C side toward the spherical portion 10B side
  • An oil hole 10D axially extending in 10 is formed.
  • the tapered piston 10 is slidably fitted in the cylinder hole 8 on the side of the piston portion 10C.
  • two seal members 11 and 12 formed of a piston ring are mounted on the outer peripheral side of the piston portion 10C.
  • the spherical portion 10B of the taper piston 10 is swingably (slidably) coupled in the concave spherical portion 5B of the drive disk 5, and the sliding surfaces of the both are one of the oil supplied in the cylinder hole 8
  • the part becomes lubricating oil and is supplied from the oil hole 10D side.
  • a valve plate 13 is provided between the head casing 3 of the casing 1 and the cylinder block 6.
  • the valve plate 13 has a convexly curved switching surface 13A on one side facing the cylinder block 6, and the other side It is fixed to the head casing 3 as a flat surface.
  • the cylinder block 6 is rotated while the sliding surface 6A is in sliding contact with the switching surface 13A of the valve plate 13, whereby supply and discharge of pressure oil to each cylinder hole 8 are performed as follows.
  • a pair of bowl-shaped supply and discharge ports 13B and 13C are formed in the valve plate 13 so as to extend in the circumferential direction.
  • the supply and discharge ports 13B and 13C communicate with the pair of supply and discharge passages formed in the head casing 3.
  • the supply and discharge ports 13B and 13C intermittently communicate with the cylinder port 8A of each cylinder hole 8 as the cylinder block 6 rotates.
  • one supply and discharge port 13B on the high pressure side is connected to the supply and discharge passage on the high pressure side of the pair of supply and discharge passages, and the pressure oil discharged from the hydraulic pump (not shown) is Feed into hole 8
  • the other supply / discharge port 13C on the low pressure side is connected to the low pressure side supply / discharge passage among the pair of supply / discharge passages, and the return oil discharged from each cylinder hole 8 is on the tank (not shown) side Emissions to the
  • Reference numeral 14 denotes a spring provided between the center shaft 9 and the cylinder block 6.
  • the spring 14 is disposed in the spring receiving hole 9B of the center shaft 9 so that the cylinder block 6 faces the switching surface 13A of the valve plate 13. I am always energized. Thus, the cylinder block 6 rotates relative to the valve plate 13 in the forward or reverse direction with the sliding surface 6A in close contact with the switching surface 13A of the valve plate 13.
  • Reference numeral 15 denotes a surface treatment layer formed on the cylinder block 6.
  • the surface treatment layer 15 is formed to entirely cover the surface side of the cylinder block 6 including the center hole 7 and the plurality of cylinder holes 8.
  • the surface treatment layer 15 is formed by subjecting the base material 16 of the cylinder block 6 formed using an iron-based material such as cast iron or cast steel to a nitriding-based heat treatment as described later. It is comprised by the nitriding treatment layer 17 and the below-mentioned conversion film 18.
  • the nitrided layer 17 includes a diffusion layer 17A formed on the surface side of the base material 16 and a compound layer formed to cover the surface side of the diffusion layer 17A. And 17B.
  • the compound layer 17B is formed as a layer harder than the diffusion layer 17A, and the thickness of the compound layer 17B is about 10 to 20 ⁇ m.
  • a chemical conversion film 18 is formed to cover the compound layer 17B of the nitriding treatment layer 17.
  • the chemical conversion film 18 forms a manganese phosphate film on the surface side of the compound layer 17B, for example, by a processing means such as dipping.
  • the conversion coating 18 of manganese phosphate is excellent in initial conformability to a sliding member such as the tapered piston 10, and its film thickness is set to, for example, a thickness of 10 to 20 ⁇ m or more. Furthermore, the conversion coating 18 of manganese phosphate quickly adapts to the surface shape of the tapered piston 10 slidingly displaced in the cylinder bore 8 and reduces the contact pressure at the contact portion between the cylinder bore 8 and the tapered piston 10 To reduce wear.
  • 20 is a surface treatment layer formed on the taper piston 10.
  • the surface treatment layer 20 is formed to entirely cover the surface side of the tapered shaft portion 10A, the spherical portion 10B and the piston portion 10C of the tapered piston 10.
  • the surface treatment layer 20 is composed of a nitrided layer 21 formed by subjecting a base material 10 'of the taper piston 10 to a heat treatment of a nitriding system as described later and an oxide film 22 described later. It is done.
  • the nitriding treatment layer 21 of the taper piston 10 is also configured of the diffusion layer 21A and the compound layer 21B.
  • An oxide film 22 is formed to cover the compound layer 21 B of the nitriding treatment layer 21.
  • the oxide film 22 forms a surface layer of iron oxide (Fe 3 O 4 ) by attaching, for example, superheated steam at 500 ° C. or more to the surface side of the compound layer 21B.
  • the oxide film 22 forms a dense and stable layer on the outermost surface side of the taper piston 10, and improves the oxidation resistance, corrosion resistance, wear resistance and the like of the taper piston 10.
  • the oblique shaft type hydraulic motor according to the first embodiment has the above-described configuration, and the operation thereof will be described below.
  • the pressure oil discharged from the hydraulic pump (not shown) is formed in the head casing 3 via the high pressure supply / discharge passage and the supply / discharge port 13 B of the valve plate 13.
  • the tapered pistons 10 are sequentially supplied from the cylinder bore 8 toward the drive disc 5 side by the hydraulic pressure at this time.
  • the return oil from each cylinder hole 8 is discharged from the supply / discharge port 13C on the low pressure side toward the tank side from the supply / discharge passage as the tapered piston 10 is displaced in the direction of contraction into the cylinder hole 8. Be done.
  • each taper piston 10 comes into contact with the inner peripheral wall of the cylinder hole 8 and the opening periphery 8B, whereby the rotational force is transmitted to the cylinder block 6, and the cylinder block 6 and the drive disk 5 are synchronized. Will rotate.
  • a fixed section contact area A on the low pressure side shown in FIG. 4 when the cylinder hole 8 through which the taper piston 10 is inserted is in communication with the supply / discharge port 13C on the low pressure side A certain section (a contact area B on the high pressure side) when communicating with the port 13B can be mentioned.
  • the plurality of taper pistons 10 inserted and fitted in the respective cylinder holes 8 of the cylinder block 6 have the low pressure contact area A and the high pressure side shown in FIG. 4 while the cylinder block 6 makes one revolution.
  • the rotational force is transmitted from the taper piston 10 to the cylinder block 6, and the cylinder block 6 and the drive disk 5 rotate in synchronization.
  • the compound layer may be removed from the nitrided layer in advance by means such as honing to form a honing surface with good resistance to galling and seizure.
  • honing to form a honing surface with good resistance to galling and seizure.
  • the wear mark 23 ' reaches a depth of about 10 .mu.m
  • the honing surface may disappear due to wear.
  • the surface roughness of the opening peripheral edge 8B 'becomes worse, the sliding property of the taper piston decreases, and galling, seizing or the like easily occurs.
  • deviation of the contact area between the peripheral edge 8B 'of the opening of the cylinder hole 8' and the taper piston may occur due to the variation in the shape of the cylinder hole 8 'and the taper piston.
  • the amount of heat generation due to the sliding contact between the two increases, and the possibility of occurrence of galling, seizing or the like increases.
  • the base material 16 of the cylinder block 6 formed using an iron-based material is prepared.
  • the base material 16 of the cylinder block 6 is subjected to a nitriding heat treatment.
  • the nitriding treatment layer 17 composed of the diffusion layer 17A and the compound layer 17B is formed (Step 1 in FIG. 7).
  • the base material 16 of the cylinder block 6 is dipped (dipped) in a bath (not shown) in which manganese phosphate is heated and melted.
  • the chemical conversion film 18 of manganese phosphate is formed on the surface side of the compound layer 17B.
  • the chemical conversion film 18 covers the compound layer 17B of the nitriding treatment layer 17 so as to cover the entire surface from the outside.
  • the surface treatment is also performed on the tapered piston 10 according to the procedure shown in FIG.
  • a base material 10 'of the taper piston 10 formed of an iron-based material or the like is prepared.
  • a heat treatment of a nitriding system is performed on the base material 10 ′ of the taper piston 10.
  • the nitriding treatment layer 21 composed of the diffusion layer 21A and the compound layer 21B is formed (step 11 in FIG. 8).
