JP2013071688A - Vehicle - Google Patents
Vehicle Download PDFInfo
- Publication number
- JP2013071688A JP2013071688A JP2011213650A JP2011213650A JP2013071688A JP 2013071688 A JP2013071688 A JP 2013071688A JP 2011213650 A JP2011213650 A JP 2011213650A JP 2011213650 A JP2011213650 A JP 2011213650A JP 2013071688 A JP2013071688 A JP 2013071688A
- Authority
- JP
- Japan
- Prior art keywords
- steering
- link
- vehicle body
- vehicle
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Automatic Cycles, And Cycles In General (AREA)
- Steering Devices For Bicycles And Motorcycles (AREA)
Abstract
Description
本発明は、少なくとも左右一対の車輪を有する車両に関するものである。 The present invention relates to a vehicle having at least a pair of left and right wheels.
近年、エネルギ資源の枯渇問題に鑑み、車両の省燃費化が強く要求されている。その一方で、車両の低価格化等から、車両の保有者が増大し、1人が1台の車両を保有する傾向にある。そのため、例えば、4人乗りの車両を運転者1人のみが運転することで、エネルギが無駄に消費されるという問題点があった。車両の小型化による省燃費化としては、車両を1人乗りの三輪車又は四輪車として構成する形態が最も効率的であるといえる。 In recent years, in view of the problem of depletion of energy resources, there has been a strong demand for fuel saving of vehicles. On the other hand, the number of vehicle owners is increasing due to the low price of vehicles, and one person tends to own one vehicle. Therefore, for example, there is a problem that energy is wasted when only one driver drives a four-seater vehicle. The most efficient way to save fuel consumption by reducing the size of the vehicle is to configure the vehicle as a one-seater tricycle or four-wheel vehicle.
しかし、走行状態によっては、車両の安定性が低下してしまうことがある。そこで、車体を横方向に傾斜させることによって、旋回時の車両の安定性を向上させる技術が提案されている(例えば、特許文献1参照。)。 However, depending on the running state, the stability of the vehicle may decrease. Therefore, a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
しかしながら、前記従来の車両においては、旋回性能を向上させるために、車体を旋回方向内側に傾斜させることができるようになっているが、旋回方向外側に向けて作用する遠心力の影響によって、トレッドが狭い場合や、重心位置が高い場合や、操舵(だ)速度が速い場合には、車両の安定性が低下しやすく、乗員が不快に感じたり、不安を抱いたりしてしまうことがある。 However, in the conventional vehicle, in order to improve the turning performance, the vehicle body can be tilted inward in the turning direction. However, the tread is affected by the centrifugal force acting outward in the turning direction. When the vehicle is narrow, when the position of the center of gravity is high, or when the steering speed is high, the stability of the vehicle is likely to decrease, and the passenger may feel uncomfortable or feel uneasy.
本発明は、前記従来の車両の問題点を解決して、操舵量、車体を傾斜させるリンク機構のリンク角、及び、ヨーレートのうちの少なくとも1つの値の変化が所定値より大きくなると、駆動力発生指令を制限することによって、トレッドが狭い場合や、重心位置が高い場合や、操舵速度が速い場合であっても、スムーズに車体を旋回方向内側に傾斜させることができるので、車体の安定性を維持することができ、また、旋回性能を向上させることができるとともに、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる安全性の高い車両を提供することを目的とする。 The present invention solves the problems of the conventional vehicle, and when the change in at least one of the steering amount, the link angle of the link mechanism for tilting the vehicle body, and the yaw rate is greater than a predetermined value, the driving force By restricting the generation command, even when the tread is narrow, the center of gravity is high, or the steering speed is high, the vehicle body can be smoothly tilted inward in the turning direction. Provides a highly safe vehicle that can maintain the vehicle's driving performance, improve turning performance, provide a comfortable ride, and realize a stable driving condition without causing the passengers to feel uncomfortable. The purpose is to do.
そのために、本発明の車両においては、互いに連結された操舵部及び本体部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵可能な操舵輪と、前記本体部に回転可能に取り付けられた車輪であって、操舵不能な非操舵輪と、前記操舵部又は本体部を旋回方向に傾斜させるリンク機構と、該リンク機構を作動させる傾斜用アクチュエータ装置と、前記操舵輪又は非操舵輪に駆動力を付与する回転駆動装置と、駆動力発生指令を入力する駆動指令装置と、前記傾斜用アクチュエータ装置及び回転駆動装置を制御する制御装置とを有し、該制御装置は、前記操舵輪の操舵量、前記リンク機構のリンク角、及び、ヨーレートのうちの少なくとも1つの値の変化の絶対値が所定値より大きくなると、前記駆動力発生指令を制限する。 Therefore, in the vehicle of the present invention, a vehicle body including a steering unit and a main body unit that are connected to each other, a wheel that is rotatably attached to the steering unit, and a steerable steering wheel that steers the vehicle body, A non-steering wheel that is rotatably attached to the main body and cannot be steered; a link mechanism that tilts the steering part or the main body in a turning direction; and an actuator device for tilting that operates the link mechanism A rotation drive device that applies a drive force to the steered wheel or the non-steer wheel, a drive command device that inputs a drive force generation command, and a control device that controls the tilt actuator device and the rotation drive device. When the absolute value of the change in at least one of the steering amount of the steered wheel, the link angle of the link mechanism, and the yaw rate is greater than a predetermined value, the control device To limit the power generation command.
請求項1の構成によれば、車体の安定性が低下しやすいときには駆動力が発揮されないので、操縦性や危機回避性能を犠牲とすることなしに、車体の安定性を維持することができる。 According to the configuration of the first aspect, since the driving force is not exhibited when the stability of the vehicle body tends to be lowered, the stability of the vehicle body can be maintained without sacrificing the maneuverability and the crisis avoidance performance.
請求項2の構成によれば、乗員がハンドルを切り始めたとき、又は、ハンドルを切り増したときや、車体が傾き始めたとき、又は、傾きを増したときや、旋回を開始したとき、又は、ヨーレートが増したときには、回転駆動装置が駆動力を発揮しないようにするので、車体の安定性を維持することができるだけでなく、車体が旋回方向内側に傾斜しやすくなり、旋回性が向上する。
According to the configuration of
請求項3の構成によれば、車体が安定した状態で駆動力発生指令の制限を解除するので、回転駆動装置が駆動力を発揮しても、車体が不安定になることがない。 According to the configuration of the third aspect, since the restriction on the driving force generation command is released while the vehicle body is stable, the vehicle body does not become unstable even if the rotational driving device exerts the driving force.
請求項4の構成によれば、より適切に駆動力発生指令を制限することができ、車体の安定性をより効果的に維持することができる。 According to the configuration of the fourth aspect, the driving force generation command can be more appropriately limited, and the stability of the vehicle body can be more effectively maintained.
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は本発明の実施の形態における車両の構成を示す右側面図、図2は本発明の実施の形態における車両のリンク機構の構成を示す図、図3は本発明の実施の形態における車両の構成を示す背面図である。なお、図3において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。 1 is a right side view showing a configuration of a vehicle in an embodiment of the present invention, FIG. 2 is a diagram showing a configuration of a link mechanism of the vehicle in the embodiment of the present invention, and FIG. 3 is a vehicle in the embodiment of the present invention. It is a rear view which shows the structure. 3A is a diagram showing a state where the vehicle body is standing upright, and FIG. 3B is a diagram showing a state where the vehicle body is inclined.
図において、10は、本実施の形態における車両であり、車体の駆動部としての本体部20と、乗員が搭乗して操舵する操舵部としての搭乗部11と、車体の前方において幅方向の中心に配設された前輪である操舵可能な操舵輪としての車輪12Fと、後輪として後方に配設された駆動輪であって操舵不能な非操舵輪としての左側の車輪12L及び右側の車輪12Rとを有する。さらに、前記車両10は、車体を左右に傾斜させる、すなわち、リーンさせるためのリーン機構、すなわち、車体傾斜機構として、左右の車輪12L及び12Rを支持するリンク機構30と、該リンク機構30を作動させるアクチュエータである傾斜用アクチュエータ装置としてのリンクモータ25とを有する。なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪及び後輪が左右二輪の四輪車であってもよいが、本実施の形態においては、図に示されるように、前輪が一輪であって後輪が左右二輪の三輪車である場合について説明する。また、操舵輪が駆動輪として機能してもよいが、本実施の形態においては、操舵輪は駆動輪として機能しないものとして説明する。
In the figure, reference numeral 10 denotes a vehicle according to the present embodiment, which includes a
旋回時には、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角を変化させるとともに、搭乗部11及び本体部20を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、図2及び3(a)に示される例においては、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。また、図3(b)に示される例においては、左右の車輪12L及び12Rは路面18に対して右方向に傾斜している、すなわち、キャンバ角が付与されている。
When turning, the angle of the left and
前記リンク機構30は、左側の車輪12L及び該車輪12Lに駆動力を付与する電気モータ等から成る左側の回転駆動装置51Lを支持する左側の縦リンクユニット33Lと、右側の車輪12R及び該車輪12Rに駆動力を付与する電気モータ等から成る右側の回転駆動装置51Rを支持する右側の縦リンクユニット33Rと、左右の縦リンクユニット33L及び33Rの上端同士を連結する上側の横リンクユニット31Uと、左右の縦リンクユニット33L及び33Rの下端同士を連結する下側の横リンクユニット31Dと、本体部20に上端が固定され、上下に延在する中央縦部材21とを有する。また、左右の縦リンクユニット33L及び33Rと上下の横リンクユニット31U及び31Dとは回転可能に連結されている。さらに、上下の横リンクユニット31U及び31Dは、その中央部で中央縦部材21と回転可能に連結されている。なお、左右の車輪12L及び12R、左右の回転駆動装置51L及び51R、左右の縦リンクユニット33L及び33R、並びに、上下の横リンクユニット31U及び31Dを統合的に説明する場合には、車輪12、回転駆動装置51、縦リンクユニット33及び横リンクユニット31として説明する。
The
そして、駆動用アクチュエータ装置としての前記回転駆動装置51は、いわゆるインホイールモータであって、固定子としてのボディが縦リンクユニット33に固定され、前記ボディに回転可能に取り付けられた回転子としての回転軸が車輪12の軸に接続され、前記回転軸の回転によって車輪12を回転させる。なお、前記回転駆動装置51は、インホイールモータ以外の種類のモータであってもよい。 The rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable. A rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft. The rotational drive device 51 may be a motor other than an in-wheel motor.
