WO2011161856A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2011161856A1
WO2011161856A1 PCT/JP2011/001822 JP2011001822W WO2011161856A1 WO 2011161856 A1 WO2011161856 A1 WO 2011161856A1 JP 2011001822 W JP2011001822 W JP 2011001822W WO 2011161856 A1 WO2011161856 A1 WO 2011161856A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control
vehicle body
tilt
lateral acceleration
Prior art date
Application number
PCT/JP2011/001822
Other languages
French (fr)
Japanese (ja)
Inventor
山本 伸司
林 弘毅
裕司 高倉
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to CN201180031536.4A priority Critical patent/CN103079946B/en
Publication of WO2011161856A1 publication Critical patent/WO2011161856A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/414Acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/023Tricycles specially adapted for disabled riders, e.g. personal mobility type vehicles with three wheels
    • B62K5/025Tricycles specially adapted for disabled riders, e.g. personal mobility type vehicles with three wheels power-driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/45Rolling frame vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K2005/001Suspension details for cycles with three or more main road wheels

Definitions

  • the present invention relates to a vehicle having at least a pair of left and right wheels.
  • Patent Document 1 a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
  • the present invention solves the problems of the conventional vehicle, by stopping the tilt control of the vehicle body when stopping, and by operating a tilt brake device that stops the tilt operation of the vehicle body and locks the posture of the vehicle body, There is no need to perform tilt control when the vehicle is stopped, no unnecessary vibration is generated, and the posture of the vehicle body does not change, so that passengers do not feel uncomfortable, provide a comfortable and high safety vehicle. For the purpose.
  • a vehicle body including a steering unit and a drive unit coupled to each other, and a wheel rotatably attached to the steering unit, the steering wheel steering the vehicle body, A wheel rotatably attached to the drive unit, the drive wheel for driving the vehicle body, a tilt actuator device for tilting the steering unit or the drive unit in a turning direction, and stopping the tilting operation of the vehicle body
  • the vehicle body tilt is not controlled when the vehicle stops, unnecessary vibration does not occur, and the posture of the vehicle body does not change when the vehicle stops. Therefore, the rider does not feel uncomfortable and the ride comfort can be improved.
  • the change rate of the inclination of the vehicle body is suppressed and smoothly changes, so that the ride comfort is improved.
  • a large change in the inclination of the vehicle body can be surely prevented, and safety can be improved.
  • the stoppage determination accuracy is improved, and the posture of the vehicle body can be locked safely and reliably.
  • the tilt control of the vehicle body can be stopped under a wider range of conditions, the power consumption can be further suppressed, the change in the posture of the vehicle body can be prevented, and the ride comfort can be reduced. Can be improved.
  • the stoppage release determination accuracy is improved, and the vehicle body tilt control can be started reliably.
  • FIG. 1 is a right side view showing a configuration of a vehicle in an embodiment of the present invention
  • FIG. 2 is a diagram showing a configuration of a link mechanism of the vehicle in the embodiment of the present invention
  • FIG. 3 is a vehicle in the embodiment of the present invention. It is a rear view which shows the structure.
  • 3A is a diagram showing a state where the vehicle body is standing upright
  • FIG. 3B is a diagram showing a state where the vehicle body is inclined.
  • reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body.
  • the wheel 12F is a front wheel disposed as a steering wheel
  • the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels.
  • the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30.
  • a link motor 25 as a tilt actuator device.
  • the vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
  • the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
  • the left and right wheels 12L and 12R are upright with respect to the road surface 18, that is, the camber angle is 0 degree.
  • the left and right wheels 12L and 12R are inclined in the right direction with respect to the road surface 18, that is, a camber angle is given.
  • the link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R.
  • a right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R;
  • the lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically.
  • the left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof.
  • the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
  • the rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable.
  • a rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft.
  • the rotational drive device 51 may be a motor other than an in-wheel motor.
  • the link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body.
  • the body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 ⁇ / b> U on the upper side of the link mechanism 30.
  • the rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U.
  • the link motor 25 When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
  • the link motor 25 includes a link brake 26, which will be described later, as an inclination brake device that fixes the rotation shaft to the body in a non-rotatable manner.
  • the link brake 26 is preferably a mechanical lock mechanism that does not consume power while the rotation shaft is fixed to the body in a non-rotatable manner.
  • the link brake 26 can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
  • the boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown).
  • the connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
  • the boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c.
  • the seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling.
  • the footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1A) and below the seat 11a.
  • a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20.
  • the battery device is an energy supply source for the rotation drive device 51 and the link motor 25.
  • a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
  • a steering device 41 is disposed in front of the seat 11a.
  • the steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch.
  • the occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.).
  • a steering device that is a means for outputting the required turning amount of the vehicle body requested by the occupant
  • other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handlebar 41a as the steering device. It can also be used as
  • the wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device).
  • the suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
  • the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
  • the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member.
  • the steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end.
  • the vehicle 10 includes a throttle grip 35 and a hand brake 36, which will be described later, as part of the control device.
  • the throttle grip 35 is a member similar to a throttle grip used in general motorcycles, bicycles, and the like, and is rotatably attached to one end of the handle bar 41a, depending on the rotation angle, that is, the throttle opening. Thus, it is a device for inputting a travel command for accelerating the vehicle 10.
  • the hand brake 36 is a parking brake instruction device or a parking brake instruction device.
  • the hand brake 36 includes operation means such as a lever and a button. A device for operating the device.
  • the vehicle 10 has a lateral acceleration sensor 44.
  • the lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10, that is, the acceleration in the lateral direction (horizontal direction in FIG. 3) as the width direction of the vehicle body. To do.
  • the vehicle 10 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body.
  • the vehicle body By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to gravity downward in the vertical direction, so that a sense of discomfort is reduced and the stability of the vehicle 10 is improved.
  • the lateral acceleration sensor 44 in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body, and feedback control is performed so that the output of the lateral acceleration sensor 44 becomes zero.
  • the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical.
  • the lateral acceleration sensor 44 is disposed so as to be positioned at the center in the width direction of the vehicle body, that is, on the longitudinal axis of the vehicle body.
  • an unnecessary acceleration component may be detected.
  • the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
  • the vehicle 10 includes a portion that functions as a spring with elasticity such as the tire portions of the wheels 12L and 12R, and includes inevitable backlash at the connection portion of each member.
  • the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, and therefore acceleration generated by the displacement of the play and springs is also detected as an unnecessary acceleration component.
  • Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
  • lateral acceleration sensors 44 there are a plurality of lateral acceleration sensors 44, which are arranged at different heights.
  • a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b are arranged at different height positions.
  • the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing.
  • the second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 .
  • the detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 .
  • the center of the tilting motion when the vehicle body tilts that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
  • both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Furthermore, it is desirable that both the first lateral acceleration sensor 44 a and the second lateral acceleration sensor 44 b are disposed above the link mechanism 30. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”.
  • first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the front wheel 12F and the axle of the rear wheels 12L and 12R. Further, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Furthermore, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are located on the vehicle center axis extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction.
  • the vehicle 10 has a vehicle speed sensor 54, which will be described later, as vehicle speed detection means for detecting the vehicle speed as the traveling speed.
  • the vehicle speed sensor 54 is disposed at the lower end of the front wheel fork 17 that indicates the axle of the wheel 12F, and is a sensor that detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
  • the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device.
  • the vehicle body tilt control system is a kind of computer system, and includes a tilt control device including an ECU (Electronic Control Unit).
  • the tilt control device includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and includes a throttle grip 35, a hand brake 36, a lateral acceleration sensor 44, a vehicle speed sensor 54, a link motor 25, and the like. Connected to the link brake 26. Then, the tilt control device outputs a torque command value for operating the link motor 25 based on the lateral acceleration detected by the lateral acceleration sensor 44.
  • the tilt control device performs feedback control during turning, so that the link motor 25 is adjusted so that the tilt angle of the vehicle body becomes an angle such that the value of the lateral acceleration detected by the lateral acceleration sensor 44 becomes zero. Is activated. That is, the tilt angle of the vehicle body is controlled so that the centrifugal force to the outside of the turn and gravity are balanced and the lateral acceleration component becomes zero. As a result, a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant on the riding section 11. Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved. In addition, the rider does not feel discomfort and the ride comfort is improved.
  • FIG. 4 is a block diagram showing the configuration of the vehicle body tilt control system in the embodiment of the present invention
  • FIG. 5 is a diagram showing the time change of the tilt control gain in the embodiment of the present invention.
  • 46 is a tilt control ECU as a tilt control device, which is a throttle grip 35, a hand brake 36, a first lateral acceleration sensor 44a, a second lateral acceleration sensor 44b, a vehicle speed sensor 54, as one of the travel command devices,
  • the link motor 25 and the link brake 26 are connected.
  • the tilt control ECU 46 includes a lateral acceleration calculation unit 48, a tilt control unit 47, and a tilt control stop determination unit 49. Then, the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. Further, the inclination control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48. Further, the inclination control stop determination unit 49 is based on the throttle opening which is the rotation angle of the throttle grip 35, that is, the operation state of the travel command input device, the operation state of the hand brake 36, and the vehicle speed detected by the vehicle speed sensor 54.
  • the tilt control gain G 0 is output to the tilt control unit 47, and when it is determined that the tilt control is stopped, a link brake operation signal for operating the link brake 26 is output.
  • a value obtained by multiplying the torque command value output from the tilt control unit 47 by the tilt control gain G 0 is input to the link motor 25 as a control value.
  • the inclination control stop determination unit 49 is operated when the hand brake 36 is operated for a time longer than a preset first threshold (threshold value) (for example, 2 seconds), that is, the hand brake If the state where the vehicle 36 is ON is determined, it is determined that the vehicle 10 has stopped, the link brake 26 is operated to fix the rotation shaft of the link motor 25 to be non-rotatable, and the tilt control unit 47 controls the tilt. Stop.
  • a preset first threshold for example, 2 seconds
  • the throttle grip 35 is not operated, and the vehicle speed is set to a second threshold value (for example, If not exceeding 2 [km / h]), the rotation of the rotation axis of the link motor 25 is maintained without releasing the link brake 26 and the inclination control by the inclination controller 47 is stopped.
  • a second threshold value for example, If not exceeding 2 [km / h]
  • the vehicle speed is equal to or lower than the second threshold value, and The state in which the value of the lateral acceleration detected by the lateral acceleration sensor 44 is equal to or less than a preset third threshold (for example, 0.05 [G]) continues for a longer time than the fourth threshold (for example, 1 second). If it is determined that the vehicle 10 has stopped, the link brake 26 is operated to fix the rotation shaft of the link motor 25 so as not to rotate, and the tilt control by the tilt control unit 47 is stopped.
  • a preset third threshold for example, 0.05 [G]
  • the link brake 26 is a mechanical lock mechanism and does not consume power while the rotation shaft is fixed to the body so as not to rotate.
  • the inclination control ECU 46 stops the supply of electric power to the link motor 25 after operating the link brake 26. Therefore, since electric power is not supplied to the link motor 25 and the link brake 26 while the vehicle is stopped, power consumption can be suppressed.
  • the inclination control stop determination unit 49 starts the inclination control by the inclination control unit 47, and after starting the inclination control, releases the link brake 26 and enables the rotation shaft of the link motor 25 to rotate. Note that immediately after the start of the tilt control, the value of the tilt control gain G 0 is gradually increased.
  • the vehicle body When the vehicle 10 stops at the time when the lateral road surface inclination angle is different from the current road surface inclination, or when the vehicle 10 stops abnormally, the vehicle body is inclined in the horizontal direction from the beginning. In this case, when the tilt control is started, the torque command value output from the tilt control unit 47 becomes a large value, and the link motor 25 starts according to the large torque command value. As a result, the vehicle body posture changes quickly, and the passenger may feel uncomfortable.
  • the transition control is performed, and the value of the tilt control gain G 0 multiplied by the torque command value is gradually increased during the predetermined transition period.
  • the control value input to the link motor 25 is relaxed. That is, by appropriately controlling the control value input to the link motor 25, the inclination of the vehicle body after stopping can be returned at an arbitrary change speed.
  • the value of the slope control gain G 0 starts from zero at the start of the slope control, that is, at the start of the transition control, and increases with the passage of time. Set to 1 after the period has elapsed.
  • the value of the inclination control gain G 0 being 1 means that the torque command value output from the inclination control unit 47 is input to the link motor 25 as it is.
  • the transition period which is the period for performing transition control, is set to 0.5 seconds, but can be changed as appropriate.
  • the value of the gradient control gain G 0 at the start of the transition control is set to zero, but it is not necessarily zero, and is set to an arbitrary value (for example, 0.1, 0.5, etc.). can do.
  • the value of the gradient control gain G 0 is increased linearly (linearly), but is not necessarily increased linearly. For example, it may increase stepwise or a quadratic curve. It may increase in the form of an exponent or may increase exponentially.
  • FIG. 6 is a diagram showing a dynamic model for explaining the tilting operation of the vehicle body during cornering in the embodiment of the present invention
  • FIG. 7 is a block diagram of a control system in the embodiment of the present invention.
  • the vehicle body tilt control system starts the vehicle body tilt control process.
  • the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG.
  • a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn.
  • the lateral acceleration calculation unit 48 executes a lateral acceleration calculation process, calculates a combined lateral acceleration ac, and outputs it to the tilt control unit 47.
  • the tilt control section 47 performs feedback control, the value of the composite lateral acceleration a c and outputs a torque command value as the control value such that zero link motor 25.
  • the vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 10 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
  • 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body
  • 44B is a first position indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Two sensor positions.
  • the acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is ⁇ 1> centrifugal force acting on the vehicle body when turning, and ⁇ 2> tilting the vehicle body toward the inside of the turn.
  • the acceleration generated by the displacement of the second lateral acceleration sensor 44b in the circumferential direction, and the ⁇ 4> operation of the link motor 25 or the reaction thereof causes the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b to be displaced in the circumferential direction.
  • ⁇ 1> and ⁇ 2> the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, that is, independent of L 1 and L 2.
  • ⁇ 3> and ⁇ 4> are accelerations generated by displacement in the circumferential direction, they are proportional to the distance from the roll center, that is, roughly proportional to L 1 and L 2 .
  • the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value.
  • the acceleration ⁇ 3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration.
  • the acceleration of ⁇ 4> which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 .
  • the acceleration of ⁇ 1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected
  • the acceleration of ⁇ 2> that outputs the detected value is defined as a G. Since ⁇ 1> and ⁇ 2> are irrelevant to the heights of the first and second lateral acceleration sensors 44a and 44b, the detection values of the first and second lateral acceleration sensors 44a and 44b are equal. .
  • the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring
  • the angular acceleration omega Let R '.
  • the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ⁇ M
  • the angular acceleration is ⁇ M ′.
  • the angular velocity ⁇ M or the angular acceleration ⁇ M ′ can be obtained from the detection value of the link angle sensor.
  • a X1 L 1 ⁇ R ′
  • a X2 L 2 ⁇ R ′
  • a M1 L 1 ⁇ M ′
  • a M2 L 2 ⁇ M ′.
  • a 1 and a 2 are four accelerations ⁇ 1> to ⁇ 4. It is represented by the following formulas (1) and (2).
  • a 1 a T + a G + L 1 ⁇ R '+ L 1 ⁇ M' ⁇ formula (1)
  • a 2 a T + a G + L 2 ⁇ R '+ L 2 ⁇ M' ⁇ formula (2) Then, by subtracting equation (2) from equation (1), the following equation (3) can be obtained.
  • a 1 ⁇ a 2 (L 1 ⁇ L 2 ) ⁇ R ′ + (L 1 ⁇ L 2 ) ⁇ M ′ Equation (3)
  • the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • the value of ⁇ M ′ is known because it is a differential value of the angular velocity ⁇ M of the link motor 25.
  • the value of ⁇ R ′ of the first term is unknown, and all other values are known. Therefore, the value of ⁇ R ′ can be obtained from the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • the lateral acceleration calculation unit 48 based on the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, and calculates the resultant lateral acceleration a c.
  • the combined lateral acceleration a c is a value corresponding to the lateral acceleration sensor value in the case where there is one lateral acceleration sensor 44, and the first lateral acceleration sensor value a 1 and the second lateral acceleration sensor value a 2 are obtained. It is a synthesized value and is obtained by the following equations (4) and (5).
  • ⁇ a is an acceleration difference and is expressed by the following equation (6).
  • ⁇ a a 1 ⁇ a 2 Formula (6)
  • ⁇ L is expressed by the following equation (7).
  • ⁇ L L 1 ⁇ L 2 Formula (7)
  • the same value can be obtained by both equation (4) and equation (5), but since the acceleration caused by the circumferential displacement is proportional to the distance from the roll center, in practice, the roll center It is desirable to use a 2 which is a detection value of the lateral acceleration sensor 44 closer to the second lateral acceleration sensor 44b as a reference. Therefore, in the present embodiment, the combined lateral acceleration ac is calculated by the equation (4).
  • f 1 is a transfer function represented by the above equation (4).
  • G P is a control gain of the proportional control operation
  • G D is the control gain of the differential control operation
  • s is a differential element.
  • FIG. 8 is a flowchart showing the overall operation of the vehicle body tilt control according to the embodiment of the present invention.
  • the inclination control stop determination unit 49 executes an inclination control stop determination process (step S1). Then, if it is determined that the vehicle 10 is stopped, the inclination control should be stopped, and the value of the inclination control stop determination flag Flg L is set to 1. If it is determined that the vehicle 10 is not stopped, the vehicle is inclined. The value of the control stop determination flag Flg L is set to zero.
  • the inclination control stop determination unit 49 determines whether or not the value of the inclination control stop determination flag Flg L is zero (step S2). When the value of the inclination control stop determination flag Flg L is zero, the inclination control stop determination unit 49 determines whether or not the value of the transition control execution determination flag Flg M is zero (step S3). .
  • the transition control execution determination flag Flg M is used when the slope control stop determination unit 49 performs transition control to change the value of the slope control gain G 0 , that is, within a transition period that is a period for performing transition control. This is a flag whose value is set to 1 when it is, and whose value is set to zero otherwise.
  • step S4 when the value of the transition control execution determination flag Flg M is zero, it can be determined that the transition period has elapsed, so the inclination control stop determination unit 49 sets the value of the inclination control gain G 0 to 1. Set (step S4).
  • the inclination control stop determination unit 49 determines whether or not the value of the link brake state determination flag Flg B is zero (step S5).
  • the link brake state determination flag Flg B is a flag whose value is set to 1 when the link brake 26 is operating, and whose value is set to zero otherwise.
  • the inclination control stop determination unit 49 performs the inclination control by the inclination control unit 47. Stop. Therefore, the inclination control unit 47 does not execute the inclination control process.
  • the inclination control unit 47 determines whether or not the value of the transition control execution determination flag Flg M is zero and the value of the link brake state determination flag Flg B is 1 (step S7). .
  • the inclination control unit 47 again executes the inclination control stop determination process and repeats the subsequent operations.
  • step S10 it is determined whether or not the value of the inclination control stop determination flag Flg L is zero. If the value of the inclination control stop determination flag Flg L is 1 instead of zero, the inclination control is stopped. Therefore, the inclination control stop determination unit 49 transmits a link brake ON signal (step S10), operates the link brake 26, and sets the value of the link brake state determination flag Flg B to 1 (step S10). S11).
  • the inclination control stop determination unit 49 sets the value of the inclination control gain G 0 to 0 (step S12), and sets a value obtained by multiplying the torque command value input to the link motor 25 by the inclination control gain G 0 to zero. And thereby, the inclination control by the inclination control part 47 will be in the substantially stopped state. Then, the inclination control stop determination unit 49 sets the value of the transition control execution determination flag Flg M to 1 (step S13), and determines whether or not the value of the link brake state determination flag Flg B is zero. .
  • the inclination control stop determination unit 49 increments the value of the inclination control gain G 0 by a predetermined value (step S14).
  • a predetermined value corresponds to an increasing rate of the value of the gradient control gain G 0 in the transition control.
  • the control cycle T S of the vehicle body tilt control process is 10 [ms]
  • the value of the tilt control gain G 0 is linear from zero to 1 within the transition period of 0.5 seconds as shown in FIG.
  • the predetermined value is 0.02.
  • the tilt control stop determination unit 49 determines whether or not the set value of the tilt control gain G 0 is 1 or less (step S15).
  • the set value of the gradient control gain G 0 is not less than 1 but greater than 1, it can be determined that the transition period has elapsed, and therefore the gradient control stop determination unit 49 executes the transition control.
  • the value of the determination flag Flg M is set to zero (step S16), and it is determined whether or not the value of the link brake state determination flag Flg B is zero. If the set value of the gradient control gain G 0 is 1 or less, it can be determined that it is within the transition period. Therefore, the gradient control stop determination unit 49 does not change the link brake state determination flag Flg. Determine whether the value of B is zero.
  • Such a vehicle body tilt control process is repeatedly executed at a predetermined control cycle T S.
  • FIG. 9 is a subroutine showing the operation of the inclination control stop determination process in the embodiment of the present invention.
  • the inclination control stop determination unit 49 determines whether or not the first count value Cnt1 exceeds a preset first count threshold value (step S1-3).
  • the first count threshold is a count value corresponding to a time during which the hand brake 36 having a length sufficient to determine that the vehicle 10 has stopped is ON, and corresponds to the first threshold value. It is. For example, a control period T S of the body tilt control processing 10 [ms], if the time the hand brake 36 is ON is longer than 4 seconds, the vehicle 10 is assumed to be determined to have stopped, The first count threshold is 400.
  • the tilt control stop determination unit 49 determines that the vehicle 10 has stopped, and sets the value of the tilt control stop determination flag Flg L to 1 (Step S1-4), and the process ends.
  • the tilt control stop determination unit 49 sets the first count value Cnt1. It is set to zero (step S1-5). Subsequently, the inclination control stop determination unit 49 determines whether or not the throttle opening as the rotation angle of the throttle grip 35, that is, Th is zero (step S1-6).
  • the inclination control stop determination unit 49 determines that the absolute value of the vehicle speed detected by the vehicle speed sensor 54, that is,
  • the inclination control stop determination unit 49 determines the inclination control stop determination flag Flg. It is determined whether or not the value of L is 1 (step S1-8).
  • the inclination control stop determination unit 49 determines the value of the inclination control stop determination flag Flg L. Is set to zero (step S1-14), and the process is terminated.
  • the tilt control stop determination unit 49 It is determined whether or not the value of the inclination control stop determination flag Flg L is 1.
  • the inclination control stop determination unit 49 ends the process as it is. To do.
  • the tilt control stop determination unit 49 When the absolute value of the combined lateral acceleration a c is equal to or smaller than the third threshold value, the tilt control stop determination unit 49 performs counting with a counter (not shown) and increments the second count value, that is, Cnt2 by 1. (Step S1-10). That is, a value obtained by adding 1 to the second count value Cnt2 set at the previous execution of the vehicle body tilt control process is set as the current second count value Cnt2. Further, when the absolute value of the resultant lateral acceleration a c is not less than the third threshold, i.e., if it exceeds a third threshold value, the tilt control stop determination unit 49 sets the second count value Cnt2 to zero (Step S1-11).
  • the inclination control stop determination unit 49 determines whether or not the second count value Cnt2 exceeds a preset second count threshold value (step S1-12).
  • Count threshold of said second without the hand brake 36 is operated, the vehicle speed is not more than the second threshold value, and the state is the absolute value of the resultant lateral acceleration a c is equal to or less than the third threshold value, It is a count value corresponding to a time sufficient to determine that the vehicle 10 has stopped, and is a count value corresponding to the fourth threshold value.
  • a control period T S of the body tilt control processing 10 [ms]
  • the vehicle speed is not more than the second threshold value
  • the absolute value of the resultant lateral acceleration a c is equal to or less than the third threshold state If it is longer than 1 second, it may be determined that the vehicle 10 has stopped, the second count threshold is 100.
  • the tilt control stop determination unit 49 determines that the vehicle 10 has stopped, and sets the value of the tilt control stop determination flag Flg L to 1 Then (step S1-13), the process ends. If the second count value Cnt2 does not exceed the second count threshold, the tilt control stop determination unit 49 ends the process as it is.
  • FIG. 10 is a subroutine showing the operation of the tilt control process in the embodiment of the present invention.
  • Tilt control unit 47 first receives a combined lateral acceleration a c from the lateral acceleration calculation unit 48 (step S6-1).
  • tilt control unit 47 obtains the control period T S (step S6-3), and calculates the differential value of the resultant lateral acceleration a c (step S6-4).
  • the .DELTA.a c is calculated by the following equation (8).
  • ⁇ a c ( ac ⁇ a old ) / T S (8)
  • tilt control unit 47 calculates the first control value U P (step S6-6).
  • the first control value UP is calculated by the following equation (9).
  • U P G P a c ⁇ formula (9)
  • tilt control unit 47 calculates the second control value U D (step S6-7).
  • the second control value U D is calculated by the following equation (10).
  • U D G D ⁇ ac c Formula (10)
  • the inclination control unit 47 calculates a third control value U (step S6-8).
  • Third control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (11).
  • U U P + U D ⁇ formula (11)
  • the tilt control unit 47 calculates a lateral acceleration predicted value a f (step S6-9).
  • the predicted lateral acceleration value a f is a value that can be calculated based on the steering angle of the handlebar 41a and the vehicle speed, and the filtered steering angle of the handlebar 41a is ⁇ (t), and the front wheel 12F is the front wheel.
  • the inclination control unit 47 calculates a differential value of the a f (step S6-11).
  • the .DELTA.a f is calculated by the following equation (13).
  • ⁇ a f (a f ⁇ a fold ) / T S Expression (13)
  • the inclination control unit 47 calculates the fourth control value U fD (step S6-13).
  • the fourth control value U fD is calculated by the following equation (14).
  • U fD G yD ⁇ a f Expression (14)
  • the inclination control unit 47 calculates a fifth control value U (step S6-14).
  • the fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (15).
  • U U + U fD Expression (15)
  • the operation of the steps S6-9 ⁇ S6-14 represents feedforward control using lateral acceleration estimated value a f obtained based on the steering angle and the vehicle speed.
  • the inclination control unit 47 calculates a sixth control value U out (step S6-15).
  • the sixth control value U out is a value obtained by multiplying the fifth control value U by the inclination control gain G 0 and is calculated by the following equation (16).
  • U out UG 0 Equation (16)
  • the vehicle body tilt control is stopped, and the vehicle body tilt operation is stopped to activate the link brake 26 that locks the vehicle body posture.
  • the link brake 26 that locks the vehicle body posture.
  • the link motor 25 is controlled by performing the transition control and gradually increasing the value of the tilt control gain G 0 multiplied by the torque command value during the predetermined transition period.
  • the torque command value input to is relaxed.
  • the throttle grip 35 is not operated even when the hand brake 36 is turned off, and the vehicle speed exceeds the preset second threshold value. Otherwise, since the posture of the vehicle body is maintained, it is not necessary for the occupant to continue to operate the hand brake 36, and the operation burden on the occupant is reduced.
  • the state where the vehicle speed is equal to or lower than the second threshold and the lateral acceleration value is equal to or lower than the third threshold continues for a longer time than the fourth threshold. Then, it is determined that the vehicle 10 has stopped, and the tilting operation of the vehicle body is stopped to lock the posture of the vehicle body. Therefore, the tilt control of the vehicle body can be stopped under a wider range of conditions, and the power consumption can be further increased. In addition to being able to suppress, it is possible to improve the riding comfort by preventing a change in the posture of the vehicle body.
  • the present invention can be used for a vehicle having at least a pair of left and right wheels.