  • oxide film treatment of step 12 for example, superheated steam of 500 ° C. or more is attached to the surface side of the compound layer 21B.
  • oxide film 22 composed of the surface layer of iron oxide (Fe 3 O 4).
  • this oxide film 22 covers the compound layer 21B of the nitriding treatment layer 21 so as to cover the entire surface from the outside.
  • the chemical conversion film 18 made of a manganese phosphate film is formed on the surface side of the cylinder block 6, particularly on the peripheral wall (surface) side of the cylinder bore 8 so as to cover the nitrided layer 17.
  • the chemical conversion film 18 of manganese phosphate located on the outermost side of the surface treatment layer 15 quickly adapts to the outer shape of the tapered piston 10 which is slidingly displaced in the cylinder hole 8, and an initial fitting effect is obtained. It can be demonstrated.
  • the surface pressure at the contact portion between the cylinder bore 8 and the taper piston 10 can be reduced, and wear can be reduced.
  • the chemical conversion film 18 of manganese phosphate is formed to have a film thickness equal to or more than the wear amount, the abrasion reaches near the interface between the compound layer 17B and the diffusion layer 17A in the nitriding treatment layer 17 You can prevent that. That is, at this time, since the manganese phosphate chemical conversion film 18 only wears, the wear does not progress further than this, so the nitrided layer 17 formed on the cylinder block 6 is prevented from being damaged by the wear. be able to.
  • the present inventors insert the tapered piston 10 into the cylinder hole 8 of the cylinder block 6 to repeat the sliding test, and the surface roughness at the opening periphery 8B of the cylinder hole 8, that is, the average surface A test was conducted to measure the roughness (Ra).
  • the average surface roughness (Ra) of the opening peripheral edge 8B is a sliding test The surface roughness decreases with the lapse of time, and stable surface roughness can be obtained.
  • the chemical conversion coating 18 of manganese phosphate located on the outermost side conforms to the outer shape of the tapered piston 10 slidingly displaced in the cylinder holes 8. Due to this, the average surface roughness (Ra) of the opening periphery 8B continues to the sliding test and thus decreases. After the chemical conversion coating 18 of manganese phosphate was conformed to the outer shape of the taper piston 10, it was confirmed that the opening peripheral edge 8B had a good surface roughness, and the surface roughness was stable in this state.
  • the surface roughness that is, the average surface roughness (Ra) becomes worse with the passage of time at the opening periphery 8B ′ of the cylinder hole 8 ′, and the wear gradually I have confirmed that it will progress.
  • the wear amount at the opening periphery 8B of the cylinder hole 8 was measured and examined. As a result, as shown by the characteristic line 26 in FIG. 16, it can be confirmed that the wear amount of the opening peripheral edge 8B can be suppressed to an amount smaller than the depth dimension h. That is, the chemical conversion film 18 of manganese phosphate is formed with a film thickness equal to the dimension h. As a result, the nitrided layer 17 formed on the cylinder block 6 can be prevented from being adversely affected by wear, and the nitrided layer 17 can be protected by the chemical conversion film 18 of manganese phosphate.
  • an oxide film 22 is formed on the surface side of the tapered piston 10 in addition to the nitriding treatment layer 21. For this reason, it is possible to manufacture the taper piston 10 which has been subjected to surface treatment with good resistance to galling by the oxide film 22. Moreover, the wear of the cylinder block 6, that is, the wear at the opening peripheral edge 8B of each cylinder hole 8 can be effectively reduced.
  • the taper piston 10 which performed the surface treatment of the oxide film 22 was inserted in the cylinder hole 8 of the cylinder block 6, and the sliding test was done.
  • the wear at the opening periphery 8B can be reduced. That is, it was confirmed that the taper piston 10 subjected to the surface treatment of the oxide film 22 can further reduce wear as compared with the case where the surface treatment of the oxide film 22 is not carried out (characteristic line 26).
  • the nitrided layer 17 formed on the cylinder block 6 can be prevented from being damaged by abrasion, and the occurrence of galling, seizure and the like can be reduced.
  • the layer of the oxide film 22 is formed on the outermost surface side of the surface of the taper piston 10. As a result, the surface pressure at the contact portion between the peripheral edge 8B of the opening of the cylinder hole 8 and the taper piston 10 becomes excessive, or the occurrence of oil film breakage or the like causes galling or seizure. It can prevent.
  • the conversion coating 18 of manganese phosphate conforms to the outer shape of the tapered piston 10 slidingly displaced in the cylinder hole 8 at an early stage. As a result, it is possible to suppress the occurrence of deviation in the contact region between the peripheral edge 8 B of the opening of the cylinder hole 8 and the taper piston 10.
  • the contact area between the peripheral edge 8B of the opening of the cylinder hole 8 and the taper piston 10 can be prevented from expanding, and an increase in the amount of heat generation due to the expansion of the contact area can be suppressed.
  • the reliability as a rotating machine can be improved.
  • FIGS. 17 to 20 show a diagonal shaft type hydraulic rotating machine according to a second embodiment of the present invention.
  • the feature of the second embodiment is that the compound layer located on the surface side of the nitriding treatment layer is removed by a polishing means, and in this state, a chemical conversion film is formed on the surface side.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • the surface treatment of the cylinder block 6 is performed in accordance with the procedure shown in FIG.
  • the surface treatment layer 31 formed on the surface side of the cylinder block 6 is composed of the nitriding treatment layer 17 and a chemical conversion film 32 described later, as in the first embodiment.
  • the base material 16 of the cylinder block 6 is subjected to the heat treatment of the nitriding system.
  • the nitrided layer 17 formed of the diffusion layer 17A and the compound layer 17B is formed (step 31 in FIG. 17).
  • step 32 the removal process of step 32 is additionally performed.
  • the compound layer 17B located on the surface side of the nitriding treatment layer 17 is removed using a polishing means such as honing processing.
  • a polishing means such as honing processing.
  • the diffusion layer 17A of the nitriding treatment layer 17 is exposed to the outside on the surface side of the base material 16.
  • the base material 16 of the cylinder block 6 is immersed for a predetermined time in a bath (not shown) in which manganese phosphate is heated and melted.
  • a bath not shown
  • the chemical conversion film 32 of manganese phosphate is formed on the surface side of the diffusion layer 17A by such immersion (dipping) treatment, and the diffusion layer 17A of the nitrided layer 17 is entirely covered with the chemical conversion film 32 from the outside. Cover to cover over.
  • the surface treatment layer 31 composed of the nitriding treatment layer 17 and the chemical conversion film 32 of manganese phosphate is formed on the surface side of the cylinder block 6.
  • the same effect as that of the first embodiment described above can be obtained.
  • the following effects can be obtained by removing the compound layer 17B located on the surface side of the nitriding treatment layer 17 by the polishing means.
  • the chemical conversion film 32 is formed in the same degree as or more than the wear amount of the opening periphery 8B.
  • the diffusion layer 17A of the nitriding treatment layer 17 formed on the cylinder block 6 can be prevented from being damaged by abrasion. For this reason, it can be suppressed that the roughness of the sliding surface becomes worse at the opening peripheral edge 8B of the cylinder hole 8, and the sliding characteristics of the taper piston 10 can be maintained favorably.
  • the oblique shaft type fixed displacement hydraulic motor has been described as an example of the oblique shaft type fluid pressure rotary machine.
  • the present invention is not limited to this, and may be applied to, for example, a diagonal shaft type variable displacement hydraulic motor.
  • the present invention may be applied to a slanted-shaft, fixed displacement or variable displacement hydraulic pump.
  • the low pressure side port is used as a suction port
  • the high pressure side port is used as a discharge port.
  • the surface treatment layer 20 formed on the taper piston 10 is configured by the nitriding treatment layer 21 and the oxide film 22 has been described as an example.
  • the present invention is not limited to this, and for example, the surface treatment layer of the taper piston 10 may be constituted only by the nitriding treatment layer.
  • the tapered piston may be configured to be subjected to heat treatment other than the nitriding treatment in order to increase the surface hardness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