また、前記リンクモータ25は、電気モータ等を含む回転式の電動アクチュエータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、前記ボディが取付フランジ22を介して本体部20に固定され、前記回転軸がリンク機構30の上側の横リンクユニット31Uに固定されている。なお、リンクモータ25の回転軸は、本体部20を傾斜させる傾斜軸として機能し、中央縦部材21と上側の横リンクユニット31Uとの連結部分の回転軸と同軸になっている。そして、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動し、リンク機構30が作動する、すなわち、屈伸する。これにより、本体部20を傾斜させることができる。なお、リンクモータ25は、その回転軸が本体部20及び中央縦部材21に固定され、そのボディが上側の横リンクユニット31Uに固定されていてもよい。
The
また、リンクモータ25は、リンク機構30のリンク角の変化を検出するリンク角センサ25aを備える。該リンク角センサ25aは、リンクモータ25においてボディに対する回転軸の回転角を検出する回転角センサであって、例えば、レゾルバ、エンコーダ等から成る。前述のように、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動するのであるから、ボディに対する回転軸の回転角を検出することによって、中央縦部材21に対する上側の横リンクユニット31Uの角度の変化、すなわち、リンク角の変化を検出することができる。
The
なお、リンクモータ25は、回転軸をボディに対して回転不能に固定する図示されないロック機構を備える。該ロック機構は、メカニカルな機構であって、回転軸をボディに対して回転不能に固定している間には電力を消費しないものであることが望ましい。前記ロック機構によって、回転軸をボディに対して所定の角度で回転不能に固定することができる。
The
前記搭乗部11は、本体部20の前端に図示されない連結部を介して連結される。該連結部は、搭乗部11と本体部20とを所定の方向に相対的に変位可能に連結する機能を有していてもよい。
The riding
また、前記搭乗部11は、座席11a、フットレスト11b及び風よけ部11cを備える。前記座席11aは、車両10の走行中に乗員が着座するための部位である。また、前記フットレスト11bは、乗員の足部を支持するための部位であり、座席11aの前方側(図1における右側)下方に配設される。
The
さらに、搭乗部11の後方若しくは下方又は本体部20には、図示されないバッテリ装置が配設されている。該バッテリ装置は、回転駆動装置51及びリンクモータ25のエネルギ供給源である。また、搭乗部11の後方若しくは下方又は本体部20には、図示されない制御装置、インバータ装置、各種センサ等が収納されている。
Further, a battery device (not shown) is disposed behind or below the
そして、座席11aの前方には、操縦装置41が配設されている。該操縦装置41には、乗員が操作して操舵方向、操舵角等の操舵指令情報を入力する操舵装置としてのハンドルバー41a、速度メータ等のメータ、インジケータ、スイッチ等の操縦に必要な部材が配設されている。乗員は、前記ハンドルバー41a及びその他の部材を操作して、車両10の走行状態(例えば、進行方向、走行速度、旋回方向、旋回半径等)を指示する。なお、前記操舵装置として、ハンドルバー41aに代えて他の装置、例えば、ステアリングホイール、ジョグダイヤル、タッチパネル、押しボタン等の装置を使用することもできる。
A
なお、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して搭乗部11に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。そして、一般的なオートバイ、自転車等の場合と同様に、乗員によるハンドルバー41aの操作に応じて操舵輪としての車輪12Fは操舵角を変化させ、これにより、車両10の進行方向が変化する。
The
具体的には、前記ハンドルバー41aは、図示されない操舵軸部材の上端に接続され、該操舵軸部材の上端は、搭乗部11が備える図示されないフレーム部材に対して回転可能に取り付けられている。前記操舵軸部材は、上端が下端よりも後方に位置するように斜めに傾斜した状態で、前記フレーム部材に取り付けられている。そして、前記操舵軸部材の上端のフレーム部材に対する回転角、すなわち、乗員がハンドルバー41aを操作して入力した操舵角指令値としてのハンドル角は、入力操舵角検出手段としてのハンドル角センサ62によって検出される。該ハンドル角センサ62は、例えば、エンコーダ等から成る。
Specifically, the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the steering shaft member is rotatably attached to a frame member (not shown) provided in the
また、前記操舵軸部材の上端と下端との間には、操舵用アクチュエータ装置としての操舵モータ65が配設されており、該操舵モータ65が、前記ハンドル角センサ62によって検出されたハンドル角に基づいて、前記操舵軸部材の下端を回転させる。なお、該操舵軸部材の下端は、前記フレーム部材に対して回転可能に取り付けられ、かつ、前輪フォーク17の上端に接続されている。そして、前記操舵軸部材の下端の前記フレーム部材に対する回転角、すなわち、操舵モータ65が出力し、前輪フォーク17を介して車輪12Fに伝達される操舵角は、出力操舵角検出手段としての操舵角センサ63によって検出される。該操舵角センサ63は、例えば、操舵モータ65においてボディに対する回転軸の回転角を検出する回転角センサであって、レゾルバ、エンコーダ等から成る。なお、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との距離、すなわち、ホイールベースはLH である。
A
さらに、車両10は、駆動力発生指令を入力する駆動指令装置としてのスロットルグリップ35を操縦装置41の一部として備える。前記スロットルグリップ35は、一般的なオートバイ等において使用されているスロットルグリップと同様の部材であり、ハンドルバー41aの一端に回転可能に取り付けられ、その回転角度、すなわち、スロットル開度に応じて、回転駆動装置51に駆動力を発生させる指令としての駆動力発生指令を入力する装置である。なお、スロットルグリップ35に代えて、レバー式の入力装置であるスロットルレバー、ペダル式の入力装置であるスロットルペダルを駆動力発生指令を入力する駆動指令装置として使用することもできる。
Further, the vehicle 10 includes a throttle grip 35 as a drive command device that inputs a drive force generation command as a part of the
また、車輪12Fの車軸を支持する前輪フォーク17の下端には、車両10の走行速度である車速を検出する車速検出手段としての車速センサ54が配設されている。該車速センサ54は、車輪12Fの回転速度に基づいて車速を検出するセンサであり、例えば、エンコーダ等から成る。
A
本実施の形態において、車両10は横加速度センサ44を有する。該横加速度センサ44は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度、すなわち、車体の幅方向としての横方向(図3における左右方向)の加速度を検出する。
In the present embodiment, the vehicle 10 has a
車両10は、旋回時に車体を旋回内側に傾斜させて安定させるので、車体を傾斜させることによって、旋回時の旋回外側への遠心力と重力とが釣り合うような角度になるように制御される。このような制御を行うことによって、例えば、路面18が進行方向と垂直な方向(進行方向に対する左右方向)に傾斜していたとしても、常に車体を水平に保つことが可能になる。これにより、車体及び乗員には、見かけ上、常に重力が鉛直下向きにかかっていることになり、違和感が低減され、また、車両10の安定性が向上する。
Since the vehicle 10 is stabilized by inclining the vehicle body toward the inside of the turn at the time of turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn at the time of turning and the gravity are balanced by turning the vehicle body. By performing such control, for example, even if the
そこで、本実施の形態においては、傾斜する車体の横方向の加速度を検出するために、横加速度センサ44を車体に取り付け、横加速度センサ44の出力がゼロとなるようにフィードバック制御を行う。これにより、旋回時に作用する遠心力と重力とが釣り合う傾斜角まで、車体を傾斜させることができる。また、進行方向と垂直な方向に路面18が傾斜している場合でも、車体が鉛直になる傾斜角となるように制御することができる。なお、前記横加速度センサ44は、車体の幅方向の中心、すなわち、車体の縦方向軸線上に位置するように配設されている。
Therefore, in the present embodiment, in order to detect the lateral acceleration of the leaning vehicle body, the
しかし、横加速度センサ44が1つであると、不要加速度成分をも検出してしまうことがある。例えば、車両10の走行中、路面18の窪(くぼ)みに左右の車輪12L及び12Rのいずれか一方のみが落下する場合があり得る。この場合、車体が傾斜するので、横加速度センサ44は、周方向に変位し、周方向の加速度を検出することになる。つまり、遠心力や重力に直接由来しない加速度成分、すなわち、不要加速度成分が検出されてしまう。
However, if there is one
また、車両10は、例えば、左右の車輪12L及び12Rのタイヤ部分のように弾性を備え、ばねとして機能する部分を含み、また、各部材の接続部等に不可避的なガタが含まれる。そのため、横加速度センサ44は、不可避的なガタやばねを介して車体に取り付けられていると考えられるので、ガタやばねの変位によって生じる加速度をも不要加速度成分として検出してしまう。
In addition, the vehicle 10 includes a portion that functions as a spring and has elasticity like the tire portions of the left and right wheels 12 </ b> L and 12 </ b> R. For this reason, the
