WO2011102108A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2011102108A1
WO2011102108A1 PCT/JP2011/000812 JP2011000812W WO2011102108A1 WO 2011102108 A1 WO2011102108 A1 WO 2011102108A1 JP 2011000812 W JP2011000812 W JP 2011000812W WO 2011102108 A1 WO2011102108 A1 WO 2011102108A1
Authority
WO
WIPO (PCT)
Prior art keywords
lateral acceleration
vehicle body
vehicle
value
sensor
Prior art date
Application number
PCT/JP2011/000812
Other languages
French (fr)
Japanese (ja)
Inventor
弘毅 林
裕司 高倉
伸司 山本
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to CN201180009479XA priority Critical patent/CN102770333A/en
Publication of WO2011102108A1 publication Critical patent/WO2011102108A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H1/00Supports or stands forming part of or attached to cycles
    • B62H1/10Supports or stands forming part of or attached to cycles involving means providing for a stabilised ride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends

Definitions

  • the present invention relates to a vehicle having at least a pair of left and right wheels.
  • Patent Document 1 a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
  • the vehicle body in order to improve the turning performance, the vehicle body can be tilted inward in the turning direction, but the operation of tilting the vehicle body is difficult and the turning performance is low. , Passengers may feel uncomfortable or anxious.
  • the present invention solves the problems of the conventional vehicle, calculates the predicted value of the acceleration component in the lateral direction from the steering angle and the vehicle speed, and makes an angle that balances the centrifugal force and the gravity to the outside of the turn
  • the tilt angle of the vehicle body By controlling the tilt angle of the vehicle body, the lateral acceleration component becomes zero even when the posture of the vehicle body changes, and the force in the direction parallel to the longitudinal axis of the vehicle body is applied to the vehicle body and the occupant. Therefore, the stability of the vehicle body can be maintained, the turning performance can be improved, the occupant does not feel uncomfortable, the ride comfort is good, and the stable running state can be realized.
  • the object is to provide a highly safe vehicle.
  • a vehicle body including a steering unit and a drive unit coupled to each other, a wheel rotatably attached to the steering unit, the steering wheel for steering the vehicle body, and the drive A wheel that is rotatably attached to the vehicle, and includes a drive wheel that drives the vehicle body, a tilt actuator device that tilts the steering unit or the drive unit in a turning direction, and a lateral acceleration that acts on the vehicle body directly.
  • a plurality of sensors that detect indirectly, a requested turning amount detection means that detects a requested turning amount of the vehicle body requested by an occupant, a vehicle speed detection means that detects a vehicle speed, and the tilt actuator device are controlled to A control device for controlling the tilt of the vehicle body, the control device performing feedback control based on lateral acceleration detected by the plurality of sensors, and detecting the required turning amount Stage controls the inclination of the vehicle body making the request turning amount and feedforward control based on the vehicle speed the vehicle speed detecting means detects detects.
  • the tilt angle of the vehicle body can be controlled so that the centrifugal force to the outside of the turn and the gravity are balanced, and the change in the lateral acceleration is large.
  • a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant, so that the occupant does not feel uncomfortable, has a good ride, and realizes a stable running state. it can.
  • FIG. 1 is a diagram showing a configuration of a vehicle according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a configuration of a vehicle link mechanism according to the first embodiment of the present invention
  • FIG. It is a block diagram which shows the structure of the vehicle body tilt control system in 1 embodiment.
  • (a) is a right side view and (b) is a rear view.
  • reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body.
  • the wheel 12F is a front wheel disposed as a steering wheel
  • the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels.
  • the lean mechanism for leaning the vehicle body from side to side that is, the lean mechanism, that is, the vehicle body tilt mechanism, the link mechanism 30 that supports the left and right wheels 12L and 12R, and the tilt that is the actuator that operates the link mechanism 30
  • a link motor 25 as an actuator device.
  • the vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
  • the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
  • the left and right wheels 12L and 12R stand upright with respect to the road surface 18, that is, the camber angle is 0 degree.
  • the link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R.
  • a right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R;
  • the lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically.
  • the left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof.
  • the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
  • the rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable.
  • a rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft.
  • the rotational drive device 51 may be a motor other than an in-wheel motor.
  • the link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body.
  • the body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 ⁇ / b> U on the upper side of the link mechanism 30.
  • the rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U.
  • the link motor 25 When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
  • the link motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate.
  • the lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate.
  • the lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
  • the boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown).
  • the connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
  • the boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c.
  • the seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling.
  • the footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1A) and below the seat 11a.
  • a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20.
  • the battery device is an energy supply source for the rotation drive device 51 and the link motor 25.
  • a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
  • a steering device 41 is disposed in front of the seat 11a.
  • the steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch.
  • the occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.).
  • a steering device that is a means for detecting the required turning amount of the vehicle body requested by the occupant, other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handle bar 41a. It can also be used as
  • the wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device).
  • the suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
  • the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
  • the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member.
  • the steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end.
  • the vehicle 10 has a lateral acceleration sensor 44.
  • the lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like.
  • the vehicle 10 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body.
  • the vehicle body By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to the gravity downward in the vertical direction, the uncomfortable feeling is reduced, and the stability of the vehicle 10 is improved.
  • the lateral acceleration sensor 44 in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body, and feedback control is performed so that the output of the lateral acceleration sensor 44 becomes zero.
  • the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical.
  • the lateral acceleration sensor 44 is disposed on the back surface of the riding section 11.
  • the lateral acceleration sensor 44 is disposed so as to be located at the center in the width direction of the vehicle body, that is, on the longitudinal axis of the vehicle body.
  • the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device.
  • the vehicle body tilt control system is a kind of computer system, and includes a tilt control ECU (Electronic Control Unit) 46 that functions as a tilt control device, as shown in FIG.
  • the inclination control ECU 46 includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and is connected to the lateral acceleration sensor 44 and the link motor 25.
  • the tilt control ECU 46 includes a tilt control unit 47 that outputs a torque command value for operating the link motor 25 based on the lateral acceleration detected by the lateral acceleration sensor 44.
  • the tilt control unit 47 performs feedback control during cornering, so that the vehicle body tilt angle is such that the lateral acceleration value detected by the lateral acceleration sensor 44 is zero. 25 is activated. That is, the tilt angle of the vehicle body is controlled so that the centrifugal force to the outside of the turn and gravity are balanced and the lateral acceleration component becomes zero. That is, the vehicle body inclination angle is controlled with the lateral acceleration component value of zero as the target value.
  • a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant on the riding section 11. Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved. In addition, the rider does not feel discomfort and the ride comfort is improved.
  • FIG. 4 is a diagram for explaining the tilting operation of the vehicle body during turning in the first embodiment of the present invention
  • FIG. 5 is a flowchart showing the operation of the vehicle body tilt control process of the vehicle in the first embodiment of the present invention. It is.
  • the vehicle body tilt control system starts the vehicle body tilt control process.
  • the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG.
  • a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn.
  • the lateral acceleration sensor 44 detects the resultant force of the centrifugal force and the lateral component of gravity as lateral acceleration, and outputs the detected value a to the tilt control unit 47 as the lateral acceleration sensor value.
  • the inclination control unit 47 performs feedback control and outputs a control value such that the detected value a becomes zero to the link motor 25.
  • the vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 5 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
  • the inclination control unit 47 first acquires the lateral acceleration sensor value a (step S1).
  • tilt control unit 47 obtains the control period T S (step S3), and calculates a differential value of a (step S4).
  • the differential value of a is da / dt
  • the da / dt is calculated by the following equation (1).
  • da / dt (aa old ) / T S (1)
  • the inclination control part 47 preserve
  • saves as aold a (step S5). That is, the lateral acceleration sensor value a acquired at the time of execution of the current vehicle body tilt control process is stored as a old in the storage unit.
  • tilt control unit 47 calculates the first control value U P (Step S6).
  • the first control value UP is calculated by the following equation (2).
  • U P C P a ⁇ formula (2)
  • tilt control unit 47 calculates the second control value U D (step S7).
  • the control gain of the differential control operation i.e., when the derivative time and C D
  • the second control value U D is calculated by the following equation (3).
  • U D C D da / dt (3)
  • the inclination control unit 47 calculates a third control value U (step S8).
  • Third control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (4).
  • U U P + U D ⁇ formula (4)
  • the inclination control unit 47 outputs the third control value U as the link motor torque command value to the link motor 25 (step S9), and ends the process.
  • the vehicle body inclination angle is controlled so that the value of the lateral acceleration detected by the lateral acceleration sensor 44 becomes zero during turning. That is, the vehicle body inclination angle is controlled with the lateral acceleration component value of zero as the target value.
  • the tilt angle of the vehicle body can be controlled so that the centrifugal force to the outside of the turn and the gravity are balanced, and the lateral acceleration component becomes zero. A force in a direction parallel to the axis acts.
  • the stability of the vehicle body can be maintained and the turning performance can be improved.
  • the rider does not feel discomfort and the ride comfort is improved.
  • working state can be implement
  • FIG. 6 is a diagram for explaining the influence of the detection value of the lateral acceleration sensor in the second embodiment of the present invention
  • FIG. 7 is a diagram showing the rear surface of the vehicle in the second embodiment of the present invention
  • FIG. It is a block diagram which shows the structure of the vehicle body tilt control system in the 2nd Embodiment of this invention. 6
  • (a) to (c) are diagrams showing a state in which one wheel falls
  • (d) is a diagram for explaining the influence of rattling or the like of each part of the vehicle.
  • (b) is a diagram showing a state where the vehicle body is inclined.
  • the lateral acceleration is detected by the single lateral acceleration sensor 44 .
  • an unnecessary acceleration component may be detected.
  • the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction, as indicated by an arrow in FIG. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
  • the vehicle 10 includes a portion that functions as a spring and has elasticity like the tire portions of the left and right wheels 12L and 12R, and includes inevitable backlash at the connecting portions of each member. Therefore, as schematically shown in FIG. 6 (d), the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, so that acceleration caused by displacement of the play and springs is considered. Are also detected as unnecessary acceleration components.
  • Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
  • lateral acceleration sensors 44 there are a plurality of lateral acceleration sensors 44, which are arranged at different heights.
  • the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing.
  • the second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 .
  • the first lateral acceleration sensor 44a detects lateral acceleration.
  • the detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 .
  • the center of the tilting motion when the vehicle body tilts that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
  • both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”. Furthermore, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the wheel 12F as the front wheel and the axle of the left and right wheels 12L and 12R as the rear wheels.
  • both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Further, both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are preferably located on the central axis of the vehicle body extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction. .
  • the tilt control ECU 46 includes a lateral acceleration calculation unit 48 that calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. Then, the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48.
  • FIG. 9 is a diagram showing a dynamic model in the second embodiment of the present invention
  • FIG. 10 is a block diagram of a control system in the second embodiment of the present invention
  • FIG. 11 is a second embodiment of the present invention.
  • FIG. 12 is a flowchart showing the operation of the vehicle body tilt control process of the vehicle according to the second embodiment of the present invention.
  • 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body
  • 44B is a second sensor indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Position.
  • the acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is ⁇ 1> centrifugal force acting on the vehicle body when turning, and ⁇ 2> tilting the vehicle body toward the inside of the turn.
  • the acceleration generated by the displacement of the second lateral acceleration sensor 44b in the circumferential direction, and the ⁇ 4> operation of the link motor 25 or the reaction thereof causes the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b to be displaced in the circumferential direction.
  • the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value.
  • the acceleration ⁇ 3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration.
  • the acceleration of ⁇ 4> which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 .
  • the acceleration of ⁇ 1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected
  • the acceleration of ⁇ 2> that outputs the detected value is defined as a G. Since ⁇ 1> and ⁇ 2> are not related to the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, the detection values of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are equal.
  • the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring
  • the angular acceleration omega Let R '. Further, the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ⁇ M , and the angular acceleration is ⁇ M ′.
  • a X1 L 1 ⁇ R ′
  • a X2 L 2 ⁇ R ′
  • a M1 L 1 ⁇ M ′
  • a M2 L 2 ⁇ M ′.
  • a 1 and a 2 are four accelerations ⁇ 1> to ⁇ 4.
  • a 1 a T + a G + L 1 ⁇ R '+ L 1 ⁇ M' ⁇
  • a 2 a T + a G + L 2 ⁇ R '+ L 2 ⁇ M' ⁇ (6)
  • equation (7) can be obtained.
  • a 1 ⁇ a 2 (L 1 ⁇ L 2 ) ⁇ R ′ + (L 1 ⁇ L 2 ) ⁇ M ′ (7)
  • the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • the value of ⁇ M ′ is known because it is a differential value of the angular velocity ⁇ M of the link motor 25.
  • the value of ⁇ R ′ of the first term is unknown, and all other values are known. Therefore, the value of ⁇ R ′ can be obtained from the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • f 1 is a transfer function represented by the equation (10) described later.
  • G P is a control gain of the proportional control operation
  • G D is the control gain of the differential control operation
  • s is a differential element.
  • the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first acquires the first lateral acceleration sensor value a 1 (step S11) and the second lateral acceleration calculation process. An acceleration sensor value a 2 is acquired (step S12). Then, the lateral acceleration calculation unit 48 calculates the acceleration difference ⁇ a (step S13).
  • the ⁇ a is expressed by the following equation (8).
  • ⁇ a a 1 ⁇ a 2 (8)
  • the lateral acceleration calculation unit 48 performs ⁇ L call (step S14), and performs the L 2 call (step S15).
  • the ⁇ L is expressed by the following equation (9).
  • the lateral acceleration calculation unit 48 calculates a combined lateral acceleration a (step S16).
  • the combined lateral acceleration a is a value corresponding to the lateral acceleration sensor value a when there is one lateral acceleration sensor 44 as in the first embodiment, and is the first lateral acceleration sensor value a. 1 and a value obtained by synthesizing the second lateral acceleration sensor value a 2, and are obtained by the following equations (10) and (11).
  • the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S17), and ends the lateral acceleration calculation process.
  • the tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S21).
  • a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, and the tilt angle of the vehicle body is controlled so that the value of the combined lateral acceleration a becomes zero. That is, the tilt angle of the vehicle body is controlled with a value of zero of the combined lateral acceleration a as a target value.
  • the case where there are two lateral acceleration sensors 44 has been described. However, if there are a plurality of lateral acceleration sensors 44 arranged at different heights, the number of lateral acceleration sensors 44 is three or more. There may be any number.
  • FIG. 13 is a view showing the rear surface of the vehicle according to the third embodiment of the present invention.
  • (a) is a view showing a state where the vehicle body is upright
  • (b) is a view showing a state where the vehicle body is inclined.
  • the vehicle 10 in the present embodiment does not have the link mechanism 30, and the main body 20 and the riding section 11 are connected so as to be swingable in the roll direction around the roll shaft 20 a, and an actuator device for tilting is provided.
  • the link motor 25 By rotating the link motor 25 as shown in FIG. 13B, the riding section 11 can be swung and rolled, that is, tilted with respect to the main body section 20, as shown in FIG.
  • the roll shaft 20a is the center of the movement in which the riding section 11 swings and rolls with respect to the main body 20, that is, the roll center. Note that the rotation shaft of the link motor 25 extending in the traveling direction of the vehicle body may coincide with the roll shaft 20a.
  • the angle of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle does not change, and the riding part 11 is swung with respect to the main body part 20 together with the wheel 12F as the front wheel to the turning inner wheel side
  • the left and right wheels 12L and 12R stand upright with respect to the road surface 18 when the vehicle is traveling straight or turning, that is, the camber angle is 0 degree.
  • the lateral acceleration sensor 44 includes a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b, and the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b Are arranged at different height positions.
  • the center of the tilting motion when the riding section 11 tilts that is, the roll center coincides with the roll shaft 20a. Therefore, the heights L 1 and L 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are set as distances from the roll shaft 20a.
  • both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed on the upper side or the lower side of the roll shaft 20a. Further, it is desirable that one of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b be disposed as close to the roll shaft 20a as possible.
  • lateral acceleration sensor 44 Other aspects of the lateral acceleration sensor 44 are the same as those of the second embodiment, and a description thereof will be omitted.
  • the vehicle body tilt control system is also the same as that in the second embodiment, and a description thereof will be omitted. Furthermore, since the operation of the vehicle 10 in the present embodiment is the same as that in the second embodiment, the description thereof is omitted.
  • FIG. 14 is a block diagram showing a configuration of a vehicle body tilt control system according to the fourth embodiment of the present invention.
  • the lateral acceleration is detected by the two lateral acceleration sensors 44, that is, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b has been described.
  • a sensor other than the acceleration sensor may be used as long as it can detect lateral acceleration.
  • a sensor capable of detecting lateral acceleration is not only a sensor that directly detects acceleration, such as an acceleration sensor, but also a sensor that can obtain acceleration by differentiating a detected value, such as a speed sensor. That is, it includes a sensor that indirectly detects acceleration.
  • the roll rate sensor 44c is a general roll rate sensor that detects the angular velocity of the tilting motion of the vehicle body.
  • the roll rate sensor 44c can detect a rotational angular velocity in a plane perpendicular to the ground. It is attached as possible.
  • the vehicle body tilt control system in the present embodiment is as shown in FIG.
  • a first lateral acceleration sensor 44 a and a roll rate sensor 44 c are connected to the tilt control ECU 46.
  • the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the differential value of the angular velocity of the tilt motion of the vehicle body detected by the roll rate sensor 44c and the lateral acceleration detected by the first lateral acceleration sensor 44a.
  • the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48.
  • FIG. 15 is a diagram showing a dynamic model in the fourth embodiment of the present invention
  • FIG. 16 is a flowchart showing an operation of lateral acceleration calculation processing in the fourth embodiment of the present invention.
  • 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body
  • 44C is a second sensor position indicating the position where the roll rate sensor 44c is disposed on the vehicle body. is there.
  • ⁇ 1 is the value of the angular velocity of the tilt motion of the vehicle body detected by the roll rate sensor 44c, that is, the roll rate sensor value.
  • the roll rate sensor 44c can be attached at an arbitrary height position. In the example shown in the figure, it is attached at a position lower than the first lateral acceleration sensor 44a, but it may be attached at the same height as the first lateral acceleration sensor 44a, or the first lateral acceleration sensor. It may be attached at a position higher than 44a.
  • the roll rate sensor 44c be attached to a sufficiently rigid member, like the first lateral acceleration sensor 44a. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that the roll rate sensor 44c be disposed on a so-called “spring top” similarly to the first lateral acceleration sensor 44a. Further, like the first lateral acceleration sensor 44a, the roll rate sensor 44c is preferably disposed between the axle of the wheel 12F that is the front wheel and the axles of the left and right wheels 12L and 12R that are the rear wheels. Furthermore, it is desirable that the roll rate sensor 44c be disposed as close to the occupant as possible, similarly to the first lateral acceleration sensor 44a. Regarding other points, the roll rate sensor 44c may be attached at any position as long as it can detect the tilting movement of the vehicle body, that is, the roll.
  • the response characteristics of both must be theoretically or experimentally matched in advance. For example, when the time constant of either equivalent model is small (fast), adjustment is made with a filter or the like so that the time constant is equivalent to the output with the larger time constant.
  • the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first, the first lateral acceleration sensor value a 1 as the lateral acceleration sensor value. Is acquired (step S31), and the roll rate sensor value ⁇ 1 is acquired (step S32).
  • the lateral acceleration calculation unit 48 acquires the control cycle T S (step S34), and calculates the differential value of ⁇ 1 (step S35).
  • ⁇ 1 ( ⁇ 1 ⁇ old ) / T S Formula (12)
  • the lateral acceleration calculation section 48 performs L 1 call (step S36).
  • the lateral acceleration calculation unit 48 calculates the combined lateral acceleration a (step S37).
  • the combined lateral acceleration a is a value corresponding to the lateral acceleration sensor value a when there is one lateral acceleration sensor 44 as in the first embodiment, and is the first lateral acceleration sensor value.
  • a a 1 ⁇ L 1 ⁇ 1 Formula (13)
  • the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S38), and ends the lateral acceleration calculation process.
  • the roll rate sensor 44c is employed as one of the plurality of sensors capable of detecting the acceleration in the lateral direction, and therefore the mounting position of the roll rate sensor 44c in the height direction. This increases the degree of freedom of design of the vehicle 10.
  • the vehicle 10 may have the link mechanism 30 like the vehicle 10 in the second embodiment, or may have the link mechanism 30 like the vehicle 10 in the third embodiment. It may not be.
  • FIG. 17 is a right side view showing the configuration of the vehicle in the fifth embodiment of the present invention
  • FIG. 18 is a block diagram showing the configuration of the vehicle body tilt control system in the fifth embodiment of the present invention.
  • a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral
  • the combined lateral acceleration a obtained by combining the acceleration sensor value a 2 is calculated, and the control gain of the vehicle body tilt control system is increased by controlling the vehicle body tilt angle so that the value of the combined lateral acceleration a becomes zero.
  • control responsiveness can be improved.
  • the vehicle body tilt control system may react excessively to disturbances and cause discomfort to the passengers.
  • the control gain is small, a control delay may occur when the lateral acceleration changes greatly as at the start or end of turning, and an appropriate tilt angle may not be realized.
  • the lateral acceleration prediction value is calculated from the required turning amount and the vehicle speed, and feedforward control using the calculated lateral acceleration prediction value is added to improve the responsiveness of the vehicle body tilt control system. It is like that. Further, by applying a low-pass filter to the acquired required turning amount, specifically, by applying a low-pass filter that changes the cut-off frequency according to the vehicle speed, it is possible to ensure stability during high-speed traveling.
  • the vehicle 10 in the present embodiment has a steering angle sensor 53 as a requested turning amount detection unit that detects a requested turning amount, and a vehicle speed detection that detects a vehicle speed that is the traveling speed of the vehicle 10.
  • a vehicle speed sensor 54 is provided as means.
  • the distance between the left and right wheels 12L and 12R axle is the axle and the rear wheel of the wheel 12F is a front wheel, i.e., the wheel base is L H.
  • the steering angle sensor 53 is a sensor that detects a rotation angle of a steering shaft member (not shown) that connects the handle bar 41a and the upper end of the front wheel fork 17 with respect to a frame member included in the riding section 11, that is, a change in the steering angle. For example, an encoder.
  • the steering angle sensor 53 can detect the steering amount of the handle bar 41a, that is, the steering amount of the steering device as the required turning amount.
  • the vehicle speed sensor 54 is a sensor that is disposed at the lower end of the front wheel fork 17 that supports the axle of the wheel 12F and detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
  • the tilt control ECU 46 includes a lateral acceleration estimation unit 49 that calculates a predicted lateral acceleration value acting on the vehicle body based on the steering angle detected by the steering angle sensor 53 and the vehicle speed detected by the vehicle speed sensor 54. Then, the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated by the lateral acceleration calculation unit 48 and the predicted lateral acceleration calculated by the lateral acceleration estimation unit 49. To do.
  • FIG. 19 is a block diagram of a control system in the fifth embodiment of the present invention
  • FIG. 20 is a diagram showing a model for explaining lateral acceleration by steering in the fifth embodiment of the present invention
  • FIG. 21 is a diagram of the present invention.
  • FIG. 22 is a flowchart showing a subroutine of filter processing in the fifth embodiment of the present invention
  • FIG. 23 is the fifth embodiment of the present invention.
  • 5 is a flowchart showing an operation of a vehicle body tilt control process in FIG.
  • control combining feedback control and feedforward control as shown in FIG. 19 is performed.
  • the portion below the dotted line is the same as the feedback control shown in FIG. 10 described in the second embodiment, and a description thereof will be omitted.
  • f 2 is a transfer function represented by the equation (20) described later.
  • G yd is a control gain of the differential control operation, and s is a differential element.
  • the lateral acceleration calculation unit 48 executes the lateral acceleration calculation process.
  • the operation of the lateral acceleration calculation process in the present embodiment is the same as the operation of the lateral acceleration calculation process described in the second embodiment, that is, the operations in steps S11 to S17 shown in FIG. The description is omitted.
  • the lateral acceleration estimation unit 49 starts the lateral acceleration estimation process.
  • the lateral acceleration estimation unit 49 first acquires the steering angle sensor value ⁇ that is the value of the steering angle detected by the steering angle sensor 53 (step S41), and the vehicle speed sensor value that is the vehicle speed value detected by the vehicle speed sensor 54. ⁇ is acquired (step S42).
  • the lateral acceleration estimation unit 49 performs a filtering process on ⁇ (step S43) and calculates ⁇ (t).
  • ⁇ (t) is the steering angle filtered by the cut-off frequency variable low-pass filter according to speed.
  • the centrifugal speed a 0 as the lateral acceleration acting on the vehicle body at the time of the vehicle speed ⁇ and the turning is expressed by the following equation (14 ) And (15).
  • rw Formula (14)
  • a 0 rw 2 Formula (15)
  • w is a turning angular velocity.
  • the centrifugal force a 0 acting on the vehicle body during turning is expressed by the following formula (16).
  • a 0 ⁇ 2 / r (16)
  • the turning radius r is expressed by the following equation (17).
  • r L H / tan ⁇ Equation (17)
  • the following equation (18) is derived from the equations (16) and (17).
  • a 0 ( ⁇ 2 / L H ) tan ⁇ (Equation 18)
  • the lateral acceleration estimation unit 49 first acquires a control cycle T S (step S43-1). Since the control cycle T S is the same as that in the first embodiment, the description thereof is omitted.
  • the lateral acceleration estimation unit 49 calculates a cutoff frequency w ( ⁇ ) (step S43-2).
  • w ( ⁇ ) is a cutoff frequency for each speed, and is a function in which the input is the vehicle speed ⁇ and the output is the cutoff frequency.
  • the function is inversely proportional to the vehicle speed, but any function may be used. It should be noted that a table showing the relationship between the input vehicle speed ⁇ and the output cutoff frequency is created in advance, and the cutoff frequency w ( ⁇ ) is obtained without performing calculations by referring to the table. You can also.
  • the lateral acceleration estimation unit 49 calculates the filtered steering angle ⁇ (t) (step S43-4).
  • ⁇ (t) is calculated by the following equation (19).
  • ⁇ (t) ⁇ old / (1 + T s w ( ⁇ )) + T S w ( ⁇ ) ⁇ / (1 + T S w ( ⁇ )) ⁇ (19)
  • the equation (19) is an equation of an IIR (Infinite Impulse Response) filter that is generally used as a bandpass filter, and represents a cutoff frequency variable low-pass filter that is a first-order lag low-pass filter.
  • IIR Intelligent Impulse Response
  • the lateral acceleration estimation unit 49, L H call was carried out (step S44), and calculates a lateral acceleration estimated value a f (step S45).
  • the lateral acceleration predicted value a f is calculated by the following equation (20) based on the equation (18).
  • a f ⁇ 2 tan ⁇ (t) ⁇ / L H Formula (20)
  • the equation (20) represents the lateral acceleration generated by steering the handlebar 41a, that is, the centrifugal force generated by turning.
  • the lateral acceleration estimation unit 49 sends the predicted lateral acceleration value a f to the tilt control unit 47 (step S46), and ends the lateral acceleration estimation process.
  • the tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S51).
  • the operations from the reception of the combined lateral acceleration a to the calculation of the third control value U that is, the operations in steps S51 to S58 shown in FIG. 23, are the steps described in the second embodiment. Since this is the same as the operation of S21 to S28, its description is omitted.
  • the tilt control unit 47 receives the lateral acceleration predicted value a f from the lateral acceleration estimation unit 49 (step S59).
  • the inclination control unit 47 calculates a differential value of a f (step S61).
  • the differential value of a f is da f / dt
  • the da f / dt is calculated by the following equation (21).
  • da f / dt (a f ⁇ a fold ) / T S (21)
  • the inclination control part 47 preserve
  • saves as afold af (step S62). That is, the lateral acceleration predicted value a f acquired at the time of executing the vehicle body tilt control process this time is stored in the storage unit as a fold .
  • the inclination control unit 47 calculates a fourth control value U fD (step S63).
  • the fourth control value U fD is calculated by the following equation (22).
  • U fD C fD da f / dt (22)
  • the inclination control unit 47 calculates a fifth control value U (step S64).
  • the fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (23).
  • U U + U fD Expression (23)
  • the inclination control unit 47 outputs the fifth control value U to the link motor 25 as the link motor torque command value (step S65), and ends the process.
  • a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, feedback control is performed so that the value of the combined lateral acceleration a becomes zero, and a predicted lateral acceleration value a f is calculated from the required turning amount and the vehicle speed, the calculated lateral acceleration estimated value a f performs feedforward control using.
  • first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b synthesized and resultant lateral first lateral acceleration sensor value a 1 and a second lateral acceleration sensor value a 2
  • a roll rate sensor 44c is used instead of either the first lateral acceleration sensor 44a or the second lateral acceleration sensor 44b.
  • the combined lateral acceleration a may be calculated by combining the first lateral acceleration sensor value a 1 or the second lateral acceleration sensor value a 2 and the differential value ⁇ 1 of the roll rate sensor value ⁇ 1 .
  • FIG. 24 is a block diagram showing a configuration of a vehicle body tilt control system according to the sixth embodiment of the present invention.
  • a combined lateral acceleration a obtained by combining the first lateral acceleration sensor value a 1 and the second lateral acceleration sensor value a 2 is calculated, and the value of the combined lateral acceleration a is calculated. performs feedback control such that the zero, by calculating the lateral acceleration estimated value a f from the required turning amount and the vehicle speed, performs the feedforward control using the calculated lateral acceleration estimated value a f, the road surface 18 is horizontal Even if it is tilted in the direction, the vehicle body can be kept vertical, and there is no delay in control even when the change in lateral acceleration is large, such as at the start and end of turning. .
  • the zero point of the steering amount detected by the steering angle sensor 53 is adjusted so that the handlebar 41a is in a neutral state, that is, the vehicle 10 is in a straight traveling state. It is necessary to match. Therefore, initial setting of the steering angle sensor 53 needs to be performed.
  • the tilt control ECU 46 includes a link angular velocity estimation unit 50 instead of the lateral acceleration estimation unit 49, and also includes a lateral acceleration calculation unit 48 and a tilt control unit 47.
  • a disturbance calculation unit 43 and a link motor control unit 42 are provided.
  • the link angular velocity estimation unit 50 calculates a link angular velocity prediction value based on the steering angle detected by the steering angle sensor 53 and the vehicle speed detected by the vehicle speed sensor 54. Further, the disturbance calculation unit 43 rolls the disturbance based on the value of the angular velocity of the vehicle body tilting motion detected by the roll rate sensor 44c, that is, the roll rate sensor value and the link angle detected by the link angle sensor 25a. Calculate the rate.
  • the link angle sensor 25a is a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the link motor 25, and includes, for example, a resolver, an encoder, and the like.
  • the link motor 25 when the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20. Therefore, a change in the angle of the upper horizontal link unit 31U relative to the central vertical member 21, that is, a change in the link angle can be detected by detecting the rotation angle of the rotation shaft with respect to the body.
  • the tilt control unit 47 rolls the combined lateral acceleration calculated by the lateral acceleration calculation unit 48, the predicted link angular velocity calculated by the link angular velocity estimation unit 50, and the disturbance amount calculated by the disturbance calculation unit 43. Based on the rate, a speed command value as a control value is calculated and output. Further, the link motor control unit 42 outputs a torque command value as a control value for operating the link motor 25 based on the speed command value output from the inclination control unit 47.
  • FIG. 25 is a block diagram of a control system in the sixth embodiment of the present invention
  • FIG. 26 is a diagram showing a model for explaining the vehicle body link angle in the sixth embodiment of the present invention
  • FIG. FIG. 28 is a graph illustrating a change in yaw rate time constant in the sixth embodiment
  • FIG. 28 is a flowchart illustrating an operation of link angular velocity estimation processing in the sixth embodiment of the present invention
  • FIG. 30 is a flowchart showing a first-order lag processing subroutine in the sixth embodiment of the present invention
  • FIG. 31 is a flowchart showing a subroutine of the steering angle differentiation process in the sixth embodiment.
  • FIG. 32 is the flowchart which shows the operation
  • f 1 is a transfer function represented by the above equation (10)
  • G P and G RP are control gains of the proportional control operation
  • s is a differential element.
  • f 2 is a link angular velocity prediction value expressed by an equation (25) described later
  • f 3 is a yaw rate gain expressed by an equation (33) described later
  • f 4 is a delay time constant of the yaw rate. It is.
  • the lateral acceleration calculation unit 48 executes the lateral acceleration calculation process.
  • the operation of the lateral acceleration calculation process in the present embodiment is the same as the operation of the lateral acceleration calculation process described in the second embodiment, that is, the operations in steps S11 to S17 shown in FIG. The description is omitted.
  • the link angular velocity estimation unit 50 starts link angular velocity estimation processing.
  • the link angular velocity estimation unit 50 first acquires the steering angle sensor value ⁇ that is the value of the steering angle detected by the steering angle sensor 53 (step S71), and the vehicle speed sensor value that is the vehicle speed value detected by the vehicle speed sensor 54. ⁇ is acquired (step S72).
  • the link angular velocity estimation unit 50 performs a steering angle differentiation process (step S73), and calculates ⁇ .
  • is a value obtained by differentiating the steering angle with respect to time, and corresponds to the steering angular velocity.
  • the link angular velocity estimation unit 50 first makes a ⁇ old call (step S73-1). Since ⁇ old is the same as that of the fifth embodiment, the description thereof is omitted.
  • the link angular velocity estimation unit 50 acquires a control cycle T S (step S73-2). Since the control cycle T S is the same as that in the first embodiment, the description thereof is omitted.
  • the link angular velocity estimation unit 50 calculates the steering angle differential value ⁇ (step S73-3).
  • is calculated by the following equation (24).
  • ( ⁇ (t) ⁇ old ) / T S (24)
  • the link angular velocity estimating section 50, L H call was carried out (step S74), the link angular velocity estimated value f 2 ([Delta] [Psi], [nu) is calculated (step S75).
  • the link angular velocity predicted value f 2 ( ⁇ , ⁇ ) is calculated by the following equation (25).
  • the link angle sensor 25a detects a change in the angle of the upper horizontal link unit 31U with respect to the central vertical member 21, that is, a change in the link angle.
  • a 0 g tan ⁇ Equation (28)
  • the following equation (29) is derived from FIG. 20 and equation (17) described in the fifth embodiment.
  • tan ⁇ L H / r
  • the following equation (30) is derived from the equation (29) and the equations (15), (16), and (18) described in the fifth embodiment.
  • the following equation (31) is derived from the equations (28) and (30).
  • Equation (31) Furthermore, it can be approximated as tan ⁇ and tan ⁇ , and the change in the vehicle speed ⁇ is sufficiently slow compared to the change in the link angle ⁇ , so that the vehicle speed ⁇ can be regarded as a constant. From the equation (31), the equation (25) can be obtained.
  • the link angular velocity estimation unit 50 calculates the yaw rate gain f 3 ( ⁇ ) (step S76).
  • the ratio between the calculated yaw rate calculated based on the steering angle ⁇ and the actual yaw rate measured by the experiment is calculated as the yaw rate gain f 3 ( ⁇ ).
  • the theoretical value of the yaw rate that is, the turning angular velocity w is calculated from the equation (30) by the following equation (32).
  • w ( ⁇ / L H ) tan ⁇ Equation (32)
  • the inventor of the present invention conducted an experiment using a prototype vehicle 10, that is, a prototype vehicle, and measured the yaw rate.
  • the measured value w ( ⁇ , ⁇ ) of the yaw rate was measured by changing the vehicle speed ⁇ and the steering angle ⁇ .
  • the yaw rate gain f 3 ( ⁇ ) is calculated by the following equation (33).
  • the value of the yaw rate gain f 3 ( ⁇ ) is calculated in real time based on an approximate expression of the first order or higher determined offline.
  • the value of the yaw rate gain f 3 ( ⁇ ) is determined regardless of the steering angle ⁇ , a table showing the relationship between the vehicle speed ⁇ and the yaw rate gain f 3 ( ⁇ ) is created in advance and the table is referred to.
  • the yaw rate gain f 3 ( ⁇ ) can also be obtained without performing the calculation. Since the yaw rate gain f 3 ( ⁇ ) is a value determined by the vehicle speed ⁇ , the yaw rate gain f 3 ( ⁇ ) can be directly applied to the link angular velocity predicted value f 2 ( ⁇ , ⁇ ).
  • the link angular velocity estimation unit 50 calculates a link angular velocity correction predicted value ⁇ H (step S77).
  • a link angular velocity correction predicted value ⁇ H step S77.
  • the link angular velocity corrected predicted value ⁇ H is calculated by the following equation (34).
  • ⁇ H f 2 ( ⁇ , ⁇ ) f 3 ( ⁇ ) (34)
  • the link angular velocity estimation unit 50 calculates a delay time constant f 4 ( ⁇ ) (step S78).
  • the delay time until the centrifugal force a 0 as the lateral acceleration is generated becomes long. Therefore, in the present embodiment, the calculated yaw rate calculated based on the steering angle ⁇ and the actual yaw rate measured by the experiment are compared on the time axis, and the delay is defined by the vehicle speed ⁇ . To calculate the delay time constant f 4 ( ⁇ ).
  • the relationship between the value of the delay time constant calculated from the calculated yaw rate and the measured actual yaw rate and the vehicle speed ⁇ is plotted as a point ⁇ , and the point ⁇
  • the delay time constant f 4 ( ⁇ ) can be obtained by linearly approximating the relationship between the value of the represented time constant and the vehicle speed ⁇ .
  • the value of the delay time constant f 4 ( ⁇ ) is calculated in real time on the basis of an approximate expression of the first order or higher determined offline.
  • the delay time constant f 4 ( ⁇ ) can be acquired without performing the calculation.
  • the link angular velocity estimation unit 50 performs first-order lag processing on the link angular velocity correction predicted value ⁇ H (step S79), and calculates ⁇ H out .
  • the link angular velocity estimation unit 50 first acquires the control cycle T S (step S79-1). Since the control cycle T S is the same as that in the first embodiment, the description thereof is omitted.
  • the link angular velocity estimation unit 50 calculates a cutoff frequency w ( ⁇ ) (step S79-2).
  • w ( ⁇ ) is calculated by the following equation (35).
  • w ( ⁇ ) 1 / f 4 ( ⁇ ) Expression (35)
  • the link angular velocity estimation unit 50 performs a ⁇ H outold call (step S79-3). Note that ⁇ H outold is the value of ⁇ H out (t) saved when the previous vehicle body tilt control process was executed.
  • the link angular velocity estimation unit 50 calculates the filtered ⁇ H out (t) (step S79-4).
  • ⁇ H out (t) is calculated by the following equation (36).
  • ⁇ H out (t) ⁇ H outold / (1 + T S w ( ⁇ )) + (D ⁇ / dt) T S w ( ⁇ ) / (1 + T S w ( ⁇ )) ⁇ formula (36)
  • the link angular velocity estimation unit 50 sends ⁇ H out (t) to the inclination control unit 47 (step S80), and ends the link angular velocity estimation process.
  • the tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S81).
  • the operations from the reception of the combined lateral acceleration a to the calculation of the third control value U that is, the operations in steps S81 to S88 shown in FIG. 31, are the steps described in the second embodiment. Since this is the same as the operation of S21 to S28, its description is omitted.
  • the inclination control unit 47 receives ⁇ H out (t) from the link angular velocity estimation unit 50 (step S89).
  • the inclination control unit 47 calculates a fourth control value U fD (step S90).
  • the fourth control value U fD is calculated by the following equation (37).
  • U fD G yD ⁇ H out Formula (37) Note that the control gain G yD of the differential control operation is an arbitrary value that is positive 1 or less.
  • the inclination control unit 47 calculates a fifth control value U (step S91).
  • the fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (38).
  • U U + U fD Expression (38)
  • the inclination control unit 47 outputs the fifth control value U as a speed command value to the link motor control unit 42 (step S92), and ends the process.
  • the link motor control unit 42 receives the fifth control value U from the inclination control unit 47 (step S101).
  • the link motor control unit 42 acquires the link angle sensor value ⁇ detected by the link angle sensor 25a (step S102), executes link angular velocity calculation processing (step S103), and sets the link angle of the link mechanism 30. Calculate the angular velocity ⁇ .
  • the link motor control unit 42 can obtain the value of ⁇ from the disturbance calculation unit 43, thereby omitting the operations of steps S102 and S103.
  • the link motor control unit 42 calculates a control error (step S104).
  • is calculated by the following equation (39).
  • U ⁇ Formula (39)
  • U is the fifth control value U received from the inclination control unit 47.
  • the link motor control unit 42 obtains the motor control proportional gain G MP (step S105).
  • the value of the motor control proportional gain GMP is a value set based on experiments or the like, and is stored in advance in the storage means.
  • the link motor control unit 42 calculates a torque command value for operating the link motor 25 (step S106).
  • the torque command value is U T
  • the U T is calculated by the following equation (40).
  • U T G MP ⁇ (40)
  • the link motor control unit 42 outputs the torque command value UT to the link motor 25 (step S107) and ends the process.
  • feedforward control is performed using the steering angle differential value ⁇ corresponding to the time differential value of the required turning amount. This eliminates the need to detect the zero point, so that an inexpensive steering angle sensor 53 can be used, and the initial setting of the steering angle sensor 53 is not necessary, thereby reducing the manufacturing and maintenance costs of the vehicle 10. Can be reduced.
  • the gain characteristic and delay characteristic of the lateral acceleration predicted value a f are made variable in accordance with the vehicle speed ⁇ . Thereby, the followability of the control at the time of high speed traveling can be improved.
  • a vehicle body including a steering unit and a drive unit coupled to each other, a wheel rotatably attached to the steering unit, a steering wheel for steering the vehicle body, and a wheel rotatably attached to the drive unit
  • a driving wheel that drives the vehicle body, a tilting actuator device that tilts the steering unit or the driving unit in a turning direction, a lateral acceleration sensor that detects a lateral acceleration acting on the vehicle body, and the occupant's request
  • a required turning amount detecting means for detecting a required turning amount of the vehicle body, a vehicle speed detecting means for detecting a vehicle speed, and a control device for controlling the inclination of the vehicle body by controlling the tilting actuator device; Performs feedback control based on the lateral acceleration detected by the lateral acceleration sensor, and detects the required turning amount detected by the required turning amount detection means and the vehicle speed detection means.
  • Vehicle for controlling the tilting of the vehicle body by performing the feedforward control based on that vehicle speed.
  • the present invention can be used for a vehicle having at least a pair of left and right wheels.