Abstract

The disclosed vehicle does not change in position, does not generate unnecessary vibrations, and does not require incline control when stopped, thus said vehicle is very safe, provides good ride quality and those riding therein do not feel any discomfort. The vehicle comprises: a vehicle provided with a drive unit and a steering unit which are connected to one another; a steering wheel for steering the vehicle; a drive wheel for driving the vehicle; a tilting actuator device for tilting a steering unit or a drive unit in the turning direction; a tilting brake device for stopping the tilting operation of the vehicle; a lateral acceleration sensor; and a control device. The control device controls so as to tilt in the turning direction on the basis of the lateral acceleration detected by the lateral acceleration sensor, and when the vehicle is stopped the control device stops the control of the vehicle tilt and operates the titling brake device and locks the position of the vehicle.

Description

車両vehicle
 本発明は、少なくとも左右一対の車輪を有する車両に関するものである。 The present invention relates to a vehicle having at least a pair of left and right wheels.
 近年、エネルギ資源の枯渇問題に鑑み、車両の省燃費化が強く要求されている。その一方で、車両の低価格化等から、車両の保有者が増大し、1人が1台の車両を保有する傾向にある。そのため、例えば、4人乗りの車両を運転者1人のみが運転することで、エネルギが無駄に消費されるという問題点があった。車両の小型化による省燃費化としては、車両を1人乗りの三輪車又は四輪車として構成する形態が最も効率的であるといえる。 In recent years, in view of the problem of exhaustion of energy resources, there has been a strong demand for fuel saving of vehicles. On the other hand, the number of vehicle owners is increasing due to the low price of vehicles, and one person tends to own one vehicle. Therefore, for example, there is a problem that energy is wasted when only one driver drives a four-seater vehicle. The most efficient way to save fuel consumption by reducing the size of the vehicle is to configure the vehicle as a one-seater tricycle or four-wheel vehicle.
 しかし、走行状態によっては、車両の安定性が低下してしまうことがある。そこで、車体を横方向に傾斜させることによって、旋回時の車両の安定性を向上させる技術が提案されている(例えば、特許文献1参照。)。 However, depending on the driving condition, the stability of the vehicle may decrease. Therefore, a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
特開2008-155671号公報JP 2008-155671 A
 しかしながら、前記従来の車両においては、停車時にも車体の傾斜制御を行うようになっているので、特に長時間に亘(わた)って停車する場合には、一定の傾斜状態を維持するために傾斜用アクチュエータ装置を作動させ続ける必要があり、電力消費量が増大してしまう。また、一定の傾斜状態を維持するように傾斜用アクチュエータ装置の制御を継続するので、制御系のノイズ等に起因する微小振動が生じ、乗員が不快に感じたり、不安を抱いたりしてしまうことがある。 However, in the conventional vehicle, since the tilt control of the vehicle body is performed even when the vehicle is stopped, particularly when the vehicle is stopped for a long time (in order to maintain a constant tilt state). It is necessary to continue operating the actuator device for tilting, and the power consumption increases. In addition, since the control of the tilt actuator device is continued so as to maintain a constant tilt state, minute vibrations caused by control system noise, etc. may occur, causing the passengers to feel uncomfortable or uneasy. There is.
 本発明は、前記従来の車両の問題点を解決して、停車時には車体の傾斜制御を停止するとともに、車体の傾斜動作を停止させて車体の姿勢をロックする傾斜ブレーキ装置を作動させることによって、停車時に傾斜制御を行う必要がなく、不要な振動が発生することがなく、車体の姿勢が変化しないので、乗員が不快に感じることがなく、乗り心地がよく、安全性の高い車両を提供することを目的とする。 The present invention solves the problems of the conventional vehicle, by stopping the tilt control of the vehicle body when stopping, and by operating a tilt brake device that stops the tilt operation of the vehicle body and locks the posture of the vehicle body, There is no need to perform tilt control when the vehicle is stopped, no unnecessary vibration is generated, and the posture of the vehicle body does not change, so that passengers do not feel uncomfortable, provide a comfortable and high safety vehicle. For the purpose.
 そのために、本発明の車両においては、互いに連結された操舵(だ)部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体の傾斜動作を停止させる傾斜ブレーキ装置と、前記車体に作用する横加速度を検出する横加速度センサと、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記横加速度センサが検出する横加速度に基づいて旋回方向に傾斜させる制御を行うとともに、停車時には前記車体の傾斜の制御を停止し、前記傾斜ブレーキ装置を作動させて前記車体の姿勢をロックする。 Therefore, in the vehicle according to the present invention, a vehicle body including a steering unit and a drive unit coupled to each other, and a wheel rotatably attached to the steering unit, the steering wheel steering the vehicle body, A wheel rotatably attached to the drive unit, the drive wheel for driving the vehicle body, a tilt actuator device for tilting the steering unit or the drive unit in a turning direction, and stopping the tilting operation of the vehicle body An inclination brake device, a lateral acceleration sensor that detects lateral acceleration acting on the vehicle body, and a control device that controls the tilt actuator device to control the vehicle body tilt, the control device comprising: The vehicle is controlled to incline in the turning direction based on the lateral acceleration detected by the lateral acceleration sensor, and when the vehicle stops, the vehicle body inclination control is stopped to produce the inclination brake device. It is not locking the vehicle body posture.
 請求項1の構成によれば、停車時に車体の傾斜の制御を行わないので不要な振動が発生することがなく、停車時に車体の姿勢が変化することもない。したがって、乗員が不快に感じることがなく、乗り心地を向上させることができる。 According to the configuration of the first aspect, since the vehicle body tilt is not controlled when the vehicle stops, unnecessary vibration does not occur, and the posture of the vehicle body does not change when the vehicle stops. Therefore, the rider does not feel uncomfortable and the ride comfort can be improved.
 請求項2の構成によれば、停車時に傾斜用アクチュエータ装置に電力を供給しないので、消費電力量を抑制することができる。 According to the configuration of claim 2, since electric power is not supplied to the tilt actuator device when the vehicle is stopped, the power consumption can be suppressed.
 請求項3の構成によれば、車体の傾斜の変化速度が抑制され、スムーズに変化するので、乗り心地が向上する。 According to the configuration of claim 3, the change rate of the inclination of the vehicle body is suppressed and smoothly changes, so that the ride comfort is improved.
 請求項4の構成によれば、車体の傾斜の大きな変化を確実に防止することができ、安全性を向上させることができる。 According to the configuration of claim 4, a large change in the inclination of the vehicle body can be surely prevented, and safety can be improved.
 請求項5の構成によれば、停車の判定精度が向上し、安全かつ確実に車体の姿勢をロックすることができる。 According to the configuration of claim 5, the stoppage determination accuracy is improved, and the posture of the vehicle body can be locked safely and reliably.
 請求項6の構成によれば、駐車ブレーキの操作手段の操作を継続する必要がなく、乗員の操作負担が軽減される。 According to the configuration of claim 6, it is not necessary to continue the operation of the parking brake operating means, and the operation burden on the occupant is reduced.
 請求項7の構成によれば、より広範囲な状況下で車体の傾斜制御を停止させることができ、消費電力量を更に抑制することができるとともに、車体の姿勢の変化を防止して、乗り心地を向上させることができる。 According to the configuration of the seventh aspect, the tilt control of the vehicle body can be stopped under a wider range of conditions, the power consumption can be further suppressed, the change in the posture of the vehicle body can be prevented, and the ride comfort can be reduced. Can be improved.
 請求項8の構成によれば、停車解除の判定精度が向上し、確実に車体の傾斜の制御を開始することができる。 According to the configuration of the eighth aspect, the stoppage release determination accuracy is improved, and the vehicle body tilt control can be started reliably.
本発明の実施の形態における車両の構成を示す右側面図である。It is a right view which shows the structure of the vehicle in embodiment of this invention. 本発明の実施の形態における車両のリンク機構の構成を示す図である。It is a figure which shows the structure of the link mechanism of the vehicle in embodiment of this invention. 本発明の実施の形態における車両の構成を示す背面図である。It is a rear view which shows the structure of the vehicle in embodiment of this invention. 本発明の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in embodiment of this invention. 本発明の実施の形態における傾斜制御ゲインの時間変化を示す図である。It is a figure which shows the time change of the inclination control gain in embodiment of this invention. 本発明の実施の形態における旋回走行時の車体の傾斜動作を説明する力学モデルを示す図である。It is a figure which shows the dynamic model explaining the inclination operation | movement of the vehicle body at the time of turning driving | running | working in embodiment of this invention. 本発明の実施の形態における制御系のブロック図である。It is a block diagram of a control system in an embodiment of the present invention. 本発明の実施の形態における車体傾斜制御の全体の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the whole vehicle body tilt control in embodiment of this invention. 本発明の実施の形態における傾斜制御停止判定処理の動作を示すサブルーチンである。It is a subroutine which shows the operation | movement of the inclination control stop determination process in embodiment of this invention. 本発明の実施の形態における傾斜制御処理の動作を示すサブルーチンである。It is a subroutine which shows the operation | movement of the inclination control process in embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の実施の形態における車両の構成を示す右側面図、図2は本発明の実施の形態における車両のリンク機構の構成を示す図、図3は本発明の実施の形態における車両の構成を示す背面図である。なお、図3において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。 1 is a right side view showing a configuration of a vehicle in an embodiment of the present invention, FIG. 2 is a diagram showing a configuration of a link mechanism of the vehicle in the embodiment of the present invention, and FIG. 3 is a vehicle in the embodiment of the present invention. It is a rear view which shows the structure. 3A is a diagram showing a state where the vehicle body is standing upright, and FIG. 3B is a diagram showing a state where the vehicle body is inclined.
 図において、10は、本実施の形態における車両であり、車体の駆動部としての本体部20と、乗員が搭乗して操舵する操舵部としての搭乗部11と、車体の前方において幅方向の中心に配設された前輪である操舵輪としての車輪12Fと、後輪として後方に配設された駆動輪である左側の車輪12L及び右側の車輪12Rとを有する。さらに、前記車両10は、車体を左右に傾斜させる、すなわち、リーンさせるためのリーン機構、すなわち、車体傾斜機構として、左右の車輪12L及び12Rを支持するリンク機構30と、該リンク機構30を作動させるアクチュエータである傾斜用アクチュエータ装置としてのリンクモータ25とを有する。なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪及び後輪が左右二輪の四輪車であってもよいが、本実施の形態においては、図に示されるように、前輪が一輪であって後輪が左右二輪の三輪車である場合について説明する。 In the figure, reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body. The wheel 12F is a front wheel disposed as a steering wheel, and the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels. Furthermore, the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30. And a link motor 25 as a tilt actuator device. The vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
 旋回時には、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角を変化させるとともに、搭乗部11及び本体部20を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、図2及び3(a)に示される例においては、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。また、図3(b)に示される例においては、左右の車輪12L及び12Rは路面18に対して右方向に傾斜している、すなわち、キャンバ角が付与されている。 When turning, the angle of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle is changed, and the vehicle body including the riding portion 11 and the main body portion 20 is inclined toward the turning inner wheel, thereby improving turning performance and the occupant. It is possible to ensure the comfort of the car. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). In the example shown in FIGS. 2 and 3 (a), the left and right wheels 12L and 12R are upright with respect to the road surface 18, that is, the camber angle is 0 degree. In the example shown in FIG. 3B, the left and right wheels 12L and 12R are inclined in the right direction with respect to the road surface 18, that is, a camber angle is given.
 前記リンク機構30は、左側の車輪12L及び該車輪12Lに駆動力を付与する電気モータ等から成る左側の回転駆動装置51Lを支持する左側の縦リンクユニット33Lと、右側の車輪12R及び該車輪12Rに駆動力を付与する電気モータ等から成る右側の回転駆動装置51Rを支持する右側の縦リンクユニット33Rと、左右の縦リンクユニット33L及び33Rの上端同士を連結する上側の横リンクユニット31Uと、左右の縦リンクユニット33L及び33Rの下端同士を連結する下側の横リンクユニット31Dと、本体部20に上端が固定され、上下に延在する中央縦部材21とを有する。また、左右の縦リンクユニット33L及び33Rと上下の横リンクユニット31U及び31Dとは回転可能に連結されている。さらに、上下の横リンクユニット31U及び31Dは、その中央部で中央縦部材21と回転可能に連結されている。なお、左右の車輪12L及び12R、左右の回転駆動装置51L及び51R、左右の縦リンクユニット33L及び33R、並びに、上下の横リンクユニット31U及び31Dを統合的に説明する場合には、車輪12、回転駆動装置51、縦リンクユニット33及び横リンクユニット31として説明する。 The link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R. A right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R; The lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically. The left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof. When the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
 そして、駆動用アクチュエータ装置としての前記回転駆動装置51は、いわゆるインホイールモータであって、固定子としてのボディが縦リンクユニット33に固定され、前記ボディに回転可能に取り付けられた回転子としての回転軸が車輪12の軸に接続され、前記回転軸の回転によって車輪12を回転させる。なお、前記回転駆動装置51は、インホイールモータ以外の種類のモータであってもよい。 The rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable. A rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft. The rotational drive device 51 may be a motor other than an in-wheel motor.
 また、前記リンクモータ25は、電気モータ等を含む回転式の電動アクチュエータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、前記ボディが取付フランジ22を介して本体部20に固定され、前記回転軸がリンク機構30の上側の横リンクユニット31Uに固定されている。なお、リンクモータ25の回転軸は、本体部20を傾斜させる傾斜軸として機能し、中央縦部材21と上側の横リンクユニット31Uとの連結部分の回転軸と同軸になっている。そして、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動し、リンク機構30が作動する、すなわち、屈伸する。これにより、本体部20を傾斜させることができる。なお、リンクモータ25は、その回転軸が本体部20及び中央縦部材21に固定され、そのボディが上側の横リンクユニット31Uに固定されていてもよい。 The link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body. The body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 </ b> U on the upper side of the link mechanism 30. The rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U. When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
 本実施の形態において、リンクモータ25は、回転軸をボディに対して回転不能に固定する傾斜ブレーキ装置としての後述されるリンクブレーキ26を備える。該リンクブレーキ26は、メカニカルなロック機構であって、回転軸をボディに対して回転不能に固定している間には電力を消費しないものであることが望ましい。前記リンクブレーキ26によって、回転軸をボディに対して所定の角度で回転不能に固定することができる。 In the present embodiment, the link motor 25 includes a link brake 26, which will be described later, as an inclination brake device that fixes the rotation shaft to the body in a non-rotatable manner. The link brake 26 is preferably a mechanical lock mechanism that does not consume power while the rotation shaft is fixed to the body in a non-rotatable manner. The link brake 26 can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
 前記搭乗部11は、本体部20の前端に図示されない連結部を介して連結される。該連結部は、搭乗部11と本体部20とを所定の方向に相対的に変位可能に連結する機能を有していてもよい。 The boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown). The connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
 また、前記搭乗部11は、座席11a、フットレスト11b及び風よけ部11cを備える。前記座席11aは、車両10の走行中に乗員が着座するための部位である。また、前記フットレスト11bは、乗員の足部を支持するための部位であり、座席11aの前方側(図1(a)における右側)下方に配設される。 The boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c. The seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling. The footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1A) and below the seat 11a.
 さらに、搭乗部11の後方若しくは下方又は本体部20には、図示されないバッテリ装置が配設されている。該バッテリ装置は、回転駆動装置51及びリンクモータ25のエネルギ供給源である。また、搭乗部11の後方若しくは下方又は本体部20には、図示されない制御装置、インバータ装置、各種センサ等が収納されている。 Furthermore, a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20. The battery device is an energy supply source for the rotation drive device 51 and the link motor 25. In addition, a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