 シリンダブロック(6)の表面側には、センタ穴(7)および複数のシリンダ穴(8)を含んで全体を覆うように表面処理層(15)を形成する。表面処理層(15)は、鋳鉄または鋳鋼等の鉄系材料を用いて形成されたシリンダブロック(6)の母材(16)に対し窒化系の熱処理を施すことにより形成された窒化処理層(17)とりん酸マンガンの化成皮膜(18)とにより構成される。化成皮膜(18)は、窒化処理層(17)の表面側にりん酸マンガンの化成皮膜を形成するものである。この化成皮膜(18)は、テーパピストン(10)等の摺動部材に対する初期なじみ性に優れている。これにより、シリンダブロック(6)の各シリンダ穴(8)とテーパピストン(10)との接触箇所での摩耗を抑えることができる。

Description

斜軸式液圧回転機
 本発明は、例えば建設機械、その他の一般機械に油圧ポンプ、油圧モータとして用いられる斜軸式液圧回転機に関する。
 一般に、建設機械や一般機械の分野で、油圧ポンプまたは油圧モータとして用いられる液圧回転機として、固定容量型または可変容量型の斜軸式液圧回転機が知られている。
 この種の従来技術による斜軸式液圧回転機は、ケーシングと、該ケーシング内に回転可能に設けられた回転軸と、該回転軸と共に回転するように前記ケーシング内に回転可能に設けられ周方向に離間して軸方向に延びる複数のシリンダ穴が形成されたシリンダブロックと、軸方向の一端側が前記回転軸に支持され他側が該シリンダブロックの各シリンダ穴内に摺動可能に挿嵌され該シリンダブロックの回転に伴って各シリンダ穴内を往復動する複数のピストンとを含んで構成されている。
 一方、斜軸式液圧回転機は、シリンダブロックの回転軸中心に沿って形成されたセンタ穴と、シリンダブロックのセンタ穴に嵌合され該シリンダブロックのセンタリングを行うセンタシャフトと、軸方向の他側に位置してケーシングとシリンダブロックとの間に設けられ前記各シリンダ穴と連通する給排ポート(低圧ポート、高圧ポート)が形成された弁板と、前記センタシャフトとシリンダブロックとの間に設けられシリンダブロックを前記弁板に向けて付勢するばねとを備えている。
 一方、前記ケーシング内に位置する回転軸の基端側端部にはドライブディスクが一体的に設けられ、このドライブディスクには、前記シリンダブロックから突出した各ピストンの突出側端部とセンタシャフトの突出側端部とが揺動可能に連結されている(特許文献1)。
 この種の斜軸式液圧回転機は、例えば油圧モータとして用いる場合に、高圧ポートを通じて外部からの圧油を各シリンダ穴内に順次供給すると、各ピストンの突出側端部がドライブディスクに順次押付けられる。これにより、前記ドライブディスクの回転軸を中心とした回転力が発生し、この回転力をモータ出力として取出すものである。
特開2008-101581号公報
 ところで、上述した従来技術では、シリンダブロックの母材を鋳物、鋼材料等を用いて形成し、母材の表面側には、例えば窒化系の熱処理を施した窒化処理層が設けられている。この窒化処理層は、例えば拡散層と化合物層とにより構成されている。
 しかし、ピストンが往復動する間に、各シリンダ穴の入口部周縁(開口部周縁)とピストンとが接触するに伴って、シリンダブロックとピストンとの接触箇所には摩耗痕が生じる。このような摩耗が進行すると、前述のように拡散層と化合物層とからなる窒化処理層から化合物層が剥離されることがある。この結果、シリンダブロックとピストンとの接触箇所に、かじり、焼付き等の発生が懸念されるという問題がある。
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、シリンダブロックの各シリンダ穴とピストンとの接触箇所での摩耗を抑え、かじり、焼付き等の発生を防ぐことができるようにした斜軸式液圧回転機を提供することにある。
(1).上述した課題を解決するため、本発明は、筒状のケーシングと、該ケーシングに回転自在に設けられた回転軸と、該回転軸と一体に回転するように前記ケーシング内に設けられ周方向に離間して軸方向に延びる複数のシリンダ穴を有したシリンダブロックと、軸方向の一側が前記回転軸に揺動自在に支持され他側が前記シリンダブロックの各シリンダ穴に往復動可能に挿嵌された複数のテーパピストンとを備えてなる斜軸式液圧回転機に適用される。
 そして、本発明が採用する構成の特徴は、前記シリンダブロックには、前記各シリンダ穴を含んで窒化系の処理を施した窒化処理層を形成し、該窒化処理層の表面側にはりん酸マンガン皮膜からなる化成皮膜を形成する構成としたことにある。
 この構成によると、シリンダ穴の周壁(表面)側には、窒化処理層を覆うようにりん酸マンガン皮膜からなる化成皮膜を形成している。りん酸マンガンの化成皮膜は、シリンダ穴内を摺動変位するテーパピストンの形状に早期になじむようになる。この結果、シリンダ穴とピストンとの接触部位における面圧を低下することができ、摩耗の低減化を図ることができる。一方、りん酸マンガンの化成皮膜を、その摩耗量と同程度以上の膜厚に形成しておくことにより、窒化処理層のうち化合物層と拡散層との境界面付近まで摩耗が到達するのを防ぐことができ、シリンダブロックに形成した窒化処理層が摩耗によって損傷を受けるのを抑制することができる。しかも、窒化処理層を形成し、その表面にりん酸マンガンによる化成処理を行うことにより、表面積が増えた状態で化成皮膜を形成できるため、化成皮膜がより付き易くなる。
 さらに、シリンダ穴内を摺動変位するピストンの形状にりん酸マンガンの化成皮膜が早期になじむことによって、シリンダ穴の開口部周縁とテーパピストンとの接触領域に偏りが生じるのを抑えることができる。このため、シリンダ穴の開口部周縁とテーパピストンとの接触領域が広がるのを抑制でき、接触領域の拡大に伴う発熱量の増大を抑えることができる。従って、シリンダ穴の開口部周縁とテーパピストンとのかじり、焼付き等のリスクを低減することができ、斜軸式液圧回転機としての信頼性を高めることができる。
(2).本発明によると、前記シリンダブロックに形成された前記窒化処理層は、母材の表面側に形成される拡散層と、該拡散層の表面側に形成される化合物層とにより構成し、前記りん酸マンガン皮膜からなる化成皮膜は、前記化合物層の表面側に形成している。これにより、りん酸マンガンの化成皮膜は、シリンダ穴内を摺動変位するテーパピストンの形状に早期になじむようになり、シリンダ穴とピストンとの接触部位における摩耗を低減化することができる。
(3).本発明によると、前記シリンダブロックに形成された前記窒化処理層は、母材の表面側に形成される拡散層と、該拡散層の表面側に形成される化合物層とにより構成し、前記シリンダブロックのシリンダ穴には、前記窒化処理層のうち表面側に位置する化合物層を研磨手段で除去した状態で、前記りん酸マンガン皮膜からなる前記化成皮膜を形成する構成としている。
 この構成によれば、窒化処理層のうち表面側に位置する化合物層を研磨手段で除去することにより、例えばシリンダブロックが正方向の回転と逆方向の回転とを繰返すような場合に、シリンダ穴の開口部周縁とテーパピストンとの接触部位に衝撃荷重が発生したとしても、これに伴う前記化合物層の剥離をなくすことができ、かじり、焼付き等の発生を低減することができる。また、シリンダ穴の開口部周縁にはりん酸マンガンの化成皮膜を安定した状態で確保し、残しておくことができる。さらに、前記化合物層を研磨手段で除去した後に、開口部周縁の摩耗量と同程度以上の化成皮膜を形成しておくことにより、シリンダブロックに形成した窒化処理層が摩耗によって損傷を受けるのを抑制することができる。このため、シリンダ穴の開口部周縁で摺動面の粗さが悪くなるのを抑えることができ、テーパピストンの摺動特性を良好に保つことができる。
(4).本発明によると、前記テーパピストンには、窒化系の処理を施して形成した窒化処理層と、該窒化処理層の表面側に形成した酸化皮膜とを設ける構成としている。
 この構成によれば、テーパピストンの表面側には、窒化処理層に加えて酸化皮膜を形成するため、この酸化皮膜により耐かじり性の良い表面処理がなされたテーパピストンを製作することができ、シリンダブロックに対しても各シリンダ穴の開口部周縁での摩耗を効果的に低減することができる。これにより、シリンダブロックに形成した窒化処理層が摩耗によって損傷を受けるのを抑制できる。さらに、シリンダ穴の開口部周縁とテーパピストンとの接触部位における面圧が過大になったり、油膜切れ等が発生したりする条件下でも、テーパピストンの表面のうち最表面側に酸化皮膜の層を形成することによって、かじり、焼付き等の発生を防ぐことができる。