Abstract

Because a force in the direction parallel to the longitudinal axis line of a vehicle body acts upon the vehicle body and an occupant, and the acceleration components in the lateral direction are zero, even when the position of a vehicle body changes, the disclosed vehicle achieves a stable travelling state, provides good riding comfort, does not make an occupant feel any sense of unease, and maintains vehicle body stability and improves turning performance. The vehicle comprises: a vehicle body which is provided with a mutually connected steering unit and drive unit; a tilting actuator device which tilts the steering wheel or the drive wheel in the turning direction; a sensor which either directly or indirectly detects the lateral acceleration acting on the vehicle body; a required turning amount detection means which detects the required turning amount for the vehicle body; and a vehicle speed detection means which detects the speed of the vehicle. The vehicle carries out feedback control on the basis of the lateral acceleration, and feedforward control on the basis of the required turning amount and the vehicle speed, and thus controls the tilt of the vehicle body.

Description

車両vehicle
 本発明は、少なくとも左右一対の車輪を有する車両に関するものである。 The present invention relates to a vehicle having at least a pair of left and right wheels.
 近年、エネルギ資源の枯渇問題に鑑み、車両の省燃費化が強く要求されている。その一方で、車両の低価格化等から、車両の保有者が増大し、1人が1台の車両を保有する傾向にある。そのため、例えば、4人乗りの車両を運転者1人のみが運転することで、エネルギが無駄に消費されるという問題点があった。車両の小型化による省燃費化としては、車両を1人乗りの三輪車又は四輪車として構成する形態が最も効率的であるといえる。 In recent years, in view of the problem of exhaustion of energy resources, there has been a strong demand for fuel saving of vehicles. On the other hand, the number of vehicle owners is increasing due to the low price of vehicles, and one person tends to own one vehicle. Therefore, for example, there is a problem that energy is wasted when only one driver drives a four-seater vehicle. The most efficient way to save fuel consumption by reducing the size of the vehicle is to configure the vehicle as a one-seater tricycle or four-wheel vehicle.
 しかし、走行状態によっては、車両の安定性が低下してしまうことがある。そこで、車体を横方向に傾斜させることによって、旋回時の車両の安定性を向上させる技術が提案されている(例えば、特許文献1参照。)。 However, depending on the driving condition, the stability of the vehicle may decrease. Therefore, a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
特開2008-155671号公報JP 2008-155671 A
  しかしながら、前記従来の車両においては、旋回性能を向上させるために、車体を旋回方向内側に傾斜させることができるようになっているが、車体を傾斜させる操作が困難であり、旋回性能が低いので、乗員が不快に感じたり、不安を抱いたりしてしまうことがある。 However, in the conventional vehicle, in order to improve the turning performance, the vehicle body can be tilted inward in the turning direction, but the operation of tilting the vehicle body is difficult and the turning performance is low. , Passengers may feel uncomfortable or anxious.
 本発明は、前記従来の車両の問題点を解決して、操舵(だ)角及び車速から横方向の加速度成分の予測値を算出して旋回外側への遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することによって、車体の姿勢が変化するときであっても横方向の加速度成分がゼロとなり、車体及び乗員には車体の縦方向軸線と平行な方向の力が作用するので、車体の安定を維持することができ、また、旋回性能を向上させることができるとともに、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる安全性の高い車両を提供することを目的とする。 The present invention solves the problems of the conventional vehicle, calculates the predicted value of the acceleration component in the lateral direction from the steering angle and the vehicle speed, and makes an angle that balances the centrifugal force and the gravity to the outside of the turn By controlling the tilt angle of the vehicle body, the lateral acceleration component becomes zero even when the posture of the vehicle body changes, and the force in the direction parallel to the longitudinal axis of the vehicle body is applied to the vehicle body and the occupant. Therefore, the stability of the vehicle body can be maintained, the turning performance can be improved, the occupant does not feel uncomfortable, the ride comfort is good, and the stable running state can be realized. The object is to provide a highly safe vehicle.
 そのために、本発明の車両においては、互いに連結された操舵部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体に作用する横加速度を直接的又は間接的に検出する複数のセンサと、乗員が要求する前記車体の要求旋回量を検出する要求旋回量検出手段と、車速を検出する車速検出手段と、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記複数のセンサが検出する横加速度に基づくフィードバック制御を行うとともに、前記要求旋回量検出手段が検出する要求旋回量及び前記車速検出手段が検出する車速に基づくフィードフォワード制御を行って前記車体の傾斜を制御する。 To this end, in the vehicle of the present invention, a vehicle body including a steering unit and a drive unit coupled to each other, a wheel rotatably attached to the steering unit, the steering wheel for steering the vehicle body, and the drive A wheel that is rotatably attached to the vehicle, and includes a drive wheel that drives the vehicle body, a tilt actuator device that tilts the steering unit or the drive unit in a turning direction, and a lateral acceleration that acts on the vehicle body directly. Alternatively, a plurality of sensors that detect indirectly, a requested turning amount detection means that detects a requested turning amount of the vehicle body requested by an occupant, a vehicle speed detection means that detects a vehicle speed, and the tilt actuator device are controlled to A control device for controlling the tilt of the vehicle body, the control device performing feedback control based on lateral acceleration detected by the plurality of sensors, and detecting the required turning amount Stage controls the inclination of the vehicle body making the request turning amount and feedforward control based on the vehicle speed the vehicle speed detecting means detects detects.
 請求項1の構成によれば、旋回外側への遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することができ、かつ、横加速度の変化が大きいときであっても、制御に遅れが発生することがない。したがって、車体及び乗員には、車体の縦方向軸線と平行な方向の力が作用することとなるので、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる。 According to the configuration of claim 1, the tilt angle of the vehicle body can be controlled so that the centrifugal force to the outside of the turn and the gravity are balanced, and the change in the lateral acceleration is large. However, there is no delay in control. Accordingly, a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant, so that the occupant does not feel uncomfortable, has a good ride, and realizes a stable running state. it can.
 請求項2の構成によれば、ゼロ点の検出が不要となるので、安価なセンサを使用することができ、かつ、初期設定が不要となるので、コストを低減することができる。 According to the configuration of claim 2, since zero point detection is not required, an inexpensive sensor can be used, and initial setting is not required, so that cost can be reduced.
 請求項3の構成によれば、高速走行時における制御の追従性を向上させることができる。 According to the configuration of claim 3, it is possible to improve the follow-up performance of the control during high-speed traveling.
 請求項4~6の構成によれば、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。 According to the configurations of claims 4 to 6, since unnecessary acceleration components can be removed, it is possible to prevent the occurrence of vibrations, divergence, etc. of the control system without being affected by road surface conditions, and to control the vehicle body tilt. Control responsiveness can be improved by increasing the control gain of the system.
 請求項7の構成によれば、旋回開始時及び終了時であっても、制御に遅れが発生することがなく、制御の応答性を向上させることができる。 According to the configuration of claim 7, there is no delay in the control even at the start and end of the turn, and the control responsiveness can be improved.
 請求項8の構成によれば、高速走行時の安定性を確保することができる。 According to the configuration of claim 8, it is possible to ensure stability during high-speed traveling.
本発明の第1の実施の形態における車両の構成を示す図である。It is a figure which shows the structure of the vehicle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車両のリンク機構の構成を示す図である。It is a figure which shows the structure of the link mechanism of the vehicle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in the 1st Embodiment of this invention. 本発明の第1の実施の形態における旋回走行時の車体の傾斜動作を説明する図である。It is a figure explaining the inclination operation | movement of the vehicle body at the time of turning driving | running | working in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the vehicle body tilt control process of the vehicle in the 1st Embodiment of this invention. 本発明の第2の実施の形態における横加速度センサの検出値が受ける影響を説明する図である。It is a figure explaining the influence which the detection value of the lateral acceleration sensor in the 2nd Embodiment of this invention receives. 本発明の第2の実施の形態における車両の背面を示す図である。It is a figure which shows the back surface of the vehicle in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における力学モデルを示す図である。It is a figure which shows the dynamic model in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における制御系のブロック図である。It is a block diagram of the control system in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における横加速度演算処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the lateral acceleration calculation process in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the vehicle body tilt control process of the vehicle in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における車両の背面を示す図である。It is a figure which shows the back surface of the vehicle in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in the 4th Embodiment of this invention. 本発明の第4の実施の形態における力学モデルを示す図である。It is a figure which shows the dynamic model in the 4th Embodiment of this invention. 本発明の第4の実施の形態における横加速度演算処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the lateral acceleration calculation process in the 4th Embodiment of this invention. 本発明の第5の実施の形態における車両の構成を示す右側面図である。It is a right view which shows the structure of the vehicle in the 5th Embodiment of this invention. 本発明の第5の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in the 5th Embodiment of this invention. 本発明の第5の実施の形態における制御系のブロック図である。It is a block diagram of the control system in the 5th Embodiment of this invention. 本発明の第5の実施の形態における操舵による横加速度を説明するモデルを示す図である。It is a figure which shows the model explaining the lateral acceleration by the steering in the 5th Embodiment of this invention. 本発明の第5の実施の形態における横加速度推定処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the lateral acceleration estimation process in the 5th Embodiment of this invention. 本発明の第5の実施の形態におけるフィルタ処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the filter process in the 5th Embodiment of this invention. 本発明の第5の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the vehicle body tilt control process of the vehicle in the 5th Embodiment of this invention. 本発明の第6の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in the 6th Embodiment of this invention. 本発明の第6の実施の形態における制御系のブロック図である。It is a block diagram of the control system in the 6th Embodiment of this invention. 本発明の第6の実施の形態における車体リンク角を説明するモデルを示す図である。It is a figure which shows the model explaining the vehicle body link angle | corner in the 6th Embodiment of this invention. 本発明の第6の実施の形態におけるヨーレートの時定数の変化を説明するグラフを示す図である。It is a figure which shows the graph explaining the change of the time constant of the yaw rate in the 6th Embodiment of this invention. 本発明の第6の実施の形態におけるリンク角速度推定処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the link angular velocity estimation process in the 6th Embodiment of this invention. 本発明の第6の実施の形態における操舵角の微分処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the differentiation process of the steering angle in the 6th Embodiment of this invention. 本発明の第6の実施の形態における一次遅れ処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the primary delay process in the 6th Embodiment of this invention. 本発明の第6の実施の形態における傾斜制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the inclination control process in the 6th Embodiment of this invention. 本発明の第6の実施の形態におけるリンクモータ制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the link motor control process in the 6th Embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の第1の実施の形態における車両の構成を示す図、図2は本発明の第1の実施の形態における車両のリンク機構の構成を示す図、図3は本発明の第1の実施の形態における車体傾斜制御システムの構成を示すブロック図である。なお、図1において、(a)は右側面図、(b)は背面図である。 FIG. 1 is a diagram showing a configuration of a vehicle according to a first embodiment of the present invention, FIG. 2 is a diagram showing a configuration of a vehicle link mechanism according to the first embodiment of the present invention, and FIG. It is a block diagram which shows the structure of the vehicle body tilt control system in 1 embodiment. In FIG. 1, (a) is a right side view and (b) is a rear view.
 図において、10は、本実施の形態における車両であり、車体の駆動部としての本体部20と、乗員が搭乗して操舵する操舵部としての搭乗部11と、車体の前方において幅方向の中心に配設された前輪である操舵輪としての車輪12Fと、後輪として後方に配設された駆動輪である左側の車輪12L及び右側の車輪12Rとを有する。さらに、車体を左右に傾斜させる、すなわち、リーンさせるためのリーン機構、すなわち、車体傾斜機構として、左右の車輪12L及び12Rを支持するリンク機構30と、該リンク機構30を作動させるアクチュエータである傾斜用アクチュエータ装置としてのリンクモータ25とを有する。なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪及び後輪が左右二輪の四輪車であってもよいが、本実施の形態においては、図に示されるように、前輪が一輪であって後輪が左右二輪の三輪車である場合について説明する。 In the figure, reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body. The wheel 12F is a front wheel disposed as a steering wheel, and the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels. Further, the lean mechanism for leaning the vehicle body from side to side, that is, the lean mechanism, that is, the vehicle body tilt mechanism, the link mechanism 30 that supports the left and right wheels 12L and 12R, and the tilt that is the actuator that operates the link mechanism 30 And a link motor 25 as an actuator device. The vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
 旋回時には、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角を変化させるとともに、搭乗部11及び本体部20を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、図に示される例においては、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。 When turning, the angle of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle is changed, and the vehicle body including the riding portion 11 and the main body portion 20 is inclined toward the turning inner wheel, thereby improving turning performance and the occupant. It is possible to ensure the comfort of the car. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). In the example shown in the figure, the left and right wheels 12L and 12R stand upright with respect to the road surface 18, that is, the camber angle is 0 degree.
 前記リンク機構30は、左側の車輪12L及び該車輪12Lに駆動力を付与する電気モータ等から成る左側の回転駆動装置51Lを支持する左側の縦リンクユニット33Lと、右側の車輪12R及び該車輪12Rに駆動力を付与する電気モータ等から成る右側の回転駆動装置51Rを支持する右側の縦リンクユニット33Rと、左右の縦リンクユニット33L及び33Rの上端同士を連結する上側の横リンクユニット31Uと、左右の縦リンクユニット33L及び33Rの下端同士を連結する下側の横リンクユニット31Dと、本体部20に上端が固定され、上下に延在する中央縦部材21とを有する。また、左右の縦リンクユニット33L及び33Rと上下の横リンクユニット31U及び31Dとは回転可能に連結されている。さらに、上下の横リンクユニット31U及び31Dは、その中央部で中央縦部材21と回転可能に連結されている。なお、左右の車輪12L及び12R、左右の回転駆動装置51L及び51R、左右の縦リンクユニット33L及び33R、並びに、上下の横リンクユニット31U及び31Dを統合的に説明する場合には、車輪12、回転駆動装置51、縦リンクユニット33及び横リンクユニット31として説明する。 The link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R. A right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R; The lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically. The left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof. When the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
 そして、駆動用アクチュエータ装置としての前記回転駆動装置51は、いわゆるインホイールモータであって、固定子としてのボディが縦リンクユニット33に固定され、前記ボディに回転可能に取り付けられた回転子としての回転軸が車輪12の軸に接続され、前記回転軸の回転によって車輪12を回転させる。なお、前記回転駆動装置51は、インホイールモータ以外の種類のモータであってもよい。 The rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable. A rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft. The rotational drive device 51 may be a motor other than an in-wheel motor.
 また、前記リンクモータ25は、電気モータ等を含む回転式の電動アクチュエータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、前記ボディが取付フランジ22を介して本体部20に固定され、前記回転軸がリンク機構30の上側の横リンクユニット31Uに固定されている。なお、リンクモータ25の回転軸は、本体部20を傾斜させる傾斜軸として機能し、中央縦部材21と上側の横リンクユニット31Uとの連結部分の回転軸と同軸になっている。そして、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動し、リンク機構30が作動する、すなわち、屈伸する。これにより、本体部20を傾斜させることができる。なお、リンクモータ25は、その回転軸が本体部20及び中央縦部材21に固定され、そのボディが上側の横リンクユニット31Uに固定されていてもよい。 The link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body. The body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 </ b> U on the upper side of the link mechanism 30. The rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U. When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
 なお、リンクモータ25は、回転軸をボディに対して回転不能に固定する図示されないロック機構を備える。該ロック機構は、メカニカルな機構であって、回転軸をボディに対して回転不能に固定している間には電力を消費しないものであることが望ましい。前記ロック機構によって、回転軸をボディに対して所定の角度で回転不能に固定することができる。 The link motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate. The lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate. The lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
 前記搭乗部11は、本体部20の前端に図示されない連結部を介して連結される。該連結部は、搭乗部11と本体部20とを所定の方向に相対的に変位可能に連結する機能を有していてもよい。 The boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown). The connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
 また、前記搭乗部11は、座席11a、フットレスト11b及び風よけ部11cを備える。前記座席11aは、車両10の走行中に乗員が着座するための部位である。また、前記フットレスト11bは、乗員の足部を支持するための部位であり、座席11aの前方側(図1(a)における右側)下方に配設される。 The boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c. The seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling. The footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1A) and below the seat 11a.
 さらに、搭乗部11の後方若しくは下方又は本体部20には、図示されないバッテリ装置が配設されている。該バッテリ装置は、回転駆動装置51及びリンクモータ25のエネルギ供給源である。また、搭乗部11の後方若しくは下方又は本体部20には、図示されない制御装置、インバータ装置、各種センサ等が収納されている。 Furthermore, a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20. The battery device is an energy supply source for the rotation drive device 51 and the link motor 25. In addition, a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
 そして、座席11aの前方には、操縦装置41が配設されている。該操縦装置41には、操舵装置としてのハンドルバー41a、速度メータ等のメータ、インジケータ、スイッチ等の操縦に必要な部材が配設されている。乗員は、前記ハンドルバー41a及びその他の部材を操作して、車両10の走行状態(例えば、進行方向、走行速度、旋回方向、旋回半径等)を指示する。なお、乗員が要求する車体の要求旋回量を検出するための手段である操舵装置として、ハンドルバー41aに代えて他の装置、例えば、ステアリングホイール、ジョグダイヤル、タッチパネル、押しボタン等の装置を操舵装置として使用することもできる。 And, a steering device 41 is disposed in front of the seat 11a. The steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch. The occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.). As a steering device that is a means for detecting the required turning amount of the vehicle body requested by the occupant, other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handle bar 41a. It can also be used as
 なお、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して搭乗部11に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。そして、一般的なオートバイ、自転車等の場合と同様に、乗員によるハンドルバー41aの操作に応じて操舵輪としての車輪12Fは舵角を変化させ、これにより、車両10の進行方向が変化する。 The wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device). The suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring. As in the case of a general motorcycle, bicycle, etc., the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
 具体的には、前記ハンドルバー41aは、図示されない操舵軸部材の上端に接続され、操舵軸部材の下端には前輪フォーク17の上端が接続されている。前記操舵軸部材は、上端が下端よりも後方に位置するように斜めに傾斜した状態で、搭乗部11が備える図示されないフレーム部材に、回転可能に取り付けられている。 Specifically, the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member. The steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end.
 本実施の形態において、車両10は横加速度センサ44を有する。該横加速度センサ44は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度、すなわち、車体の幅方向としての横方向(図1(b)における左右方向)の加速度を検出する。 In the present embodiment, the vehicle 10 has a lateral acceleration sensor 44. The lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like. The lateral acceleration of the vehicle 10, that is, the lateral direction as the width direction of the vehicle body (the lateral direction in FIG. 1B). Detect acceleration.
 車両10は、旋回時に車体を旋回内側に傾斜させて安定させるので、車体を傾斜させることによって、旋回時の旋回外側への遠心力と重力とが釣り合うような角度になるように制御される。このような制御を行うことによって、例えば、路面18が進行方向と垂直な方向(進行方向に対する左右方向)に傾斜していたとしても、常に車体を水平に保つことが可能になる。これにより、車体と乗員とには、見かけ上、常に重力が鉛直下向きにかかっていることになり、違和感が低減され、また、車両10の安定性が向上する。 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body. By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to the gravity downward in the vertical direction, the uncomfortable feeling is reduced, and the stability of the vehicle 10 is improved.
  そこで、本実施の形態においては、傾斜する車体の横方向の加速度を検出するために、横加速度センサ44を車体に取り付け、横加速度センサ44の出力がゼロとなるようにフィードバック制御を行う。これにより、旋回時に作用する遠心力と重力とが釣り合う傾斜角まで、車体を傾斜させることができる。また、進行方向と垂直な方向に路面18が傾斜している場合でも、車体が鉛直になる傾斜角となるように制御することができる。 Therefore, in this embodiment, in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body, and feedback control is performed so that the output of the lateral acceleration sensor 44 becomes zero. As a result, the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical.
 図1に示される例において、横加速度センサ44は搭乗部11の背面に配設されている。また、前記横加速度センサ44は、車体の幅方向の中心、すなわち、車体の縦方向軸線上に位置するように配設されている。 In the example shown in FIG. 1, the lateral acceleration sensor 44 is disposed on the back surface of the riding section 11. The lateral acceleration sensor 44 is disposed so as to be located at the center in the width direction of the vehicle body, that is, on the longitudinal axis of the vehicle body.
 また、本実施の形態における車両10は、制御装置の一部としての車体傾斜制御システムを有する。該車体傾斜制御システムは、一種のコンピュータシステムであり、図3に示されるように、傾斜制御装置として機能する傾斜制御ECU(Electronic Control Unit)46を備える。該傾斜制御ECU46は、プロセッサ等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、横加速度センサ44及びリンクモータ25に接続されている。また、前記傾斜制御ECU46は、横加速度センサ44が検出した横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する傾斜制御部47を含む。 Also, the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device. The vehicle body tilt control system is a kind of computer system, and includes a tilt control ECU (Electronic Control Unit) 46 that functions as a tilt control device, as shown in FIG. The inclination control ECU 46 includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and is connected to the lateral acceleration sensor 44 and the link motor 25. The tilt control ECU 46 includes a tilt control unit 47 that outputs a torque command value for operating the link motor 25 based on the lateral acceleration detected by the lateral acceleration sensor 44.