このような不要加速度成分は、車体傾斜制御システムの制御性を悪化させる可能性がある。例えば、車体傾斜制御システムの制御ゲインを大きくすると、不要加速度成分に起因する制御系の振動、発散等が発生するので、応答性を向上させようとしても制御ゲインを大きくすることができなくなってしまう。 Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
そこで、本実施の形態においては、横加速度センサ44が複数であって、互いに異なる高さに配設されている。図1及び3に示される例において、横加速度センサ44は、第1横加速度センサ44a及び第2横加速度センサ44bの2つであって、第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。第1横加速度センサ44a及び第2横加速度センサ44bの位置を適切に選択することで、効果的に不要加速度成分を取り除くことができる。
Therefore, in the present embodiment, a plurality of
具体的には、図3(a)に示されるように、第1横加速度センサ44aは、搭乗部11の背面において、路面18からの距離、すなわち、高さがL1 の位置に配設されている。また、第2横加速度センサ44bは、搭乗部11の背面又は本体部20の上面において、路面18からの距離、すなわち、高さがL2 の位置に配設されている。なお、L1 >L2 である。そして、旋回走行時に、図3(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回すると、第1横加速度センサ44aは、横方向の加速度を検出して検出値a1 を出力し、第2横加速度センサ44bは、横方向の加速度を検出して検出値a2 を出力する。なお、車体が傾く際の傾斜運動の中心、すなわち、ロール中心は、厳密には路面18よりわずかに下方に位置するが、実際上は、概略路面18と等しい位置であると考えられる。
Specifically, as shown in FIG. 3 (a), the first
前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、十分に剛性の高い部材に取り付けられることが望ましい。また、L1 とL2 との差は、小さいと検出値a1 及びa2 の差が小さくなるので、十分に大きいこと、例えば、0.3〔m〕以上、とすることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、リンク機構30よりも上方に配設されることが望ましい。さらに、車体がサスペンション等のばねで支持されている場合、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、いわゆる「ばね上」に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、可能な限り乗員の近くに配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、上側から観て進行方向に延在する車体の中心軸上に位置すること、すなわち、進行方向に関してオフセットされないことが望ましい。
It is desirable that both the first
本実施の形態においては、車体の傾斜運動の角速度を検出するロールレートセンサ44c、及び、車体の旋回運動の角速度、すなわち、車体のヨー角速度を検出するヨー角速度検出手段としてのヨーレートセンサ44dが配設されている。具体的には、前記ロールレートセンサ44c及びヨーレートセンサ44dは、ともに、上側から観て進行方向に延在する車体の中心軸上に位置すること、すなわち、進行方向に関してオフセットされないことが望ましく、例えば、座席11aとフットレスト11bとの間に配設される。
In the present embodiment, a
なお、前記ロールレートセンサ44cは、一般的なロールレートセンサであって、例えば、ジャイロセンサを、路面18と垂直方向の面内での回転角速度を検出することができるように取り付けたものである。また、前記ヨーレートセンサ44dは、一般的なヨーレートセンサであって、例えば、ジャイロセンサを、路面18と平行な面内での回転角速度を検出することができるように取り付けたものである。なお、三次元ジャイロセンサであれば、ロールレートセンサ44c及びヨーレートセンサ44dの機能を発揮することができる。つまり、ロールレートセンサ44c及びヨーレートセンサ44dは、それぞれ、別個に構成されたものであってもよいし、一体的に構成されたものであってもよい。
The
また、本実施の形態における車両10は、制御装置の一部としての車体傾斜制御システムを有する。該車体傾斜制御システムは、一種のコンピュータシステムであり、ECU(Electronic Control Unit)等から成る傾斜制御装置及び操舵制御装置を備える。 The vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device. The vehicle body tilt control system is a kind of computer system, and includes a tilt control device and a steering control device including an ECU (Electronic Control Unit) or the like.
前記傾斜制御装置は、プロセッサ等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、リンク角センサ25a、第1横加速度センサ44a、第2横加速度センサ44b、ロールレートセンサ44c、ヨーレートセンサ44d、車速センサ54、スロットルグリップ35、インホイールモータである回転駆動装置51、リンクモータ25等に接続されている。そして、前記傾斜制御装置は、スロットルグリップ35の回転角度、すなわち、駆動力発生指令の入力値としてのスロットル開度に基づいて駆動力発生指令の出力値としてのスロットル開度目標値を算出して回転駆動装置51を作動させる。さらに、前記傾斜制御装置は、リンクモータ25を作動させるためのトルク指令値を出力する。
The tilt control device includes arithmetic means such as a processor, storage means such as a magnetic disk and a semiconductor memory, an input / output interface, and the like, and includes a
また、前記操舵制御装置は、プロセッサ等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、ハンドル角センサ62、操舵角センサ63、車速センサ54及び操舵モータ65に接続されている。そして、前記操舵制御装置は、操舵モータ65を作動させるための制御パルスを出力する。なお、前記傾斜制御装置と操舵制御装置とは相互に接続されている。また、前記傾斜制御装置及び操舵制御装置は、必ずしも別個に構成される必要はなく、一体的に構成されたものであってもよい。
Further, the steering control device includes a calculation means such as a processor, a storage means such as a magnetic disk and a semiconductor memory, an input / output interface, and the like, and is connected to a
前記傾斜制御装置は、旋回走行の際には、フィードバック制御及びフィードフォワード制御を行い、車体の傾斜角度が、横加速度センサ44が検出する横加速度の値がゼロとなる角度になるように、リンクモータ25を作動させる。つまり、旋回外側への遠心力と重力とが釣り合って、横方向の加速度成分がゼロとなる角度になるように、車体の傾斜角度を制御する。これにより、車体及び搭乗部11に搭乗している乗員には、車体の縦方向軸線と平行な方向の力が作用することとなる。したがって、車体の安定性を維持することができ、また、旋回性能を向上させることができる。
The tilt control device performs feedback control and feedforward control during turning, so that the tilt angle of the vehicle body is such that the lateral acceleration value detected by the
また、傾斜方向への外乱を受けたときには、車体の傾斜角度の変化のうちの外乱による部分を抽出し、残余の部分に対しては通常モードで車体の傾斜角度を制御するとともに、抽出した部分に対しては外乱対応モードで車体の傾斜角度を制御する。したがって、外乱を受けたときでも、車体の安定性を維持することができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。 Also, when a disturbance in the tilt direction is received, a part due to the disturbance in the change in the tilt angle of the vehicle body is extracted, and for the remaining part, the tilt angle of the vehicle body is controlled in the normal mode, and the extracted part In contrast, the vehicle body tilt angle is controlled in the disturbance response mode. Therefore, the stability of the vehicle body can be maintained even when subjected to disturbance. In addition, the rider does not feel discomfort and the ride comfort is improved.
さらに、本実施の形態においては、旋回走行を開始したときに、駆動力発生指令を制限する。すなわち、操舵輪の操舵量としてのハンドル角、傾斜用アクチュエータ装置の作動量としてのリンク角、及び、ヨーレートのうちの少なくとも1つの値の変化が所定値より大きくなると、加速指令値を制限する。 Further, in the present embodiment, the driving force generation command is limited when the turning traveling is started. That is, the acceleration command value is limited when a change in at least one of a steering wheel angle as a steering amount, a link angle as an operation amount of the tilting actuator device, and a yaw rate becomes larger than a predetermined value.