本発明の第1の実施の形態による斜軸式の油圧モータを示す縦断面図である。 図1中のシリンダブロックを単体として示す拡大断面図である。 図1中のテーパピストンを単体として拡大して示す一部破断の正面図である。 シリンダブロックの各シリンダ穴内に複数のピストンを挿嵌した状態を図1中の矢示IV-IV方向から拡大してみた断面図である。 図4中のシリンダ穴に形成される開口部周縁の摩耗形状を拡大して示すシリンダブロックの部分拡大図である。 比較例によるシリンダ穴に形成される開口部周縁の摩耗形状を拡大して示すシリンダブロックの部分拡大図である。 シリンダブロックに対する表面処理の各工程を示す流れ図である。 テーパピストンに対する表面処理の各工程を示す流れ図である。 シリンダ穴の周壁面に形成した化成皮膜を含む表面処理層等を示す図2中の矢IX部における拡大断面図である。 表面処理層を形成する前の状態でシリンダ穴の周壁面等を示す図9と同様位置での拡大断面図である。 シリンダ穴の周壁面に窒化処理層を形成した状態を示す図9と同様位置での拡大断面図である。 テーパピストンの外周面側に形成した酸化皮膜を含む表面処理層等を示す図3中の矢示XII部における拡大断面図である。 表面処理層を形成する前の状態でテーパピストンの外周面等を示す図12と同様位置での拡大断面図である。 テーパピストンの外周面側に窒化処理層を形成した状態を示す図12と同様位置での拡大断面図である。 シリンダ穴の開口部周縁における表面粗さの変化を試験時間との関係で示す特性線図である。 シリンダ穴の開口部周縁における摩耗量を試験時間との関係で示す特性線図である。 第2の実施の形態によるシリンダブロックの表面処理工程を示す流れ図である。 シリンダ穴の周壁面に窒化処理層を形成した状態を示す図9と同様位置での拡大断面図である。 図18中の窒化処理層から化合物層を除去した状態を示す拡大断面図である。 化合物層が除去された窒化処理層の上に化成皮膜を形成した状態を示す図18と同様位置での拡大断面図である。
 以下、本発明の実施の形態による斜軸式液圧回転機を、固定容量型斜軸式の油圧モータに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。
 図1ないし図16は本発明に係る斜軸式液圧回転機の第1の実施の形態を示している。
 図中、1は斜軸式液圧回転機の代表例である油圧モータのケーシングである。このケーシング1は、長さ方向の中間が屈曲した筒形状をなすケーシング本体2と、後述のヘッドケーシング3とにより構成されている。
 ケーシング本体2は、軸方向の一側に位置する一側筒部2Aと、軸方向他側の他側筒部2Bとにより構成され、一側筒部2Aと他側筒部2Bとの中間部位が屈曲されている。ケーシング本体2の一側筒部2Aには、その軸方一側の端部に軸挿通孔2Cが形成されている。
 3はケーシング本体2の他側筒部2B側端面(ヘッド側端面)に固着されたヘッドケーシングで、該ヘッドケーシング3には、一対の給排通路(いずれも図示せず)が形成されている。これらの給排通路のうち高圧側の給排通路は、油圧ポンプ(図示せず)から吐出された圧油を後述する弁板13の給排ポート13Bを介して各シリンダ穴8内に供給する。低圧側の給排通路は、後述する弁板13の給排ポート13C側からタンク(図示せず)側に向けて戻り油を排出するものである。
 4はケーシング本体2の一側筒部2A内に設けられた回転軸を示し、該回転軸4は、当該油圧モータの出力軸を構成している。回転軸4は、ケーシング本体2の一側筒部2A内に軸受を介して回転自在に支持されている。回転軸4の一端側は、軸挿通孔2Cを通じてケーシング本体2の外部に突出している。
 一方、回転軸4の他端側は、ケーシング本体2の一側筒部2A内を他側筒部2Bに向けて延び、その端部には、該回転軸4と一体に回転するドライブディスク5が一体的に設けられている。該ドライブディスク5は、ケーシング本体2の一側筒部2Aと他側筒部2Bとの境界部近傍となる位置に配置されている。ドライブディスク5には、他側端面の中心側に位置する中心側の凹球面部5Aと、該凹球面部5Aの径方向外側に位置して周方向に互いに離間した回転伝達用の複数の凹球面部5Bとがそれぞれ設けられている。ここで、中心側の凹球面部5Aは、後述するセンタシャフト9の球形部9Aが摺動可能に連結されている。複数の凹球面部5Bには、後述する各テーパピストン10の球形部10Bがそれぞれ揺動可能に連結されている。
 6はケーシング1内に回転可能に設けられたシリンダブロックを示し、該シリンダブロック6は、後述のセンタシャフト9、各テーパピストン10を介してドライブディスク5に連結され回転軸4と一体に回転するものである。シリンダブロック6は、肉厚な円筒状に形成され、その中心部には、後述のセンタシャフト9が摺動可能に挿嵌されるセンタ穴7が回転中心軸O-Oに沿って穿設されている。また、シリンダブロック6には、センタ穴7を中心として周方向に一定の間隔をもって離間し軸方向に延びた複数本(通常5本、7本または9本等の奇数本)のシリンダ穴8が穿設されている。
 シリンダブロック6は、例えば鋳鉄または鋳鋼等の鉄系材料を用いて形成された後述の母材16に対し、表面処理として後述の如く窒化処理とりん酸マンガンの化成皮膜処理とを施すことにより構成されている。シリンダブロック6のうちヘッドケーシング3側の端面は、後述の弁板13に摺接する凹湾曲面状の摺動面6Aとなっている。
 シリンダブロック6の摺動面6Aと各シリンダ穴8との間には、摺動面6A側で弁板13に連通、遮断される複数のシリンダポート8A(1本のみ図示)が形成されている。図2に示すように、各シリンダ穴8は、開口部周縁8Bを有し、この開口部周縁8Bは、後述のテーパピストン10をシリンダ穴8内に挿入するための入口部周縁でもある。
 9はシリンダブロック6のセンタリングを行うためにセンタ穴7に挿嵌して設けられたセンタシャフトである。図1に示す如く、このセンタシャフト9は、一端側が球形部9Aとなり、他端側には有底状のばね収容穴9Bが形成されている。センタシャフト9の球形部9Aは、ドライブディスク5の中心側に形成された凹球面部5Aに摺動可能に嵌合されている。一方、センタシャフト9のばね収容穴9B内には後述のばね14が配設されている。
 10はシリンダブロック6の各シリンダ穴8内に往復動可能に挿嵌された複数のテーパピストンである。図3に示すように、これらのテーパピストン10は、一端側から他端側に向けテーパ状に拡径して形成されたテーパ軸部10Aと、該テーパ軸部10Aの一端(小径部)側に一体に形成された球形部10Bと、テーパ軸部10Aの他端(大径部)側に形成されたピストン部10Cと、該ピストン部10C側の端面から球形部10B側に向けてテーパピストン10内を軸方向に延びた油孔10Dとにより構成されている。
 テーパピストン10は、ピストン部10C側がシリンダ穴8内に摺動可能に挿嵌されている。ピストン部10Cの外周側には、シリンダ穴8との間のシール性を確保するために、ピストンリングからなる2本のシール部材11,12が装着されている。テーパピストン10の球形部10Bは、ドライブディスク5の凹球面部5B内に揺動(摺動)可能に連結され、両者の摺動面には、シリンダ穴8内に供給された油液の一部が潤滑油となって油孔10D側から補給される。
 13はケーシング1のヘッドケーシング3とシリンダブロック6との間に設けられた弁板で、該弁板13は、シリンダブロック6に対面する一側面が凸湾曲状の切換面13Aとなり、他側面は平坦面となってヘッドケーシング3に固着されている。シリンダブロック6は、その摺動面6Aが弁板13の切換面13Aに対して摺接しつつ回転することにより、各シリンダ穴8に対する圧油の供給,排出が下記のように行われる。
 即ち、図4に示す如く、弁板13には、眉形状をなす一対の給排ポート13B,13Cが周方向に延びて形成されている。これらの給排ポート13B,13Cは、ヘッドケーシング3に形成した前記一対の給排通路に連通している。給排ポート13B,13Cは、シリンダブロック6の回転に伴って各シリンダ穴8のシリンダポート8Aと間欠的に連通するものである。
 この場合、例えば高圧側となる一方の給排ポート13Bは、前記一対の給排通路のうち高圧側の給排通路に接続され、油圧ポンプ(図示せず)から吐出された圧油を各シリンダ穴8内に供給する。一方、低圧側となる他方の給排ポート13Cは、前記一対の給排通路のうち低圧側の給排通路に接続され、各シリンダ穴8から排出される戻り油をタンク(図示せず)側に向けて排出するものである。
 14はセンタシャフト9とシリンダブロック6との間に設けられたばねで、該ばね14は、センタシャフト9のばね収容穴9B内に配置され、シリンダブロック6を弁板13の切換面13Aに向けて常時付勢している。これにより、シリンダブロック6は、その摺動面6Aを弁板13の切換面13Aに密着させた状態で弁板13に対して正方向または逆方向に相対回転するものである。
 次に、シリンダブロック6とテーパピストン10とに施されたそれぞれの表面処理層について述べる。