 そして、座席11aの前方には、操縦装置41が配設されている。該操縦装置41には、操舵装置としてのハンドルバー41a、速度メータ等のメータ、インジケータ、スイッチ等の操縦に必要な部材が配設されている。乗員は、前記ハンドルバー41a及びその他の部材を操作して、車両10の走行状態(例えば、進行方向、走行速度、旋回方向、旋回半径等)を指示する。なお、乗員が要求する車体の要求旋回量を出力するための手段である操舵装置として、ハンドルバー41aに代えて他の装置、例えば、ステアリングホイール、ジョグダイヤル、タッチパネル、押しボタン等の装置を操舵装置として使用することもできる。 And, a steering device 41 is disposed in front of the seat 11a. The steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch. The occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.). As a steering device that is a means for outputting the required turning amount of the vehicle body requested by the occupant, other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handlebar 41a as the steering device. It can also be used as
 なお、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して搭乗部11に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。そして、一般的なオートバイ、自転車等の場合と同様に、乗員によるハンドルバー41aの操作に応じて操舵輪としての車輪12Fは舵角を変化させ、これにより、車両10の進行方向が変化する。 The wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device). The suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring. As in the case of a general motorcycle, bicycle, etc., the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
 具体的には、前記ハンドルバー41aは、図示されない操舵軸部材の上端に接続され、操舵軸部材の下端には前輪フォーク17の上端が接続されている。前記操舵軸部材は、上端が下端よりも後方に位置するように斜めに傾斜した状態で、搭乗部11が備える図示されないフレーム部材に、回転可能に取り付けられている。 Specifically, the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member. The steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end.
 さらに、車両10は、後述されるスロットルグリップ35及びハンドブレーキ36を操縦装置の一部として備える。前記スロットルグリップ35は、一般的なオートバイ、自転車等において使用されているスロットルグリップと同様の部材であり、ハンドルバー41aの一端に回転可能に取り付けられ、その回転角度、すなわち、スロットル開度に応じて、車両10を加速するような走行指令を入力する装置である。また、前記ハンドブレーキ36は、パーキングブレーキ指示装置又は駐車ブレーキ指示装置であり、具体的には、レバー、ボタン等の操作手段から成り、いわゆるパーキングブレーキ、駐車ブレーキ等と称される停車維持用制動装置を作動させるための装置である。 Furthermore, the vehicle 10 includes a throttle grip 35 and a hand brake 36, which will be described later, as part of the control device. The throttle grip 35 is a member similar to a throttle grip used in general motorcycles, bicycles, and the like, and is rotatably attached to one end of the handle bar 41a, depending on the rotation angle, that is, the throttle opening. Thus, it is a device for inputting a travel command for accelerating the vehicle 10. The hand brake 36 is a parking brake instruction device or a parking brake instruction device. Specifically, the hand brake 36 includes operation means such as a lever and a button. A device for operating the device.
 本実施の形態において、車両10は横加速度センサ44を有する。該横加速度センサ44は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度、すなわち、車体の幅方向としての横方向(図3における左右方向)の加速度を検出する。 In the present embodiment, the vehicle 10 has a lateral acceleration sensor 44. The lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10, that is, the acceleration in the lateral direction (horizontal direction in FIG. 3) as the width direction of the vehicle body. To do.
 車両10は、旋回時に車体を旋回内側に傾斜させて安定させるので、車体を傾斜させることによって、旋回時の旋回外側への遠心力と重力とが釣り合うような角度になるように制御される。このような制御を行うことによって、例えば、路面18が進行方向と垂直な方向(進行方向に対する左右方向)に傾斜していたとしても、常に車体を水平に保つことが可能になる。これにより、車体と乗員には、見かけ上、常に重力が鉛直下向きにかかっていることになり、違和感が低減され、また、車両10の安定性が向上する。 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body. By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to gravity downward in the vertical direction, so that a sense of discomfort is reduced and the stability of the vehicle 10 is improved.
 そこで、本実施の形態においては、傾斜する車体の横方向の加速度を検出するために、横加速度センサ44を車体に取り付け、横加速度センサ44の出力がゼロとなるようにフィードバック制御を行う。これにより、旋回時に作用する遠心力と重力とが釣り合う傾斜角まで、車体を傾斜させることができる。また、進行方向と垂直な方向に路面18が傾斜している場合でも、車体が鉛直になる傾斜角となるように制御することができる。なお、前記横加速度センサ44は、車体の幅方向の中心、すなわち、車体の縦方向軸線上に位置するように配設されている。 Therefore, in the present embodiment, in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body, and feedback control is performed so that the output of the lateral acceleration sensor 44 becomes zero. As a result, the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical. The lateral acceleration sensor 44 is disposed so as to be positioned at the center in the width direction of the vehicle body, that is, on the longitudinal axis of the vehicle body.
 しかし、横加速度センサ44が1つであると、不要加速度成分をも検出してしまうことがある。例えば、車両10の走行中、路面18の窪(くぼ)みに左右の車輪12L及び12Rのいずれか一方のみが落下する場合があり得る。この場合、車体が傾斜するので、横加速度センサ44は、周方向に変位し、周方向の加速度を検出することになる。つまり、遠心力や重力に直接由来しない加速度成分、すなわち、不要加速度成分が検出されてしまう。 However, if there is one lateral acceleration sensor 44, an unnecessary acceleration component may be detected. For example, while the vehicle 10 is traveling, only one of the left and right wheels 12L and 12R may fall into the depression of the road surface 18. In this case, since the vehicle body is inclined, the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
 また、車両10は、例えば、車輪12L及び12Rのタイヤ部分のように弾性を備え、ばねとして機能する部分を含み、また、各部材の接続部等に不可避的なガタが含まれる。そのため、横加速度センサ44は、不可避的なガタやばねを介して車体に取り付けられていると考えられるので、ガタやばねの変位によって生じる加速度をも不要加速度成分として検出してしまう。 Further, for example, the vehicle 10 includes a portion that functions as a spring with elasticity such as the tire portions of the wheels 12L and 12R, and includes inevitable backlash at the connection portion of each member. For this reason, the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, and therefore acceleration generated by the displacement of the play and springs is also detected as an unnecessary acceleration component.
 このような不要加速度成分は、車体傾斜制御システムの制御性を悪化させる可能性がある。例えば、車体傾斜制御システムの制御ゲインを大きくすると、不要加速度成分に起因する制御系の振動、発散等が発生するので、応答性を向上させようとしても制御ゲインを大きくすることができなくなってしまう。 Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
 そこで、本実施の形態においては、横加速度センサ44が複数であって、互いに異なる高さに配設されている。図1及び3に示される例において、横加速度センサ44は、第1横加速度センサ44a及び第2横加速度センサ44bの2つであって、第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。第1横加速度センサ44a及び第2横加速度センサ44bの位置を適切に選択することで、効果的に不要加速度成分を取り除くことができる。 Therefore, in the present embodiment, there are a plurality of lateral acceleration sensors 44, which are arranged at different heights. In the example shown in FIGS. 1 and 3, there are two lateral acceleration sensors 44, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b, which are a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b. Are arranged at different height positions. By appropriately selecting the positions of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, unnecessary acceleration components can be effectively removed.
 具体的には、図3(a)に示されるように、第1横加速度センサ44aは、搭乗部11の背面において、路面18からの距離、すなわち、高さがLの位置に配設されている。また、第2横加速度センサ44bは、搭乗部11の背面又は本体部20の上面において、路面18からの距離、すなわち、高さがLの位置に配設されている。なお、L>Lである。そして、旋回走行時に、図3(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回すると、第1横加速度センサ44aは、横方向の加速度を検出して検出値aを出力し、第2横加速度センサ44bは、横方向の加速度を検出して検出値aを出力する。なお、車体が傾く際の傾斜運動の中心、すなわち、ロール中心は、厳密には路面18よりわずかに下方に位置するが、実際上は、概略路面18と等しい位置であると考えられる。 Specifically, as shown in FIG. 3 (a), the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing. The second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 . When turning, when the vehicle is turned with the vehicle body tilted inward (right side in the drawing) as shown in FIG. 3B, the first lateral acceleration sensor 44a detects the lateral acceleration. The detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 . Although the center of the tilting motion when the vehicle body tilts, that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
 前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、十分に剛性の高い部材に取り付けられることが望ましい。また、LとLとの差は、小さいと検出値a及びaの差が小さくなるので、十分に大きいこと、例えば、0.3〔m〕以上、とすることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、リンク機構30よりも上方に配設されることが望ましい。さらに、車体がサスペンション等のばねで支持されている場合、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、いわゆる「ばね上」に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、前輪である車輪12Fの車軸と後輪である車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、可能な限り乗員の近くに配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、上側から観て進行方向に延在する車両中心軸上に位置すること、すなわち、進行方向に関してオフセットされないことが望ましい。 It is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Furthermore, it is desirable that both the first lateral acceleration sensor 44 a and the second lateral acceleration sensor 44 b are disposed above the link mechanism 30. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”. Furthermore, it is desirable that the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the front wheel 12F and the axle of the rear wheels 12L and 12R. Further, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Furthermore, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are located on the vehicle center axis extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction.
 また、車両10は、走行速度としての車速を検出する車速検出手段としての後述される車速センサ54を有する。該車速センサ54は、車輪12Fの車軸を指示する前輪フォーク17の下端に配設され、車輪12Fの回転速度に基づいて車速を検出するセンサであり、例えば、エンコーダ等から成る。 Further, the vehicle 10 has a vehicle speed sensor 54, which will be described later, as vehicle speed detection means for detecting the vehicle speed as the traveling speed. The vehicle speed sensor 54 is disposed at the lower end of the front wheel fork 17 that indicates the axle of the wheel 12F, and is a sensor that detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
 また、本実施の形態における車両10は、制御装置の一部としての車体傾斜制御システムを有する。該車体傾斜制御システムは、一種のコンピュータシステムであり、ECU(Electronic Control Unit)等から成る傾斜制御装置を備える。該傾斜制御装置は、プロセッサ等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、スロットルグリップ35、ハンドブレーキ36、横加速度センサ44、車速センサ54、リンクモータ25及びリンクブレーキ26に接続されている。そして、前記傾斜制御装置は、横加速度センサ44が検出した横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する。 Also, the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device. The vehicle body tilt control system is a kind of computer system, and includes a tilt control device including an ECU (Electronic Control Unit). The tilt control device includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and includes a throttle grip 35, a hand brake 36, a lateral acceleration sensor 44, a vehicle speed sensor 54, a link motor 25, and the like. Connected to the link brake 26. Then, the tilt control device outputs a torque command value for operating the link motor 25 based on the lateral acceleration detected by the lateral acceleration sensor 44.
 前記傾斜制御装置は、旋回走行の際には、フィードバック制御を行い、車体の傾斜角度が、横加速度センサ44が検出する横加速度の値がゼロとなるような角度になるように、リンクモータ25を作動させる。つまり、旋回外側への遠心力と重力とが釣り合って、横方向の加速度成分がゼロとなるような角度になるように、車体の傾斜角度を制御する。これにより、車体及び搭乗部11に搭乗している乗員には、車体の縦方向軸線と平行な方向の力が作用することとなる。したがって、車体の安定を維持することができ、また、旋回性能を向上させることができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。 The tilt control device performs feedback control during turning, so that the link motor 25 is adjusted so that the tilt angle of the vehicle body becomes an angle such that the value of the lateral acceleration detected by the lateral acceleration sensor 44 becomes zero. Is activated. That is, the tilt angle of the vehicle body is controlled so that the centrifugal force to the outside of the turn and gravity are balanced and the lateral acceleration component becomes zero. As a result, a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant on the riding section 11. Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved. In addition, the rider does not feel discomfort and the ride comfort is improved.
 次に、前記車体傾斜制御システムの構成について説明する。 Next, the configuration of the vehicle body tilt control system will be described.
 図4は本発明の実施の形態における車体傾斜制御システムの構成を示すブロック図、図5は本発明の実施の形態における傾斜制御ゲインの時間変化を示す図である。 FIG. 4 is a block diagram showing the configuration of the vehicle body tilt control system in the embodiment of the present invention, and FIG. 5 is a diagram showing the time change of the tilt control gain in the embodiment of the present invention.
 図において、46は傾斜制御装置としての傾斜制御ECUであり、走行指令装置の1つとしてのスロットルグリップ35、ハンドブレーキ36、第1横加速度センサ44a、第2横加速度センサ44b、車速センサ54、リンクモータ25及びリンクブレーキ26に接続されている。 In the figure, 46 is a tilt control ECU as a tilt control device, which is a throttle grip 35, a hand brake 36, a first lateral acceleration sensor 44a, a second lateral acceleration sensor 44b, a vehicle speed sensor 54, as one of the travel command devices, The link motor 25 and the link brake 26 are connected.
 また、前記傾斜制御ECU46は、横加速度演算部48、傾斜制御部47及び傾斜制御停止判定部49を備える。そして、横加速度演算部48は、第1横加速度センサ44a及び第2横加速度センサ44bが検出した横加速度に基づいて合成横加速度を算出する。また、傾斜制御部47は、横加速度演算部48が算出した横加速度としての合成横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する。さらに、傾斜制御停止判定部49は、スロットルグリップ35の回転角度であるスロットル開度、すなわち、走行指令入力装置の操作状態、ハンドブレーキ36の操作状態、及び、車速センサ54が検出した車速に基づいて、傾斜制御ゲインGを傾斜制御部47に対して出力するとともに、傾斜制御停止と判定した場合には、リンクブレーキ26を作動させるためのリンクブレーキ動作信号を出力する。なお、傾斜制御部47が出力するトルク指令値に傾斜制御ゲインGを乗じた値が、制御値としてリンクモータ25に入力される。 The tilt control ECU 46 includes a lateral acceleration calculation unit 48, a tilt control unit 47, and a tilt control stop determination unit 49. Then, the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. Further, the inclination control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48. Further, the inclination control stop determination unit 49 is based on the throttle opening which is the rotation angle of the throttle grip 35, that is, the operation state of the travel command input device, the operation state of the hand brake 36, and the vehicle speed detected by the vehicle speed sensor 54. Thus, the tilt control gain G 0 is output to the tilt control unit 47, and when it is determined that the tilt control is stopped, a link brake operation signal for operating the link brake 26 is output. A value obtained by multiplying the torque command value output from the tilt control unit 47 by the tilt control gain G 0 is input to the link motor 25 as a control value.
 本実施の形態において、傾斜制御停止判定部49は、あらかじめ設定した第1の閾(しきい)値(例えば、2秒)より長い時間ハンドブレーキ36が操作されていると、すなわち、該ハンドブレーキ36がONの状態が継続していると、車両10が停車したものと判定し、リンクブレーキ26を作動させてリンクモータ25の回転軸を回転不能に固定するとともに、傾斜制御部47による傾斜制御を停止させる。なお、その後、ハンドブレーキ36の操作が解除されても、すなわち、該ハンドブレーキ36がOFFの状態となっても、スロットルグリップ35が操作されず、車速があらかじめ設定した第2の閾値(例えば、2〔km/h〕)を超えなければ、リンクブレーキ26を解除せずにリンクモータ25の回転軸の固定を維持するとともに、傾斜制御部47による傾斜制御の停止を維持する。 In the present embodiment, the inclination control stop determination unit 49 is operated when the hand brake 36 is operated for a time longer than a preset first threshold (threshold value) (for example, 2 seconds), that is, the hand brake If the state where the vehicle 36 is ON is determined, it is determined that the vehicle 10 has stopped, the link brake 26 is operated to fix the rotation shaft of the link motor 25 to be non-rotatable, and the tilt control unit 47 controls the tilt. Stop. After that, even if the operation of the hand brake 36 is released, that is, even when the hand brake 36 is turned off, the throttle grip 35 is not operated, and the vehicle speed is set to a second threshold value (for example, If not exceeding 2 [km / h]), the rotation of the rotation axis of the link motor 25 is maintained without releasing the link brake 26 and the inclination control by the inclination controller 47 is stopped.