より具体的には、ハンドル角、リンク角及びヨーレートのうちの少なくとも1つが、その微分値と同じ符号となると、スロットル開度の値に関わらず、スロットル開度目標値がゼロとなるように制御する。つまり、乗員がハンドルを切り始めたとき、又は、ハンドルを切り増したときや、リンク機構30が傾き始めたとき、又は、傾きを増したときや、車両10が旋回を開始したとき、又は、ヨーレートが増したときには、回転駆動装置51が駆動力を発揮しないようにする。
More specifically, when at least one of the steering wheel angle, the link angle, and the yaw rate has the same sign as the differential value, the throttle opening target value is controlled to be zero regardless of the throttle opening value. To do. That is, when the occupant starts turning the steering wheel, or when the steering wheel is turned up, when the
これにより、車両10の安定性が低下しやすいときに、回転駆動装置51が駆動力を発揮しなくなるので、安定性の低下を確実に防止することができる。また、回転駆動装置51が駆動力を発揮しないので、車体が旋回方向内側に傾斜しやすくなり、旋回性が向上する。したがって、旋回走行の開始直後のような車両10の安定性が低下しやすいときには駆動輪としての左右の車輪12L及び12Rに駆動力が付与されないので、車両10の安定性を確実に維持することができる。
As a result, when the stability of the vehicle 10 is likely to decrease, the rotational driving device 51 does not exhibit the driving force, and thus it is possible to reliably prevent a decrease in stability. In addition, since the rotational drive device 51 does not exert a driving force, the vehicle body is easily inclined inward in the turning direction, and the turning performance is improved. Accordingly, when the stability of the vehicle 10 is likely to be lowered immediately after the start of turning, the driving force is not applied to the left and
このような操舵制御を行うことなしに車体傾斜制御を行うと、例えば、トレッド(左右の車輪12L及び12Rの接地点間の距離)が狭い場合や、車両10の重心位置が高い場合や、操舵速度(ハンドルを切る速度)が速い場合には、旋回によって発生する遠心力が旋回方向外側に車体を傾斜させる力として作用するので、旋回方向内側に車体を傾斜させにくく、車両10の安定性が低下することがある。もっとも、操舵輪としての車輪12Fの操舵角の速度又は加速度を低下させれば、遠心力を抑制して、スムーズに車体を旋回方向内側に傾斜させることができるので、車体の安定性を維持することができる。しかし、この場合、車両10の運動性能が低下するので、操縦性が悪化するとともに、危機回避性能も低下してしまう。
When the vehicle body tilt control is performed without performing such steering control, for example, when the tread (the distance between the ground contact points of the left and
これに対して、本実施の形態においては、前述のように、乗員がハンドルを切り始めたとき、又は、ハンドルを切り増したときや、リンク機構30が傾き始めたとき、又は、傾きを増したときや、車両10が旋回を開始したとき、又は、ヨーレートが増したときには、回転駆動装置51が駆動力を発揮しないようにする。これにより、車両10の安定性が低下しやすいときに、回転駆動装置51が駆動力を発揮しなくなるので、操縦性や危機回避性能を犠牲とすることなしに、車両10の安定性を維持することができる。また、回転駆動装置51が駆動力を発揮しないので、車体が旋回方向内側に傾斜しやすくなり、旋回性が向上する。
On the other hand, in the present embodiment, as described above, when the occupant starts to cut the steering wheel, or when the steering wheel is increased, the
次に、前記車体傾斜制御システムの構成について説明する。 Next, the configuration of the vehicle body tilt control system will be described.
図4は本発明の実施の形態における車体傾斜制御システムの構成を示すブロック図である。 FIG. 4 is a block diagram showing the configuration of the vehicle body tilt control system in the embodiment of the present invention.
図に示される例において、46は傾斜制御装置としての傾斜制御ECUであり、リンク角センサ25a、第1横加速度センサ44a、第2横加速度センサ44b、ロールレートセンサ44c、ヨーレートセンサ44d、車速センサ54及びリンクモータ25に接続されている。また、前記傾斜制御ECU46は、横加速度演算部48、リンク角速度推定部50、外乱演算部43、傾斜制御部47及びリンクモータ制御部42を備える。
In the example shown in the figure, 46 is a tilt control ECU as a tilt control device, and includes a
また、61は操舵制御装置としての操舵制御ECUであり、ハンドル角センサ62、操舵角センサ63、車速センサ54及び操舵モータ65に接続されている。さらに、前記操舵制御ECU61は、操舵制御部66及び操舵モータ制御部67を備える。
ここで、前記横加速度演算部48は、第1横加速度センサ44a及び第2横加速度センサ44bが検出した横加速度に基づいて合成横加速度を算出する。また、前記リンク角速度推定部50は、ヨーレートセンサ44dが検出したヨー角速度としてのヨーレート、及び、車速センサ54が検出した車速に基づいてリンク角速度予測値を算出する。さらに、前記外乱演算部43は、ロールレートセンサ44cが検出した車体の傾斜運動の角速度としてのロールレート、及び、リンク角センサ25aが検出したリンク角に基づいて外乱分のロールレートを算出する。
Here, the lateral
そして、前記傾斜制御部47は、横加速度演算部48が算出した合成横加速度、リンク角速度推定部50が算出したリンク角速度予測値、及び、外乱演算部43が算出した外乱分のロールレートに基づいて、制御値としての速度指令値を演算して出力する。さらに、前記リンクモータ制御部42は、傾斜制御部47が出力した速度指令値、及び、操舵制御部66が出力した操舵輪操舵角指令値に基づいてリンクモータ25を作動させるための制御値としてのトルク指令値を出力する。
The
また、前記操舵制御部66は、ハンドル角センサ62が検出したハンドル角、及び、車速センサ54が検出した車速に基づいて、制御値としての操舵輪操舵角指令値を演算して出力する。前記操舵モータ制御部67は、操舵角センサ63が検出した操舵角、及び、操舵制御部66が出力した操舵輪操舵角指令値に基づいて操舵モータ65を作動させるための制御値としての制御パルスを出力する。
The
次に、前記構成の車両10の動作について説明する。まず、旋回走行における車体傾斜制御処理の動作の一部である横加速度演算処理の動作について説明する。 Next, the operation of the vehicle 10 configured as described above will be described. First, the operation of the lateral acceleration calculation process, which is a part of the operation of the vehicle body tilt control process in turning, will be described.
図5は本発明の実施の形態における制御系のブロック図、図6は本発明の実施の形態における旋回走行時の車体の傾斜動作を説明する力学モデルを示す図、図7は本発明の実施の形態における横加速度演算処理の動作を示すフローチャートである。 FIG. 5 is a block diagram of the control system in the embodiment of the present invention, FIG. 6 is a diagram showing a dynamic model for explaining the leaning operation of the vehicle body during turning traveling in the embodiment of the present invention, and FIG. 7 is an embodiment of the present invention. It is a flowchart which shows the operation | movement of the lateral acceleration calculation process in the form.
本実施の形態における車体傾斜制御処理では、図4に示されるような傾斜制御ECU46による傾斜制御と操舵制御ECU61による操舵制御とを組み合わせた制御が行われる。なお、傾斜制御ECU46による傾斜制御は、フィードバック制御とフィードフォワード制御とを組み合わせた制御である。
In the vehicle body tilt control process according to the present embodiment, control in which tilt control by the
図5において、f1 は後述される式(6)で表される伝達関数であり、GP 、GRP、GYD及びGSLは比例制御動作の制御ゲインであり、LPFはローパスフィルタであり、sは微分要素である。また、f2 は後述される式(10)で表されるリンク角速度予測値であり、f3 はロールレートゲインである。 In FIG. 5, f 1 is a transfer function represented by the equation (6) described later, G P , G RP , G YD and G SL are control gains for proportional control operation, and LPF is a low-pass filter. , S is a differential element. Further, f 2 is a link angular velocity prediction value expressed by the following formula (10), and f 3 is a roll rate gain.
旋回走行が開始されると、車体傾斜制御システムは車体傾斜制御処理を開始する。姿勢制御が行われることで、車両10は、リンク機構30によって、旋回走行時には、図3(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回する。また、旋回走行時には、旋回外側への遠心力が車体に作用するとともに、車体を旋回内側に傾けたことによって重力の横方向成分が発生する。そして、横加速度演算部48は、横加速度演算処理を実行し、合成横加速度aを算出して傾斜制御部47に出力する。すると、該傾斜制御部47は、フィードバック制御を行い、合成横加速度aの値がゼロとなるような制御値としての速度指令値を出力する。そして、リンクモータ制御部42は、傾斜制御部47が出力した速度指令値に基づいてトルク指令値をリンクモータ25に出力する。
When turning is started, the vehicle body tilt control system starts the vehicle body tilt control process. By performing posture control, the vehicle 10 turns with the
なお、車体傾斜制御処理は、車両10の電源が投入されている間、車体傾斜制御システムによって繰り返し所定の制御周期TS (例えば、5〔ms〕)で実行される処理であり、旋回時において、旋回性能の向上と乗員の快適性の確保とを図る処理である。 The vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 5 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
また、図6において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Bは車体において第2横加速度センサ44bの配設された位置を示す第2センサ位置である。
In FIG. 6, 44A is a first sensor position indicating the position where the first
第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する加速度は、〈1〉旋回時に車体に作用する遠心力、〈2〉車体を旋回内側に傾けたことによって発生する重力の横方向成分、〈3〉左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、並びに、〈4〉リンクモータ25の作動又はその反作用により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、の4つであると考えられる。これら4つの加速度のうち、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さ、すなわち、L1 及びL2 と無関係である。一方、前記〈3〉及び〈4〉は、周方向に変位することによって生じる加速度であるから、ロール中心からの距離に比例する、すなわち、概略L1 及びL2 に比例する。
The acceleration detected by the first
ここで、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈3〉の加速度をaX1及びaX2とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈4〉の加速度をaM1及びaM2とする。また、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈1〉の加速度をaT とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈2〉の加速度をaG とする。なお、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さに無関係なので、第1横加速度センサ44a及び第2横加速度センサ44bの検出値は等しい。
Here, the first
そして、左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等による周方向の変位の角速度をωR とし、その角加速度をωR ’とする。また、リンクモータ25の作動又はその反作用による周方向の変位の角速度をωM とし、その角加速度をωM ’とする。なお、角速度ωM 又は角加速度ωM ’は、リンク角センサ25aの検出値から取得することができる。
Then, only one of the left and
すると、aX1=L1 ωR ’、aX2=L2 ωR ’、aM1=L1 ωM ’、aM2=L2 ωM ’となる。 Then, a X1 = L 1 ω R ′, a X2 = L 2 ω R ′, a M1 = L 1 ω M ′, a M2 = L 2 ω M ′.