 15はシリンダブロック6に形成された表面処理層である。この表面処理層15は、センタ穴7および複数のシリンダ穴8を含んでシリンダブロック6の表面側を全体的に覆うように形成されている。図9に示すように、表面処理層15は、例えば鋳鉄または鋳鋼等の鉄系材料を用いて形成されたシリンダブロック6の母材16に対し後述の如く窒化系の熱処理を施すことにより形成された窒化処理層17と後述の化成皮膜18とにより構成されている。
 ここで、図9、図11に示すように、窒化処理層17は、母材16の表面側に形成される拡散層17Aと、該拡散層17Aの表面側を覆うように形成された化合物層17Bとにより構成されている。このうち化合物層17Bは、拡散層17Aよりも硬い層として形成され、化合物層17Bの厚さは、10~20μm程度となっている。
 18は窒化処理層17の化合物層17Bを覆うように形成された化成皮膜である。この化成皮膜18は、例えば浸漬(ディピング)等の処理手段により化合物層17Bの表面側にりん酸マンガン皮膜を形成するものである。りん酸マンガンの化成皮膜18は、テーパピストン10等の摺動部材に対する初期なじみ性に優れ、その膜厚は、例えば10~20μm以上の厚みに設定される。さらに、りん酸マンガンの化成皮膜18は、シリンダ穴8内を摺動変位するテーパピストン10の表面形状に早期になじむようになり、シリンダ穴8とテーパピストン10との接触部位における面圧を低下して摩耗を低減させるものである。
 次に、20はテーパピストン10に形成された表面処理層である。この表面処理層20は、テーパピストン10のテーパ軸部10A、球形部10Bおよびピストン部10Cの表面側を全体的に覆うように形成されている。図12に示すように、表面処理層20は、テーパピストン10の母材10′に対し後述の如く窒化系の熱処理を施すことにより形成された窒化処理層21と後述の酸化皮膜22とにより構成されている。ここで、テーパピストン10の窒化処理層21も、シリンダブロック6の窒化処理層17と同様に、拡散層21Aと化合物層21Bとにより構成されている。
 22は窒化処理層21の化合物層21Bを覆うように形成された酸化皮膜である。この酸化皮膜22は、例えば500℃以上の過熱水蒸気を化合物層21Bの表面側に付着させることにより、酸化鉄(Fe)の表面層を形成するものである。酸化皮膜22は、テーパピストン10の最表面側に緻密で安定した層を形成し、テーパピストン10の耐酸化性、耐食性および耐摩耗性等を高めるものである。
 第1の実施の形態による斜軸式の油圧モータは上述の如き構成を有するもので、以下、その作動について説明する。
 油圧モータの回転軸4を駆動するときには、油圧ポンプ(図示せず)から吐出された圧油をヘッドケーシング3に形成した高圧側の給排通路、弁板13の給排ポート13Bを介して各シリンダ穴8内へ順次供給し、このときの油圧力で各テーパピストン10をシリンダ穴8からドライブディスク5側に向けて順次伸長させる。一方、各シリンダ穴8からの戻り油は、各テーパピストン10がシリンダ穴8内へと縮小する方向に変位するに伴って低圧側の給排ポート13C、給排通路からタンク側に向けて排出される。
 このとき、前記圧油が順次供給される各シリンダ穴8内では、内部に挿嵌されたテーパピストン10の突出側端部となる球形部10Bがドライブディスク5の凹球面部5B側に順次押付けられる。これにより、ドライブディスク5には回転軸4を中心とした回転力が発生し、この回転力は回転軸4の先端側からモータ出力として取出される。
 油圧モータの回転時には、各テーパピストン10がシリンダ穴8の内周壁と開口部周縁8Bとに接触することにより、シリンダブロック6に回転力が伝達され、シリンダブロック6とドライブディスク5とが同期して回転するようになる。この場合、各テーパピストン10のうちの1本のピストン10が1個のシリンダ穴8の内周壁と開口部周縁8Bとに接触する領域が存在する。この領域としては、テーパピストン10が挿通されたシリンダ穴8が低圧側の給排ポート13Cに連通するときの一定区間(図4中に示す低圧側の接触領域A)と、高圧側の給排ポート13Bに連通するときの一定区間(高圧側の接触領域B)とが挙げられる。
 即ち、シリンダブロック6の各シリンダ穴8内に挿嵌して設けられた複数のテーパピストン10は、シリンダブロック6が1回転する間に、図4中に示す低圧側の接触領域Aと高圧側の接触領域Bとにおいてシリンダ穴8の内周壁と開口部周縁8Bとに接触する。これにより、テーパピストン10からシリンダブロック6への回転力の伝達が行われ、シリンダブロック6とドライブディスク5とが同期して回転する。
 ここで、従来技術による比較例を図6により説明する。この比較例では、シリンダブロック6′の各シリンダ穴8′に窒化処理層のみを形成している。このため、シリンダブロック6′の各シリンダ穴8′の開口部周縁8B′に摩耗痕23′が形成される。このような摩耗が進行すると、化成皮膜を形成していない比較例の場合、シリンダ穴8′に形成した拡散層と化合物層とからなる窒化処理層のうち、表面側の化合物層が剥離されることがあり、シリンダ穴8′の開口部周縁8B′側ではかじり、焼付き等が発生する虞れがある。
 一方、従来技術にあっては、前記窒化処理層から予め化合物層を、例えばホーニング加工等の手段で除去し、耐かじり性、耐焼付きのよいホーニング面を形成する場合がある。しかし、この場合でも前記摩耗痕23′が10μm程度の深さに達すると、前記ホーニング面が摩耗により無くなることがある。この状態で、さらに摩耗が進行すると、開口部周縁8B′の表面粗さが悪くなり、テーパピストンの摺動性が低下してかじり、焼付き等が発生し易くなる。
 さらに、従来技術の場合、シリンダ穴8′とテーパピストンとの形状のバラツキにより、シリンダ穴8′の開口部周縁8B′とテーパピストンとの接触領域に偏りが生じることがある。このような偏りが生じると、両者の摺動接触に伴う発熱量が増加し、かじり、焼付き等が発生する可能性が高くなってしまう。
 そこで、第1の実施の形態では、図7に示す手順に従ってシリンダブロック6の表面処理を行う構成としている。この場合、図10に示すように鉄系材料を用いて形成されたシリンダブロック6の母材16を用意する。次に、シリンダブロック6の母材16に対し窒化系の熱処理を施す。これにより、図11に示すように拡散層17Aと化合物層17Bとからなる窒化処理層17を形成する(図7中のステップ1)。
 次に、ステップ2の化成皮膜処理では、例えばりん酸マンガンが加熱溶融された浴槽(図示せず)中に、シリンダブロック6の母材16を所定時間にわたって浸漬(ディピング)させる。このような浸漬処理によって、りん酸マンガンの化成皮膜18を化合物層17Bの表面側に形成する。図9に示す如く、この化成皮膜18により窒化処理層17の化合物層17Bを外側から全面にわたって被覆するように覆う。
 一方、第1の実施の形態では、テーパピストン10に対しても図8に示す手順に従って表面処理を行う。この場合、図13に示すように鉄系材料等を用いて形成されたテーパピストン10の母材10′を用意しておく。次に、テーパピストン10の母材10′に対して窒化系の熱処理を施す。これにより、図14に示すように拡散層21Aと化合物層21Bとからなる窒化処理層21を形成する(図8中のステップ11)。
 次に、ステップ12の酸化皮膜処理では、例えば500℃以上の過熱水蒸気を化合物層21Bの表面側に付着させる。これにより、酸化鉄(Fe)の表面層からなる酸化皮膜22を形成する。図12に示す如く、この酸化皮膜22により窒化処理層21の化合物層21Bを外側から全面にわたって被覆するように覆う。
 かくして、第1の実施の形態によれば、シリンダブロック6の表面側、特にシリンダ穴8の周壁(表面)側に窒化処理層17を覆うように、りん酸マンガン皮膜からなる化成皮膜18を形成する構成としている。このため、表面処理層15のうち最も外側に位置するりん酸マンガンの化成皮膜18は、シリンダ穴8内を摺動変位するテーパピストン10の外形状に早期になじむようになり、初期なじみ効果を発揮することができる。
 この結果、シリンダ穴8とテーパピストン10との接触部位における面圧を低下することができ、摩耗の低減化を図ることができる。一方、りん酸マンガンの化成皮膜18を摩耗量と同程度以上の膜厚に形成しておくことにより、窒化処理層17のうち化合物層17Bと拡散層17Aとの境界面付近まで摩耗が到達するのを防ぐことができる。即ち、このときには、りん酸マンガンの化成皮膜18が摩耗するだけで、これ以上に摩耗が進行することはないので、シリンダブロック6に形成した窒化処理層17が摩耗によって損傷を受けるのを抑制することができる。
 このため、図5に示すように、シリンダブロック6の各シリンダ穴8において、その開口部周縁8Bに摩耗痕23が形成される場合でも、これらの摩耗痕23が窒化処理層17の化合物層17Bと拡散層17Aとの境界面付近に達するまで深くなるのを防ぐことができる。この結果、りん酸マンガンの化成皮膜18を形成することにより、シリンダブロック6に形成した窒化処理層17が摩耗によって損傷を受けるのを抑制することができる。しかも、窒化処理後の表面状態にりん酸マンガン処理を行うことにより、表面積が増えた状態で化成皮膜18を形成できるため、化成皮膜18がより付き易くなる。