 また、ハンドブレーキ36が操作されなくても、すなわち、該ハンドブレーキ36がONの状態になることなしにOFFの状態が継続していても、車速が前記第2の閾値以下であって、かつ、横加速度センサ44が検出する横加速度の値があらかじめ設定した第3の閾値(例えば、0.05〔G〕)以下である状態が第4の閾値(例えば、1秒)より長い時間継続していると、車両10が停車したものと判定し、リンクブレーキ26を作動させてリンクモータ25の回転軸を回転不能に固定するとともに、傾斜制御部47による傾斜制御を停止させる。 Even if the handbrake 36 is not operated, that is, even if the handbrake 36 continues to be turned off without being turned on, the vehicle speed is equal to or lower than the second threshold value, and The state in which the value of the lateral acceleration detected by the lateral acceleration sensor 44 is equal to or less than a preset third threshold (for example, 0.05 [G]) continues for a longer time than the fourth threshold (for example, 1 second). If it is determined that the vehicle 10 has stopped, the link brake 26 is operated to fix the rotation shaft of the link motor 25 so as not to rotate, and the tilt control by the tilt control unit 47 is stopped.
 このように、リンクブレーキ26を作動させてリンクモータ25の回転軸を回転不能に固定することによって、車体の傾斜動作が停止して車体の姿勢がロックされる。なお、ここで、リンクブレーキ26は、メカニカルなロック機構であって、回転軸をボディに対して回転不能に固定している間は電力を消費しないものであるとする。そして、前記傾斜制御ECU46は、リンクブレーキ26を作動させた後に、リンクモータ25への電力の供給を停止する。したがって、停車中は、リンクモータ25にもリンクブレーキ26にも電力が供給されないので、電力消費量を抑制することができる。 Thus, by operating the link brake 26 and fixing the rotation shaft of the link motor 25 so as not to rotate, the tilting operation of the vehicle body is stopped and the posture of the vehicle body is locked. Here, it is assumed that the link brake 26 is a mechanical lock mechanism and does not consume power while the rotation shaft is fixed to the body so as not to rotate. The inclination control ECU 46 stops the supply of electric power to the link motor 25 after operating the link brake 26. Therefore, since electric power is not supplied to the link motor 25 and the link brake 26 while the vehicle is stopped, power consumption can be suppressed.
 また、ハンドブレーキ36の操作が解除されて、すなわち、該ハンドブレーキ36がOFFの状態となって、かつ、スロットルグリップ35が操作されるか、又は、車速が前記第2の閾値を超えると、傾斜制御停止判定部49は、傾斜制御部47による傾斜制御を開始させるとともに、傾斜制御の開始後に、リンクブレーキ26を解除してリンクモータ25の回転軸を回転可能にする。なお、傾斜制御の開始直後は、傾斜制御ゲインGの値を徐々に増加させる。 Further, when the operation of the hand brake 36 is released, that is, when the hand brake 36 is turned off and the throttle grip 35 is operated or the vehicle speed exceeds the second threshold, The inclination control stop determination unit 49 starts the inclination control by the inclination control unit 47, and after starting the inclination control, releases the link brake 26 and enables the rotation shaft of the link motor 25 to rotate. Note that immediately after the start of the tilt control, the value of the tilt control gain G 0 is gradually increased.
 車両10が停車した時点における横方向の路面傾斜角度が現在の路面傾斜と異なっている場合、車両10の停車が異常停車だった場合等のように、最初から横方向に車体が傾斜状態にある場合に、傾斜制御を開始すると、傾斜制御部47が出力するトルク指令値が大きな値となり、リンクモータ25が大きなトルク指令値に従って始動することとなる。その結果、車体姿勢の変化が速くなり、乗員が不快に感じることがある。 When the vehicle 10 stops at the time when the lateral road surface inclination angle is different from the current road surface inclination, or when the vehicle 10 stops abnormally, the vehicle body is inclined in the horizontal direction from the beginning. In this case, when the tilt control is started, the torque command value output from the tilt control unit 47 becomes a large value, and the link motor 25 starts according to the large torque command value. As a result, the vehicle body posture changes quickly, and the passenger may feel uncomfortable.
 そこで、本実施の形態においては、停車の後に傾斜制御を開始する際には、遷移制御を行って、トルク指令値に乗じる傾斜制御ゲインGの値を所定の遷移期間の間に徐々に増加させることによって、リンクモータ25に入力される制御値を緩和するようになっている。すなわち、リンクモータ25に入力される制御値を適切に制御することによって、停車の後における車体の傾斜を任意の変化速度で復帰させることができるようにする。 Therefore, in the present embodiment, when the tilt control is started after the vehicle stops, the transition control is performed, and the value of the tilt control gain G 0 multiplied by the torque command value is gradually increased during the predetermined transition period. By doing so, the control value input to the link motor 25 is relaxed. That is, by appropriately controlling the control value input to the link motor 25, the inclination of the vehicle body after stopping can be returned at an arbitrary change speed.
 具体的には、図5に示されるように、傾斜制御ゲインGの値が、傾斜制御の開始時、すなわち、遷移制御の開始時におけるゼロから始まって時間の経過とともに増加して所定の遷移期間経過後に1となるようにする。傾斜制御ゲインGの値が1であるということは、傾斜制御部47が出力したトルク指令値がそのままリンクモータ25に入力されることを意味する。 Specifically, as shown in FIG. 5, the value of the slope control gain G 0 starts from zero at the start of the slope control, that is, at the start of the transition control, and increases with the passage of time. Set to 1 after the period has elapsed. The value of the inclination control gain G 0 being 1 means that the torque command value output from the inclination control unit 47 is input to the link motor 25 as it is.
 なお、図5に示される例において、遷移制御を行う期間である遷移期間は、0.5秒に設定されているが、適宜変更することができる。また、遷移制御の開始時における傾斜制御ゲインGの値は、ゼロに設定されているが、必ずしもゼロである必要はなく、任意の値(例えば、0.1、0.5等)に設定することができる。さらに、傾斜制御ゲインGの値は、リニア(直線的)に増加するようになっているが、必ずしもリニアに増加する必要はなく、例えば、ステップ状に増加してもよいし、2次曲線状に増加してもよいし、指数関数的に増加してもよい。 In the example shown in FIG. 5, the transition period, which is the period for performing transition control, is set to 0.5 seconds, but can be changed as appropriate. Further, the value of the gradient control gain G 0 at the start of the transition control is set to zero, but it is not necessarily zero, and is set to an arbitrary value (for example, 0.1, 0.5, etc.). can do. Further, the value of the gradient control gain G 0 is increased linearly (linearly), but is not necessarily increased linearly. For example, it may increase stepwise or a quadratic curve. It may increase in the form of an exponent or may increase exponentially.
 次に、前記構成の車両10の動作について説明する。まず、旋回走行時における合成横加速度の算出について説明する。 Next, the operation of the vehicle 10 having the above configuration will be described. First, calculation of the combined lateral acceleration during cornering will be described.
 図6は本発明の実施の形態における旋回走行時の車体の傾斜動作を説明する力学モデルを示す図、図7は本発明の実施の形態における制御系のブロック図である。 FIG. 6 is a diagram showing a dynamic model for explaining the tilting operation of the vehicle body during cornering in the embodiment of the present invention, and FIG. 7 is a block diagram of a control system in the embodiment of the present invention.
 旋回走行が開始されると、車体傾斜制御システムは車体傾斜制御処理を開始する。姿勢制御が行われることで、車両10は、リンク機構30によって、旋回走行時には、図3(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回する。また、旋回走行時には、旋回外側への遠心力が車体に作用するとともに、車体を旋回内側に傾けたことによって重力の横方向成分が発生する。そして、横加速度演算部48は、横加速度演算処理を実行し、合成横加速度aを算出して傾斜制御部47に出力する。すると、該傾斜制御部47は、フィードバック制御を行い、合成横加速度aの値がゼロとなるような制御値としてのトルク指令値をリンクモータ25に出力する。 When turning is started, the vehicle body tilt control system starts the vehicle body tilt control process. By performing posture control, the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG. Further, during turning, a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn. Then, the lateral acceleration calculation unit 48 executes a lateral acceleration calculation process, calculates a combined lateral acceleration ac, and outputs it to the tilt control unit 47. Then, the tilt control section 47 performs feedback control, the value of the composite lateral acceleration a c and outputs a torque command value as the control value such that zero link motor 25.
 なお、車体傾斜制御処理は、車両10の電源が投入されている間、車体傾斜制御システムによって繰り返し所定の制御周期T(例えば、10〔ms〕)で実行される処理であり、旋回時において、旋回性能の向上と乗員の快適性の確保とを図る処理である。 The vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 10 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
 なお、図6において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Bは車体において第2横加速度センサ44bの配設された位置を示す第2センサ位置である。 In FIG. 6, 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body, and 44B is a first position indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Two sensor positions.
 第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する加速度は、〈1〉旋回時に車体に作用する遠心力、〈2〉車体を旋回内側に傾けたことによって発生する重力の横方向成分、〈3〉左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、並びに、〈4〉リンクモータ25の作動又はその反作用により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、の4つであると考えられる。これら4つの加速度のうち、前記〈1〉及び〈2〉は第1横加速度センサ44a及び第2横加速度センサ44bの高さ、すなわち、L及びLと無関係である。一方、前記〈3〉及び〈4〉は、周方向に変位することによって生じる加速度であるから、ロール中心からの距離に比例する、すなわち、概略L及びLに比例する。 The acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is <1> centrifugal force acting on the vehicle body when turning, and <2> tilting the vehicle body toward the inside of the turn. The lateral component of the generated gravity, <3> the first lateral acceleration sensor 44a and the like due to the inclination of the vehicle body, the displacement of the backlash and the spring, etc., when only one of the left and right wheels 12L and 12R falls into the depression of the road surface The acceleration generated by the displacement of the second lateral acceleration sensor 44b in the circumferential direction, and the <4> operation of the link motor 25 or the reaction thereof causes the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b to be displaced in the circumferential direction. It is considered that there are four accelerations caused by this. Of these four acceleration, the <1> and <2> the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, that is, independent of L 1 and L 2. On the other hand, since <3> and <4> are accelerations generated by displacement in the circumferential direction, they are proportional to the distance from the roll center, that is, roughly proportional to L 1 and L 2 .
 ここで、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈3〉の加速度をaX1及びaX2とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈4〉の加速度をaM1及びaM2とする。また、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈1〉の加速度をaとし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈2〉の加速度をaとする。なお、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さに無関係なので、第1横加速度センサ44a及び第2横加速度センサ44bの検出値は等しい。 Here, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value. The acceleration <3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration. The acceleration of <4>, which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 . Further, the acceleration of <1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected Then, the acceleration of <2> that outputs the detected value is defined as a G. Since <1> and <2> are irrelevant to the heights of the first and second lateral acceleration sensors 44a and 44b, the detection values of the first and second lateral acceleration sensors 44a and 44b are equal. .
 そして、左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等による周方向の変位の角速度をωとし、その角加速度をω’とする。また、リンクモータ25の作動又はその反作用による周方向の変位の角速度をωとし、その角加速度をω’とする。なお、角速度ω又は角加速度ω’は、リンク角センサの検出値から取得することができる。 Then, only one of the left and right wheels 12L and 12R are inclined in the vehicle body due to the fall in a recess of a road surface 18, the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring, the angular acceleration omega Let R '. Further, the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ω M , and the angular acceleration is ω M ′. The angular velocity ω M or the angular acceleration ω M ′ can be obtained from the detection value of the link angle sensor.
 すると、aX1=Lω’、aX2=Lω’、aM1=Lω’、aM2=Lω’となる。 Then, a X1 = L 1 ω R ′, a X2 = L 2 ω R ′, a M1 = L 1 ω M ′, a M2 = L 2 ω M ′.
 また、第1横加速度センサ44a及び第2横加速度センサ44bが検出して出力する加速度の検出値をa及びaとすると、a及びaは、4つの加速度〈1〉~〈4〉の合計であるから、次の式(1)及び(2)で表される。
=a+a+Lω’+Lω’ ・・・式(1)
=a+a+Lω’+Lω’ ・・・式(2)
 そして、式(1)から式(2)を減算すると、次の式(3)を得ることができる。
-a=(L-L)ω’+(L-L)ω’ ・・・式(3)
 ここで、L及びLの値は、第1横加速度センサ44a及び第2横加速度センサ44bの高さであるから既知である。また、ω’の値は、リンクモータ25の角速度ωの微分値であるから既知である。すると、前記式(3)の右辺においては、第1項のω’の値のみが未知であり、他の値はすべて既知である。したがって、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaから、ω’の値を得ることが可能である。つまり、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaに基づいて、不要加速度成分を取り除くことができる。
If the detected acceleration values detected and output by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are a 1 and a 2 , a 1 and a 2 are four accelerations <1> to <4. It is represented by the following formulas (1) and (2).
a 1 = a T + a G + L 1 ω R '+ L 1 ω M' ··· formula (1)
a 2 = a T + a G + L 2 ω R '+ L 2 ω M' ··· formula (2)
Then, by subtracting equation (2) from equation (1), the following equation (3) can be obtained.
a 1 −a 2 = (L 1 −L 2 ) ω R ′ + (L 1 −L 2 ) ω M ′ Equation (3)
Here, the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. The value of ω M ′ is known because it is a differential value of the angular velocity ω M of the link motor 25. Then, on the right side of the equation (3), only the value of ω R ′ of the first term is unknown, and all other values are known. Therefore, the value of ω R ′ can be obtained from the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
 そこで、横加速度演算部48は、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaに基づいて、合成横加速度aを算出する。該合成横加速度aは、横加速度センサ44が1つである場合における横加速度センサ値に相当する値であって、第1横加速度センサ値aと第2横加速度センサ値aとを合成した値であり、次の式(4)及び(5)によって得られる。
=a-(L/ΔL)Δa ・・・式(4)
=a-(L/ΔL)Δa ・・・式(5)
 なお、Δaは、加速度差であって、次の式(6)によって表される。
Δa=a-a ・・・式(6)
 また、ΔLは次の式(7)によって表される。
ΔL=L-L ・・・式(7)
 理論上は、式(4)によっても式(5)によっても、同じ値を得ることができるが、周方向の変位によって生じる加速度はロール中心からの距離に比例するので、実際上は、ロール中心により近い方の横加速度センサ44、すなわち、第2横加速度センサ44bの検出値であるaを基準にすることが望ましい。そこで、本実施の形態においては、式(4)によって合成横加速度aを算出することとする。
Therefore, the lateral acceleration calculation unit 48, based on the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, and calculates the resultant lateral acceleration a c. The combined lateral acceleration a c is a value corresponding to the lateral acceleration sensor value in the case where there is one lateral acceleration sensor 44, and the first lateral acceleration sensor value a 1 and the second lateral acceleration sensor value a 2 are obtained. It is a synthesized value and is obtained by the following equations (4) and (5).
a c = a 2 − (L 2 / ΔL) Δa (4)
a c = a 1 − (L 1 / ΔL) Δa (5)
Δa is an acceleration difference and is expressed by the following equation (6).
Δa = a 1 −a 2 Formula (6)
ΔL is expressed by the following equation (7).
ΔL = L 1 −L 2 Formula (7)
Theoretically, the same value can be obtained by both equation (4) and equation (5), but since the acceleration caused by the circumferential displacement is proportional to the distance from the roll center, in practice, the roll center It is desirable to use a 2 which is a detection value of the lateral acceleration sensor 44 closer to the second lateral acceleration sensor 44b as a reference. Therefore, in the present embodiment, the combined lateral acceleration ac is calculated by the equation (4).