 該傾斜制御部47は、旋回走行の際には、フィードバック制御を行い、車体の傾斜角度が、横加速度センサ44が検出する横加速度の値がゼロとなるような角度になるように、リンクモータ25を作動させる。つまり、旋回外側への遠心力と重力とが釣り合って、横方向の加速度成分がゼロとなるような角度になるように、車体の傾斜角度を制御する。つまり、横方向の加速度成分の値ゼロを目標値として、車体の傾斜角度を制御する。これにより、車体及び搭乗部11に搭乗している乗員には、車体の縦方向軸線と平行な方向の力が作用することとなる。したがって、車体の安定を維持することができ、また、旋回性能を向上させることができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。 The tilt control unit 47 performs feedback control during cornering, so that the vehicle body tilt angle is such that the lateral acceleration value detected by the lateral acceleration sensor 44 is zero. 25 is activated. That is, the tilt angle of the vehicle body is controlled so that the centrifugal force to the outside of the turn and gravity are balanced and the lateral acceleration component becomes zero. That is, the vehicle body inclination angle is controlled with the lateral acceleration component value of zero as the target value. As a result, a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant on the riding section 11. Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved. In addition, the rider does not feel discomfort and the ride comfort is improved.
 次に、前記構成の車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。 Next, the operation of the vehicle 10 having the above configuration will be described. Here, only the operation of the vehicle body tilt control process during turning is described.
 図4は本発明の第1の実施の形態における旋回走行時の車体の傾斜動作を説明する図、図5は本発明の第1の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。 FIG. 4 is a diagram for explaining the tilting operation of the vehicle body during turning in the first embodiment of the present invention, and FIG. 5 is a flowchart showing the operation of the vehicle body tilt control process of the vehicle in the first embodiment of the present invention. It is.
 旋回走行が開始されると、車体傾斜制御システムは車体傾斜制御処理を開始する。姿勢制御が行われることで、車両10は、リンク機構30によって、旋回走行時には、図4に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回する。また、旋回走行時には、旋回外側への遠心力が車体に作用するとともに、車体を旋回内側に傾けたことによって重力の横方向成分が発生する。そして、横加速度センサ44は、前記遠心力と重力の横方向成分との合力を横方向の加速度として検出し、検出値aを横加速度センサ値として傾斜制御部47に出力する。すると、該傾斜制御部47は、フィードバック制御を行い、検出値aの値がゼロとなるような制御値をリンクモータ25に出力する。 When the turning traveling is started, the vehicle body tilt control system starts the vehicle body tilt control process. By performing the posture control, the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG. Further, during turning, a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn. Then, the lateral acceleration sensor 44 detects the resultant force of the centrifugal force and the lateral component of gravity as lateral acceleration, and outputs the detected value a to the tilt control unit 47 as the lateral acceleration sensor value. Then, the inclination control unit 47 performs feedback control and outputs a control value such that the detected value a becomes zero to the link motor 25.
 なお、車体傾斜制御処理は、車両10の電源が投入されている間、車体傾斜制御システムによって繰り返し所定の制御周期T(例えば、5〔ms〕)で実行される処理であり、旋回時において、旋回性能の向上と乗員の快適性の確保とを図る処理である。 The vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 5 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
 傾斜制御部47は、まず、横加速度センサ値aを取得する(ステップS1)。 The inclination control unit 47 first acquires the lateral acceleration sensor value a (step S1).
 続いて、傾斜制御部47は、aold 呼出を行う(ステップS2)。aold は、前回の車体傾斜制御処理実行時に保存された横加速度センサ値aである。なお、初期設定においては、aold =0とされている。 Subsequently, the inclination control unit 47 makes an old call (step S2). a old is a lateral acceleration sensor value a stored when the vehicle body tilt control process is executed last time. In the initial setting, a old = 0.
 続いて、傾斜制御部47は、制御周期Tを取得し(ステップS3)、aの微分値を算出する(ステップS4)。ここで、aの微分値をda/dtとすると、該da/dtは次の式(1)によって算出される。
da/dt=(a-aold )/T ・・・式(1)
 そして、傾斜制御部47は、aold =aとして保存する(ステップS5)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度センサ値aをaold として、記憶手段に保存する。
Then, tilt control unit 47 obtains the control period T S (step S3), and calculates a differential value of a (step S4). Here, when the differential value of a is da / dt, the da / dt is calculated by the following equation (1).
da / dt = (aa old ) / T S (1)
And the inclination control part 47 preserve | saves as aold = a (step S5). That is, the lateral acceleration sensor value a acquired at the time of execution of the current vehicle body tilt control process is stored as a old in the storage unit.
 続いて、傾斜制御部47は、第1制御値Uを算出する(ステップS6)。ここで、比例制御動作の制御ゲイン、すなわち、比例ゲインをCとすると、第1制御値Uは次の式(2)によって算出される。
=Ca ・・・式(2)
 続いて、傾斜制御部47は、第2制御値Uを算出する(ステップS7)。ここで、微分制御動作の制御ゲイン、すなわち、微分時間をCとすると、第2制御値Uは次の式(3)によって算出される。
=Cda/dt ・・・式(3)
 続いて、傾斜制御部47は、第3制御値Uを算出する(ステップS8)。該第3制御値Uは、第1制御値Uと第2制御値Uとの合計であり、次の式(4)によって算出される。
U=U+U ・・・式(4)
 最後に、傾斜制御部47は、第3制御値Uをリンクモータトルク指令値としてリンクモータ25へ出力して(ステップS9)、処理を終了する。
Then, tilt control unit 47 calculates the first control value U P (Step S6). Here, if the control gain of the proportional control operation, that is, the proportional gain is C P , the first control value UP is calculated by the following equation (2).
U P = C P a ··· formula (2)
Then, tilt control unit 47 calculates the second control value U D (step S7). Here, the control gain of the differential control operation, i.e., when the derivative time and C D, the second control value U D is calculated by the following equation (3).
U D = C D da / dt (3)
Subsequently, the inclination control unit 47 calculates a third control value U (step S8). Third control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (4).
U = U P + U D ··· formula (4)
Finally, the inclination control unit 47 outputs the third control value U as the link motor torque command value to the link motor 25 (step S9), and ends the process.
 このように、本実施の形態においては、旋回走行時には、横加速度センサ44が検出する横加速度の値がゼロとなるように、車体の傾斜角度を制御する。つまり、横方向の加速度成分の値ゼロを目標値として、車体の傾斜角度を制御する。これにより、旋回外側への遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することができ、横方向の加速度成分がゼロとなり、車体及び乗員には車体の縦方向軸線と平行な方向の力が作用する。 Thus, in the present embodiment, the vehicle body inclination angle is controlled so that the value of the lateral acceleration detected by the lateral acceleration sensor 44 becomes zero during turning. That is, the vehicle body inclination angle is controlled with the lateral acceleration component value of zero as the target value. As a result, the tilt angle of the vehicle body can be controlled so that the centrifugal force to the outside of the turn and the gravity are balanced, and the lateral acceleration component becomes zero. A force in a direction parallel to the axis acts.
 したがって、車体の安定を維持することができ、また、旋回性能を向上させることができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。これにより、安定した走行状態を実現することができ、安全性の高い車両10を提供することができる。 Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved. In addition, the rider does not feel discomfort and the ride comfort is improved. Thereby, the stable driving | running | working state can be implement | achieved and the vehicle 10 with high safety | security can be provided.
 次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a second embodiment of the present invention will be described. In addition, about what has the same structure as 1st Embodiment, the description is abbreviate | omitted by providing the same code | symbol. The description of the same operation and the same effect as those of the first embodiment is also omitted.
 図6は本発明の第2の実施の形態における横加速度センサの検出値が受ける影響を説明する図、図7は本発明の第2の実施の形態における車両の背面を示す図、図8は本発明の第2の実施の形態における車体傾斜制御システムの構成を示すブロック図である。なお、図6において、(a)~(c)は片側の車輪が落下する状態を示す図、(d)は車両の各部のガタ等の影響を説明する図であり、図7において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。 FIG. 6 is a diagram for explaining the influence of the detection value of the lateral acceleration sensor in the second embodiment of the present invention, FIG. 7 is a diagram showing the rear surface of the vehicle in the second embodiment of the present invention, and FIG. It is a block diagram which shows the structure of the vehicle body tilt control system in the 2nd Embodiment of this invention. 6, (a) to (c) are diagrams showing a state in which one wheel falls, and (d) is a diagram for explaining the influence of rattling or the like of each part of the vehicle. In FIG. ) Is a diagram showing a state where the vehicle body is standing upright, and (b) is a diagram showing a state where the vehicle body is inclined.
 前記第1の実施の形態においては、単一の横加速度センサ44によって横方向の加速度を検出する場合について説明した。しかし、横加速度センサ44が1つであると、不要加速度成分をも検出してしまうことがある。 In the first embodiment, the case where the lateral acceleration is detected by the single lateral acceleration sensor 44 has been described. However, if there is one lateral acceleration sensor 44, an unnecessary acceleration component may be detected.
 例えば、図6(a)~(c)に示されるように、車両10の走行中、路面18の窪(くぼ)みに左右の車輪12L及び12Rのいずれか一方のみが落下する場合があり得る。この場合、車体が傾斜するので、図6(c)における矢印で示されるように、横加速度センサ44は、周方向に変位し、該周方向の加速度を検出することになる。つまり、遠心力や重力に直接由来しない加速度成分、すなわち、不要加速度成分が検出されてしまう。 For example, as shown in FIGS. 6 (a) to 6 (c), only one of the left and right wheels 12L and 12R may fall into the recess of the road surface 18 while the vehicle 10 is traveling. obtain. In this case, since the vehicle body is inclined, the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction, as indicated by an arrow in FIG. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
 また、車両10は、例えば、左右の車輪12L及び12Rのタイヤ部分のように弾性を備え、ばねとして機能する部分を含み、また、各部材の接続部等に不可避的なガタが含まれる。そのため、図6(d)に模式的に示されるように、横加速度センサ44は、不可避的なガタやばねを介して車体に取り付けられていると考えられるので、ガタやばねの変位によって生じる加速度をも不要加速度成分として検出してしまう。 Further, for example, the vehicle 10 includes a portion that functions as a spring and has elasticity like the tire portions of the left and right wheels 12L and 12R, and includes inevitable backlash at the connecting portions of each member. Therefore, as schematically shown in FIG. 6 (d), the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, so that acceleration caused by displacement of the play and springs is considered. Are also detected as unnecessary acceleration components.
 このような不要加速度成分は、車体傾斜制御システムの制御性を悪化させる可能性がある。例えば、車体傾斜制御システムの制御ゲインを大きくすると、不要加速度成分に起因する制御系の振動、発散等が発生するので、応答性を向上させようとしても制御ゲインを大きくすることができなくなってしまう。 Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
 そこで、本実施の形態においては、横加速度センサ44が複数であって、互いに異なる高さに配設されている。図7に示される例において、横加速度センサ44は、第1横加速度センサ44a及び第2横加速度センサ44bの2つであって、第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。第1横加速度センサ44a及び第2横加速度センサ44bの位置を適切に選択することで、効果的に不要加速度成分を取り除くことができる。 Therefore, in the present embodiment, there are a plurality of lateral acceleration sensors 44, which are arranged at different heights. In the example shown in FIG. 7, there are two lateral acceleration sensors 44, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b, and the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are mutually connected. Arranged at different height positions. By appropriately selecting the positions of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, unnecessary acceleration components can be effectively removed.
 具体的には、図7(a)に示されるように、第1横加速度センサ44aは、搭乗部11の背面において、路面18からの距離、すなわち、高さがLの位置に配設されている。また、第2横加速度センサ44bは、搭乗部11の背面又は本体部20の上面において、路面18からの距離、すなわち、高さがLの位置に配設されている。なお、L>Lである。そして、旋回走行時に、図7(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回すると、第1横加速度センサ44aは、横方向の加速度を検出して検出値aを出力し、第2横加速度センサ44bは、横方向の加速度を検出して検出値aを出力する。なお、車体が傾く際の傾斜運動の中心、すなわち、ロール中心は、厳密には路面18よりわずかに下方に位置するが、実際上は、概略路面18と等しい位置であると考えられる。 Specifically, as shown in FIG. 7 (a), the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing. The second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 . Then, when turning, as shown in FIG. 7B, when the vehicle body turns with the vehicle body tilted inward (right side in the figure), the first lateral acceleration sensor 44a detects lateral acceleration. The detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 . Although the center of the tilting motion when the vehicle body tilts, that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
 前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、十分に剛性の高い部材に取り付けられることが望ましい。また、LとLとの差は、小さいと検出値a及びaの差が小さくなるので、十分に大きいこと、例えば、0.3〔m〕以上、とすることが望ましい。さらに、車体がサスペンション等のばねで支持されている場合、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、いわゆる「ばね上」に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、可能な限り乗員の近くに配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、上側から観て進行方向に延在する車体の中心軸上に位置すること、すなわち、進行方向に関してオフセットされないことが望ましい。 It is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”. Furthermore, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the wheel 12F as the front wheel and the axle of the left and right wheels 12L and 12R as the rear wheels. desirable. Further, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Further, both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are preferably located on the central axis of the vehicle body extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction. .
 また、本実施の形態における車体傾斜制御システムは、図8に示されるようになっている。傾斜制御ECU46は、第1横加速度センサ44a及び第2横加速度センサ44bが検出した横加速度に基づいて合成横加速度を算出する横加速度演算部48を備える。そして、傾斜制御部47は、横加速度演算部48が算出した横加速度としての合成横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する。 Further, the vehicle body tilt control system in the present embodiment is as shown in FIG. The tilt control ECU 46 includes a lateral acceleration calculation unit 48 that calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. Then, the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48.
 なお、その他の点の構成については、前記第1の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the first embodiment, and the description thereof is omitted.
 次に、本実施の形態における車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described. Here, only the operation of the vehicle body tilt control process during turning is described.
 図9は本発明の第2の実施の形態における力学モデルを示す図、図10は本発明の第2の実施の形態における制御系のブロック図、図11は本発明の第2の実施の形態における横加速度演算処理の動作を示すフローチャート、図12は本発明の第2の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。 FIG. 9 is a diagram showing a dynamic model in the second embodiment of the present invention, FIG. 10 is a block diagram of a control system in the second embodiment of the present invention, and FIG. 11 is a second embodiment of the present invention. FIG. 12 is a flowchart showing the operation of the vehicle body tilt control process of the vehicle according to the second embodiment of the present invention.
 図9において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Bは車体において第2横加速度センサ44bの配設された位置を示す第2センサ位置である。 In FIG. 9, 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body, and 44B is a second sensor indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Position.
 第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する加速度は、〈1〉旋回時に車体に作用する遠心力、〈2〉車体を旋回内側に傾けたことによって発生する重力の横方向成分、〈3〉左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、並びに、〈4〉リンクモータ25の作動又はその反作用により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、の4つであると考えられる。これら4つの加速度のうち、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さ、すなわち、L及びLと無関係である。一方、前記〈3〉及び〈4〉は、周方向に変位することによって生じる加速度であるから、ロール中心からの距離に比例する、すなわち、概略L及びLに比例する。 The acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is <1> centrifugal force acting on the vehicle body when turning, and <2> tilting the vehicle body toward the inside of the turn. The lateral component of the generated gravity, <3> the first lateral acceleration sensor 44a and the like due to the inclination of the vehicle body, the displacement of the backlash and the spring, etc., when only one of the left and right wheels 12L and 12R falls into the depression of the road surface The acceleration generated by the displacement of the second lateral acceleration sensor 44b in the circumferential direction, and the <4> operation of the link motor 25 or the reaction thereof causes the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b to be displaced in the circumferential direction. It is considered that there are four accelerations caused by this. Of these four acceleration, the <1> and <2>, the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, that is, independent of L 1 and L 2. On the other hand, since <3> and <4> are accelerations generated by displacement in the circumferential direction, they are proportional to the distance from the roll center, that is, roughly proportional to L 1 and L 2 .
 ここで、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈3〉の加速度をaX1及びaX2とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈4〉の加速度をaM1及びaM2とする。また、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈1〉の加速度をaとし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈2〉の加速度をaとする。なお、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さと無関係なので、第1横加速度センサ44a及び第2横加速度センサ44bの検出値は等しい。 Here, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value. The acceleration <3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration. The acceleration of <4>, which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 . Further, the acceleration of <1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected Then, the acceleration of <2> that outputs the detected value is defined as a G. Since <1> and <2> are not related to the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, the detection values of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are equal.
 そして、左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等による周方向の変位の角速度をωとし、その角加速度をω’とする。また、リンクモータ25の作動又はその反作用による周方向の変位の角速度をωとし、その角加速度をω’とする。 Then, only one of the left and right wheels 12L and 12R are inclined in the vehicle body due to the fall in a recess of a road surface 18, the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring, the angular acceleration omega Let R '. Further, the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ω M , and the angular acceleration is ω M ′.
 すると、aX1=Lω’、aX2=Lω’、aM1=Lω’、aM2=Lω’となる。 Then, a X1 = L 1 ω R ′, a X2 = L 2 ω R ′, a M1 = L 1 ω M ′, a M2 = L 2 ω M ′.
 また、第1横加速度センサ44a及び第2横加速度センサ44bが検出して出力する加速度の検出値をa及びaとすると、a及びaは、4つの加速度〈1〉~〈4〉の合計であるから、次の式(5)及び(6)で表される。
=a+a+Lω’+Lω’ ・・・式(5)
=a+a+Lω’+Lω’ ・・・式(6)
 そして、式(5)から式(6)を減算すると、次の式(7)を得ることができる。
-a=(L-L)ω’+(L-L)ω’ ・・・式(7)
 ここで、L及びLの値は、第1横加速度センサ44a及び第2横加速度センサ44bの高さであるから既知である。また、ω’の値は、リンクモータ25の角速度ωの微分値であるから既知である。すると、前記式(7)の右辺においては、第1項のω’の値のみが未知であり、他の値はすべて既知である。したがって、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaから、ω’の値を得ることが可能である。つまり、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaに基づいて、不要加速度成分を取り除くことができる。
If the detected acceleration values detected and output by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are a 1 and a 2 , a 1 and a 2 are four accelerations <1> to <4. > Is represented by the following formulas (5) and (6).
a 1 = a T + a G + L 1 ω R '+ L 1 ω M' ··· (5)
a 2 = a T + a G + L 2 ω R '+ L 2 ω M' ··· (6)
Then, by subtracting equation (6) from equation (5), the following equation (7) can be obtained.
a 1 −a 2 = (L 1 −L 2 ) ω R ′ + (L 1 −L 2 ) ω M ′ (7)
Here, the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. The value of ω M ′ is known because it is a differential value of the angular velocity ω M of the link motor 25. Then, on the right side of the equation (7), only the value of ω R ′ of the first term is unknown, and all other values are known. Therefore, the value of ω R ′ can be obtained from the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
 本実施の形態における車体傾斜制御処理では、図10に示されるようなフィードバック制御が行われる。図10において、fは後述される式(10)で表される伝達関数である。また、Gは比例制御動作の制御ゲインであり、Gは微分制御動作の制御ゲインであり、sは微分要素である。 In the vehicle body tilt control process in the present embodiment, feedback control as shown in FIG. 10 is performed. In FIG. 10, f 1 is a transfer function represented by the equation (10) described later. Also, G P is a control gain of the proportional control operation, G D is the control gain of the differential control operation, s is a differential element.
 車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は、横加速度演算処理を開始し、まず、第1横加速度センサ値aを取得するとともに(ステップS11)、第2横加速度センサ値aを取得する(ステップS12)。そして、横加速度演算部48は、加速度差Δaを算出する(ステップS13)。該Δaは次の式(8)によって表される。
Δa=a-a ・・・式(8)
 続いて、横加速度演算部48は、ΔL呼出を行うとともに(ステップS14)、L呼出を行う(ステップS15)。前記ΔLは次の式(9)によって表される。
ΔL=L-L ・・・式(9)
 続いて、横加速度演算部48は、合成横加速度aを算出する(ステップS16)。なお、合成横加速度aは、前記第1の実施の形態のように、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値aと第2横加速度センサ値aとを合成した値であり、次の式(10)及び(11)によって得られる。
a=a-(L/ΔL)Δa ・・・式(10)
a=a-(L/ΔL)Δa ・・・式(11)
 理論上は、式(10)によっても式(11)によっても、同じ値を得ることができるが、周方向の変位によって生じる加速度はロール中心からの距離に比例するので、実際上は、ロール中心により近い方の横加速度センサ44、すなわち、第2横加速度センサ44bの検出値であるaを基準にすることが望ましい。そこで、本実施の形態においては、式(10)によって合成横加速度aを算出することとする。
When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first acquires the first lateral acceleration sensor value a 1 (step S11) and the second lateral acceleration calculation process. An acceleration sensor value a 2 is acquired (step S12). Then, the lateral acceleration calculation unit 48 calculates the acceleration difference Δa (step S13). The Δa is expressed by the following equation (8).
Δa = a 1 −a 2 (8)
Then, the lateral acceleration calculation unit 48 performs ΔL call (step S14), and performs the L 2 call (step S15). The ΔL is expressed by the following equation (9).
ΔL = L 1 −L 2 Formula (9)
Subsequently, the lateral acceleration calculation unit 48 calculates a combined lateral acceleration a (step S16). The combined lateral acceleration a is a value corresponding to the lateral acceleration sensor value a when there is one lateral acceleration sensor 44 as in the first embodiment, and is the first lateral acceleration sensor value a. 1 and a value obtained by synthesizing the second lateral acceleration sensor value a 2, and are obtained by the following equations (10) and (11).
a = a 2 − (L 2 / ΔL) Δa (10)
a = a 1 − (L 1 / ΔL) Δa (11)