 ここで、本発明者等は、シリンダブロック6のシリンダ穴8内にテーパピストン10を挿嵌して摺動試験を繰返すようにし、シリンダ穴8の開口部周縁8Bにおける表面粗さ、即ち平均表面粗さ(Ra)を計測する試験を行った。この結果、図15中に示す特性線24のように、第1の実施の形態によるシリンダブロック6のシリンダ穴8にあっては、開口部周縁8Bの平均表面粗さ(Ra)が摺動試験の経過時間に伴って低下し、安定した面粗さを得ることができる。
 即ち、シリンダブロック6のシリンダ穴8に形成した表面処理層15のうち最も外側に位置するりん酸マンガンの化成皮膜18が、シリンダ穴8内を摺動変位するテーパピストン10の外形状になじむ。このために、開口部周縁8Bの平均表面粗さ(Ra)は、摺動試験を続ける従って低下する。りん酸マンガンの化成皮膜18がテーパピストン10の外形状になじんだ後には、開口部周縁8Bは良好な面粗さとなり、この状態で面粗さは安定することを確認できた。
 一方、例えば図6に示す比較例の場合、りん酸マンガンの化成皮膜等を有していない。このため、図15中の特性線25のように、シリンダ穴8′の開口部周縁8B′では、表面粗さ、即ち平均表面粗さ(Ra)が、時間の経過と共に悪くなり、摩耗が漸次進行することを確認している。
 次に、シリンダ穴8の開口部周縁8Bにおける摩耗量を計測して調べた。この結果、図16中に特性線26で示すように、開口部周縁8Bの摩耗量は深さ寸法hよりも少ない量に抑えられることが確認できた。即ち、りん酸マンガンの化成皮膜18を寸法hと同等な膜厚で形成する。これにより、シリンダブロック6に形成した窒化処理層17が摩耗により悪影響を受けるのを抑えることができ、りん酸マンガンの化成皮膜18により窒化処理層17を保護することができる。
 これに対し、図6に示す比較例の場合、りん酸マンガンの化成皮膜等を有していない。このため、図16中に示す特性線27のように、シリンダ穴8′の開口部周縁8B′では、摩耗量が時間の経過と共に増加し、摩耗が深さ寸法hを大きく越えて進行することを確認している。
 一方、第1の実施の形態では、テーパピストン10の表面側に窒化処理層21に加えて酸化皮膜22を形成する構成としている。このため、酸化皮膜22により耐かじり性の良い表面処理がなされたテーパピストン10を製作することができる。しかも、シリンダブロック6の摩耗、即ち各シリンダ穴8の開口部周縁8Bでの摩耗を効果的に低減することができる。
 このように、酸化皮膜22の表面処理を行ったテーパピストン10を、シリンダブロック6のシリンダ穴8に挿嵌して摺動試験を行った。この場合、図16中に示す特性線28のように、開口部周縁8Bでの摩耗を低減することができる。即ち、酸化皮膜22の表面処理を行ったテーパピストン10は、酸化皮膜22の表面処理を行っていない場合(特性線26)に比較して、摩耗をさらに低減できることが確認された。
 これにより、シリンダブロック6に形成した窒化処理層17が摩耗によって損傷を受けるのを抑制でき、かじり、焼付き等の発生を低減することができる。しかも、テーパピストン10の表面のうち最表面側に酸化皮膜22の層を形成している。これによって、シリンダ穴8の開口部周縁8Bとテーパピストン10との接触部位における面圧が過大になったり、油膜切れ等が発生したりする条件下でも、かじり、焼付き等が発生するのを防ぐことができる。
 従って、第1の実施の形態によれば、シリンダブロック6の各シリンダ穴8とテーパピストン10との接触箇所での摩耗を抑えることができる。さらに、シリンダ穴8内を摺動変位するテーパピストン10の外形形状に合わせてりん酸マンガンの化成皮膜18が早期になじむ。これによって、シリンダ穴8の開口部周縁8Bとテーパピストン10との接触領域に偏りが生じるのを抑えることができる。
 このため、シリンダ穴8の開口部周縁8Bとテーパピストン10との接触領域が広がるのを抑制でき、接触領域の拡大に伴う発熱量の増大を抑えることができ、斜軸式油圧モータ(液圧回転機)としての信頼性を高めることができる。
 図17~図20は本発明の第2の実施の形態に係る斜軸式液圧回転機を示している。
 第2の実施の形態の特徴は、窒化処理層のうち表面側に位置する化合物層を研磨手段で除去し、この状態で表面側に化成皮膜を形成する構成としたことにある。なお、本実施の形態では、上述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略するものとする。
 第2の実施の形態では、図17に示す手順に従ってシリンダブロック6の表面処理を行う構成としている。この場合、図20に示すように、シリンダブロック6の表面側に形成された表面処理層31は、第1の実施の形態と同様に窒化処理層17と後述の化成皮膜32とにより構成されている。即ち、図18に示すようにシリンダブロック6の母材16に対し窒化系の熱処理を施す。これにより、第1の実施の形態と同様に拡散層17Aと化合物層17Bとからなる窒化処理層17を形成する(図17中のステップ31)。
 しかし、第2の実施の形態にあっては、ステップ32の除去処理を追加して行う。これにより、窒化処理層17のうち表面側に位置する化合物層17Bをホーニング加工等の研磨手段を用いて除去する。これによって、図19に示すように母材16の表面側には、窒化処理層17の拡散層17Aが外側に露出されるようになる。
 次に、この状態でステップ33の化成皮膜処理では、例えばりん酸マンガンが加熱溶融された浴槽(図示せず)中に、シリンダブロック6の母材16を所定時間にわたって浸漬させる。このような浸漬(ディピング)処理によって、図20に示す如くりん酸マンガンの化成皮膜32を拡散層17Aの表面側に形成し、この化成皮膜32により窒化処理層17の拡散層17Aを外側から全面にわたって被覆するように覆う。
 かくして、このように構成される第2の実施の形態にあっても、シリンダブロック6の表面側に窒化処理層17とりん酸マンガンの化成皮膜32とからなる表面処理層31を形成することにより、前述した第1の実施の形態と同様の作用効果を得ることができる。特に、第2の実施の形態では、窒化処理層17のうち表面側に位置する化合物層17Bを研磨手段で除去することにより、次のような効果を奏する。
 即ち、油圧モータの場合には、回転軸4の回転方向が頻繁に切換えられる。このように、シリンダブロック6が正方向の回転と逆方向の回転とを繰返すような場合に、シリンダ穴8の開口部周縁8Bとテーパピストン10との接触部位に衝撃荷重が発生したとしても、これに伴う前記化合物層17Bの剥離をなくすことができる。これにより、両者の接触部位におけるかじり、焼付き等の発生を防ぐことができ、しかも、シリンダ穴8の開口部周縁8Bにはりん酸マンガンの化成皮膜32を安定した状態で確保し、残しておくことができる。
 さらに、前記化合物層17Bを研磨手段で除去した後に、開口部周縁8Bの摩耗量と同程度以上の化成皮膜32を形成しておく。これにより、シリンダブロック6に形成した窒化処理層17の拡散層17Aが摩耗によって損傷を受けるのを抑制することができる。このため、シリンダ穴8の開口部周縁8Bで摺動面の粗さが悪くなるのを抑えることができ、テーパピストン10の摺動特性を良好に保つことができる。
 なお、前記各実施の形態では、斜軸式液圧回転機として斜軸式で固定容量型の油圧モータを例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば斜軸式で可変容量型の油圧モータに適用してもよい。さらには、斜軸式で固定容量型または可変容量型の油圧ポンプに適用してもよい。この場合には、一対の給排ポートのうち低圧側のポートを吸入ポートとし、高圧側のポートを吐出ポートとして用いるものである。
 さらに、第1の実施の形態では、テーパピストン10に形成する表面処理層20を、窒化処理層21と酸化皮膜22とによって構成する場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えばテーパピストン10の表面処理層を窒化処理層のみにより構成してもよい。一方、テーパピストンについては、表面の硬度を高めるために、窒化系の処理以外の熱処理を施す構成としてもよい。
 1 ケーシング
 2 ケーシング本体
 2A 一側筒部
 2B 他側筒部
 3 ヘッドケーシング
 4 回転軸
 5 ドライブディスク
 6 シリンダブロック
 7 センタ穴
 8 シリンダ穴
 8B 開口部周縁
 9 センタシャフト
 10 テーパピストン
 13 弁板
 13B,13C 給排ポート
 15,20,31 表面処理層
 17,21 窒化処理層
 17A,21A 拡散層
 17B,21B 化合物層
 18,32 化成皮膜(りん酸マンガン皮膜)
 22 酸化皮膜