 本実施の形態における車体傾斜制御処理では、図7に示されるようなフィードバック制御が行われる。図において、fは前記式(4)で表される伝達関数である。また、Gは比例制御動作の制御ゲインであり、Gは微分制御動作の制御ゲインであり、sは微分要素である。 In the vehicle body tilt control process in the present embodiment, feedback control as shown in FIG. 7 is performed. In the figure, f 1 is a transfer function represented by the above equation (4). Also, G P is a control gain of the proportional control operation, G D is the control gain of the differential control operation, s is a differential element.
 次に、前記車両10の車体傾斜制御の動作について具体的に説明する。まず、全体の動作について説明する。 Next, the operation of the vehicle body tilt control of the vehicle 10 will be specifically described. First, the overall operation will be described.
 図8は本発明の実施の形態における車体傾斜制御の全体の動作を示すフローチャートである。 FIG. 8 is a flowchart showing the overall operation of the vehicle body tilt control according to the embodiment of the present invention.
 まず、傾斜制御停止判定部49は、傾斜制御停止判定処理を実行する(ステップS1)。そして、車両10が停車していると判定すると、傾斜制御を停止すべきであるとして、傾斜制御停止判定用フラグFlgの値を1に設定し、車両10が停車していないと判定すると傾斜制御停止判定用フラグFlgの値をゼロに設定する。 First, the inclination control stop determination unit 49 executes an inclination control stop determination process (step S1). Then, if it is determined that the vehicle 10 is stopped, the inclination control should be stopped, and the value of the inclination control stop determination flag Flg L is set to 1. If it is determined that the vehicle 10 is not stopped, the vehicle is inclined. The value of the control stop determination flag Flg L is set to zero.
 続いて、傾斜制御停止判定部49は、傾斜制御停止判定用フラグFlgの値がゼロであるか否かを判断する(ステップS2)。そして、傾斜制御停止判定用フラグFlgの値がゼロである場合、傾斜制御停止判定部49は、遷移制御実行判定用フラグFlgの値がゼロであるか否かを判断する(ステップS3)。 Subsequently, the inclination control stop determination unit 49 determines whether or not the value of the inclination control stop determination flag Flg L is zero (step S2). When the value of the inclination control stop determination flag Flg L is zero, the inclination control stop determination unit 49 determines whether or not the value of the transition control execution determination flag Flg M is zero (step S3). .
 ここで、遷移制御実行判定用フラグFlgは、傾斜制御停止判定部49が遷移制御を行って傾斜制御ゲインGの値を変化させるとき、すなわち、遷移制御を行う期間である遷移期間内であるときはその値が1に設定され、そうでないときにはその値がゼロに設定されるフラグである。 Here, the transition control execution determination flag Flg M is used when the slope control stop determination unit 49 performs transition control to change the value of the slope control gain G 0 , that is, within a transition period that is a period for performing transition control. This is a flag whose value is set to 1 when it is, and whose value is set to zero otherwise.
 そして、遷移制御実行判定用フラグFlgの値がゼロである場合、遷移期間経過後であると判断することができるので、傾斜制御停止判定部49は、傾斜制御ゲインGの値を1に設定する(ステップS4)。 Then, when the value of the transition control execution determination flag Flg M is zero, it can be determined that the transition period has elapsed, so the inclination control stop determination unit 49 sets the value of the inclination control gain G 0 to 1. Set (step S4).
 続いて、傾斜制御停止判定部49は、リンクブレーキ状態判定用フラグFlgの値がゼロであるか否かを判断する(ステップS5)。 Subsequently, the inclination control stop determination unit 49 determines whether or not the value of the link brake state determination flag Flg B is zero (step S5).
 ここで、リンクブレーキ状態判定用フラグFlgは、リンクブレーキ26が作動しているときはその値が1に設定され、そうでないときにはその値がゼロに設定されるフラグである。 Here, the link brake state determination flag Flg B is a flag whose value is set to 1 when the link brake 26 is operating, and whose value is set to zero otherwise.
 そして、リンクブレーキ状態判定用フラグFlgの値がゼロである場合、リンクブレーキ26が作動していない、すなわち、リンクブレーキ26が解除されていると判断することができるので、傾斜制御停止判定部49は、傾斜制御部47による傾斜制御を実行させる。これにより、傾斜制御部47は傾斜制御処理を実行する(ステップS6)。 When the value of the link brake state determination flag Flg B is zero, it can be determined that the link brake 26 is not operating, that is, the link brake 26 is released. 49 executes the tilt control by the tilt control unit 47. Thereby, the inclination control part 47 performs an inclination control process (step S6).
 また、リンクブレーキ状態判定用フラグFlgの値が1である場合、リンクブレーキ26が作動していると判断することができるので、傾斜制御停止判定部49は、傾斜制御部47による傾斜制御を停止させる。そのため、傾斜制御部47は傾斜制御処理を実行しない。 Further, when the value of the link brake state determination flag Flg B is 1, it can be determined that the link brake 26 is operating, so the inclination control stop determination unit 49 performs the inclination control by the inclination control unit 47. Stop. Therefore, the inclination control unit 47 does not execute the inclination control process.
 続いて、傾斜制御部47は、遷移制御実行判定用フラグFlgの値がゼロであり、かつ、リンクブレーキ状態判定用フラグFlgの値が1であるか否かを判断する(ステップS7)。 Subsequently, the inclination control unit 47 determines whether or not the value of the transition control execution determination flag Flg M is zero and the value of the link brake state determination flag Flg B is 1 (step S7). .
 そして、遷移制御実行判定用フラグFlgの値がゼロであり、かつ、リンクブレーキ状態判定用フラグFlgの値が1である場合には、遷移期間経過後であって通常の傾斜制御を行うタイミングでありながら、リンクブレーキ26が作動している状態なので、傾斜制御部47は、リンクブレーキOFF信号を送信し(ステップS8)、リンクブレーキ26を解除させるとともに、リンクブレーキ状態判定用フラグFlgの値をゼロに設定する(ステップS9)。続いて、傾斜制御部47は、傾斜制御停止判定処理を再度実行し、以降の動作を繰り返す。 When the value of the transition control execution determination flag Flg M is zero and the value of the link brake state determination flag Flg B is 1, normal inclination control is performed after the transition period has elapsed. Since the link brake 26 is operating at the timing, the inclination control unit 47 transmits a link brake OFF signal (step S8), releases the link brake 26, and links brake state determination flag Flg B Is set to zero (step S9). Subsequently, the tilt control unit 47 executes the tilt control stop determination process again, and repeats the subsequent operations.
 また、遷移制御実行判定用フラグFlgの値がゼロであり、かつ、リンクブレーキ状態判定用フラグFlgの値が1であるか否かを判断して、遷移制御実行判定用フラグFlgの値が1であるか、リンクブレーキ状態判定用フラグFlgの値がゼロである場合には、傾斜制御部47は、そのまま、傾斜制御停止判定処理を再度実行し、以降の動作を繰り返す。 Further, it is determined whether or not the value of the transition control execution determination flag Flg M is zero and the value of the link brake state determination flag Flg B is 1, and the transition control execution determination flag Flg M When the value is 1 or the value of the link brake state determination flag Flg B is zero, the inclination control unit 47 again executes the inclination control stop determination process and repeats the subsequent operations.
 一方、傾斜制御停止判定用フラグFlgの値がゼロであるか否かを判断して、傾斜制御停止判定用フラグFlgの値がゼロでなく1である場合には、傾斜制御を停止すべきであるので、傾斜制御停止判定部49は、リンクブレーキON信号を送信し(ステップS10)、リンクブレーキ26を作動させるとともに、リンクブレーキ状態判定用フラグFlgの値を1に設定する(ステップS11)。 On the other hand, it is determined whether or not the value of the inclination control stop determination flag Flg L is zero. If the value of the inclination control stop determination flag Flg L is 1 instead of zero, the inclination control is stopped. Therefore, the inclination control stop determination unit 49 transmits a link brake ON signal (step S10), operates the link brake 26, and sets the value of the link brake state determination flag Flg B to 1 (step S10). S11).
 続いて、傾斜制御停止判定部49は、傾斜制御ゲインGの値を0に設定し(ステップS12)、リンクモータ25に入力されるトルク指令値に傾斜制御ゲインGを乗じた値をゼロとする。これにより、傾斜制御部47による傾斜制御は、実質的に停止した状態となる。そして、傾斜制御停止判定部49は、遷移制御実行判定用フラグFlgの値を1に設定し(ステップS13)、リンクブレーキ状態判定用フラグFlgの値がゼロであるか否かを判断する。 Subsequently, the inclination control stop determination unit 49 sets the value of the inclination control gain G 0 to 0 (step S12), and sets a value obtained by multiplying the torque command value input to the link motor 25 by the inclination control gain G 0 to zero. And Thereby, the inclination control by the inclination control part 47 will be in the substantially stopped state. Then, the inclination control stop determination unit 49 sets the value of the transition control execution determination flag Flg M to 1 (step S13), and determines whether or not the value of the link brake state determination flag Flg B is zero. .
 また、遷移制御実行判定用フラグFlgの値がゼロであるか否かを判断して、遷移制御実行判定用フラグFlgの値がゼロでなく1である場合、遷移期間内であると判断することができるので、傾斜制御停止判定部49は、傾斜制御ゲインGの値を所定値だけインクリメントする(ステップS14)。つまり、前回の車体傾斜制御処理実行時に設定した傾斜制御ゲインGの値に所定値を加えた値を今回の傾斜制御ゲインGの値として設定する。前記所定値は、遷移制御における傾斜制御ゲインGの値の増加率に相当する。例えば、車体傾斜制御処理の制御周期Tが10〔ms〕であって、図5に示されるように、0.5秒の遷移期間内に傾斜制御ゲインGの値がゼロから1までリニアに増加するのであれば、前記所定値は、0.02である。 Further, it is determined whether or not the value of the transition control execution determination flag Flg M is zero. If the value of the transition control execution determination flag Flg M is 1 instead of zero, it is determined that the transition period is within the transition period. Therefore, the inclination control stop determination unit 49 increments the value of the inclination control gain G 0 by a predetermined value (step S14). In other words, a value obtained by adding a predetermined value to the value of the tilt control gain G 0 is set at the previous body tilt control processing executed as the value of this slope control gain G 0. The predetermined value corresponds to an increasing rate of the value of the gradient control gain G 0 in the transition control. For example, the control cycle T S of the vehicle body tilt control process is 10 [ms], and the value of the tilt control gain G 0 is linear from zero to 1 within the transition period of 0.5 seconds as shown in FIG. The predetermined value is 0.02.
 続いて、傾斜制御停止判定部49は、設定した傾斜制御ゲインGの値が1以下であるか否かを判断する(ステップS15)。ここで、設定した傾斜制御ゲインGの値が1以下でなく1よりも大きい場合には、遷移期間経過後であると判断することができるので、傾斜制御停止判定部49は、遷移制御実行判定用フラグFlgの値をゼロに設定し(ステップS16)、リンクブレーキ状態判定用フラグFlgの値がゼロであるか否かを判断する。また、設定した傾斜制御ゲインGの値が1以下である場合には、遷移期間内であると判断することができるので、傾斜制御停止判定部49は、そのまま、リンクブレーキ状態判定用フラグFlgの値がゼロであるか否かを判断する。 Subsequently, the tilt control stop determination unit 49 determines whether or not the set value of the tilt control gain G 0 is 1 or less (step S15). Here, if the set value of the gradient control gain G 0 is not less than 1 but greater than 1, it can be determined that the transition period has elapsed, and therefore the gradient control stop determination unit 49 executes the transition control. The value of the determination flag Flg M is set to zero (step S16), and it is determined whether or not the value of the link brake state determination flag Flg B is zero. If the set value of the gradient control gain G 0 is 1 or less, it can be determined that it is within the transition period. Therefore, the gradient control stop determination unit 49 does not change the link brake state determination flag Flg. Determine whether the value of B is zero.
 このような車体傾斜制御処理は、所定の制御周期Tで繰り返し実行されるようになっている。 Such a vehicle body tilt control process is repeatedly executed at a predetermined control cycle T S.
 次に、傾斜制御停止判定処理の動作について詳細に説明する。 Next, the operation of the tilt control stop determination process will be described in detail.
 図9は本発明の実施の形態における傾斜制御停止判定処理の動作を示すサブルーチンである。 FIG. 9 is a subroutine showing the operation of the inclination control stop determination process in the embodiment of the present invention.
 傾斜制御停止判定部49は、傾斜制御停止判定処理を開始すると、まず、ハンドブレーキ36がONの状態であるか否か、すなわち、H=ONであるか否かを判断する(ステップS1-1)。そして、ハンドブレーキ36がONの状態である場合、傾斜制御停止判定部49は、図示されないカウンタによるカウントを行い、第1のカウント値、すなわち、Cnt1を1だけインクリメントする(ステップS1-2)。つまり、前回の車体傾斜制御処理実行時に設定した第1のカウント値Cnt1に1を加えた値を今回の第1のカウント値Cnt1の値として設定する。 When the tilt control stop determination unit 49 starts the tilt control stop determination process, the tilt control stop determination unit 49 first determines whether or not the hand brake 36 is in an ON state, that is, whether or not H B = ON (step S1- 1). When the handbrake 36 is in an ON state, the tilt control stop determination unit 49 performs counting by a counter (not shown) and increments the first count value, that is, Cnt1 by 1 (step S1-2). That is, a value obtained by adding 1 to the first count value Cnt1 set at the previous execution of the vehicle body tilt control process is set as the value of the current first count value Cnt1.
 続いて、傾斜制御停止判定部49は、第1のカウント値Cnt1があらかじめ設定された第1のカウント閾値を超えたか否かを判断する(ステップS1-3)。該第1のカウント閾値は、車両10が停止したと判定するのに十分な長さのハンドブレーキ36がONである時間に対応するカウント値であって、前記第1の閾値に対応するカウント値である。例えば、車体傾斜制御処理の制御周期Tが10〔ms〕であって、ハンドブレーキ36がONである時間が4秒より長ければ、車両10が停止したと判定してもよいものとすると、前記第1のカウント閾値は、400である。 Subsequently, the inclination control stop determination unit 49 determines whether or not the first count value Cnt1 exceeds a preset first count threshold value (step S1-3). The first count threshold is a count value corresponding to a time during which the hand brake 36 having a length sufficient to determine that the vehicle 10 has stopped is ON, and corresponds to the first threshold value. It is. For example, a control period T S of the body tilt control processing 10 [ms], if the time the hand brake 36 is ON is longer than 4 seconds, the vehicle 10 is assumed to be determined to have stopped, The first count threshold is 400.
 そして、第1のカウント値Cnt1が第1のカウント閾値を超えた場合、傾斜制御停止判定部49は、車両10が停止したと判定し、傾斜制御停止判定用フラグFlgの値を1に設定して(ステップS1-4)、処理を終了する。 When the first count value Cnt1 exceeds the first count threshold, the tilt control stop determination unit 49 determines that the vehicle 10 has stopped, and sets the value of the tilt control stop determination flag Flg L to 1 (Step S1-4), and the process ends.
 一方、ハンドブレーキ36がONの状態であるか否かを判断して、ハンドブレーキ36がONの状態でなくOFFの状態である場合、傾斜制御停止判定部49は、第1のカウント値Cnt1をゼロに設定する(ステップS1-5)。続いて、傾斜制御停止判定部49は、スロットルグリップ35の回転角度としてのスロットル開度、すなわち、Thがゼロであるか否かを判断する(ステップS1-6)。 On the other hand, when it is determined whether or not the hand brake 36 is in an ON state and the hand brake 36 is in an OFF state instead of an ON state, the tilt control stop determination unit 49 sets the first count value Cnt1. It is set to zero (step S1-5). Subsequently, the inclination control stop determination unit 49 determines whether or not the throttle opening as the rotation angle of the throttle grip 35, that is, Th is zero (step S1-6).
 そして、スロットル開度がゼロである場合、傾斜制御停止判定部49は、車速センサ54が検出した車速の絶対値、すなわち、|V|が前記第2の閾値、例えば、2〔km/h〕以下であるか否かを判断する(ステップS1-7)。なお、スロットル開度がゼロでない場合、傾斜制御停止判定部49は、傾斜制御停止判定用フラグFlgの値をゼロに設定して(ステップS1-14)、処理を終了する。 When the throttle opening is zero, the inclination control stop determination unit 49 determines that the absolute value of the vehicle speed detected by the vehicle speed sensor 54, that is, | V | is the second threshold, for example, 2 [km / h]. It is determined whether or not the following is true (step S1-7). If the throttle opening is not zero, the inclination control stop determination unit 49 sets the value of the inclination control stop determination flag Flg L to zero (step S1-14) and ends the process.
 車速センサ54が検出した車速の絶対値が第2の閾値以下であるか否かを判断して、第2の閾値以下である場合、傾斜制御停止判定部49は、傾斜制御停止判定用フラグFlgの値が1であるか否かを判断する(ステップS1-8)。なお、車速の絶対値が第2の閾値以下でない場合、すなわち、車速の絶対値が第2の閾値を超えている場合、傾斜制御停止判定部49は、傾斜制御停止判定用フラグFlgの値をゼロに設定して(ステップS1-14)、処理を終了する。 When the absolute value of the vehicle speed detected by the vehicle speed sensor 54 is less than or equal to the second threshold value and is less than or equal to the second threshold value, the inclination control stop determination unit 49 determines the inclination control stop determination flag Flg. It is determined whether or not the value of L is 1 (step S1-8). When the absolute value of the vehicle speed is not equal to or less than the second threshold value, that is, when the absolute value of the vehicle speed exceeds the second threshold value, the inclination control stop determination unit 49 determines the value of the inclination control stop determination flag Flg L. Is set to zero (step S1-14), and the process is terminated.
 傾斜制御停止判定用フラグFlgの値が1であるか否かを判断して、傾斜制御停止判定用フラグFlgの値が1である場合、傾斜制御停止判定部49は、そのまま処理を終了する。また、傾斜制御停止判定用フラグFlgの値が1でない場合、傾斜制御停止判定部49は、横加速度演算部48から受信した合成横加速度aの絶対値が前記第3の閾値、例えば、0.05〔G〕以下であるか否かを判断する(ステップS1-9)。 It is determined whether or not the value of the inclination control stop determination flag Flg L is 1. When the value of the inclination control stop determination flag Flg L is 1, the inclination control stop determination unit 49 ends the process as it is. To do. When the value of the tilt control stop determination flag Flg L is not 1, the tilt control stop determination unit 49, the absolute value of the third threshold value of the composite lateral acceleration a c received from the lateral acceleration calculation unit 48, for example, It is determined whether it is 0.05 [G] or less (step S1-9).
 そして、合成横加速度aの絶対値が第3の閾値以下である場合、傾斜制御停止判定部49は、図示されないカウンタによるカウントを行い、第2のカウント値、すなわち、Cnt2を1だけインクリメントする(ステップS1-10)。つまり、前回の車体傾斜制御処理実行時に設定した第2のカウント値Cnt2に1を加えた値を今回の第2のカウント値Cnt2の値として設定する。また、合成横加速度aの絶対値が第3の閾値以下でない場合、すなわち、第3の閾値を超えている場合、傾斜制御停止判定部49は、第2のカウント値Cnt2をゼロに設定する(ステップS1-11)。 When the absolute value of the combined lateral acceleration a c is equal to or smaller than the third threshold value, the tilt control stop determination unit 49 performs counting with a counter (not shown) and increments the second count value, that is, Cnt2 by 1. (Step S1-10). That is, a value obtained by adding 1 to the second count value Cnt2 set at the previous execution of the vehicle body tilt control process is set as the current second count value Cnt2. Further, when the absolute value of the resultant lateral acceleration a c is not less than the third threshold, i.e., if it exceeds a third threshold value, the tilt control stop determination unit 49 sets the second count value Cnt2 to zero (Step S1-11).
 続いて、傾斜制御停止判定部49は、第2のカウント値Cnt2があらかじめ設定された第2のカウント閾値を超えたか否かを判断する(ステップS1-12)。該第2のカウント閾値は、ハンドブレーキ36が操作されなくても、車速が第2の閾値以下であって、かつ、合成横加速度aの絶対値が第3の閾値以下である状態が、車両10が停止したと判定するのに十分な長さの時間に対応するカウント値であって、前記第4の閾値に対応するカウント値である。例えば、車体傾斜制御処理の制御周期Tが10〔ms〕であって、車速が第2の閾値以下であって、かつ、合成横加速度aの絶対値が第3の閾値以下である状態が1秒より長ければ、車両10が停止したと判定してもよいものとすると、前記第2のカウント閾値は、100である。 Subsequently, the inclination control stop determination unit 49 determines whether or not the second count value Cnt2 exceeds a preset second count threshold value (step S1-12). Count threshold of said second, without the hand brake 36 is operated, the vehicle speed is not more than the second threshold value, and the state is the absolute value of the resultant lateral acceleration a c is equal to or less than the third threshold value, It is a count value corresponding to a time sufficient to determine that the vehicle 10 has stopped, and is a count value corresponding to the fourth threshold value. For example, a control period T S of the body tilt control processing 10 [ms], the vehicle speed is not more than the second threshold value, and the absolute value of the resultant lateral acceleration a c is equal to or less than the third threshold state If it is longer than 1 second, it may be determined that the vehicle 10 has stopped, the second count threshold is 100.
 そして、第2のカウント値Cnt2が第2のカウント閾値を超えた場合、傾斜制御停止判定部49は、車両10が停止したと判定し、傾斜制御停止判定用フラグFlgの値を1に設定して(ステップS1-13)、処理を終了する。なお、第2のカウント値Cnt2が第2のカウント閾値を超えていない場合には、傾斜制御停止判定部49は、そのまま、処理を終了する。 When the second count value Cnt2 exceeds the second count threshold, the tilt control stop determination unit 49 determines that the vehicle 10 has stopped, and sets the value of the tilt control stop determination flag Flg L to 1 Then (step S1-13), the process ends. If the second count value Cnt2 does not exceed the second count threshold, the tilt control stop determination unit 49 ends the process as it is.
 次に、傾斜制御処理の動作について詳細に説明する。 Next, the operation of the tilt control process will be described in detail.
 図10は本発明の実施の形態における傾斜制御処理の動作を示すサブルーチンである。 FIG. 10 is a subroutine showing the operation of the tilt control process in the embodiment of the present invention.
 傾斜制御部47は、まず、横加速度演算部48から合成横加速度aを受信する(ステップS6-1)。 Tilt control unit 47 first receives a combined lateral acceleration a c from the lateral acceleration calculation unit 48 (step S6-1).
 続いて、傾斜制御部47は、aold 呼出を行う(ステップS6-2)。aold は、前回の車体傾斜制御処理実行時に保存された合成横加速度aの値であり、初期設定においては、aold =0とされている。 Subsequently, the inclination control unit 47 makes an old call (step S6-2). a old is a value of the combined lateral acceleration a c stored at the previous execution of the vehicle body tilt control process, and a old = 0 in the initial setting.
 続いて、傾斜制御部47は、制御周期Tを取得し(ステップS6-3)、合成横加速度aの微分値を算出する(ステップS6-4)。ここで、aの微分値をΔaとすると、該Δaは次の式(8)によって算出される。
Δa=(a-aold )/T ・・・式(8)
 そして、傾斜制御部47は、aold =aとして保存する(ステップS6-5)。つまり、今回の車体傾斜制御処理実行時に取得した合成横加速度aの値をaold として、記憶手段に保存する。
Then, tilt control unit 47 obtains the control period T S (step S6-3), and calculates the differential value of the resultant lateral acceleration a c (step S6-4). Here, when the differential value of a c and .DELTA.a c, the .DELTA.a c is calculated by the following equation (8).
Δa c = ( ac −a old ) / T S (8)
The tilt control unit 47 is stored as a old = a c (step S6-5). That is, the value of this resultant lateral acceleration a c obtained when the vehicle body inclination control process executed as a old, stored in the storage means.
 続いて、傾斜制御部47は、第1制御値Uを算出する(ステップS6-6)。ここで、比例制御動作の制御ゲイン、すなわち、比例ゲインをGとすると、第1制御値Uは次の式(9)によって算出される。
=G ・・・式(9)
 続いて、傾斜制御部47は、第2制御値Uを算出する(ステップS6-7)。ここで、微分制御動作の制御ゲイン、すなわち、微分時間をGとすると、第2制御値Uは次の式(10)によって算出される。
=GΔa ・・・式(10)
 続いて、傾斜制御部47は、第3制御値Uを算出する(ステップS6-8)。第3制御値Uは、第1制御値Uと第2制御値Uとの合計であり、次の式(11)によって算出される。
U=U+U ・・・式(11)
 続いて、傾斜制御部47は、横加速度予測値aを算出する(ステップS6-9)。該横加速度予測値aは、ハンドルバー41aの操舵角及び車速に基づいて算出し得る値であり、ハンドルバー41aのフィルタ処理された操舵角をΨ(t)とし、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との距離、すなわち、ホイールベースをLとし、車速センサ54が検出した車速をνとすると、次の式(12)によって算出することができる。
=νtan{Ψ(t)}/L ・・・式(12)
 続いて、傾斜制御部47は、afold呼出を行う(ステップS6-10)。afoldは、前回の車体傾斜制御処理実行時に保存された横加速度予測値aである。なお、初期設定においては、afold=0とされている。
Then, tilt control unit 47 calculates the first control value U P (step S6-6). Here, if the control gain of the proportional control operation, that is, the proportional gain is GP , the first control value UP is calculated by the following equation (9).
U P = G P a c ··· formula (9)
Then, tilt control unit 47 calculates the second control value U D (step S6-7). Here, when the control gain of the differential control operation, that is, the differential time is G D , the second control value U D is calculated by the following equation (10).
U D = G D Δac c Formula (10)
Subsequently, the inclination control unit 47 calculates a third control value U (step S6-8). Third control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (11).
U = U P + U D ··· formula (11)
Subsequently, the tilt control unit 47 calculates a lateral acceleration predicted value a f (step S6-9). The predicted lateral acceleration value a f is a value that can be calculated based on the steering angle of the handlebar 41a and the vehicle speed, and the filtered steering angle of the handlebar 41a is Ψ (t), and the front wheel 12F is the front wheel. When the distance between the axle and the axles of the left and right wheels 12L and 12R as rear wheels, that is, the wheel base is L H and the vehicle speed detected by the vehicle speed sensor 54 is ν, it can be calculated by the following equation (12). it can.
a f = ν 2 tan {Ψ (t)} / L H Formula (12)
Subsequently, the inclination control unit 47 performs a fold call (step S6-10). a fold is a predicted lateral acceleration value a f stored when the vehicle body tilt control process is executed last time. In the initial setting, a fold = 0.
 続いて、傾斜制御部47は、前記aの微分値を算出する(ステップS6-11)。ここで、aの微分値をΔaとすると、該Δaは次の式(13)によって算出される。
Δa=(a-afold)/T ・・・式(13)
 そして、傾斜制御部47は、afold=aとして保存する(ステップS6-12)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度予測値aをafoldとして、記憶手段に保存する。
Subsequently, the inclination control unit 47 calculates a differential value of the a f (step S6-11). Here, when the differential value of a f and .DELTA.a f, the .DELTA.a f is calculated by the following equation (13).
Δa f = (a f −a fold ) / T S Expression (13)
The tilt control unit 47 is stored as a fold = a f (step S6-12). That is, the lateral acceleration predicted value a f acquired at the time of executing the vehicle body tilt control process this time is stored in the storage unit as a fold .
 続いて、傾斜制御部47は、第4制御値UfDを算出する(ステップS6-13)。ここで、微分制御動作の制御ゲインをGyDとすると、第4制御値UfDは次の式(14)によって算出される。
fD=GyDΔa ・・・式(14)
 続いて、傾斜制御部47は、第5制御値Uを算出する(ステップS6-14)。第5制御値Uは、第3制御値Uと第4制御値UfDとの合計であり、次の式(15)によって算出される。
U=U+UfD ・・・式(15)
 なお、前記ステップS6-9~S6-14の動作は、操舵角及び車速に基づいて得られた横加速度予測値aを使用したフィードフォワード制御を表している。
Subsequently, the inclination control unit 47 calculates the fourth control value U fD (step S6-13). Here, if the control gain of the differential control operation is G yD , the fourth control value U fD is calculated by the following equation (14).
U fD = G yD Δa f Expression (14)
Subsequently, the inclination control unit 47 calculates a fifth control value U (step S6-14). The fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (15).
U = U + U fD Expression (15)
The operation of the steps S6-9 ~ S6-14 represents feedforward control using lateral acceleration estimated value a f obtained based on the steering angle and the vehicle speed.
 続いて、傾斜制御部47は、第6制御値Uout を算出する(ステップS6-15)。該第6制御値Uout は、第5制御値Uに傾斜制御ゲインGを乗じた値であり、次の式(16)によって算出される。
out =UG・・・式(16)
 最後に、傾斜制御部47は、第6制御値Uout をリンクモータトルク指令値としてリンクモータ25へ出力して(ステップS6-16)、処理を終了する。
Subsequently, the inclination control unit 47 calculates a sixth control value U out (step S6-15). The sixth control value U out is a value obtained by multiplying the fifth control value U by the inclination control gain G 0 and is calculated by the following equation (16).
U out = UG 0 Equation (16)
Finally, tilt control section 47, the sixth control value U out and output to the link motor 25 as the link motor torque command value (step S6-16), the process ends.
 このように、本実施の形態においては、車両10の停車時には車体の傾斜制御を停止するとともに、車体の傾斜動作を停止させて車体の姿勢をロックするリンクブレーキ26を作動させる。これにより、停車時には、リンクモータ25を作動させる必要がないので、消費電力量を抑制することができる。また、停車時に傾斜制御を行わないので、不要な振動が発生することがない。さらに、停車時に車体の姿勢が変化することもない。したがって、乗員が不快に感じることがなく、乗り心地を向上させることができる。 Thus, in the present embodiment, when the vehicle 10 stops, the vehicle body tilt control is stopped, and the vehicle body tilt operation is stopped to activate the link brake 26 that locks the vehicle body posture. Thereby, since it is not necessary to operate the link motor 25 at the time of a stop, power consumption can be suppressed. Further, since the tilt control is not performed when the vehicle is stopped, unnecessary vibration does not occur. Furthermore, the posture of the vehicle body does not change when the vehicle is stopped. Therefore, the rider does not feel uncomfortable and the ride comfort can be improved.
 また、停車の後に傾斜制御を開始する際には、遷移制御を行って、トルク指令値に乗じる傾斜制御ゲインGの値を所定の遷移期間の間に徐々に増加させることによって、リンクモータ25に入力されるトルク指令値の値を緩和する。これにより、停車の後における車体の傾斜を任意の変化速度で復帰させることができ、傾斜状態から直立状態に復帰するように車体の姿勢が変化しても、乗員が不快に感じることがない。 Further, when the tilt control is started after the vehicle is stopped, the link motor 25 is controlled by performing the transition control and gradually increasing the value of the tilt control gain G 0 multiplied by the torque command value during the predetermined transition period. The torque command value input to is relaxed. Thereby, the inclination of the vehicle body after stopping can be returned at an arbitrary change speed, and even if the posture of the vehicle body changes so as to return from the inclined state to the upright state, the passenger does not feel uncomfortable.
 さらに、傾斜制御の開始後に、リンクブレーキ26を解除してリンクモータ25の回転軸を回転可能にするので、車体の転倒のように車体の傾斜が大きく変化することを確実に防止することができ、安全性を向上させることができる。 Furthermore, since the link brake 26 is released and the rotation shaft of the link motor 25 can be rotated after the start of the tilt control, it is possible to reliably prevent the tilt of the vehicle body from changing greatly as the vehicle body falls. , Can improve safety.
 さらに、車体の傾斜動作を停止させて車体の姿勢をロックした後は、ハンドブレーキ36がOFFの状態となっても、スロットルグリップ35が操作されず、車速があらかじめ設定した第2の閾値を超えなければ、車体の姿勢のロックを維持するので、乗員はハンドブレーキ36を操作し続ける必要がなく、乗員の操作負担が低減される。 Further, after the vehicle body tilting operation is stopped and the vehicle body posture is locked, the throttle grip 35 is not operated even when the hand brake 36 is turned off, and the vehicle speed exceeds the preset second threshold value. Otherwise, since the posture of the vehicle body is maintained, it is not necessary for the occupant to continue to operate the hand brake 36, and the operation burden on the occupant is reduced.
 さらに、ハンドブレーキ36が操作されなくても、車速が第2の閾値以下であって、かつ、横加速度の値が第3の閾値以下である状態が第4の閾値より長い時間継続していると、車両10が停車したものと判定し、車体の傾斜動作を停止させて車体の姿勢をロックさせるので、より広範囲な状況下で車体の傾斜制御を停止させることができ、消費電力量を更に抑制することができるとともに、車体の姿勢の変化を防止して、乗り心地を向上させることができる。 Furthermore, even when the hand brake 36 is not operated, the state where the vehicle speed is equal to or lower than the second threshold and the lateral acceleration value is equal to or lower than the third threshold continues for a longer time than the fourth threshold. Then, it is determined that the vehicle 10 has stopped, and the tilting operation of the vehicle body is stopped to lock the posture of the vehicle body. Therefore, the tilt control of the vehicle body can be stopped under a wider range of conditions, and the power consumption can be further increased. In addition to being able to suppress, it is possible to improve the riding comfort by preventing a change in the posture of the vehicle body.
 なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。 The present invention is not limited to the above-described embodiment, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
 本発明は、少なくとも左右一対の車輪を有する車両に利用することができる。 The present invention can be used for a vehicle having at least a pair of left and right wheels.
10  車両
11  搭乗部
12F、12L、12R  車輪
20  本体部
25  リンクモータ
26  リンクブレーキ
44  横加速度センサ
44a  第1横加速度センサ
44b  第2横加速度センサ
DESCRIPTION OF SYMBOLS 10 Vehicle 11 Boarding part 12F, 12L, 12R Wheel 20 Main-body part 25 Link motor 26 Link brake 44 Lateral acceleration sensor 44a 1st lateral acceleration sensor 44b 2nd lateral acceleration sensor

Claims (8)

  1.  互いに連結された操舵部及び駆動部を備える車体と、
     前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、
     前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、
     前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、
     前記車体の傾斜動作を停止させる傾斜ブレーキ装置と、
     前記車体に作用する横加速度を検出する横加速度センサと、
     前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、
     該制御装置は、前記横加速度センサが検出する横加速度に基づいて旋回方向に傾斜させる制御を行うとともに、停車時には前記車体の傾斜の制御を停止し、前記傾斜ブレーキ装置を作動させて前記車体の姿勢をロックすることを特徴とする車両。
    A vehicle body including a steering unit and a drive unit coupled to each other;
    A wheel rotatably attached to the steering unit, the steering wheel for steering the vehicle body;
    A wheel rotatably attached to the drive unit, the drive wheel driving the vehicle body;
    A tilting actuator device for tilting the steering unit or the driving unit in a turning direction;
    An inclination brake device for stopping the inclination operation of the vehicle body;
    A lateral acceleration sensor for detecting lateral acceleration acting on the vehicle body;
    A control device for controlling the tilt of the vehicle body by controlling the tilt actuator device;
    The control device performs control to incline in the turning direction based on the lateral acceleration detected by the lateral acceleration sensor, stops the control of the inclination of the vehicle body when the vehicle is stopped, and operates the inclination brake device to operate the vehicle body. A vehicle characterized by locking its posture.
  2.  前記制御装置は、前記傾斜ブレーキ装置を作動させた後、前記傾斜用アクチュエータ装置への電力の供給を停止する請求項1に記載の車両。 The vehicle according to claim 1, wherein the control device stops supplying power to the tilt actuator device after the tilt brake device is operated.
  3.  前記制御装置は、停車の後に前記車体の傾斜の制御を開始する際、前記傾斜用アクチュエータ装置に対して出力する制御値を徐々に増加させる請求項1又は2に記載の車両。 The vehicle according to claim 1 or 2, wherein the control device gradually increases a control value output to the tilt actuator device when starting control of the tilt of the vehicle body after stopping.
  4.  前記制御装置は、停車の後に前記車体の傾斜の制御を開始する際、前記車体の傾斜の制御を開始した後に、前記傾斜ブレーキ装置を解除する請求項1~3のいずれか1項に記載の車両。 The control device according to any one of claims 1 to 3, wherein the control device releases the tilt brake device after starting the control of the tilt of the vehicle body when starting the control of the tilt of the vehicle body after stopping. vehicle.
  5.  駐車ブレーキを更に有し、
     前記制御装置は、前記駐車ブレーキの操作手段が第1の閾値より長い時間操作されていると、停車していると判定し、前記車体の傾斜の制御を停止し、前記傾斜ブレーキ装置を作動させる請求項1~4のいずれか1項に記載の車両。
    A parking brake,
    The control device determines that the vehicle is stopped when the parking brake operating means has been operated for a time longer than a first threshold, stops the control of the tilt of the vehicle body, and activates the tilt brake device. The vehicle according to any one of claims 1 to 4.
  6.  前記制御装置は、停車していると判定した後に、前記駐車ブレーキの操作手段が解除されても、走行指令が入力されず、車速が第2の閾値を超えなければ、前記車体の傾斜の制御の停止、及び、前記傾斜ブレーキ装置の作動を継続する請求項5に記載の車両。 After the controller determines that the vehicle is stopped, if the parking brake operation means is released, no travel command is input and the vehicle speed does not exceed the second threshold value, the vehicle body tilt control is performed. The vehicle according to claim 5, wherein the vehicle is stopped and the operation of the tilt brake device is continued.
  7.  前記制御装置は、前記駐車ブレーキの操作手段が操作されなくても、車速が第2の閾値以下であって、かつ、前記横加速度が第3の閾値以下である状態が第4の閾値より長い時間継続していると、停車していると判定する請求項5に記載の車両。 The control device is longer than the fourth threshold when the vehicle speed is equal to or lower than the second threshold and the lateral acceleration is equal to or lower than the third threshold even when the parking brake operating means is not operated. The vehicle according to claim 5, wherein it is determined that the vehicle is stopped when the time continues.
  8.  前記制御装置は、前記駐車ブレーキの操作手段の操作が解除され、かつ、走行指令が入力されるか、又は、車速が第2の閾値を超えると、前記車体の傾斜の制御を開始する請求項5に記載の車両。 The said control apparatus starts the control of the inclination of the said vehicle body, when the operation of the operation means of the said parking brake is cancelled | released and a driving | running | working command is input or a vehicle speed exceeds a 2nd threshold value. 5. The vehicle according to 5.
PCT/JP2011/001822 2010-06-25 2011-03-28 Vehicle WO2011161856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180031536.4A CN103079946B (en) 2010-06-25 2011-03-28 Vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010144371 2010-06-25
JP2010-144371 2010-06-25
JP2010-257399 2010-11-18
JP2010257399A JP5521994B2 (en) 2010-06-25 2010-11-18 vehicle

Publications (1)

Publication Number Publication Date
WO2011161856A1 true WO2011161856A1 (en) 2011-12-29

Family

ID=45371064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001822 WO2011161856A1 (en) 2010-06-25 2011-03-28 Vehicle

Country Status (3)

Country Link
JP (1) JP5521994B2 (en)
CN (1) CN103079946B (en)
WO (1) WO2011161856A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065377A (en) * 2015-09-29 2017-04-06 本田技研工業株式会社 Oscillation type vehicle
EP3412481A1 (en) * 2017-06-07 2018-12-12 Toyota Jidosha Kabushiki Kaisha Automatic tilting vehicle
EP3124367B1 (en) * 2014-03-24 2020-05-06 Yamaha Hatsudoki Kabushiki Kaisha Saddled vehicle
EP3712050A4 (en) * 2017-11-17 2020-12-23 Yamaha Hatsudoki Kabushiki Kaisha Leaning vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617509B2 (en) * 2010-10-07 2014-11-05 トヨタ自動車株式会社 Car body tilting device
CA2917052A1 (en) * 2012-07-10 2014-01-16 Gotech International Limited Steering and control systems for a three-wheeled vehicle
EP3037333B1 (en) * 2013-06-19 2019-05-22 Electrike Japan Co., Ltd Automatic three-wheeled vehicle
AP2015008946A0 (en) * 2013-07-01 2015-12-31 Yamaha Motor Co Ltd Vehicle
JP5947320B2 (en) * 2014-01-27 2016-07-06 株式会社ショーワ Vehicle height adjustment device and vehicle height adjustment method
US10086901B2 (en) 2014-03-24 2018-10-02 Yamaha Hatsudoki Kabushiki Kaisha Saddle riding type vehicle
WO2015146680A1 (en) * 2014-03-24 2015-10-01 ヤマハ発動機株式会社 Saddled vehicle
EP3360764B1 (en) 2015-11-13 2022-01-26 Yamaha Hatsudoki Kabushiki Kaisha Leaning vehicle
CN106627963B (en) * 2016-11-18 2019-07-23 王徽 In-line arrangement rear wheels of electric vehicle turns to self-balancing control device and method
FR3064590B1 (en) * 2017-03-28 2021-04-16 Peugeot Citroen Automobiles Sa PENDULUM VEHICLE WITH TILT LOCKING COMPONENTS
JP6986454B2 (en) * 2018-01-15 2021-12-22 株式会社デンソーテン Vehicle control device and vehicle control method
CN111806608B (en) * 2020-06-29 2022-03-25 叶奇正 Postal express delivery car with prevent automobile body mechanism of turning on one's side

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087363A (en) * 2000-09-19 2002-03-27 Honda Motor Co Ltd Rear wheel suspension device for vehicle
JP2005088742A (en) * 2003-09-17 2005-04-07 Honda Motor Co Ltd Oscillation control device for oscillation type vehicle
JP2010254164A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Rocking type saddle-riding type vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1015233C2 (en) * 2000-05-18 2001-11-20 Brinks Westmaas Bv Tilting vehicle fitted with swiveling rear wheels.
EP1885593B1 (en) * 2005-05-31 2011-07-20 Brinks Westmaas B.V. Self-balancing vehicle
JP4986603B2 (en) * 2006-12-20 2012-07-25 ヤマハ発動機株式会社 Motorcycles and tricycles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087363A (en) * 2000-09-19 2002-03-27 Honda Motor Co Ltd Rear wheel suspension device for vehicle
JP2005088742A (en) * 2003-09-17 2005-04-07 Honda Motor Co Ltd Oscillation control device for oscillation type vehicle
JP2010254164A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Rocking type saddle-riding type vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124367B1 (en) * 2014-03-24 2020-05-06 Yamaha Hatsudoki Kabushiki Kaisha Saddled vehicle
JP2017065377A (en) * 2015-09-29 2017-04-06 本田技研工業株式会社 Oscillation type vehicle
EP3412481A1 (en) * 2017-06-07 2018-12-12 Toyota Jidosha Kabushiki Kaisha Automatic tilting vehicle
EP3712050A4 (en) * 2017-11-17 2020-12-23 Yamaha Hatsudoki Kabushiki Kaisha Leaning vehicle

Also Published As

Publication number Publication date
CN103079946A (en) 2013-05-01
JP5521994B2 (en) 2014-06-18
JP2012025370A (en) 2012-02-09
CN103079946B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5521994B2 (en) vehicle
JP5505319B2 (en) vehicle
WO2012102388A1 (en) Vehicle
WO2011102108A1 (en) Vehicle
JP2013144471A (en) Vehicle
JP2012011996A (en) Vehicle
JP2011046273A (en) Vehicle
JP5369999B2 (en) vehicle
JP5458723B2 (en) vehicle
JP2013112238A (en) Vehicle
JP2013144513A (en) Vehicle
JP2013071688A (en) Vehicle
JP2011046297A (en) Vehicle
JP2011042181A (en) Vehicle
JP5458722B2 (en) vehicle
JP2012017009A (en) Vehicle
WO2011102106A1 (en) Vehicle
JP2011194953A (en) Vehicle
JP5598117B2 (en) vehicle
JP5440299B2 (en) vehicle
JP2011042199A (en) Vehicle
JP5617652B2 (en) vehicle
JP5617650B2 (en) vehicle
JP5304681B2 (en) vehicle
JP2011168094A (en) Method for setting control value of vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031536.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797746

Country of ref document: EP

Kind code of ref document: A1