Theoretically, the same value can be obtained by both the equation (10) and the equation (11), but the acceleration caused by the displacement in the circumferential direction is proportional to the distance from the roll center. It is desirable to use a 2 which is a detection value of the lateral acceleration sensor 44 closer to the second lateral acceleration sensor 44b as a reference. Therefore, in the present embodiment, the combined lateral acceleration a is calculated by equation (10).
 最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS17)、横加速度演算処理を終了する。 Finally, the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S17), and ends the lateral acceleration calculation process.
 また、傾斜制御部47は、車体傾斜制御処理を開始し、まず、横加速度演算部48から合成横加速度aを受信する(ステップS21)。 The tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S21).
 続いて、傾斜制御部47は、aold 呼出を行う(ステップS22)。aold は、前回の車体傾斜制御処理実行時に保存された合成横加速度aである。なお、初期設定においては、aold =0とされている。 Subsequently, the inclination control unit 47 makes an old call (step S22). a old is the combined lateral acceleration a stored when the vehicle body tilt control process is executed last time. In the initial setting, a old = 0.
 これ以降の動作、すなわち、図12に示されるステップS23~S29の動作は、前記第1の実施の形態において説明したステップS3~S9の動作と同様であるので、その説明を省略する。 Since the subsequent operations, that is, the operations in steps S23 to S29 shown in FIG. 12, are the same as the operations in steps S3 to S9 described in the first embodiment, the description thereof is omitted.
 このように、本実施の形態においては、第1横加速度センサ44aと第2横加速度センサ44bとを互いに異なる高さ位置に配設し、第1横加速度センサ値aと第2横加速度センサ値aとを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロとなるように、車体の傾斜角度を制御する。つまり、合成横加速度aの値ゼロを目標値として、車体の傾斜角度を制御する。 Thus, in this embodiment, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, and the tilt angle of the vehicle body is controlled so that the value of the combined lateral acceleration a becomes zero. That is, the tilt angle of the vehicle body is controlled with a value of zero of the combined lateral acceleration a as a target value.
 これにより、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。 As a result, unnecessary acceleration components can be removed, so that it is not affected by road surface conditions, the occurrence of vibrations and divergence of the control system can be prevented, and the control gain of the vehicle body tilt control system is increased. Control responsiveness can be improved.
 なお、本実施の形態においては、横加速度センサ44が2つである場合について説明したが、横加速度センサ44は、複数であって互いに異なる高さに配設されていれば、3つ以上であってもよく、いくつであってもよい。 In the present embodiment, the case where there are two lateral acceleration sensors 44 has been described. However, if there are a plurality of lateral acceleration sensors 44 arranged at different heights, the number of lateral acceleration sensors 44 is three or more. There may be any number.
 次に、本発明の第3の実施の形態について説明する。なお、第1及び第2の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1及び第2の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a third embodiment of the present invention will be described. In addition, about the thing which has the same structure as 1st and 2nd embodiment, the description is abbreviate | omitted by providing the same code | symbol. Also, the description of the same operations and effects as those of the first and second embodiments is omitted.
 図13は本発明の第3の実施の形態における車両の背面を示す図である。なお、図において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。 FIG. 13 is a view showing the rear surface of the vehicle according to the third embodiment of the present invention. In the figure, (a) is a view showing a state where the vehicle body is upright, and (b) is a view showing a state where the vehicle body is inclined.
 本実施の形態における車両10は、リンク機構30を有しておらず、本体部20と搭乗部11とが、ロール軸20aを中心に、ロール方向に揺動可能に連結され、傾斜用アクチュエータ装置としてのリンクモータ25を回転させることによって、図13(b)に示されるように、本体部20に対して搭乗部11を揺動させてロールさせる、すなわち、傾斜させることができる。前記ロール軸20aは、本体部20に対して搭乗部11が揺動してロールする動作の中心、すなわち、ロール中心である。なお、車体の進行方向に延在するリンクモータ25の回転軸を、前記ロール軸20aと一致させるようにしてもよい。 The vehicle 10 in the present embodiment does not have the link mechanism 30, and the main body 20 and the riding section 11 are connected so as to be swingable in the roll direction around the roll shaft 20 a, and an actuator device for tilting is provided. By rotating the link motor 25 as shown in FIG. 13B, the riding section 11 can be swung and rolled, that is, tilted with respect to the main body section 20, as shown in FIG. The roll shaft 20a is the center of the movement in which the riding section 11 swings and rolls with respect to the main body 20, that is, the roll center. Note that the rotation shaft of the link motor 25 extending in the traveling direction of the vehicle body may coincide with the roll shaft 20a.
 旋回時にも、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角は変化せず、搭乗部11を前輪である車輪12Fとともに、本体部20に対して揺動させ、旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。なお、図に示される例においては、直進時も旋回時も、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。 Even during turning, the angle of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle does not change, and the riding part 11 is swung with respect to the main body part 20 together with the wheel 12F as the front wheel to the turning inner wheel side By tilting, it is possible to improve the turning performance and ensure the comfort of the passenger. In the example shown in the figure, the left and right wheels 12L and 12R stand upright with respect to the road surface 18 when the vehicle is traveling straight or turning, that is, the camber angle is 0 degree.
 その他の点の構成については、前記第1の実施の形態と同様であるので、その説明を省略する。 Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.
 なお、横加速度センサ44は、前記第2の実施の形態と同様に、第1横加速度センサ44a及び第2横加速度センサ44bを含み、前記第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。 As in the second embodiment, the lateral acceleration sensor 44 includes a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b, and the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b Are arranged at different height positions.
 本実施の形態においては、搭乗部11が傾く際の傾斜運動の中心、すなわち、ロール中心はロール軸20aと一致する。そこで、第1横加速度センサ44a及び第2横加速度センサ44bの高さL及びLは、ロール軸20aからの距離として設定される。 In the present embodiment, the center of the tilting motion when the riding section 11 tilts, that is, the roll center coincides with the roll shaft 20a. Therefore, the heights L 1 and L 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are set as distances from the roll shaft 20a.
 前記第1横加速度センサ44a及び第2横加速度センサ44bは、ロール軸20aの上側又は下側に、両者ともに配設されることが望ましい。また、前記第1横加速度センサ44a及び第2横加速度センサ44bの一方は、できる限りロール軸20aに近接した位置に配設されることが望ましい。 It is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed on the upper side or the lower side of the roll shaft 20a. Further, it is desirable that one of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b be disposed as close to the roll shaft 20a as possible.
 横加速度センサ44について、その他の点は、前記第2の実施の形態と同様であるので、その説明を省略する。また、車体傾斜制御システムについても、前記第2の実施の形態と同様であるので、その説明を省略する。さらに、本実施の形態における車両10の動作についても、前記第2の実施の形態と同様であるので、その説明を省略する。 Other aspects of the lateral acceleration sensor 44 are the same as those of the second embodiment, and a description thereof will be omitted. The vehicle body tilt control system is also the same as that in the second embodiment, and a description thereof will be omitted. Furthermore, since the operation of the vehicle 10 in the present embodiment is the same as that in the second embodiment, the description thereof is omitted.
 次に、本発明の第4の実施の形態について説明する。なお、第1~第3の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第3の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a fourth embodiment of the present invention will be described. Note that components having the same structure as those of the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. The description of the same operations and effects as those of the first to third embodiments is also omitted.
 図14は本発明の第4の実施の形態における車体傾斜制御システムの構成を示すブロック図である。 FIG. 14 is a block diagram showing a configuration of a vehicle body tilt control system according to the fourth embodiment of the present invention.
 前記第2及び第3の実施の形態においては、2つの横加速度センサ44、すなわち、第1横加速度センサ44aと第2横加速度センサ44bとによって横方向の加速度を検出する場合について説明した。しかし、横方向の加速度を検出可能なセンサであれば、加速度センサ以外の種類のセンサを使用することもできる。なお、横方向の加速度を検出可能なセンサとは、加速度センサのように加速度を直接的に検出するセンサのみならず、速度センサのように検出値を微分して加速度を得ることが可能なセンサ、すなわち、加速度を間接的に検出するセンサをも含むものである。 In the second and third embodiments, the case where the lateral acceleration is detected by the two lateral acceleration sensors 44, that is, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b has been described. However, a sensor other than the acceleration sensor may be used as long as it can detect lateral acceleration. A sensor capable of detecting lateral acceleration is not only a sensor that directly detects acceleration, such as an acceleration sensor, but also a sensor that can obtain acceleration by differentiating a detected value, such as a speed sensor. That is, it includes a sensor that indirectly detects acceleration.
 本実施の形態においては、前記第2横加速度センサ44bに代えて、加速度を間接的に検出するセンサとしてのロールレートセンサ44cを使用する例について説明する。なお、該ロールレートセンサ44cは、車体の傾斜運動の角速度を検出する一般的なロールレートセンサであって、例えば、ジャイロセンサを、地面と垂直方向の面内での回転角速度を検出することができるように取り付けたものである。 In the present embodiment, an example in which a roll rate sensor 44c as a sensor for indirectly detecting acceleration is used instead of the second lateral acceleration sensor 44b will be described. The roll rate sensor 44c is a general roll rate sensor that detects the angular velocity of the tilting motion of the vehicle body. For example, the roll rate sensor 44c can detect a rotational angular velocity in a plane perpendicular to the ground. It is attached as possible.
 本実施の形態における車体傾斜制御システムは、図14に示されるようになっている。傾斜制御ECU46には、第1横加速度センサ44a及びロールレートセンサ44cが接続されている。そして、横加速度演算部48は、ロールレートセンサ44cが検出した車体の傾斜運動の角速度の微分値及び第1横加速度センサ44aが検出した横加速度に基づいて合成横加速度を算出する。そして、傾斜制御部47は、横加速度演算部48が算出した横加速度としての合成横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する。 The vehicle body tilt control system in the present embodiment is as shown in FIG. A first lateral acceleration sensor 44 a and a roll rate sensor 44 c are connected to the tilt control ECU 46. Then, the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the differential value of the angular velocity of the tilt motion of the vehicle body detected by the roll rate sensor 44c and the lateral acceleration detected by the first lateral acceleration sensor 44a. Then, the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48.
 なお、その他の点の構成については、前記第2及び第3の実施の形態と同様であるので、その説明を省略する。 Since the configuration of other points is the same as that of the second and third embodiments, the description thereof is omitted.
 次に、本実施の形態における車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described. Here, only the operation of the vehicle body tilt control process during turning is described.
 図15は本発明の第4の実施の形態における力学モデルを示す図、図16は本発明の第4の実施の形態における横加速度演算処理の動作を示すフローチャートである。 FIG. 15 is a diagram showing a dynamic model in the fourth embodiment of the present invention, and FIG. 16 is a flowchart showing an operation of lateral acceleration calculation processing in the fourth embodiment of the present invention.
 図15において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Cは車体においてロールレートセンサ44cの配設された位置を示す第2センサ位置である。また、ωは、ロールレートセンサ44cが検出した車体の傾斜運動の角速度の値、すなわち、ロールレートセンサ値である。 In FIG. 15, 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body, and 44C is a second sensor position indicating the position where the roll rate sensor 44c is disposed on the vehicle body. is there. Further, ω 1 is the value of the angular velocity of the tilt motion of the vehicle body detected by the roll rate sensor 44c, that is, the roll rate sensor value.
 なお、ロールレートセンサ44cは、任意の高さ位置に取り付けることができる。図に示される例においては、第1横加速度センサ44aよりも低い位置に取り付けられているが、第1横加速度センサ44aと同じ高さ位置に取り付けられていてもよいし、第1横加速度センサ44aよりも高い位置に取り付けられていてもよい。 The roll rate sensor 44c can be attached at an arbitrary height position. In the example shown in the figure, it is attached at a position lower than the first lateral acceleration sensor 44a, but it may be attached at the same height as the first lateral acceleration sensor 44a, or the first lateral acceleration sensor. It may be attached at a position higher than 44a.
 もっとも、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、十分に剛性の高い部材に取り付けられることが望ましい。また、車体がサスペンション等のばねで支持されている場合、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、いわゆる「ばね上」に配設されることが望ましい。さらに、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、可能な限り乗員の近くに配設されることが望ましい。それ以外の点について、ロールレートセンサ44cは、車体の傾斜運動、すなわち、ロールを検出可能な位置であれば、いかなる位置に取り付けられていてもよい。 However, it is desirable that the roll rate sensor 44c be attached to a sufficiently rigid member, like the first lateral acceleration sensor 44a. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that the roll rate sensor 44c be disposed on a so-called “spring top” similarly to the first lateral acceleration sensor 44a. Further, like the first lateral acceleration sensor 44a, the roll rate sensor 44c is preferably disposed between the axle of the wheel 12F that is the front wheel and the axles of the left and right wheels 12L and 12R that are the rear wheels. Furthermore, it is desirable that the roll rate sensor 44c be disposed as close to the occupant as possible, similarly to the first lateral acceleration sensor 44a. Regarding other points, the roll rate sensor 44c may be attached at any position as long as it can detect the tilting movement of the vehicle body, that is, the roll.
 なお、第1横加速度センサ44aとロールレートセンサ44cとは互いに異なるセンサなので、両者の応答特性を、あらかじめ、理論的又は実験的に合わせておく必要がある。例えば、どちらかの等価モデルの時定数が小さい(速い)場合、時定数が大きい方の出力と同等の時定数となるようにフィルタ等で調整することになる。 Since the first lateral acceleration sensor 44a and the roll rate sensor 44c are different from each other, the response characteristics of both must be theoretically or experimentally matched in advance. For example, when the time constant of either equivalent model is small (fast), adjustment is made with a filter or the like so that the time constant is equivalent to the output with the larger time constant.
 本実施の形態において、車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は、横加速度演算処理を開始し、まず、横加速度センサ値としての第1横加速度センサ値aを取得するとともに(ステップS31)、ロールレートセンサ値ωを取得する(ステップS32)。 In the present embodiment, when the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first, the first lateral acceleration sensor value a 1 as the lateral acceleration sensor value. Is acquired (step S31), and the roll rate sensor value ω 1 is acquired (step S32).
 続いて、横加速度演算部48は、ωold 呼出を行う(ステップS33)。ωold は、前回の車体傾斜制御処理実行時に保存されたロールレートセンサ値ωである。なお、初期設定においては、ωold =0とされている。 Subsequently, the lateral acceleration calculation unit 48 makes a ω old call (step S33). ω old is a roll rate sensor value ω 1 stored when the vehicle body tilt control process is executed last time. In the initial setting, ω old = 0.
 続いて、横加速度演算部48は、制御周期Tを取得し(ステップS34)、ωの微分値を算出する(ステップS35)。ここで、ωの微分値をΔωとすると、該Δωは次の式(12)によって算出される。
Δω=(ω-ωold )/T ・・・式(12)
 続いて、横加速度演算部48は、L呼出を行う(ステップS36)。
Subsequently, the lateral acceleration calculation unit 48 acquires the control cycle T S (step S34), and calculates the differential value of ω 1 (step S35). Here, when the differential value of ω 1 is Δω 1 , Δω 1 is calculated by the following equation (12).
Δω 1 = (ω 1 −ω old ) / T S Formula (12)
Then, the lateral acceleration calculation section 48 performs L 1 call (step S36).
 そして、横加速度演算部48は、合成横加速度aを算出する(ステップS37)。なお、該合成横加速度aは、前記第1の実施の形態のように、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値aとロールレートセンサ値ωの微分値Δωとを合成した値であり、次の式(13)によって得られる。
a=a-LΔω ・・・式(13)
 最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS38)、横加速度演算処理を終了する。
Then, the lateral acceleration calculation unit 48 calculates the combined lateral acceleration a (step S37). Note that the combined lateral acceleration a is a value corresponding to the lateral acceleration sensor value a when there is one lateral acceleration sensor 44 as in the first embodiment, and is the first lateral acceleration sensor value. a 1 and a synthesized value of the differential value [Delta] [omega 1 of the roll rate sensor value omega 1, obtained by the following equation (13).
a = a 1 −L 1 Δω 1 Formula (13)
Finally, the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S38), and ends the lateral acceleration calculation process.
 なお、傾斜制御部47による車体傾斜制御処理の動作については、前記第2の実施の形態と同様であるので、その説明を省略する。 Note that the operation of the vehicle body tilt control process by the tilt control unit 47 is the same as that of the second embodiment, and thus the description thereof is omitted.
 このように、本実施の形態においては、横方向の加速度を検出可能な複数のセンサのうちの1つとしてロールレートセンサ44cを採用しているので、高さ方向に関するロールレートセンサ44cの取付位置の自由度が高くなり、車両10の設計自由度を高くすることができる。 As described above, in the present embodiment, the roll rate sensor 44c is employed as one of the plurality of sensors capable of detecting the acceleration in the lateral direction, and therefore the mounting position of the roll rate sensor 44c in the height direction. This increases the degree of freedom of design of the vehicle 10.
 なお、本実施の形態においては、前記第2及び第3の実施の形態における第2横加速度センサ44bに代えてロールレートセンサ44cを使用する例についてのみ説明したが、第1横加速度センサ44aに代えてロールレートセンサ44cを使用することもできる。また、車両10は、第2の実施の形態における車両10のようにリンク機構30を有するものであってもよいし、第3の実施の形態における車両10のようにリンク機構30を有していないものであってもよい。 In the present embodiment, only the example in which the roll rate sensor 44c is used instead of the second lateral acceleration sensor 44b in the second and third embodiments has been described. However, the first lateral acceleration sensor 44a Instead, a roll rate sensor 44c can be used. Moreover, the vehicle 10 may have the link mechanism 30 like the vehicle 10 in the second embodiment, or may have the link mechanism 30 like the vehicle 10 in the third embodiment. It may not be.
 次に、本発明の第5の実施の形態について説明する。なお、第1~第4の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第4の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a fifth embodiment of the present invention will be described. Note that components having the same structure as those of the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted. Explanation of the same operations and effects as those in the first to fourth embodiments is also omitted.
 図17は本発明の第5の実施の形態における車両の構成を示す右側面図、図18は本発明の第5の実施の形態における車体傾斜制御システムの構成を示すブロック図である。 FIG. 17 is a right side view showing the configuration of the vehicle in the fifth embodiment of the present invention, and FIG. 18 is a block diagram showing the configuration of the vehicle body tilt control system in the fifth embodiment of the present invention.
 前記第2の実施の形態において説明したように、第1横加速度センサ44aと第2横加速度センサ44bとを互いに異なる高さ位置に配設し、第1横加速度センサ値aと第2横加速度センサ値aとを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロとなるように、車体の傾斜角度を制御することによって、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。 Wherein, as described in the second embodiment, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral The combined lateral acceleration a obtained by combining the acceleration sensor value a 2 is calculated, and the control gain of the vehicle body tilt control system is increased by controlling the vehicle body tilt angle so that the value of the combined lateral acceleration a becomes zero. Thus, control responsiveness can be improved.
 しかし、制御ゲインをあまり大きくすると、車体傾斜制御システムが外乱に過度に反応して乗員に不快感をもたらすことがある。一方で、制御ゲインが小さいと、旋回開始時又は終了時のように横加速度が大きく変化するときに、制御の遅れが発生し、適正な傾斜角を実現することができないことがある。 However, if the control gain is too large, the vehicle body tilt control system may react excessively to disturbances and cause discomfort to the passengers. On the other hand, if the control gain is small, a control delay may occur when the lateral acceleration changes greatly as at the start or end of turning, and an appropriate tilt angle may not be realized.
 そこで、本実施の形態においては、要求旋回量及び車速から横加速度予測値を算出し、算出した横加速度予測値を使用したフィードフォワード制御を加えることによって、車体傾斜制御システムの応答性を向上させるようになっている。また、取得した要求旋回量にローパスフィルタをかける、具体的には、車速によってカットオフ周波数を変化させるローパスフィルタをかけることにより、高速走行時の安定性を確保することができる。 Therefore, in the present embodiment, the lateral acceleration prediction value is calculated from the required turning amount and the vehicle speed, and feedforward control using the calculated lateral acceleration prediction value is added to improve the responsiveness of the vehicle body tilt control system. It is like that. Further, by applying a low-pass filter to the acquired required turning amount, specifically, by applying a low-pass filter that changes the cut-off frequency according to the vehicle speed, it is possible to ensure stability during high-speed traveling.
 本実施の形態における車両10は、図17に示されるように、要求旋回量を検出する要求旋回量検出手段としての操舵角センサ53、及び、車両10の走行速度である車速を検出する車速検出手段としての車速センサ54を有する。また、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との距離、すなわち、ホイールベースはLである。 As shown in FIG. 17, the vehicle 10 in the present embodiment has a steering angle sensor 53 as a requested turning amount detection unit that detects a requested turning amount, and a vehicle speed detection that detects a vehicle speed that is the traveling speed of the vehicle 10. A vehicle speed sensor 54 is provided as means. The distance between the left and right wheels 12L and 12R axle is the axle and the rear wheel of the wheel 12F is a front wheel, i.e., the wheel base is L H.
 前記操舵角センサ53は、ハンドルバー41aと前輪フォーク17の上端とを接続する図示されない操舵軸部材の、搭乗部11が備えるフレーム部材に対する回転角度、すなわち、操舵角の変化を検出するセンサであり、例えば、エンコーダ等から成る。そして、前記操舵角センサ53によって、ハンドルバー41aの操舵量、すなわち、要求旋回量としての操舵装置の操舵量を検出することができる。 The steering angle sensor 53 is a sensor that detects a rotation angle of a steering shaft member (not shown) that connects the handle bar 41a and the upper end of the front wheel fork 17 with respect to a frame member included in the riding section 11, that is, a change in the steering angle. For example, an encoder. The steering angle sensor 53 can detect the steering amount of the handle bar 41a, that is, the steering amount of the steering device as the required turning amount.
 また、前記車速センサ54は、車輪12Fの車軸を支持する前輪フォーク17の下端に配設され、車輪12Fの回転速度に基づいて車速を検出するセンサであり、例えば、エンコーダ等から成る。 The vehicle speed sensor 54 is a sensor that is disposed at the lower end of the front wheel fork 17 that supports the axle of the wheel 12F and detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
 さらに、本実施の形態における車体傾斜制御システムは、図18に示されるようになっている。傾斜制御ECU46は、操舵角センサ53が検出した操舵角、及び、車速センサ54が検出した車速に基づいて車体に作用する横加速度予測値を算出する横加速度推定部49を備える。そして、傾斜制御部47は、横加速度演算部48が算出した合成横加速度と、横加速度推定部49が算出した横加速度予測値とに基づいてリンクモータ25を作動させるためのトルク指令値を出力する。 Furthermore, the vehicle body tilt control system in the present embodiment is as shown in FIG. The tilt control ECU 46 includes a lateral acceleration estimation unit 49 that calculates a predicted lateral acceleration value acting on the vehicle body based on the steering angle detected by the steering angle sensor 53 and the vehicle speed detected by the vehicle speed sensor 54. Then, the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated by the lateral acceleration calculation unit 48 and the predicted lateral acceleration calculated by the lateral acceleration estimation unit 49. To do.
 なお、その他の点の構成については、前記第2の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the second embodiment, and the description thereof is omitted.
 次に、本実施の形態における車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described. Here, only the operation of the vehicle body tilt control process during turning is described.
 図19は本発明の第5の実施の形態における制御系のブロック図、図20は本発明の第5の実施の形態における操舵による横加速度を説明するモデルを示す図、図21は本発明の第5の実施の形態における横加速度推定処理の動作を示すフローチャート、図22は本発明の第5の実施の形態におけるフィルタ処理のサブルーチンを示すフローチャート、図23は本発明の第5の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。 FIG. 19 is a block diagram of a control system in the fifth embodiment of the present invention, FIG. 20 is a diagram showing a model for explaining lateral acceleration by steering in the fifth embodiment of the present invention, and FIG. 21 is a diagram of the present invention. Flowchart showing the operation of lateral acceleration estimation processing in the fifth embodiment, FIG. 22 is a flowchart showing a subroutine of filter processing in the fifth embodiment of the present invention, and FIG. 23 is the fifth embodiment of the present invention. 5 is a flowchart showing an operation of a vehicle body tilt control process in FIG.
 本実施の形態における車体傾斜制御処理では、図19に示されるようなフィードバック制御とフィードフォワード制御とを組み合わせた制御が行われる。図19において、点線より下の部分については、前記第2の実施の形態において説明した図10に示されるフィードバック制御と同様であるので、その説明を省略する。 In the vehicle body tilt control process in the present embodiment, control combining feedback control and feedforward control as shown in FIG. 19 is performed. In FIG. 19, the portion below the dotted line is the same as the feedback control shown in FIG. 10 described in the second embodiment, and a description thereof will be omitted.
 そして、点線より上の部分がフィードフォワード制御を示している。ここで、fは後述される式(20)で表される伝達関数である。また、Gydは微分制御動作の制御ゲインであり、sは微分要素である。 And the part above a dotted line has shown feedforward control. Here, f 2 is a transfer function represented by the equation (20) described later. G yd is a control gain of the differential control operation, and s is a differential element.
 車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は横加速度演算処理を実行する。なお、本実施の形態における横加速度演算処理の動作は、前記第2の実施の形態において説明した横加速度演算処理の動作、すなわち、図11に示されるステップS11~S17の動作と同様であるので、その説明を省略する。 When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration calculation unit 48 executes the lateral acceleration calculation process. The operation of the lateral acceleration calculation process in the present embodiment is the same as the operation of the lateral acceleration calculation process described in the second embodiment, that is, the operations in steps S11 to S17 shown in FIG. The description is omitted.
 また、横加速度推定部49は横加速度推定処理を開始する。横加速度推定部49は、まず、操舵角センサ53が検出した操舵角の値である操舵角センサ値θを取得するとともに(ステップS41)、車速センサ54が検出した車速の値である車速センサ値νを取得する(ステップS42)。 Also, the lateral acceleration estimation unit 49 starts the lateral acceleration estimation process. The lateral acceleration estimation unit 49 first acquires the steering angle sensor value θ that is the value of the steering angle detected by the steering angle sensor 53 (step S41), and the vehicle speed sensor value that is the vehicle speed value detected by the vehicle speed sensor 54. ν is acquired (step S42).
 そして、横加速度推定部49は、θに対してフィルタ処理を実行し(ステップS43)、Ψ(t)を算出する。Ψ(t)は、速度によるカットオフ周波数可変ローパスフィルタによってフィルタ処理された操舵角である。 Then, the lateral acceleration estimation unit 49 performs a filtering process on θ (step S43) and calculates Ψ (t). Ψ (t) is the steering angle filtered by the cut-off frequency variable low-pass filter according to speed.
 ここで、図20に示されるように、操舵角がΨであり、旋回半径がrであるとすると、車速ν及び旋回時に車体に作用する横加速度としての遠心力aは次の式(14)及び(15)によって表される。
ν=rw ・・・式(14)
=rw ・・・式(15)
 なお、wは旋回角速度である。
Here, as shown in FIG. 20, assuming that the steering angle is Ψ and the turning radius is r, the centrifugal speed a 0 as the lateral acceleration acting on the vehicle body at the time of the vehicle speed ν and the turning is expressed by the following equation (14 ) And (15).
ν = rw Formula (14)
a 0 = rw 2 Formula (15)
In addition, w is a turning angular velocity.
 そして、前記式(14)及び(15)から、旋回時に車体に作用する遠心力aは次の式(16)によって表される。
=ν/r ・・・式(16)
 また、図20から、旋回半径rは次の式(17)によって表される。
r=L/tan Ψ ・・・式(17)
 そして、前記式(16)及び(17)から、次の式(18)が導出される。
=(ν/L)tan Ψ ・・・式(18)
 フィルタ処理において、横加速度推定部49は、まず、制御周期Tを取得する(ステップS43-1)。なお、制御周期Tについては、前記第1の実施の形態と同様であるので、その説明を省略する。
From the formulas (14) and (15), the centrifugal force a 0 acting on the vehicle body during turning is expressed by the following formula (16).
a 0 = ν 2 / r (16)
Further, from FIG. 20, the turning radius r is expressed by the following equation (17).
r = L H / tan Ψ Equation (17)
Then, the following equation (18) is derived from the equations (16) and (17).
a 0 = (ν 2 / L H ) tan Ψ (Equation 18)
In the filter process, the lateral acceleration estimation unit 49 first acquires a control cycle T S (step S43-1). Since the control cycle T S is the same as that in the first embodiment, the description thereof is omitted.
 続いて、横加速度推定部49は、カットオフ周波数w(ν)を算出する(ステップS43-2)。w(ν)は、速度別のカットオフ周波数であり、入力が車速νであって出力がカットオフ周波数となる関数である。例えば、車速に反比例する関数であるが、いかなる関数であってもよい。なお、入力である車速νと出力であるカットオフ周波数との関係を示すテーブルをあらかじめ作成し、該テーブルを参照することによって、演算を行うことなく、カットオフ周波数w(ν)を取得することもできる。 Subsequently, the lateral acceleration estimation unit 49 calculates a cutoff frequency w (ν) (step S43-2). w (ν) is a cutoff frequency for each speed, and is a function in which the input is the vehicle speed ν and the output is the cutoff frequency. For example, the function is inversely proportional to the vehicle speed, but any function may be used. It should be noted that a table showing the relationship between the input vehicle speed ν and the output cutoff frequency is created in advance, and the cutoff frequency w (ν) is obtained without performing calculations by referring to the table. You can also.
 続いて、横加速度推定部49は、Ψold 呼出を行う(ステップS43-3)。Ψold は、前回の車体傾斜制御処理実行時に保存されたΨ(t)の値である。なお、初期設定においては、Ψold =0とされている。 Subsequently, the lateral acceleration estimation unit 49 makes a Ψ old call (step S43-3). Ψ old is the value of Ψ (t) stored when the previous vehicle body tilt control process is executed. In the initial setting, Ψ old = 0.
 続いて、横加速度推定部49は、フィルタ処理された操舵角Ψ(t)を算出する(ステップS43-4)。Ψ(t)は、次の式(19)によって算出される。
Ψ(t)=Ψold /(1+Tw(ν))
     +Tw(ν)θ/(1+Tw(ν)) ・・・式(19)
 該式(19)は、バンドパスフィルタとして一般的に使用されるIIR(Infinite Impulse Response)フィルタの式であり、一次遅れ系のローパスフィルタであるカットオフ周波数可変ローパスフィルタを表している。
Subsequently, the lateral acceleration estimation unit 49 calculates the filtered steering angle Ψ (t) (step S43-4). Ψ (t) is calculated by the following equation (19).
Ψ (t) = Ψ old / (1 + T s w (ν))
+ T S w (ν) θ / (1 + T S w (ν)) ··· (19)
The equation (19) is an equation of an IIR (Infinite Impulse Response) filter that is generally used as a bandpass filter, and represents a cutoff frequency variable low-pass filter that is a first-order lag low-pass filter.
 そして、横加速度推定部49は、Ψold =Ψ(t)として保存し(ステップS43-5)、フィルタ処理を終了する。つまり、今回の車体傾斜制御処理実行時に算出したΨ(t)の値をΨold として、記憶手段に保存する。 Then, the lateral acceleration estimation unit 49 stores Ψ old = Ψ (t) (step S43-5) and ends the filter process. That is, the value of Ψ (t) calculated when the vehicle body tilt control process is executed is stored in the storage unit as Ψ old .
 続いて、横加速度推定部49は、L呼出を行い(ステップS44)、横加速度予測値aを算出する(ステップS45)。横加速度予測値aは、前記式(18)に基づき、次の式(20)によって算出される。
=νtan{Ψ(t)}/L ・・・式(20)
 該式(20)は、ハンドルバー41aの操舵によって生じる横加速度、すなわち、旋回走行によって生じる遠心力を表している。
Then, the lateral acceleration estimation unit 49, L H call was carried out (step S44), and calculates a lateral acceleration estimated value a f (step S45). The lateral acceleration predicted value a f is calculated by the following equation (20) based on the equation (18).
a f = ν 2 tan {Ψ (t)} / L H Formula (20)
The equation (20) represents the lateral acceleration generated by steering the handlebar 41a, that is, the centrifugal force generated by turning.
 最後に、横加速度推定部49は、傾斜制御部47へ横加速度予測値aを送出して(ステップS46)、横加速度推定処理を終了する。 Finally, the lateral acceleration estimation unit 49 sends the predicted lateral acceleration value a f to the tilt control unit 47 (step S46), and ends the lateral acceleration estimation process.
 また、傾斜制御部47は、車体傾斜制御処理を開始し、まず、横加速度演算部48から合成横加速度aを受信する(ステップS51)。なお、該合成横加速度aを受信してから第3制御値Uを算出するまでの動作、すなわち、図23に示されるステップS51~S58の動作は、前記第2の実施の形態において説明したステップS21~S28の動作と同様であるので、その説明を省略する。 Further, the tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S51). Note that the operations from the reception of the combined lateral acceleration a to the calculation of the third control value U, that is, the operations in steps S51 to S58 shown in FIG. 23, are the steps described in the second embodiment. Since this is the same as the operation of S21 to S28, its description is omitted.
 第3制御値Uを算出すると、傾斜制御部47は、横加速度推定部49から横加速度予測値aを受信する(ステップS59)。 When the third control value U is calculated, the tilt control unit 47 receives the lateral acceleration predicted value a f from the lateral acceleration estimation unit 49 (step S59).
 続いて、傾斜制御部47は、afold呼出を行う(ステップS60)。afoldは、前回の車体傾斜制御処理実行時に保存された横加速度予測値aである。なお、初期設定においては、afold=0とされている。 Subsequently, the inclination control unit 47 performs a fold call (step S60). a fold is a predicted lateral acceleration value a f stored when the vehicle body tilt control process is executed last time. In the initial setting, a fold = 0.
 続いて、傾斜制御部47は、aの微分値を算出する(ステップS61)。ここで、aの微分値をda/dtとすると、該da/dtは次の式(21)によって算出される。
da/dt=(a-afold)/T ・・・式(21)
 そして、傾斜制御部47は、afold=aとして保存する(ステップS62)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度予測値aをafoldとして、記憶手段に保存する。
Subsequently, the inclination control unit 47 calculates a differential value of a f (step S61). Here, when the differential value of a f is da f / dt, the da f / dt is calculated by the following equation (21).
da f / dt = (a f −a fold ) / T S (21)
And the inclination control part 47 preserve | saves as afold = af (step S62). That is, the lateral acceleration predicted value a f acquired at the time of executing the vehicle body tilt control process this time is stored in the storage unit as a fold .
 続いて、傾斜制御部47は、第4制御値UfDを算出する(ステップS63)。ここで、微分制御動作の制御ゲインをCfDとすると、第4制御値UfDは次の式(22)によって算出される。
fD=CfDda/dt ・・・式(22)
 続いて、傾斜制御部47は、第5制御値Uを算出する(ステップS64)。該第5制御値Uは、第3制御値Uと第4制御値UfDとの合計であり、次の式(23)によって算出される。
U=U+UfD ・・・式(23)
 最後に、傾斜制御部47は、第5制御値Uをリンクモータトルク指令値としてリンクモータ25へ出力して(ステップS65)、処理を終了する。
Subsequently, the inclination control unit 47 calculates a fourth control value U fD (step S63). Here, if the control gain of the differential control operation is C fD , the fourth control value U fD is calculated by the following equation (22).
U fD = C fD da f / dt (22)
Subsequently, the inclination control unit 47 calculates a fifth control value U (step S64). The fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (23).
U = U + U fD Expression (23)
Finally, the inclination control unit 47 outputs the fifth control value U to the link motor 25 as the link motor torque command value (step S65), and ends the process.
 このように、本実施の形態においては、第1横加速度センサ44aと第2横加速度センサ44bとを互いに異なる高さ位置に配設し、第1横加速度センサ値aと第2横加速度センサ値aとを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロとなるようにフィードバック制御を行うとともに、要求旋回量及び車速から横加速度予測値aを算出し、算出した横加速度予測値aを使用したフィードフォワード制御を行う。 Thus, in this embodiment, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, feedback control is performed so that the value of the combined lateral acceleration a becomes zero, and a predicted lateral acceleration value a f is calculated from the required turning amount and the vehicle speed, the calculated lateral acceleration estimated value a f performs feedforward control using.
 これにより、旋回時における車体の傾斜角を横加速度と重力とが釣り合うような角度に適切に制御することができる。また、路面18が横方向に傾斜していても、車体を鉛直に保つことができる。さらに、旋回開始時及び終了時のように、横加速度の変化が大きいときであっても、制御に遅れが発生することがない。このため、車両10の安定性を高く保つことができ、乗員の違和感を低減し、快適性を向上させることができる。 This makes it possible to appropriately control the inclination angle of the vehicle body during turning to an angle that balances the lateral acceleration and gravity. Even if the road surface 18 is inclined in the lateral direction, the vehicle body can be kept vertical. Further, there is no delay in control even when the lateral acceleration changes greatly, such as at the start and end of turning. For this reason, the stability of the vehicle 10 can be kept high, a passenger's discomfort can be reduced, and comfort can be improved.
 また、取得した要求旋回量に、車速によってカットオフ周波数を変化させるローパスフィルタをかけることにより、高速走行時の安定性を確保することができる。 Also, by applying a low-pass filter that changes the cut-off frequency according to the vehicle speed to the acquired required turning amount, it is possible to ensure stability during high-speed driving.
 なお、本実施の形態においては、第1横加速度センサ44a及び第2横加速度センサ44bを使用し、第1横加速度センサ値aと第2横加速度センサ値aとを合成して合成横加速度aを算出する例についてのみ説明したが、前記第4の実施の形態において説明したように、第1横加速度センサ44a又は第2横加速度センサ44bのいずれか一方に代えてロールレートセンサ44cを使用し、第1横加速度センサ値a又は第2横加速度センサ値aとロールレートセンサ値ωの微分値Δωとを合成して合成横加速度aを算出するようにしてもよい。 In the present embodiment, by using the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, synthesized and resultant lateral first lateral acceleration sensor value a 1 and a second lateral acceleration sensor value a 2 Although only the example of calculating the acceleration a has been described, as described in the fourth embodiment, a roll rate sensor 44c is used instead of either the first lateral acceleration sensor 44a or the second lateral acceleration sensor 44b. The combined lateral acceleration a may be calculated by combining the first lateral acceleration sensor value a 1 or the second lateral acceleration sensor value a 2 and the differential value Δω 1 of the roll rate sensor value ω 1 .
 次に、本発明の第6の実施の形態について説明する。なお、第1~第5の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第5の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a sixth embodiment of the present invention will be described. Note that components having the same structure as those of the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted. Explanation of the same operations and effects as those of the first to fifth embodiments is also omitted.
 図24は本発明の第6の実施の形態における車体傾斜制御システムの構成を示すブロック図である。 FIG. 24 is a block diagram showing a configuration of a vehicle body tilt control system according to the sixth embodiment of the present invention.
 前記第5の実施の形態において説明したように、第1横加速度センサ値aと第2横加速度センサ値aとを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロとなるようにフィードバック制御を行うとともに、要求旋回量及び車速から横加速度予測値aを算出し、算出した横加速度予測値aを使用したフィードフォワード制御を行うことによって、路面18が横方向に傾斜していても、車体を鉛直に保つことができ、また、旋回開始時及び終了時のように、横加速度の変化が大きいときであっても、制御に遅れが発生することがない。 As described in the fifth embodiment, a combined lateral acceleration a obtained by combining the first lateral acceleration sensor value a 1 and the second lateral acceleration sensor value a 2 is calculated, and the value of the combined lateral acceleration a is calculated. performs feedback control such that the zero, by calculating the lateral acceleration estimated value a f from the required turning amount and the vehicle speed, performs the feedforward control using the calculated lateral acceleration estimated value a f, the road surface 18 is horizontal Even if it is tilted in the direction, the vehicle body can be kept vertical, and there is no delay in control even when the change in lateral acceleration is large, such as at the start and end of turning. .
 しかし、操舵角センサ53によってハンドルバー41aの操舵量を検出する場合、操舵角センサ53が検出する操舵量のゼロ点を調整して、ハンドルバー41aの中立状態、すなわち、車両10の直進状態に合わせる必要がある。そのため、操舵角センサ53の初期設定を行う必要がある。 However, when the steering amount of the handlebar 41a is detected by the steering angle sensor 53, the zero point of the steering amount detected by the steering angle sensor 53 is adjusted so that the handlebar 41a is in a neutral state, that is, the vehicle 10 is in a straight traveling state. It is necessary to match. Therefore, initial setting of the steering angle sensor 53 needs to be performed.
 そこで、本実施の形態においては、操舵角速度を使用してフィードフォワード制御を行うことによって、ゼロ点の検出が不要となるので、安価な操舵角センサ53を使用することができ、操舵角センサ53の初期設定が不要となるので、車両10の製造及び保守のコストを低減することができるようになっている。また、車速に応じて横加速度予測値aのゲイン特性及び遅れ特性を可変にすることによって、高速走行時における制御の追従性を向上させることができる。 Therefore, in the present embodiment, by performing feedforward control using the steering angular velocity, it is not necessary to detect the zero point. Therefore, an inexpensive steering angle sensor 53 can be used, and the steering angle sensor 53 can be used. Therefore, the manufacturing and maintenance costs of the vehicle 10 can be reduced. In addition, by making the gain characteristic and delay characteristic of the lateral acceleration predicted value a f variable according to the vehicle speed, it is possible to improve control followability during high-speed traveling.
 本実施の形態における車体傾斜制御システムでは、図に示されるように、傾斜制御ECU46は、横加速度推定部49の代わりにリンク角速度推定部50を備えるとともに、横加速度演算部48及び傾斜制御部47に加えて、外乱演算部43及びリンクモータ制御部42を備える。 In the vehicle body tilt control system according to the present embodiment, as shown in the figure, the tilt control ECU 46 includes a link angular velocity estimation unit 50 instead of the lateral acceleration estimation unit 49, and also includes a lateral acceleration calculation unit 48 and a tilt control unit 47. In addition, a disturbance calculation unit 43 and a link motor control unit 42 are provided.
 そして、前記リンク角速度推定部50は、操舵角センサ53が検出した操舵角、及び、車速センサ54が検出した車速に基づいてリンク角速度予測値を算出する。また、前記外乱演算部43は、ロールレートセンサ44cが検出した車体の傾斜運動の角速度の値、すなわち、ロールレートセンサ値と、リンク角センサ25aが検出したリンク角とに基づいて外乱分のロールレートを算出する。 The link angular velocity estimation unit 50 calculates a link angular velocity prediction value based on the steering angle detected by the steering angle sensor 53 and the vehicle speed detected by the vehicle speed sensor 54. Further, the disturbance calculation unit 43 rolls the disturbance based on the value of the angular velocity of the vehicle body tilting motion detected by the roll rate sensor 44c, that is, the roll rate sensor value and the link angle detected by the link angle sensor 25a. Calculate the rate.
 なお、前記リンク角センサ25aは、リンクモータ25においてボディに対する回転軸の回転角を検出する回転角センサであって、例えば、レゾルバ、エンコーダ等から成る。前述のように、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動するのであるから、ボディに対する回転軸の回転角を検出することによって、中央縦部材21に対する上側の横リンクユニット31Uの角度の変化、すなわち、リンク角の変化を検出することができる。 The link angle sensor 25a is a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the link motor 25, and includes, for example, a resolver, an encoder, and the like. As described above, when the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20. Therefore, a change in the angle of the upper horizontal link unit 31U relative to the central vertical member 21, that is, a change in the link angle can be detected by detecting the rotation angle of the rotation shaft with respect to the body.
 本実施の形態において、傾斜制御部47は、横加速度演算部48が算出した合成横加速度、リンク角速度推定部50が算出したリンク角速度予測値、及び、外乱演算部43が算出した外乱分のロールレートに基づいて、制御値としての速度指令値を演算して出力する。また、前記リンクモータ制御部42は、傾斜制御部47が出力した速度指令値に基づいてリンクモータ25を作動させるための制御値としてのトルク指令値を出力する。 In the present embodiment, the tilt control unit 47 rolls the combined lateral acceleration calculated by the lateral acceleration calculation unit 48, the predicted link angular velocity calculated by the link angular velocity estimation unit 50, and the disturbance amount calculated by the disturbance calculation unit 43. Based on the rate, a speed command value as a control value is calculated and output. Further, the link motor control unit 42 outputs a torque command value as a control value for operating the link motor 25 based on the speed command value output from the inclination control unit 47.
 なお、その他の点の構成については、前記第5の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the fifth embodiment, and a description thereof will be omitted.
 次に、本実施の形態における車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described. Here, only the operation of the vehicle body tilt control process during turning is described.
 図25は本発明の第6の実施の形態における制御系のブロック図、図26は本発明の第6の実施の形態における車体リンク角を説明するモデルを示す図、図27は本発明の第6の実施の形態におけるヨーレートの時定数の変化を説明するグラフを示す図、図28は本発明の第6の実施の形態におけるリンク角速度推定処理の動作を示すフローチャート、図29は本発明の第6の実施の形態における操舵角の微分処理のサブルーチンを示すフローチャート、図30は本発明の第6の実施の形態における一次遅れ処理のサブルーチンを示すフローチャート、図31は本発明の第6の実施の形態における傾斜制御処理の動作を示すフローチャート、図32は本発明の第6の実施の形態におけるリンクモータ制御処理の動作を示すフローチャートである。 FIG. 25 is a block diagram of a control system in the sixth embodiment of the present invention, FIG. 26 is a diagram showing a model for explaining the vehicle body link angle in the sixth embodiment of the present invention, and FIG. FIG. 28 is a graph illustrating a change in yaw rate time constant in the sixth embodiment, FIG. 28 is a flowchart illustrating an operation of link angular velocity estimation processing in the sixth embodiment of the present invention, and FIG. FIG. 30 is a flowchart showing a first-order lag processing subroutine in the sixth embodiment of the present invention, and FIG. 31 is a flowchart showing a subroutine of the steering angle differentiation process in the sixth embodiment. The flowchart which shows the operation | movement of the inclination control process in a form, FIG. 32 is the flowchart which shows the operation | movement of the link motor control process in the 6th Embodiment of this invention. That.
 本実施の形態における車体傾斜制御処理では、図25に示されるようなフィードバック制御とフィードフォワード制御とを組み合わせた制御が行われる。図25において、fは、前記式(10)で表される伝達関数であり、G及びGRPは比例制御動作の制御ゲインであり、sは微分要素である。また、fは後述される式(25)で表されるリンク角速度予測値であり、fは後述される式(33)で表されるヨーレートゲインであり、fはヨーレートの遅れ時定数である。 In the vehicle body tilt control process in the present embodiment, control combining feedback control and feedforward control as shown in FIG. 25 is performed. In FIG. 25, f 1 is a transfer function represented by the above equation (10), G P and G RP are control gains of the proportional control operation, and s is a differential element. Further, f 2 is a link angular velocity prediction value expressed by an equation (25) described later, f 3 is a yaw rate gain expressed by an equation (33) described later, and f 4 is a delay time constant of the yaw rate. It is.
 車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は横加速度演算処理を実行する。なお、本実施の形態における横加速度演算処理の動作は、前記第2の実施の形態において説明した横加速度演算処理の動作、すなわち、図11に示されるステップS11~S17の動作と同様であるので、その説明を省略する。 When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration calculation unit 48 executes the lateral acceleration calculation process. The operation of the lateral acceleration calculation process in the present embodiment is the same as the operation of the lateral acceleration calculation process described in the second embodiment, that is, the operations in steps S11 to S17 shown in FIG. The description is omitted.
 また、リンク角速度推定部50はリンク角速度推定処理を開始する。リンク角速度推定部50は、まず、操舵角センサ53が検出した操舵角の値である操舵角センサ値θを取得するとともに(ステップS71)、車速センサ54が検出した車速の値である車速センサ値νを取得する(ステップS72)。 Also, the link angular velocity estimation unit 50 starts link angular velocity estimation processing. The link angular velocity estimation unit 50 first acquires the steering angle sensor value θ that is the value of the steering angle detected by the steering angle sensor 53 (step S71), and the vehicle speed sensor value that is the vehicle speed value detected by the vehicle speed sensor 54. ν is acquired (step S72).
 そして、リンク角速度推定部50は、操舵角の微分処理を実行し(ステップS73)、ΔΨを算出する。ΔΨは、操舵角を時間微分した値であり、操舵角速度に相当する。 Then, the link angular velocity estimation unit 50 performs a steering angle differentiation process (step S73), and calculates ΔΨ. ΔΨ is a value obtained by differentiating the steering angle with respect to time, and corresponds to the steering angular velocity.
 操舵角の微分処理において、リンク角速度推定部50は、まず、Ψold 呼出を行う(ステップS73-1)。なお、Ψold については、前記第5の実施の形態と同様であるので、その説明を省略する。 In the steering angle differentiation process, the link angular velocity estimation unit 50 first makes a Ψ old call (step S73-1). Since Ψ old is the same as that of the fifth embodiment, the description thereof is omitted.
 続いて、リンク角速度推定部50は、制御周期Tを取得する(ステップS73-2)。なお、制御周期Tについては、前記第1の実施の形態と同様であるので、その説明を省略する。 Subsequently, the link angular velocity estimation unit 50 acquires a control cycle T S (step S73-2). Since the control cycle T S is the same as that in the first embodiment, the description thereof is omitted.
 続いて、リンク角速度推定部50は、操舵角微分値ΔΨを算出する(ステップS73-3)。ΔΨは、次の式(24)によって算出される。
ΔΨ=(Ψ(t)-Ψold )/T ・・・式(24)
 そして、リンク角速度推定部50は、Ψold =Ψ(t)として保存し(ステップS73-4)、操舵角の微分処理を終了する。
Subsequently, the link angular velocity estimation unit 50 calculates the steering angle differential value ΔΨ (step S73-3). ΔΨ is calculated by the following equation (24).
ΔΨ = (Ψ (t) −Ψ old ) / T S (24)
Then, the link angular velocity estimation unit 50 stores Ψ old = Ψ (t) (step S73-4), and ends the steering angle differentiation process.
 続いて、リンク角速度推定部50は、L呼出を行い(ステップS74)、リンク角速度予測値f(ΔΨ、ν)を算出する(ステップS75)。ここで、重力をgとすると、リンク角速度予測値f(ΔΨ、ν)は、次の式(25)によって算出される。
(ΔΨ、ν)=dη/dt=(ν/(Lg))(dΨ/dt)・・・式(25)
 前述のように、リンク角センサ25aは、中央縦部材21に対する上側の横リンクユニット31Uの角度の変化、すなわち、リンク角の変化を検出する。ここで、リンク角をηとし、旋回時における車体の傾斜角が、横加速度としての遠心力aと重力gとが釣り合うように制御されているものとすると、路面18が水平であれば、遠心力aと重力gとは、図26に示されるようになり、次の式(26)で表される関係が成立する。
cos η=gsin η ・・・式(26)
 該式(26)から、次の式(27)が導出される。
/g=sin η/cos η=tan η ・・・式(27)
 さらに、該式(27)から、次の式(28)が導出される。
=gtan η ・・・式(28)
 一方、前記第5の実施の形態で説明した図20及び式(17)から、次の式(29)が導出される。
tan Ψ=L/r ・・・式(29)
 該式(29)及び前記第5の実施の形態で説明した式(15)、(16)及び(18)から、次の式(30)が導出される。
=rw=ν/r=(ν/L)tan Ψ ・・・式(30)
 そして、前記式(28)及び(30)から、次の式(31)が導出される。
gtan η=(ν/L)tan Ψ ・・・式(31)
 さらに、tan η≒η及びtan Ψ≒Ψと近似することができるとともに、車速νの変化がリンク角ηの変化と比較して十分に遅いので、車速νを定数とみなすことができるとすると、前記式(31)から、前記式(25)を得ることができる。
Subsequently, the link angular velocity estimating section 50, L H call was carried out (step S74), the link angular velocity estimated value f 2 ([Delta] [Psi], [nu) is calculated (step S75). Here, assuming that gravity is g, the link angular velocity predicted value f 2 (ΔΨ, ν) is calculated by the following equation (25).
f 2 (ΔΨ, ν) = dη / dt = (ν 2 / (L H g)) (dΨ / dt) Expression (25)
As described above, the link angle sensor 25a detects a change in the angle of the upper horizontal link unit 31U with respect to the central vertical member 21, that is, a change in the link angle. Here, assuming that the link angle is η and the inclination angle of the vehicle body at the time of turning is controlled so that the centrifugal force a 0 as the lateral acceleration and the gravity g are balanced, if the road surface 18 is horizontal, The centrifugal force a 0 and the gravity g are as shown in FIG. 26, and the relationship represented by the following equation (26) is established.
a 0 cos η = gsin η Formula (26)
From the equation (26), the following equation (27) is derived.
a 0 / g = sin η / cos η = tan η (27)
Further, the following equation (28) is derived from the equation (27).
a 0 = g tan η Equation (28)
On the other hand, the following equation (29) is derived from FIG. 20 and equation (17) described in the fifth embodiment.
tan Ψ = L H / r (29)
The following equation (30) is derived from the equation (29) and the equations (15), (16), and (18) described in the fifth embodiment.
a 0 = rw 2 = ν 2 / r = (ν 2 / L H ) tan Ψ Equation (30)
Then, the following equation (31) is derived from the equations (28) and (30).
g tan η = (ν 2 / L H ) tan Ψ Equation (31)
Furthermore, it can be approximated as tan η≈η and tan Ψ≈Ψ, and the change in the vehicle speed ν is sufficiently slow compared to the change in the link angle η, so that the vehicle speed ν can be regarded as a constant. From the equation (31), the equation (25) can be obtained.
 続いて、リンク角速度推定部50は、ヨーレートゲインf(ν)を算出する(ステップS76)。 Subsequently, the link angular velocity estimation unit 50 calculates the yaw rate gain f 3 (ν) (step S76).
 通常、高速走行時にはハンドルバー41aの操舵量が同一でも曲がりにくくなる。つまり、車速νが上昇すると操舵角Ψが同一であっても、横加速度としての遠心力aへの影響が小さくなる。そこで、本実施の形態においては、操舵角Ψに基づいて計算されたヨーレートの計算値と、実験によって計測された実際のヨーレートの値との比を、ヨーレートゲインf(ν)として算出する。 Normally, during high speed traveling, it becomes difficult to turn even if the steering amount of the handle bar 41a is the same. That is, when the vehicle speed ν increases, even if the steering angle Ψ is the same, the influence on the centrifugal force a 0 as the lateral acceleration is reduced. Therefore, in the present embodiment, the ratio between the calculated yaw rate calculated based on the steering angle Ψ and the actual yaw rate measured by the experiment is calculated as the yaw rate gain f 3 (ν).
 ヨーレート、すなわち、旋回角速度wの理論値は、前記式(30)から、次の式(32)によって算出される。
w=(ν/L)tan Ψ ・・・式(32)
 また、本発明の発明者は、試作した車両10、すなわち、試作車を使用して実験を行い、ヨーレートの値を計測した。試作車では、ホイールベースLの値は一定であるので、実験では、車速ν及び操舵角Ψを変化させてヨーレートの計測値w(ν、Ψ)を計測した。ここで、前記式(32)で算出されるヨーレートの理論値をwnom (ν、Ψ)とすると、ヨーレートゲインf(ν)は、次の式(33)で算出される。
(ν)=Gyr(ν)=w(ν、Ψ)/wnom (ν、Ψ) ・・・式(33)
 実際には、ヨーレートゲインf(ν)の値は、オフラインで決定された一次以上の近似式に基づいて、リアルタイムに算出される。また、ヨーレートゲインf(ν)の値は、操舵角Ψに無関係に決まるので、車速νとヨーレートゲインf(ν)との関係を示すテーブルをあらかじめ作成し、該テーブルを参照することによって、演算を行うことなく、ヨーレートゲインf(ν)を取得することもできる。なお、該ヨーレートゲインf(ν)は、車速νによって決まる値なので、リンク角速度予測値f(ΔΨ、ν)に直接作用させることができる。
The theoretical value of the yaw rate, that is, the turning angular velocity w is calculated from the equation (30) by the following equation (32).
w = (ν / L H ) tan Ψ Equation (32)
The inventor of the present invention conducted an experiment using a prototype vehicle 10, that is, a prototype vehicle, and measured the yaw rate. In the prototype vehicle, since the value of the wheel base L H is constant, in the experiment, the measured value w (ν, Ψ) of the yaw rate was measured by changing the vehicle speed ν and the steering angle Ψ. Here, if the theoretical value of the yaw rate calculated by the equation (32) is w nom (ν, Ψ), the yaw rate gain f 3 (ν) is calculated by the following equation (33).
f 3 (ν) = G yr (ν) = w (ν, Ψ) / w nom (ν, Ψ) Expression (33)
Actually, the value of the yaw rate gain f 3 (ν) is calculated in real time based on an approximate expression of the first order or higher determined offline. Further, since the value of the yaw rate gain f 3 (ν) is determined regardless of the steering angle Ψ, a table showing the relationship between the vehicle speed ν and the yaw rate gain f 3 (ν) is created in advance and the table is referred to. The yaw rate gain f 3 (ν) can also be obtained without performing the calculation. Since the yaw rate gain f 3 (ν) is a value determined by the vehicle speed ν, the yaw rate gain f 3 (ν) can be directly applied to the link angular velocity predicted value f 2 (ΔΨ, ν).
 続いて、リンク角速度推定部50は、リンク角速度修正予測値ΔHを算出する(ステップS77)。前述のように、ヨーレートゲインf(ν)をリンク角速度予測値f(ΔΨ、ν)に直接作用させることによって、リンク角速度修正予測値ΔHは、次の式(34)で算出される。
ΔH=f(ΔΨ、ν)f(ν) ・・・式(34)
 続いて、リンク角速度推定部50は、遅れ時定数f(ν)を算出する(ステップS78)。
Subsequently, the link angular velocity estimation unit 50 calculates a link angular velocity correction predicted value ΔH (step S77). As described above, by directly applying the yaw rate gain f 3 (ν) to the link angular velocity predicted value f 2 (ΔΨ, ν), the link angular velocity corrected predicted value ΔH is calculated by the following equation (34).
ΔH = f 2 (ΔΨ, ν) f 3 (ν) (34)
Subsequently, the link angular velocity estimation unit 50 calculates a delay time constant f 4 (ν) (step S78).
 通常、高速走行時にはハンドルバー41aの操舵量が同一であっても、横加速度としての遠心力aが発生するまでの遅れ時間が長くなる。そこで、本実施の形態においては、操舵角Ψに基づいて計算されたヨーレートの計算値と、実験によって計測された実際のヨーレートの値とを時間軸上で比較し、その遅れを車速νによって定式化して遅れ時定数f(ν)を算出する。 Normally, even when the steering amount of the handle bar 41a is the same when traveling at a high speed, the delay time until the centrifugal force a 0 as the lateral acceleration is generated becomes long. Therefore, in the present embodiment, the calculated yaw rate calculated based on the steering angle Ψ and the actual yaw rate measured by the experiment are compared on the time axis, and the delay is defined by the vehicle speed ν. To calculate the delay time constant f 4 (ν).
 例えば、図27に示されるように、ヨーレートの計算値と計測された実際のヨーレートの値とから算出した遅れの時定数の値と車速νとの関係を点◆としてプロットし、該点◆によって表される時定数の値と車速νとの関係を線形近似することによって、遅れ時定数f(ν)を得ることができる。 For example, as shown in FIG. 27, the relationship between the value of the delay time constant calculated from the calculated yaw rate and the measured actual yaw rate and the vehicle speed ν is plotted as a point ◆, and the point ◆ The delay time constant f 4 (ν) can be obtained by linearly approximating the relationship between the value of the represented time constant and the vehicle speed ν.
 実際には、遅れ時定数f(ν)の値は、オフラインで決定された一次以上の近似式に基づいて、リアルタイムに算出される。また、車速νに基づいて決定されるテーブルをあらかじめ作成し、該テーブルを参照することによって、演算を行うことなく、遅れ時定数f(ν)を取得することもできる。 Actually, the value of the delay time constant f 4 (ν) is calculated in real time on the basis of an approximate expression of the first order or higher determined offline. In addition, by creating a table determined based on the vehicle speed ν in advance and referring to the table, the delay time constant f 4 (ν) can be acquired without performing the calculation.
 そして、リンク角速度推定部50は、リンク角速度修正予測値ΔHに対して、一次遅れ処理を実行し(ステップS79)、ΔHout を算出する。 Then, the link angular velocity estimation unit 50 performs first-order lag processing on the link angular velocity correction predicted value ΔH (step S79), and calculates ΔH out .
 一次遅れ処理において、リンク角速度推定部50は、まず、制御周期Tを取得する(ステップS79-1)。なお、制御周期Tについては、前記第1の実施の形態と同様であるので、その説明を省略する。 In the first-order lag process, the link angular velocity estimation unit 50 first acquires the control cycle T S (step S79-1). Since the control cycle T S is the same as that in the first embodiment, the description thereof is omitted.
 続いて、リンク角速度推定部50は、カットオフ周波数w(ν)を算出する(ステップS79-2)。w(ν)は、次の式(35)で算出される。
w(ν)=1/f(ν) ・・・式(35)
 続いて、リンク角速度推定部50は、ΔHoutold呼出を行う(ステップS79-3)。なお、ΔHoutoldは、前回の車体傾斜制御処理実行時に保存されたΔHout (t)の値である。
Subsequently, the link angular velocity estimation unit 50 calculates a cutoff frequency w (ν) (step S79-2). w (ν) is calculated by the following equation (35).
w (ν) = 1 / f 4 (ν) Expression (35)
Subsequently, the link angular velocity estimation unit 50 performs a ΔH outold call (step S79-3). Note that ΔH outold is the value of ΔH out (t) saved when the previous vehicle body tilt control process was executed.
 続いて、リンク角速度推定部50は、フィルタ処理されたΔHout (t)を算出する(ステップS79-4)。ΔHout (t)は、次の式(36)によって算出される。
ΔHout (t)=ΔHoutold/(1+Tw(ν))
       +(dη/dt)Tw(ν)/(1+Tw(ν))・・・式(36)
 そして、リンク角速度推定部50は、ΔHoutold=ΔHout (t)として保存し(ステップS79-5)、一次遅れ処理を終了する。つまり、今回の車体傾斜制御処理実行時に算出したΔHout (t)の値をΔHoutoldとして、記憶手段に保存する。
Subsequently, the link angular velocity estimation unit 50 calculates the filtered ΔH out (t) (step S79-4). ΔH out (t) is calculated by the following equation (36).
ΔH out (t) = ΔH outold / (1 + T S w (ν))
+ (Dη / dt) T S w (ν) / (1 + T S w (ν)) ··· formula (36)
Then, the link angular velocity estimation unit 50 stores it as ΔH outold = ΔH out (t) (step S79-5), and ends the first-order delay processing. That is, the value of ΔH out (t) calculated at the time of execution of the vehicle body tilt control process is stored as ΔH outold in the storage unit.
 最後に、リンク角速度推定部50は、傾斜制御部47へΔHout (t)を送出して(ステップS80)、リンク角速度推定処理を終了する。 Finally, the link angular velocity estimation unit 50 sends ΔH out (t) to the inclination control unit 47 (step S80), and ends the link angular velocity estimation process.
 また、傾斜制御部47は、車体傾斜制御処理を開始し、まず、横加速度演算部48から合成横加速度aを受信する(ステップS81)。なお、該合成横加速度aを受信してから第3制御値Uを算出するまでの動作、すなわち、図31に示されるステップS81~S88の動作は、前記第2の実施の形態において説明したステップS21~S28の動作と同様であるので、その説明を省略する。 Further, the tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S81). Note that the operations from the reception of the combined lateral acceleration a to the calculation of the third control value U, that is, the operations in steps S81 to S88 shown in FIG. 31, are the steps described in the second embodiment. Since this is the same as the operation of S21 to S28, its description is omitted.
 第3制御値Uを算出すると、傾斜制御部47は、リンク角速度推定部50からΔHout (t)を受信する(ステップS89)。 When the third control value U is calculated, the inclination control unit 47 receives ΔH out (t) from the link angular velocity estimation unit 50 (step S89).
 続いて、傾斜制御部47は、第4制御値UfDを算出する(ステップS90)。ここで、微分制御動作の制御ゲインをGyDとすると、第4制御値UfDは次の式(37)によって算出される。
fD=GyDΔHout  ・・・式(37)
 なお、前記微分制御動作の制御ゲインGyDは、正の1以下の任意の値である。
Subsequently, the inclination control unit 47 calculates a fourth control value U fD (step S90). Here, if the control gain of the differential control operation is G yD , the fourth control value U fD is calculated by the following equation (37).
U fD = G yD ΔH out Formula (37)
Note that the control gain G yD of the differential control operation is an arbitrary value that is positive 1 or less.
 続いて、傾斜制御部47は、第5制御値Uを算出する(ステップS91)。該第5制御値Uは、第3制御値Uと第4制御値UfDとの合計であり、次の式(38)によって算出される。
U=U+UfD ・・・式(38)
 最後に、傾斜制御部47は、第5制御値Uを速度指令値としてリンクモータ制御部42へ出力して(ステップS92)、処理を終了する。
Subsequently, the inclination control unit 47 calculates a fifth control value U (step S91). The fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (38).
U = U + U fD Expression (38)
Finally, the inclination control unit 47 outputs the fifth control value U as a speed command value to the link motor control unit 42 (step S92), and ends the process.
 また、リンクモータ制御部42は、リンクモータ制御処理を開始すると、まず、傾斜制御部47から第5制御値Uを受信する(ステップS101)。 Further, when the link motor control unit 42 starts the link motor control process, first, the link motor control unit 42 receives the fifth control value U from the inclination control unit 47 (step S101).
 続いて、リンクモータ制御部42は、リンク角センサ25aが検出したリンク角センサ値ηを取得し(ステップS102)、リンク角速度算出処理を実行して(ステップS103)、リンク機構30のリンク角の角速度Δηを算出する。 Subsequently, the link motor control unit 42 acquires the link angle sensor value η detected by the link angle sensor 25a (step S102), executes link angular velocity calculation processing (step S103), and sets the link angle of the link mechanism 30. Calculate the angular velocity Δη.
 また、リンクモータ制御部42は、Δηの値を外乱演算部43から取得することによって、前記ステップS102及びS103の動作を省略することもできる。 Further, the link motor control unit 42 can obtain the value of Δη from the disturbance calculation unit 43, thereby omitting the operations of steps S102 and S103.
 続いて、リンクモータ制御部42は、制御誤差を算出する(ステップS104)。ここで、制御誤差をεとすると、該εは、次の式(39)によって算出される。
ε=U-Δη ・・・式(39)
 なお、Uは傾斜制御部47から受信した第5制御値Uである。
Subsequently, the link motor control unit 42 calculates a control error (step S104). Here, when the control error is ε, ε is calculated by the following equation (39).
ε = U−Δη Formula (39)
U is the fifth control value U received from the inclination control unit 47.
 続いて、リンクモータ制御部42は、モータ制御比例ゲインGMPを取得する(ステップS105)。該モータ制御比例ゲインGMPの値は、実験等に基づいて設定された値であり、あらかじめ記憶手段に格納されている。 Subsequently, the link motor control unit 42 obtains the motor control proportional gain G MP (step S105). The value of the motor control proportional gain GMP is a value set based on experiments or the like, and is stored in advance in the storage means.
 続いて、リンクモータ制御部42は、リンクモータ25を作動させるためのトルク指令値を算出する(ステップS106)。ここで、トルク指令値をUとすると、該Uは次の式(40)によって算出される。
=GMPε ・・・式(40)
 最後に、リンクモータ制御部42は、トルク指令値Uをリンクモータ25へ出力して(ステップS107)、処理を終了する。
Subsequently, the link motor control unit 42 calculates a torque command value for operating the link motor 25 (step S106). Here, when the torque command value is U T , the U T is calculated by the following equation (40).
U T = G MP ε (40)
Finally, the link motor control unit 42 outputs the torque command value UT to the link motor 25 (step S107) and ends the process.
 このように、本実施の形態においては、要求旋回量の時間微分値に相当する操舵角微分値ΔΨを使用してフィードフォワード制御を行う。これにより、ゼロ点の検出が不要となるので、安価な操舵角センサ53を使用することができるとともに、該操舵角センサ53の初期設定が不要となるので、車両10の製造及び保守のコストを低減することができる。 Thus, in the present embodiment, feedforward control is performed using the steering angle differential value ΔΨ corresponding to the time differential value of the required turning amount. This eliminates the need to detect the zero point, so that an inexpensive steering angle sensor 53 can be used, and the initial setting of the steering angle sensor 53 is not necessary, thereby reducing the manufacturing and maintenance costs of the vehicle 10. Can be reduced.
 また、車速νに応じて横加速度予測値aのゲイン特性及び遅れ特性を可変にする。これにより、高速走行時における制御の追従性を向上させることができる。 Further, the gain characteristic and delay characteristic of the lateral acceleration predicted value a f are made variable in accordance with the vehicle speed ν. Thereby, the followability of the control at the time of high speed traveling can be improved.
 さらに、本実施の形態においては、従来の技術の問題点を解決する手段として、以下のように、横加速度センサ44が単数の場合も含むものを示すことができる。 Furthermore, in the present embodiment, as means for solving the problems of the prior art, it is possible to show what includes the case where the lateral acceleration sensor 44 is single as follows.
 互いに連結された操舵部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体に作用する横加速度を検出する横加速度センサと、乗員が要求する前記車体の要求旋回量を検出する要求旋回量検出手段と、車速を検出する車速検出手段と、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記横加速度センサが検出する横加速度に基づくフィードバック制御を行うとともに、前記要求旋回量検出手段が検出する要求旋回量及び前記車速検出手段が検出する車速に基づくフィードフォワード制御を行って前記車体の傾斜を制御する車両。 A vehicle body including a steering unit and a drive unit coupled to each other, a wheel rotatably attached to the steering unit, a steering wheel for steering the vehicle body, and a wheel rotatably attached to the drive unit A driving wheel that drives the vehicle body, a tilting actuator device that tilts the steering unit or the driving unit in a turning direction, a lateral acceleration sensor that detects a lateral acceleration acting on the vehicle body, and the occupant's request A required turning amount detecting means for detecting a required turning amount of the vehicle body, a vehicle speed detecting means for detecting a vehicle speed, and a control device for controlling the inclination of the vehicle body by controlling the tilting actuator device; Performs feedback control based on the lateral acceleration detected by the lateral acceleration sensor, and detects the required turning amount detected by the required turning amount detection means and the vehicle speed detection means. Vehicle for controlling the tilting of the vehicle body by performing the feedforward control based on that vehicle speed.
 なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。 The present invention is not limited to the above-described embodiment, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
 本発明は、少なくとも左右一対の車輪を有する車両に利用することができる。 The present invention can be used for a vehicle having at least a pair of left and right wheels.
10  車両
11  搭乗部
12F、12L、12R  車輪
20  本体部
25  リンクモータ
44  横加速度センサ
44a  第1横加速度センサ
44b  第2横加速度センサ
44c  ロールレートセンサ
53  操舵角センサ
54  車速センサ
DESCRIPTION OF SYMBOLS 10 Vehicle 11 Boarding part 12F, 12L, 12R Wheel 20 Main-body part 25 Link motor 44 Lateral acceleration sensor 44a 1st lateral acceleration sensor 44b 2nd lateral acceleration sensor 44c Roll rate sensor 53 Steering angle sensor 54 Vehicle speed sensor

Claims (8)

  1.  互いに連結された操舵部及び駆動部を備える車体と、
     前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、
     前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、
     前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、
     前記車体に作用する横加速度を直接的又は間接的に検出する複数のセンサと、
     乗員が要求する前記車体の要求旋回量を検出する要求旋回量検出手段と、
     車速を検出する車速検出手段と、
     前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、
     該制御装置は、前記複数のセンサが検出する横加速度に基づくフィードバック制御を行うとともに、前記要求旋回量検出手段が検出する要求旋回量及び前記車速検出手段が検出する車速に基づくフィードフォワード制御を行って前記車体の傾斜を制御することを特徴とする車両。
    A vehicle body including a steering unit and a drive unit coupled to each other;
    A wheel rotatably attached to the steering unit, the steering wheel for steering the vehicle body;
    A wheel rotatably attached to the drive unit, the drive wheel driving the vehicle body;
    A tilting actuator device for tilting the steering unit or the driving unit in a turning direction;
    A plurality of sensors for directly or indirectly detecting lateral acceleration acting on the vehicle body;
    Requested turning amount detecting means for detecting a requested turning amount of the vehicle body requested by an occupant;
    Vehicle speed detection means for detecting the vehicle speed;
    A control device for controlling the tilt of the vehicle body by controlling the tilt actuator device;
    The control device performs feedback control based on lateral acceleration detected by the plurality of sensors, and performs feedforward control based on a requested turning amount detected by the requested turning amount detection means and a vehicle speed detected by the vehicle speed detection means. A vehicle that controls the inclination of the vehicle body.
  2.  前記制御装置は、前記要求旋回量の時間微分値及び車速から横加速度予測値を算出し、算出した横加速度予測値を使用したフィードフォワード制御を行う請求項1に記載の車両。 The vehicle according to claim 1, wherein the control device calculates a predicted lateral acceleration value from a time differential value of the required turning amount and a vehicle speed, and performs feedforward control using the calculated predicted lateral acceleration value.
  3.  前記制御装置は、前記横加速度予測値のゲイン特性及び遅れ特性を車速に応じて変化させた値を使用したフィードフォワード制御を行う請求項2に記載の車両。 The vehicle according to claim 2, wherein the control device performs feedforward control using values obtained by changing the gain characteristic and delay characteristic of the lateral acceleration predicted value according to a vehicle speed.
  4.  前記制御装置は、前記複数のセンサが検出する横加速度を合成した合成横加速度がゼロになるように、前記車体の傾斜を制御する請求項1~3のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 3, wherein the control device controls the inclination of the vehicle body such that a combined lateral acceleration obtained by combining the lateral accelerations detected by the plurality of sensors becomes zero.
  5.  前記複数のセンサは、互いに異なる高さに配設された横加速度センサである請求項1~4のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 4, wherein the plurality of sensors are lateral acceleration sensors arranged at different heights.
  6.  前記複数のセンサのうちの1つは、車体の傾斜運動の角速度を検出するロールレートセンサである請求項1~4のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 4, wherein one of the plurality of sensors is a roll rate sensor that detects an angular velocity of a tilting motion of a vehicle body.
  7.  前記制御装置は、前記要求旋回量及び車速から横加速度予測値を算出し、算出した横加速度予測値を使用したフィードフォワード制御を行う請求項1に記載の車両。 The vehicle according to claim 1, wherein the control device calculates a predicted lateral acceleration value from the required turning amount and a vehicle speed, and performs feedforward control using the calculated predicted lateral acceleration value.
  8.  前記制御装置は、前記要求旋回量に、車速によってカットオフ周波数を変化させるローパスフィルタをかける請求項7に記載の車両。 The vehicle according to claim 7, wherein the control device applies a low-pass filter that changes a cutoff frequency according to a vehicle speed to the required turning amount.
PCT/JP2011/000812 2010-02-16 2011-02-14 Vehicle WO2011102108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180009479XA CN102770333A (en) 2010-02-16 2011-02-14 Vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010031470 2010-02-16
JP2010-031470 2010-02-16
JP2010124142 2010-05-31
JP2010-124142 2010-05-31
JP2010292368A JP2012012004A (en) 2010-02-16 2010-12-28 Vehicle
JP2010-292368 2010-12-28

Publications (1)

Publication Number Publication Date
WO2011102108A1 true WO2011102108A1 (en) 2011-08-25

Family

ID=44482713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000812 WO2011102108A1 (en) 2010-02-16 2011-02-14 Vehicle

Country Status (3)

Country Link
JP (1) JP2012012004A (en)
CN (1) CN102770333A (en)
WO (1) WO2011102108A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014104120U1 (en) 2014-09-01 2014-09-11 Ford Global Technologies, Llc Active tilting suspension for a trackless vehicle
DE102014217386A1 (en) 2014-09-01 2016-03-03 Ford Global Technologies, Llc Method for operating a tilting chassis and active tilting suspension for a rail-bound vehicle
DE102014217387A1 (en) 2014-09-01 2016-03-03 Ford Global Technologies, Llc Method for operating a tilting chassis and active tilting suspension for a rail-bound vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868780B2 (en) * 2012-05-23 2016-02-24 アイシン精機株式会社 Vehicle control apparatus, vehicle control method, and program
US11669584B2 (en) 2013-02-10 2023-06-06 Wix.Com Ltd. System and method for third party application activity data collection
JP6180855B2 (en) * 2013-09-03 2017-08-16 株式会社ショーワ Saddle type vehicle seat and saddle type vehicle
EP3505433B1 (en) * 2016-08-29 2021-08-04 The University Of Tokyo Vehicle
JP6607229B2 (en) * 2017-05-11 2019-11-20 トヨタ自動車株式会社 Vehicle attitude control device
DE102017212165B4 (en) 2017-07-17 2023-11-30 Ford Global Technologies, Llc tilting vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088742A (en) * 2003-09-17 2005-04-07 Honda Motor Co Ltd Oscillation control device for oscillation type vehicle
JP2006001385A (en) * 2004-06-16 2006-01-05 Sony Corp Parallel two-wheeled vehicle
JP2007118807A (en) * 2005-10-28 2007-05-17 Equos Research Co Ltd Vehicle
JP2007118806A (en) * 2005-10-28 2007-05-17 Equos Research Co Ltd Vehicle
JP2010058783A (en) * 2008-08-08 2010-03-18 Yamaha Motor Co Ltd Body leaning control system, and saddle riding type vehicle having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335193A (en) * 2005-06-01 2006-12-14 Advics:Kk Rolling characteristic estimation device for vehicle, and rolling motion stabilization controller for vehicle using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088742A (en) * 2003-09-17 2005-04-07 Honda Motor Co Ltd Oscillation control device for oscillation type vehicle
JP2006001385A (en) * 2004-06-16 2006-01-05 Sony Corp Parallel two-wheeled vehicle
JP2007118807A (en) * 2005-10-28 2007-05-17 Equos Research Co Ltd Vehicle
JP2007118806A (en) * 2005-10-28 2007-05-17 Equos Research Co Ltd Vehicle
JP2010058783A (en) * 2008-08-08 2010-03-18 Yamaha Motor Co Ltd Body leaning control system, and saddle riding type vehicle having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
DE202014104120U1 (en) 2014-09-01 2014-09-11 Ford Global Technologies, Llc Active tilting suspension for a trackless vehicle
DE102014217386A1 (en) 2014-09-01 2016-03-03 Ford Global Technologies, Llc Method for operating a tilting chassis and active tilting suspension for a rail-bound vehicle
DE102014217387A1 (en) 2014-09-01 2016-03-03 Ford Global Technologies, Llc Method for operating a tilting chassis and active tilting suspension for a rail-bound vehicle
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles

Also Published As

Publication number Publication date
CN102770333A (en) 2012-11-07
JP2012012004A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
WO2011102108A1 (en) Vehicle
JP5505319B2 (en) vehicle
JP5741278B2 (en) vehicle
JP5521994B2 (en) vehicle
JP2013144471A (en) Vehicle
WO2012102388A1 (en) Vehicle
JP2018154258A (en) Automatic inclination vehicle
JP5521865B2 (en) vehicle
JP2012011997A (en) Vehicle
JP2013112238A (en) Vehicle
JP2013071688A (en) Vehicle
JP2013199214A (en) Vehicle
JP2013144513A (en) Vehicle
JP5866927B2 (en) vehicle
WO2011102106A1 (en) Vehicle
JP2011194953A (en) Vehicle
JP5458722B2 (en) vehicle
JP2013112234A (en) Vehicle
JP5440299B2 (en) vehicle
JP5834835B2 (en) vehicle
JP5617650B2 (en) vehicle
JP2011168094A (en) Method for setting control value of vehicle
JP5617652B2 (en) vehicle
JP5304681B2 (en) vehicle
JP2013112236A (en) Vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009479.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744399

Country of ref document: EP

Kind code of ref document: A1