Claims (4)

  1.  筒状のケーシング(1)と、該ケーシング(1)に回転自在に設けられた回転軸(4)と、該回転軸(4)と一体に回転するように前記ケーシング(1)内に設けられ周方向に離間して軸方向に延びる複数のシリンダ穴(8)を有したシリンダブロック(6)と、軸方向の一側が前記回転軸(4)に揺動自在に支持され他側が前記シリンダブロック(6)の各シリンダ穴(8)に往復動可能に挿嵌された複数のテーパピストン(10)とを備えてなる斜軸式液圧回転機において、
     前記シリンダブロック(6)には、前記各シリンダ穴(8)を含んで窒化系の処理を施した窒化処理層(17)を形成し、
     該窒化処理層(17)の表面側にはりん酸マンガン皮膜からなる化成皮膜(18,32)を形成する構成としたことを特徴とする斜軸式液圧回転機。
  2.  前記シリンダブロック(6)に形成された前記窒化処理層(17)は、母材の表面側に形成される拡散層(17A)と、該拡散層(17A)の表面側に形成される化合物層(17B)とにより構成し、前記りん酸マンガン皮膜からなる化成皮膜(18)は、前記化合物層(17B)の表面側に形成してなる請求項1に記載の斜軸式液圧回転機。
  3.  前記シリンダブロック(6)に形成された前記窒化処理層(17)は、母材の表面側に形成される拡散層(17A)と、該拡散層(17A)の表面側に形成される化合物層(17B)とにより構成し、前記シリンダブロック(6)のシリンダ穴(8)には、前記窒化処理層(17)のうち前記化合物層(17B)を研磨手段で除去した状態で、前記りん酸マンガン皮膜からなる前記化成皮膜(32)を形成する構成としてなる請求項1に記載の斜軸式液圧回転機。
  4.  前記テーパピストン(10)には、窒化系の処理を施して形成した窒化処理層(21)と、該窒化処理層(21)の表面側に形成した酸化皮膜(22)とを設けてなる請求項1に記載の斜軸式液圧回転機。
PCT/JP2011/063586 2010-06-23 2011-06-14 斜軸式液圧回転機 WO2011162128A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180014548.6A CN102812245B (zh) 2010-06-23 2011-06-14 斜轴式液压回转机
EP11798014.4A EP2587058B1 (en) 2010-06-23 2011-06-14 Bent axis type hydraulic rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010142347A JP5425722B2 (ja) 2010-06-23 2010-06-23 斜軸式液圧回転機
JP2010-142347 2010-06-23