また、第1横加速度センサ44a及び第2横加速度センサ44bが検出して出力する加速度の検出値をa1 及びa2 とすると、a1 及びa2 は、4つの加速度〈1〉〜〈4〉の合計であるから、次の式(1)及び(2)で表される。
a1 =aT +aG +L1 ωR ’+L1 ωM ’ ・・・式(1)
a2 =aT +aG +L2 ωR ’+L2 ωM ’ ・・・式(2)
そして、式(1)から式(2)を減算すると、次の式(3)を得ることができる。
a1 −a2 =(L1 −L2 )ωR ’+(L1 −L2 )ωM ’ ・・・式(3)
ここで、L1 及びL2 の値は、第1横加速度センサ44a及び第2横加速度センサ44bの高さであるから既知である。また、ωM ’の値は、リンクモータ25の角速度ωM の微分値であるから既知である。すると、前記式(3)の右辺においては、第1項のωR ’の値のみが未知であり、他の値はすべて既知である。したがって、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a1 及びa2 から、ωR ’の値を得ることが可能である。つまり、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a1 及びa2 に基づいて、不要加速度成分を取り除くことができる。
Further, when the detection value of the acceleration by the first
a 1 = a T + a G + L 1 ω R '+ L 1 ω M' ··· formula (1)
a 2 = a T + a G +
Then, by subtracting equation (2) from equation (1), the following equation (3) can be obtained.
a 1 −a 2 = (L 1 −L 2 ) ω R ′ + (L 1 −L 2 ) ω M ′ Equation (3)
Here, the values of L 1 and L 2 are known because they are the heights of the first
車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は、横加速度演算処理を開始し、まず、第1横加速度センサ値a1 を取得するとともに(ステップS1)、第2横加速度センサ値a2 を取得する(ステップS2)。そして、横加速度演算部48は、加速度差Δaを算出する(ステップS3)。該Δaは次の式(4)によって表される。
Δa=a1 −a2 ・・・式(4)
続いて、横加速度演算部48は、ΔL呼出を行うとともに(ステップS4)、L2 呼出を行う(ステップS5)。前記ΔLは次の式(5)によって表される。
ΔL=L1 −L2 ・・・式(5)
続いて、横加速度演算部48は、合成横加速度aを算出する(ステップS6)。なお、合成横加速度aは、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値a1 と第2横加速度センサ値a2 とを合成した値であり、次の式(6)及び(7)によって得られる。
a=a2 −(L2 /ΔL)Δa ・・・式(6)
a=a1 −(L1 /ΔL)Δa ・・・式(7)
理論上は、式(6)によっても式(7)によっても、同じ値を得ることができるが、周方向の変位によって生じる加速度はロール中心からの距離に比例するので、実際上は、ロール中心により近い方の横加速度センサ44、すなわち、第2横加速度センサ44bの検出値であるa2 を基準にすることが望ましい。そこで、本実施の形態においては、式(6)によって合成横加速度aを算出することとする。
When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral
Δa = a 1 −a 2 Formula (4)
Then, the lateral
ΔL = L 1 −L 2 Formula (5)
Subsequently, the lateral
a = a 2 − (L 2 / ΔL) Δa (6)
a = a 1 − (L 1 / ΔL) Δa (7)
Theoretically, the same value can be obtained by both equation (6) and equation (7), but since the acceleration caused by the circumferential displacement is proportional to the distance from the roll center, in practice, the roll center It is desirable to use a 2 which is a detection value of the
最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS7)、横加速度演算処理を終了する。
Finally, the lateral
このように、本実施の形態においては、第1横加速度センサ44aと第2横加速度センサ44bとを互いに異なる高さ位置に配設し、第1横加速度センサ値a1 と第2横加速度センサ値a2 とを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロとなるように、フィードバック制御を行って車体の傾斜角度を制御する。
Thus, in this embodiment, a first
これにより、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。 As a result, unnecessary acceleration components can be removed, so that it is not affected by road surface conditions, the occurrence of vibrations and divergence of the control system can be prevented, and the control gain of the vehicle body tilt control system is increased. Control responsiveness can be improved.
なお、本実施の形態においては、横加速度センサ44が2つである場合について説明したが、横加速度センサ44は、複数であって互いに異なる高さに配設されていれば、3つ以上であってもよく、いくつであってもよい。
In the present embodiment, the case where there are two
次に、旋回走行におけるリンク角速度を推定するリンク角速度推定処理の動作について説明する。 Next, the operation of the link angular velocity estimation process for estimating the link angular velocity in turning travel will be described.
図8は本発明の実施の形態におけるリンク角速度推定処理の動作を示すフローチャート、図9は本発明の実施の形態におけるヨーレートの微分処理のサブルーチンを示すフローチャート、図10は本発明の実施の形態におけるフィルタ処理のサブルーチンを示すフローチャートである。 FIG. 8 is a flowchart showing the operation of link angular velocity estimation processing in the embodiment of the present invention, FIG. 9 is a flowchart showing a subroutine of yaw rate differentiation processing in the embodiment of the present invention, and FIG. 10 is in the embodiment of the present invention. It is a flowchart which shows the subroutine of a filter process.
リンク角速度推定部50は、リンク角速度推定処理を開始すると、まず、ヨーレートセンサ44dが検出したヨーレートの値であるヨーレートセンサ値ψを取得するとともに(ステップS11)、車速センサ54が検出した車速の値である車速センサ値νを取得する(ステップS12)。
When the link angular
そして、リンク角速度推定部50は、ヨーレートの微分処理を実行し(ステップS13)、Δψを算出する。該Δψは、ヨーレートを時間微分した値であり、ヨー角加速度に相当する。
Then, the link angular
ヨーレートの微分処理において、リンク角速度推定部50は、まず、ψold 呼出を行う(ステップS13−1)。なお、ψold は、前回の車体傾斜制御処理実行時に保存されたψ(t)の値である。なお、初期設定においては、ψold =0とされている。
In the yaw rate differentiation process, the link angular
続いて、リンク角速度推定部50は、制御周期TS を取得する(ステップS13−2)。
Subsequently, the link angular
続いて、リンク角速度推定部50は、ヨーレート微分値Δψを算出する(ステップS13−3)。Δψは、次の式(8)によって算出される。
Δψ=(ψ(t)−ψold )/TS ・・・式(8)
そして、リンク角速度推定部50は、ψold =ψ(t)として保存し(ステップS13−4)、ヨーレートの微分処理を終了する。
Subsequently, the link angular
Δψ = (ψ (t) −ψ old ) / T S (8)
The link angular
続いて、リンク角速度推定部50は、ヨーレート微分値Δψに対して、フィルタ処理を実行する(ステップS14)。
Subsequently, the link angular
フィルタ処理において、リンク角速度推定部50は、まず、制御周期TS を取得する(ステップS14−1)。
In the filter processing, the link angular
続いて、リンク角速度推定部50は、カットオフ周波数wを取得する(ステップS14−2)。
Subsequently, the link angular
続いて、リンク角速度推定部50は、Δψold 呼出を行う(ステップS14−3)。なお、Δψold は、前回の車体傾斜制御処理実行時に保存されたΔψ(t)の値である。
Subsequently, the link angular
続いて、リンク角速度推定部50は、フィルタ処理されたヨーレート微分値Δψ(t)を算出する(ステップS14−4)。Δψ(t)は、次の式(9)によって算出される。
Δψ(t)=Δψold /(1+TS w)+TS wψ/(1+TS w) ・・・式(9)
該式(9)は、バンドパスフィルタとして一般的に使用されるIIR(Infinite Impulse Response)フィルタの式であるが、単純に一次遅れ系のローパスフィルタを用いてもよい。IIRフィルタとしては、例えば、チェビシェフII型フィルタを使用してもよいし、その他のフィルタを使用してもよい。また、一般的に使用されるFIR(Finite Impulse Response)フィルタを使用してもよい。さらに、バンドパスフィルタのカットオフ周波数(−3〔dB〕周波数)は、10〔Hz〕以下であることが望ましく、数〔Hz〕であることがより望ましい。
Subsequently, the link angular
Δψ (t) = Δψ old / (1 + T S w) + T S wψ / (1 + T S w) ··· (9)
The expression (9) is an expression of an IIR (Infinite Impulse Response) filter generally used as a bandpass filter, but a first-order lag low-pass filter may be simply used. As the IIR filter, for example, a Chebyshev type II filter may be used, or another filter may be used. Further, a generally used FIR (Finite Impulse Response) filter may be used. Furthermore, the cut-off frequency (−3 [dB] frequency) of the band pass filter is preferably 10 [Hz] or less, and more preferably several [Hz].
そして、リンク角速度推定部50は、Δψold =Δψ(t)として保存し(ステップS14−5)、フィルタ処理を終了する。つまり、今回の車体傾斜制御処理実行時に算出したΔψ(t)の値をΔψold として、記憶手段に保存する。
Then, the link angular
続いて、リンク角速度推定部50は、リンク角速度予測値f2 を算出する(ステップS15)。ここで、重力をgとすると、リンク角速度予測値f2 は、次の式(10)によって算出される。
f2 =dη/dt=(ν/g)(dψ/dt) ・・・式(10)
前述のように、リンク角センサ25aは、中央縦部材21に対する上側の横リンクユニット31Uの角度の変化、すなわち、リンク角の変化を検出する。ここで、リンク角をηとし、旋回時における車体の傾斜角が、横加速度としての遠心力a0 と重力gとが釣り合うように制御されているものとすると、路面18が水平であれば、遠心力a0 と重力gとの間には、次の式(11)で表される関係が成立する。
a0 cos η=gsin η ・・・式(11)
該式(11)から、次の式(12)が導出される。
a0 /g=sin η/cos η=tan η ・・・式(12)
さらに、該式(12)から、次の式(13)が導出される。
a0 =gtan η ・・・式(13)
一方、ヨーレートセンサ値、すなわち、ヨーレートがψであり、旋回半径がrであるとすると、車速センサ値、すなわち、車速ν及び旋回時に車体に作用する横加速度としての遠心力a0 は次の式(14)及び(15)によって表される。
ν=rψ ・・・式(14)
a0 =rψ2 =νψ ・・・式(15)
そして、該式(15)と前記式(13)とから、次の式(16)が導出される。
tan η=νψ/g ・・・式(16)
さらに、tan η≒ηと近似することができるとともに、車速νの変化がリンク角ηの変化と比較して十分に遅いので、車速νを定数とみなすことができるとすると、前記式(16)から、前記式(10)を得ることができる。
Subsequently, the link angular
f 2 = dη / dt = (ν / g) (dψ / dt) (10)
As described above, the
a 0 cos η = gsin η (11)
From the equation (11), the following equation (12) is derived.
a 0 / g = sin η / cos η = tan η (12)
Further, the following equation (13) is derived from the equation (12).
a 0 = g tan η (13)
On the other hand, assuming that the yaw rate sensor value, that is, the yaw rate is ψ, and the turning radius is r, the vehicle speed sensor value, that is, the vehicle speed ν and the centrifugal force a 0 as the lateral acceleration acting on the vehicle body at the time of turning are It is represented by (14) and (15).
ν = rψ Equation (14)
a 0 = rψ 2 = νψ (15)
Then, the following equation (16) is derived from the equation (15) and the equation (13).
tan η = νψ / g (16)
Furthermore, it can be approximated as tan η≈η, and the change in the vehicle speed ν is sufficiently slow compared to the change in the link angle η, so that the vehicle speed ν can be regarded as a constant. From the above, the formula (10) can be obtained.
続いて、リンク角速度推定部50は、リンク角速度制御値af を算出する(ステップS16)。リンク角速度制御値af は、次の式(17)によって算出される。
af =Adη/dt ・・・式(17)
ここで、Aは、0〜1の任意の値であり、車両10の構造に応じて決定されるチューニング定数である。
Subsequently, the link angular
a f = Adη / dt (17)
Here, A is an arbitrary value of 0 to 1, and is a tuning constant determined according to the structure of the vehicle 10.
最後に、リンク角速度推定部50は、傾斜制御部47へリンク角速度制御値af を送出して(ステップS17)、リンク角速度推定処理を終了する。
Finally, the link angular
次に、リンクモータ制御部42へ速度指令値を出力するための傾斜制御処理の動作について説明する。
Next, the operation of the inclination control process for outputting the speed command value to the link
図11は本発明の実施の形態における傾斜制御処理の動作を示すフローチャートである。 FIG. 11 is a flowchart showing the operation of the tilt control process in the embodiment of the present invention.
傾斜制御処理において、傾斜制御部47は、まず、横加速度演算部48から合成横加速度aを受信する(ステップS21)。
In the tilt control process, the
続いて、傾斜制御部47は、aold 呼出を行う(ステップS22)。aold は、前回の車体傾斜制御処理実行時に保存された合成横加速度aである。なお、初期設定においては、aold =0とされている。
Subsequently, the
続いて、傾斜制御部47は、制御周期TS を取得し(ステップS23)、aの微分値を算出する(ステップS24)。ここで、aの微分値をda/dtとすると、該da/dtは次の式(18)によって算出される。
da/dt=(a−aold )/TS ・・・式(18)
そして、傾斜制御部47は、aold =aとして保存する(ステップS25)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度センサ値aをaold として、記憶手段に保存する。
Subsequently, the
da / dt = (a−a old ) / T S (18)
And the
続いて、傾斜制御部47は、第1制御値UP を算出する(ステップS26)。ここで、比例制御動作の制御ゲイン、すなわち、比例ゲインをGP とすると、第1制御値UP は次の式(19)によって算出される。
UP =GP a ・・・式(19)
続いて、傾斜制御部47は、第2制御値UD を算出する(ステップS27)。ここで、微分制御動作の制御ゲイン、すなわち、微分時間をGD とすると、第2制御値UD は次の式(20)によって算出される。
UD =GD da/dt ・・・式(20)
続いて、傾斜制御部47は、第3制御値Uを算出する(ステップS28)。該第3制御値Uは、第1制御値UP と第2制御値UD との合計であり、次の式(21)によって算出される。
U=UP +UD ・・・式(21)
第3制御値Uを算出すると、傾斜制御部47は、リンク角速度推定部50からリンク角速度制御値af を受信する(ステップS29)。
Then,
U P = G P a ··· (19)
Then,
U D = G D da / dt (20)
Subsequently, the
U = U P + U D ··· formula (21)
When the third control value U is calculated, the
続いて、傾斜制御部47は、第4制御値Uを算出する(ステップS30)。該第4制御値Uは、第3制御値Uとリンク角速度制御値af との合計であり、次の式(22)によって算出される。
U=U+af ・・・式(22)
最後に、傾斜制御部47は、第4制御値Uを速度指令値としてリンクモータ制御部42へ出力して(ステップS31)、傾斜制御処理を終了する。
Subsequently, the
U = U + a f Expression (22)
Finally, the
次に、旋回走行における車体制御動作の一部である操舵制御処理の動作について説明する。 Next, the operation of the steering control process, which is a part of the vehicle body control operation in turning, will be described.
図12は本発明の実施の形態における操舵制御処理の動作を示すフローチャートである。 FIG. 12 is a flowchart showing the operation of the steering control process in the embodiment of the present invention.
操舵制御処理においては、ハンドル角δを取得した後、車速νに応じて関数を作用させてもよい。例えば、一般的に、車速νが高くなると、ハンドルを大きく切っても操舵輪の操舵角を大きくする必要がなくなる。そのため、操舵制御処理において演算に使用するハンドル角δは、ハンドル角センサ62から取得した後に車速νと反比例するような関数を乗じることで、決定することもできる。
In the steering control process, after obtaining the steering wheel angle δ, a function may be applied according to the vehicle speed ν. For example, in general, when the vehicle speed ν increases, it is not necessary to increase the steering angle of the steered wheels even when the steering wheel is largely turned. Therefore, the steering wheel angle δ used for the calculation in the steering control process can be determined by multiplying a function that is inversely proportional to the vehicle speed ν after being acquired from the steering
また、ハンドル角δによって車体のヨーレートを決定することもできる。これは、車速νとは無関係に、あるハンドル角δのときはあるヨーレートとなるようにフィードバック制御を構成するものである。 Further, the yaw rate of the vehicle body can be determined by the steering wheel angle δ. This constitutes feedback control so that a certain yaw rate is obtained at a certain steering angle δ regardless of the vehicle speed ν.
これらは、いずれも、ステアバイワイヤを行うときに採用される手法である。 These are all techniques employed when performing steer-by-wire.
本実施の形態における操舵制御部66は、操舵制御処理を開始すると、まず、ハンドル角センサ62が検出したハンドル角の値であるハンドル角センサ値δを取得する(ステップS41)。前記ハンドル角は、乗員がハンドルバー41aを操作して入力した操舵角指令値である。
When the steering control process starts in the present embodiment, the
続いて、操舵制御部66は、ハンドル角センサ値δに対して、フィルタ処理を実行する(ステップS42)。該フィルタ処理は、前記リンク角速度推定処理におけるフィルタ処理と同様の、ローパスフィルタによる処理であり、バンドパスフィルタとして一般的に使用されるIIRフィルタ又はFIRフィルタを使用することができるし、一次遅れ系の単純なローパスフィルタを用いてもよい。そして、フィルタ処理されたハンドル角センサ値δを操舵角目標値δ* とする。
Subsequently, the
続いて、操舵制御部66は、ハンドル角センサ値δの微分値dδ/dtを算出する(ステップS43)。ここで、ハンドル角センサ値、すなわち、ハンドル角δの微分値dδ/dtは、ハンドル角の角速度を表す。
Subsequently, the
続いて、操舵制御部66は、ハンドル角センサ値δの二階微分値d2 δ/dt2 を算出する(ステップS44)。ここで、該二階微分値d2 δ/dt2 は、ハンドル角の角加速度を表す。
Subsequently, the
続いて、操舵制御部66は、リンク角補正値USLを算出する(ステップS45)。ここで、ハンドル角に応じてリンク角を制御する制御ゲイン、つまり、ハンドルを切る方向に応じて車体を旋回方向内側に傾斜させるようにリンク角を制御する制御ゲインをGSLとすると、リンク角補正値USLは次の式(23)によって算出される。
USL=GSLd2 δ/dt2 ・・・式(23)
続いて、操舵制御部66は、操舵角目標値δ* を操舵モータ制御部67へ出力する(ステップS46)。
Then, the
U SL = G SL d 2 δ / dt 2 Formula (23)
Subsequently, the
最後に、操舵制御部66は、算出したリンク角補正値USLをリンクモータ制御部42へ出力して(ステップS47)、操舵制御処理を終了する。
Finally, the
次に、リンクモータ25へトルク指令値を出力するためのリンクモータ制御処理の動作について説明する。
Next, the operation of the link motor control process for outputting a torque command value to the
図13は本発明の実施の形態におけるリンクモータ制御処理の動作を示すフローチャートである。 FIG. 13 is a flowchart showing the operation of the link motor control process in the embodiment of the present invention.
リンクモータ制御処理において、リンクモータ制御部42は、まず、傾斜制御部47から第4制御値Uを受信する(ステップS51)。
In the link motor control process, the link
続いて、リンクモータ制御部42は、操舵制御部66からリンク角補正値USLを受信する(ステップS52)。
Subsequently, the link
続いて、リンクモータ制御部42は、第5制御値Uを算出する(ステップS53)。該第5制御値Uは、第4制御値Uとリンク角補正値USLとに基づいて、次の式(24)によって算出される。
U=U+USL ・・・式(24)
続いて、リンクモータ制御部42は、リンク角の角速度、すなわち、リンク角速度Δηを取得する(ステップS54)。該リンク角速度Δηは、リンク角センサ25aが検出したリンク角ηを取得し、該リンク角ηを時間微分することによって算出される。また、リンクモータ制御部42は、リンク角速度Δηの値を外乱演算部43から取得することもできる。
Subsequently, the link
U = U + U SL (24)
Subsequently, the link
続いて、リンクモータ制御部42は、制御誤差としての偏差を算出する(ステップS55)。ここで、偏差をεとすると、該εは、次の式(25)によって算出される。
ε=U−Δη ・・・式(25)
なお、Uは第5制御値Uである。
Subsequently, the link
ε = U−Δη Formula (25)
U is the fifth control value U.
続いて、リンクモータ制御部42は、リンクモータ25を作動させるためのトルク指令値としてのリンクモータ制御値を算出する(ステップS56)。ここで、リンクモータ制御値をUM とすると、該UM は次の式(26)によって算出される。
UM =GMPε ・・・式(26)
なお、GMPはモータ制御比例ゲインであって、GMPの値は、実験等に基づいて設定された値であり、あらかじめ記憶手段に格納されている。
Subsequently, the link
U M = G MP ε (26)
Note that GMP is a motor control proportional gain, and the value of GMP is a value set based on experiments or the like, and is stored in the storage means in advance.
最後に、リンクモータ制御部42は、リンクモータ制御値UM をリンクモータ25へ出力して(ステップS57)、リンクモータ制御処理を終了する。
Finally, the link
ここでは、リンクモータ制御処理が比例制御、すなわち、P制御であるものとして説明したが、PID制御であってもよい。 Although the link motor control process has been described here as proportional control, that is, P control, it may be PID control.
次に、旋回走行における車体傾斜制御処理中に行われる駆動力発生指令を制限するための動作について説明する。 Next, an operation for limiting a driving force generation command that is performed during the vehicle body tilt control process in turning traveling will be described.
図14は本発明の実施の形態における駆動力発生指令を制限する制御系のブロック図である。 FIG. 14 is a block diagram of a control system for limiting a driving force generation command according to the embodiment of the present invention.
本実施の形態における車体傾斜制御処理では、駆動力発生指令を制限するために図14に示されるような制御が行われる。なお、図に示される制御は、車体傾斜制御処理中に所定の条件下で、駆動力発生指令を制限するための制御である。 In the vehicle body tilt control process in the present embodiment, control as shown in FIG. 14 is performed in order to limit the driving force generation command. The control shown in the figure is a control for limiting the driving force generation command under a predetermined condition during the vehicle body tilt control process.
具体的には、ハンドル角δ、リンク角η及びヨーレートψのうちの少なくとも1つが、その微分値と同じ符号となり、かつ、その絶対値が閾値以上となると、スロットル開度thの値に関わらず、スロットル開度目標値th* がゼロとなるように制御する。 Specifically, when at least one of the steering wheel angle δ, the link angle η, and the yaw rate ψ has the same sign as the differential value and the absolute value is equal to or greater than the threshold value, regardless of the value of the throttle opening th. The throttle opening target value th * is controlled to be zero.
図において、sは微分要素であり、f4 は、次の式(27)で表される伝達関数である。 In the figure, s is a differential element, and f 4 is a transfer function represented by the following equation (27).
ここで、δの値は、車両10が直進のときにゼロであり、右方向に旋回するように操舵されたときにプラスとなり、左方向に旋回するように操舵されたときにマイナスとなる。また、ηの値は、車両10が直立しているときにゼロであり、右方向に傾斜するようにリンク機構30のリンクモータ25が作動したときにプラスとなり、左方向に傾斜するようにリンクモータ25が作動したときにマイナスとなる。さらに、ψの値は、車両10が直進のときにゼロであり、右方向に旋回するときにプラスとなり、左方向に旋回するときにマイナスとなる。
Here, the value of δ is zero when the vehicle 10 goes straight, becomes positive when the vehicle 10 is steered to turn right, and becomes minus when the vehicle 10 is steered to turn left. Further, the value of η is zero when the vehicle 10 is standing upright, becomes positive when the
なお、S、L及びYは、典型的には、いずれもゼロ、すなわち、S=L=Y=0であるが、δ、η及びψの値の符号がプラス又はマイナスに確定したと言える任意の値を、それぞれに、設定してもよい。また、dS、dL及びdYは、δ、η及びψの各微分値の符号がプラス又はマイナスに確定したと言える任意の値であることが望ましい。これにより、δ、η及びψの値、並びに、δ、η及びψの各微分値におけるゼロの近傍にある程度の幅の不感帯を設定することができ、制御が安定する。 Note that S, L, and Y are typically all zero, that is, S = L = Y = 0, but it can be said that the signs of the values of δ, η, and ψ are determined to be positive or negative. May be set for each. Further, dS, dL, and dY are desirably arbitrary values that can be said to be positive or negative in the sign of each differential value of δ, η, and ψ. Accordingly, a dead band having a certain width can be set in the vicinity of zero in the values of δ, η, and ψ and the differential values of δ, η, and ψ, and the control is stabilized.
また、Gは、次の式(28)で表される比例動作の制御ゲインである。
G=Gsth ×Glth ×Gyth ・・・式(28)
したがって、スロットル開度目標値th* は、次の式(29)で表される。
th* =Gth ・・・式(29)
前記式(27)〜(29)から分かるように、ハンドル角δ、リンク角η及びヨーレートψのうちの少なくとも1つの値が、プラス又はマイナス方向に増加すると、Gsth 、Glth 又はGyth がゼロとなるので、スロットル開度目標値th* がゼロとなる。つまり、乗員がハンドルを切り始めたとき、又は、ハンドルを切り増したときや、リンク機構30が傾き始めたとき、又は、傾きを増したときや、車両10が旋回を開始したとき、又は、ヨーレートが増したときのように、車体の安定性が低下しやすいときに、スロットル開度目標値th* をゼロにして、回転駆動装置51を作動させるための駆動力発生指令を制限する。したがって、旋回走行中であっても、車体の安定性を確実に維持することができる。さらに、旋回走行のときに回転駆動装置51が駆動力を発揮しないので、車体が旋回方向内側に傾斜しやすくなるので、旋回性が向上する。
G is a control gain of proportional operation expressed by the following equation (28).
G = G sth × G lth × G yth (28)
Therefore, the throttle opening target value th * is expressed by the following equation (29).
th * = Gth (29)
As can be seen from the equations (27) to (29), when at least one of the handle angle δ, the link angle η, and the yaw rate ψ increases in the plus or minus direction, G sth , G lth or G yth becomes Since it becomes zero, the throttle opening target value th * becomes zero. That is, when the occupant starts turning the steering wheel, or when the steering wheel is turned up, when the
また、ハンドル角δ、リンク角η及びヨーレートψのすべてが増加しない状態となると、車体が安定するので、加速指令値の制限を解除する。 Further, when the steering wheel angle δ, the link angle η, and the yaw rate ψ are all not increased, the vehicle body becomes stable, and thus the limitation on the acceleration command value is released.
このように、本実施の形態においては、旋回走行を開始したときに、駆動力発生指令を制限する。すなわち、操舵輪の操舵量としてのハンドル角δ、リンク角η、及び、ヨーレートψのうちの少なくとも1つの値の変化が所定値(S及びdS、L及びdL並びにY及びdY)より大きくなると(但し、S、L、Y、dS、dL及びdYがゼロでない場合には、|δ|>|S|かつ|S’|>|dS|、|η|>|L|かつ|η’|>|dL|、または、|ψ|>|Y|かつ|ψ’|>|dY|となると)、駆動力発生指令を制限する。これにより、旋回走行の開始直後のような車体の安定性が低下しやすいときには駆動輪としての左右の車輪12L及び12Rに駆動力が付与されないので、車体の安定性を確実に維持することができる。
Thus, in the present embodiment, the driving force generation command is limited when the cornering is started. That is, when a change in at least one of the steering wheel angle δ, the link angle η, and the yaw rate ψ as the steering amount of the steered wheel becomes greater than a predetermined value (S and dS, L and dL, and Y and dY) ( However, when S, L, Y, dS, dL, and dY are not zero, | δ |> | S | and | S ′ |> | dS |, | η |> | L | and | η ′ |> | DL | or | ψ |> | Y | and | ψ ′ |> | dY |), the driving force generation command is limited. As a result, when the stability of the vehicle body is likely to decrease, such as immediately after the start of turning, no driving force is applied to the left and
より詳細には、ハンドル角δ、リンク角η及びヨーレートψのうちの少なくとも1つが、その微分値と同じ符号となると、スロットル開度thの値に関わらず、スロットル開度目標値th* がゼロとなるように制御する。つまり、乗員がハンドルを切り始めたとき、又は、ハンドルを切り増したときや、リンク機構30が傾き始めたとき、又は、傾きを増したときや、車両10が旋回を開始したとき、又は、ヨーレートが増したときには、回転駆動装置51が駆動力を発揮しないようにする。このように、車体の安定性が低下しやすいときに、回転駆動装置51が駆動力を発揮しなくなるので、安定性の低下を確実に防止することができる。また、回転駆動装置51が駆動力を発揮しないので、車体が旋回方向内側に傾斜しやすくなり、旋回性が向上する。
More specifically, when at least one of the steering wheel angle δ, the link angle η, and the yaw rate ψ has the same sign as its differential value, the throttle opening target value th * is zero regardless of the value of the throttle opening th . Control to be That is, when the occupant starts turning the steering wheel, or when the steering wheel is turned up, when the
さらに、ハンドル角δ、リンク角η及びヨーレートψのすべてが増加しない状態となると、つまり、ハンドル角δ、リンク角η及びヨーレートψのすべてが、その微分値と異なる符号となると、駆動力発生指令の制限を解除する。このように、車体が安定した状態で駆動力発生指令の制限を解除するので、回転駆動装置51が駆動力を発揮しても、車体が不安定になることがない。 Further, when the steering wheel angle δ, the link angle η, and the yaw rate ψ all do not increase, that is, when the steering wheel angle δ, the link angle η, and the yaw rate ψ all have signs different from the differential values, the driving force generation command Remove the restrictions. As described above, since the restriction on the driving force generation command is released while the vehicle body is stable, the vehicle body does not become unstable even if the rotational driving device 51 exerts the driving force.
なお、本実施の形態においては、ハンドル角センサ62によって検出されたハンドル角に基づいて、操舵モータ65が操舵軸部材の下端を回転させることにより、操舵輪としての車輪12Fは操舵角を変化させる、いわゆるステアバイワイヤと呼ばれる操舵システムを採用した場合について説明したが、一般的なオートバイ、自転車等の場合と同様に、ハンドルバー41aと操舵軸部材の下端とを機械的に接続して、ハンドルバー41aを操作して直接に車輪12Fの操舵角を変化させるようにすることもできる。すなわち、必ずしも、ステアバイワイヤと呼ばれる操舵システムを採用する必要はない。
In the present embodiment, the
また、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。 The present invention is not limited to the above-described embodiment, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
本発明は、少なくとも左右一対の車輪を有する車両に利用することができる。 The present invention can be used for a vehicle having at least a pair of left and right wheels.
10 車両
11 搭乗部
12F、12L、12R 車輪
20 本体部
25 リンクモータ
35 スロットルグリップ
41a ハンドルバー
51L、51R 回転駆動装置
65 操舵モータ
DESCRIPTION OF SYMBOLS 10
Claims (4)
前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵可能な操舵輪と、
前記本体部に回転可能に取り付けられた車輪であって、操舵不能な非操舵輪と、
前記操舵部又は本体部を旋回方向に傾斜させるリンク機構と、
該リンク機構を作動させる傾斜用アクチュエータ装置と、
前記操舵輪又は非操舵輪に駆動力を付与する回転駆動装置と、
駆動力発生指令を入力する駆動指令装置と、
前記傾斜用アクチュエータ装置及び回転駆動装置を制御する制御装置とを有し、
該制御装置は、前記操舵輪の操舵量、前記リンク機構のリンク角、及び、前記車体のヨーレートのうちの少なくとも1つの値の変化の絶対値が所定値より大きくなると、前記駆動力発生指令を制限することを特徴とする車両。 A vehicle body including a steering unit and a main body unit coupled to each other;
A wheel rotatably attached to the steering unit, and a steerable steering wheel for steering the vehicle body;
Non-steering wheels that are rotatably attached to the main body and are not steerable;
A link mechanism for tilting the steering part or the main body part in a turning direction;
An inclination actuator device for operating the link mechanism;
A rotational drive device for applying a driving force to the steered wheel or the non-steered wheel;
A drive command device for inputting a drive force generation command;
A controller for controlling the tilting actuator device and the rotation driving device,
When the absolute value of a change in at least one of the steering amount of the steered wheel, the link angle of the link mechanism, and the yaw rate of the vehicle body is greater than a predetermined value, the control device issues the driving force generation command. Vehicle characterized by restriction.
該操舵装置から入力された操舵指令情報に基づいて前記操舵輪の操舵角を変化させる操舵用アクチュエータ装置とを更に有し、
前記制御装置は、前記操舵用アクチュエータ装置を制御する請求項1〜3のいずれか1項に記載の車両。 A steering device for inputting steering command information;
A steering actuator device that changes a steering angle of the steered wheel based on steering command information input from the steering device;
The vehicle according to claim 1, wherein the control device controls the steering actuator device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011213650A JP2013071688A (en) | 2011-09-29 | 2011-09-29 | Vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011213650A JP2013071688A (en) | 2011-09-29 | 2011-09-29 | Vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013071688A true JP2013071688A (en) | 2013-04-22 |
Family
ID=48476493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011213650A Withdrawn JP2013071688A (en) | 2011-09-29 | 2011-09-29 | Vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013071688A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016165986A (en) * | 2015-03-06 | 2016-09-15 | 株式会社エクォス・リサーチ | Vehicle |
WO2016143471A1 (en) * | 2015-03-06 | 2016-09-15 | 株式会社エクォス・リサーチ | Vehicle |
WO2018181750A1 (en) | 2017-03-31 | 2018-10-04 | 株式会社エクォス・リサーチ | Vehicle |
WO2019088085A1 (en) * | 2017-10-31 | 2019-05-09 | 株式会社エクォス・リサーチ | Vehicle |
US10421516B2 (en) | 2016-03-31 | 2019-09-24 | Equos Research Co., Ltd. | Vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06153324A (en) * | 1992-11-04 | 1994-05-31 | Toyota Motor Corp | Electric automobile |
JP2006082621A (en) * | 2004-09-15 | 2006-03-30 | Nippon Yusoki Co Ltd | Vehicular traveling control device |
JP2006151290A (en) * | 2004-11-30 | 2006-06-15 | Bridgestone Corp | Controller of electric vehicle |
JP2006151289A (en) * | 2004-11-30 | 2006-06-15 | Bridgestone Corp | Control device for electric two-wheel vehicle |
JP2010263767A (en) * | 2009-04-10 | 2010-11-18 | Equos Research Co Ltd | Vehicle |
-
2011
- 2011-09-29 JP JP2011213650A patent/JP2013071688A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06153324A (en) * | 1992-11-04 | 1994-05-31 | Toyota Motor Corp | Electric automobile |
JP2006082621A (en) * | 2004-09-15 | 2006-03-30 | Nippon Yusoki Co Ltd | Vehicular traveling control device |
JP2006151290A (en) * | 2004-11-30 | 2006-06-15 | Bridgestone Corp | Controller of electric vehicle |
JP2006151289A (en) * | 2004-11-30 | 2006-06-15 | Bridgestone Corp | Control device for electric two-wheel vehicle |
JP2010263767A (en) * | 2009-04-10 | 2010-11-18 | Equos Research Co Ltd | Vehicle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016165986A (en) * | 2015-03-06 | 2016-09-15 | 株式会社エクォス・リサーチ | Vehicle |
WO2016143471A1 (en) * | 2015-03-06 | 2016-09-15 | 株式会社エクォス・リサーチ | Vehicle |
US10040478B2 (en) | 2015-03-06 | 2018-08-07 | Equos Research Co., Ltd. | Vehicle |
US10421516B2 (en) | 2016-03-31 | 2019-09-24 | Equos Research Co., Ltd. | Vehicle |
WO2018181750A1 (en) | 2017-03-31 | 2018-10-04 | 株式会社エクォス・リサーチ | Vehicle |
WO2019088085A1 (en) * | 2017-10-31 | 2019-05-09 | 株式会社エクォス・リサーチ | Vehicle |
CN111278724A (en) * | 2017-10-31 | 2020-06-12 | 株式会社爱考斯研究 | Vehicle with a steering wheel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5741278B2 (en) | vehicle | |
JP5505319B2 (en) | vehicle | |
WO2011102108A1 (en) | Vehicle | |
JP2013144471A (en) | Vehicle | |
JP5521994B2 (en) | vehicle | |
WO2012102388A1 (en) | Vehicle | |
JP5521865B2 (en) | vehicle | |
JP2012011997A (en) | Vehicle | |
JP2013112238A (en) | Vehicle | |
JP2013071688A (en) | Vehicle | |
JP2013199214A (en) | Vehicle | |
JP2013144513A (en) | Vehicle | |
JP5866927B2 (en) | vehicle | |
JP5458722B2 (en) | vehicle | |
WO2011102106A1 (en) | Vehicle | |
JP2011194953A (en) | Vehicle | |
JP5440299B2 (en) | vehicle | |
JP5834835B2 (en) | vehicle | |
JP2013112234A (en) | Vehicle | |
JP2011168094A (en) | Method for setting control value of vehicle | |
JP5617650B2 (en) | vehicle | |
JP5617652B2 (en) | vehicle | |
JP2013112236A (en) | Vehicle | |
JP5304681B2 (en) | vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20151016 |