Publications (2)

Publication Number Publication Date
WO2011162128A1 true WO2011162128A1 (ja) 2011-12-29
WO2011162128A9 WO2011162128A9 (ja) 2012-03-08

Family

ID=45371322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063586 WO2011162128A1 (ja) 2010-06-23 2011-06-14 斜軸式液圧回転機

Country Status (4)

Country Link
EP (1) EP2587058B1 (ja)
JP (1) JP5425722B2 (ja)
CN (1) CN102812245B (ja)
WO (1) WO2011162128A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781082B2 (ja) 2017-03-10 2020-11-04 日立建機株式会社 アキシャルピストン式液圧回転機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436458A (ja) * 1990-05-31 1992-02-06 Toshiba Corp 摺動部品およびこれを用いた周波数可変型冷媒圧縮機
JP2000227083A (ja) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2005201220A (ja) * 2004-01-19 2005-07-28 Hitachi Constr Mach Co Ltd 液圧回転機
JP2008101581A (ja) 2006-10-20 2008-05-01 Hitachi Constr Mach Co Ltd 斜軸式液圧回転機
JP2009507160A (ja) * 2005-09-01 2009-02-19 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関用のピストンリングを製作するための方法及びこのようなピストンリング

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900003793B1 (ko) * 1986-08-25 1990-05-31 가부시키가이샤 히타치세이사쿠쇼 액셜피스톤기계의 스러스트 정압베어링 지지장치
DE19538447B4 (de) * 1995-10-16 2006-01-19 Brueninghaus Hydromatik Gmbh Hydrostatische Maschine mit reduzierter Druckflüssigkeitsmenge
CN1231672C (zh) * 2002-04-29 2005-12-14 乐金电子(天津)电器有限公司 密封型压缩机活塞杆的制造方法
US7363849B2 (en) * 2003-06-11 2008-04-29 Brueninghaus Hydromatik Gmbh Axial piston machine with offset positioning element and cam disk for such an axial piston machine
DE102004033321B4 (de) * 2004-07-09 2006-03-30 Brueninghaus Hydromatik Gmbh Axialkolbenmaschine mit Verschleißschutzschicht
JP2007092829A (ja) * 2005-09-28 2007-04-12 Toyota Motor Corp
CN201502521U (zh) * 2009-07-27 2010-06-09 梅河口市兴业精密钢管厂 抽油泵泵筒表面层结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436458A (ja) * 1990-05-31 1992-02-06 Toshiba Corp 摺動部品およびこれを用いた周波数可変型冷媒圧縮機
JP2000227083A (ja) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2005201220A (ja) * 2004-01-19 2005-07-28 Hitachi Constr Mach Co Ltd 液圧回転機
JP2009507160A (ja) * 2005-09-01 2009-02-19 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関用のピストンリングを製作するための方法及びこのようなピストンリング
JP2008101581A (ja) 2006-10-20 2008-05-01 Hitachi Constr Mach Co Ltd 斜軸式液圧回転機

Also Published As

Publication number Publication date
JP5425722B2 (ja) 2014-02-26
EP2587058B1 (en) 2020-03-25
JP2012007509A (ja) 2012-01-12
CN102812245A (zh) 2012-12-05
CN102812245B (zh) 2015-10-07
EP2587058A4 (en) 2018-01-03
WO2011162128A9 (ja) 2012-03-08
EP2587058A1 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP4643119B2 (ja) スクリューマシン
JP2000205284A (ja) 転がり摺動部品
JP2008248800A (ja) 液ポンプ
KR20180116141A (ko) 커넥팅 로드 베어링, 및 베어링 장치
WO2011162128A1 (ja) 斜軸式液圧回転機
JP2004340249A (ja) すべり軸受
JP2016138629A (ja) ピストンリング
CN106164508A (zh) 摩擦最小化的滑动轴承装置
US8118059B2 (en) Control valve for a camshaft adjuster
JP4813135B2 (ja) 回転式圧縮機
JP5405342B2 (ja) 液圧回転機
JP6276911B2 (ja) 液圧回転機
US8444405B2 (en) Overmolded rotor
CN114630961B (zh) 用于活塞泵的滚子挺杆、活塞泵
JP2020051276A (ja) 斜軸式液圧回転機
JP2001032837A (ja) すべり軸受
JP2015203359A (ja) 内接ギアポンプ
JP4146164B2 (ja) ピストン型流体機械
JP2008045493A (ja) ラジアルピストンポンプまたはモータ
JPH10141227A (ja) 圧縮機
JP2015086864A (ja) ローラー式ロッカーアーム
JP2003343450A (ja) 表面処理ピストンを備えた流体機械
WO2020054242A1 (ja) 内燃機関のバルブタイミング制御装置及びその製造方法
JP2008045494A (ja) ラジアルピストンポンプまたはモータ
JP2010024929A (ja) ラジアルピストンポンプまたはモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014548.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1637/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011798014

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE