WO2011160580A1 - Procédé de commande intelligent pour excavatrice hydraulique - Google Patents
Procédé de commande intelligent pour excavatrice hydraulique Download PDFInfo
- Publication number
- WO2011160580A1 WO2011160580A1 PCT/CN2011/076062 CN2011076062W WO2011160580A1 WO 2011160580 A1 WO2011160580 A1 WO 2011160580A1 CN 2011076062 W CN2011076062 W CN 2011076062W WO 2011160580 A1 WO2011160580 A1 WO 2011160580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- excavator
- main controller
- controller
- area
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/23—Pc programming
- G05B2219/23332—Overide stored parameters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/23—Pc programming
- G05B2219/23348—Programmed parameter values in memory, rom, function selection and entry, no cpu
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2616—Earth moving, work machine
Definitions
- the invention relates to an intelligent control method for a hydraulic excavator. Background technique
- the electronically controlled operating system lays the foundation for the intelligentization of the excavator. Through the modification of the controller program, various performance indicators can be easily changed to achieve optimal control.
- the system structure includes: joystick, control unit E CU, pilot control proportional valve.
- the joystick is a resistive electronically controlled handle. Its structure is X and Y. Each axis has two coaxial connected potential sensors, which are used as position signals for positive and negative operation of each axis.
- the handle has a total of 4 analog signal outputs, which mainly output the position command signals of the four operating positions of the joystick to the control ECU, and their output signals change with the change of the operating position;
- Control device ECU In addition to receiving the left and right joysticks In addition to the eight operating position command signals, engine and hydraulic pump operating status information is also obtained from the power control ECU, and system control and fault information are transmitted to the display; four control, turning, boom, stick, bucket, etc. are used.
- the eight action pilots of the action mechanism control the proportional valve;
- the pilot control proportional valve The pilot control proportional valve is electromagnetically controlled. Under the control of the ECU current of the control device, the pilot hydraulic pressure of each action is controlled, thereby controlling each change. Opening and reversing to the valve.
- an intelligent control method for the excavator is constructed, which is mainly used to improve the handling safety and motion accuracy of the excavator.
- the controller receives the pressure sensor and the handle detection parameters at various positions, and feedbacks such as the distance value, the digging force value, the pilot pressure, etc., and compares the safety values pre-stored in the controller to determine whether It can allow the excavator to continue the operation that is being or is about to be executed. If the range value is exceeded, the alarm signal will be sent out, or braking and other safety measures will be taken.
- Accuracy of operation When the excavator is shipped from the factory, various types of presets are preset in the controller. Under the working conditions, the corresponding control parameters are used for various operations. The operator only needs to select the action. The controller automatically controls the output pressure of the hydraulic valve to ensure the accuracy of the operation, and the requirements of the operator are also reduced accordingly. Experience to manipulate.
- the customer cannot customize the settings according to the on-site working environment and personal operating habits. For example, when the site requires the handle to be pressed to the end, the revolving speed cannot exceed a certain value. At present, it can only be achieved by notifying the manufacturer, the manufacturer sending engineers to modify the program, and changing the working environment to be reset.
- the object of the present invention is to provide an intelligent control method for a hydraulic excavator, by which the actual handling capability of the excavator can be improved, and the needs of different customers can be better met.
- the technical solution adopted by the present invention is: an intelligent control method for a hydraulic excavator, wherein a database set in the main controller is divided into a setting area and a recovery area, and factory default data is respectively stored in the setting area. And the recovery area, the main controller is connected to the display modification interface through the CAN bus, and the operation method is:
- the main controller detects the data, including the handle signal, the pressure sensor signal of each valve on the excavator, and the ambient temperature sensor signal. Through logic operation, the adjustment range of the excavator operating parameters and the engine output power is obtained;
- the modified custom data is stored in the set area via the CAN bus and transmitted to the remote server via the wireless network, and the excavator starts to customize according to the set area. According to the operation;
- the main controller calls the data in the recovery area to cover the custom data in the set area.
- the pressure sensor and the ambient temperature sensor can be set by using the prior art, and the main controller calls the detection data on the sensors to determine the adjustment range by a logic operation, and the logic operation is a software program prestored in the main controller.
- the adjustment range and adjust various parameters within the range, such as bucket excavation, unloading, stick excavation, unloading, boom raising, lowering, turning, etc.
- the excavator is provided with a GP S controller, the main controller is connected to the GPS controller via a CAN bus, and the GPS controller is connected to the cluster monitoring center via a wireless network, and the cluster monitoring The center includes a server, a database, and a parameter optimization automatic generation system.
- the main controller of each excavator transmits the customized data and the detection data to a database of the cluster monitoring center via a GPS controller and a wireless network.
- the parameter optimization automatic generation system analyzes and obtains the custom data with the most use of various models under various working conditions, and sets the optimized data, and feeds the optimized data to the manufacturer, and modifies the factory default data of the corresponding model. .
- the main controller of the excavator downloads the optimization data in the cluster monitoring center via a GPS controller and a wireless network, and modifies the customized data in the set area.
- the main controller communicates with the GPS controller through the CAN bus, and the GPS controller transmits various detection data (including the handle signal, the pressure sensor signal of each valve on the excavator and the ambient temperature signal) to the cluster monitoring center (wirelessly).
- Network transmission which can adopt the transmission technology in the prior art
- the cluster monitoring center stores various sensor information and control information related to the customized data in real time to the server database, and the parameter optimization is automatic.
- the generation system automatically analyzes a large amount of real-time data according to the working environment, excavator model, frequency of use, etc., and obtains different working environments, different excavator models, and the most used custom parameters, and obtains optimized data for the whole machine work. .
- the manufacturer engineer in charge of the cluster monitoring center
- the final optimization data by telephone or on-site inspection with the customer or agent. After verification, the result will be used as follows:
- the excavator control parameters include: bucket excavation, unloading, arm excavation, unloading, boom raising, lowering, speed of rotation, and P-Q curve and handle button electrical signals.
- the PQ curve sets the absorption power of the main pump to achieve efficiency, heavy load or fuel economy.
- the custom setting of the handle button electric signal can realize the setting of the functions of the two handles in different directions, without changing the hydraulic circuit, by the main control.
- the device changes the signal output of the corresponding port of the main controller according to the modified data of the operator, so as to meet the needs of different operators, such as the left-handed or the habitual action customer, the manipulation is more humanized.
- a historical data storage interval is provided in the set area, and each of the customized data is stored in the historical data storage interval.
- the historical setting custom data is stored in the historical data storage interval, so that the operator can call the search.
- the data in the historical data storage interval can be directly called, and the setting is omitted.
- the historical data storage amount depends on the capacity of the storage interval, such as optional custom data storage of nearly 10 times, or more.
- the present invention has the following advantages over the prior art:
- the main controller calculates the adjustment range of the excavator control parameters and the engine output power under the conditions of ensuring safety and normal operation according to the detected individual sensor signals, the handle signal and the temperature signal, and the operator can according to the scene.
- the working condition adjusts the parameters and the output power value within the range to improve the handling performance and working ability of the excavator, and meet the operation requirements of excavating under different working conditions;
- the main controller sets the range of the adjustment parameters in the present invention, it is pre-stored with the prior In terms of the fixed value in the main controller, the flexibility and adaptability are higher, and the selection of the limited types of working conditions can be made to meet the needs of the actual operation of the user;
- the main controller is connected to the GP S controller via the CAN bus, and sends the customized data and related environmental data to the cluster monitoring center through the wireless network.
- the parameter optimization automatically generates the system to count different working conditions and corresponding data of different models. , get the optimized data, on the one hand to the manufacturer, repair and supplement the factory default parameters, shorten the time for engineers to develop and simulate the working conditions, and the default parameters are more accurate and comprehensive; on the other hand, the user directly downloads information via the wireless network, and modifies Corresponding to the parameter values under the model to improve the performance of the excavator and achieve resource sharing;
- the custom modification of the electric signal of the handle button can change the function of the handle to meet the needs of different operators, such as left-handed or habitual action customers, without changing the hydraulic pipe;
- FIG. 1 is a schematic view of a block diagram of a hydraulic circuit in Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing the principle of remote communication according to Embodiment 1 of the present invention.
- FIG. 3 is a flow chart of the modification of the custom data in the first embodiment of the present invention. detailed description
- Embodiment 1 Referring to FIG. 1 to FIG. 3, an intelligent control method for a hydraulic excavator, a database set in a main controller is divided into a setting area and a recovery area, and factory default data is respectively stored in the setting area and In the recovery area, the main controller is connected to the display modification interface through the CAN bus, and the operation method is:
- the main controller detects the data, as shown in Figure 1, including the handle signal, the pilot pressure sensor signals RV 1 to RV9 on the excavator, and the front and rear pump main pressure signals RV 10, RV 1 1 And the ambient temperature sensor signal, through logic operation, the adjustment range of the excavator control parameters and the engine output power is obtained;
- the modified custom data is stored in the set area via the CAN bus and transmitted to the remote server via the wireless network, and the excavator starts to operate according to the customized data in the set area;
- the main controller calls the data in the recovery area to cover the custom data in the set area.
- the excavator control parameters include: bucket excavation, unloading, bucket excavation, unloading, boom raising, lowering, speed of rotation, and P-Q curve and handle button electrical signals.
- (1) parameters can be set according to the working environment and operating habits; (2) According to the operator's habits, the function settings can be entered; (3) According to the needs of the options, the options are set; 4) Restore the factory default data for one-click recovery.
- Digger hand or customer can set parameters according to the working environment and operating habits of the site. It can set bucket excavation, unloading, arm excavation, unloading, boom raising, lowering, turning and other speed and PQ curve setting.
- the main pump absorbs power to achieve efficiency, heavy load or fuel economy.
- set the output power of the engine According to the ambient temperature, set the output power of the engine. For example, in winter, the cooling effect is good, the output power of the engine can be improved, and the output power of the engine can be reduced in the summer.
- the temperature change is detected by the ambient temperature sensor, and the MC can be used to set the changeable range for the customer to select.
- the set area is provided with a historical data storage interval, and each of the customized data is stored in the historical data storage interval, and the operator can set a data query for the history, and directly invoke the selected data.
- Digger hand or customer can customize the output of each electronic control handle, which can realize the setting of the function of two handles in different directions, so as to meet the needs of different operators, such as left-handed or Habitual action customers.
- Optional settings For hydraulic shears, crushing tampers, quick-change devices and other options, customize the settings according to flow requirements, working environment, customer habits.
- the user can use the one-button recovery button to drive recovery in the main controller Program, after entering the correct password, display all current parameter values, press the enter key, the main controller calls the data in the recovery area, overwrites the data in the set area, and returns to the factory default settings.
- the excavator is provided with a GP S controller, and the main controller is connected to the GP S controller via a CAN bus, and the GP S controller is connected to the cluster monitoring center via a wireless network.
- the cluster monitoring center includes a server, a database, a parameter optimization automatic generation system, and an automatic warning system for excavation operation.
- the main controller of each excavator transmits the customized data and the detection data to the GP S controller and the wireless network to
- the parameter optimization automatic generation system analyzes and obtains the custom data corresponding to the most used types under various working conditions, and sets the optimized data, and feeds the optimized data to Manufacturer or customer, for the following purposes:
- the engineer in the cluster monitoring center will then conduct a telephone communication or on-site inspection with the customer or agent to verify the final optimization result. After verification, the result is as follows:
- the setting data of the machine used in the field can be modified by the GP S remote download function
- the cluster monitoring center will get more and more real-time data, and each optimization result will be re-verified by the customer, and then corrected, and the optimal correction result will be obtained and saved.
- the design change engineer will be very aware of the working conditions of the excavator and the customer's usage habits. It can be designed according to the latest optimized machine parameters of the cluster monitoring center, matching and debugging. Development and change cycles can be shortened, development is more successful, and customer needs are better met.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Operation Control Of Excavators (AREA)
Abstract
L'invention concerne un procédé de commande intelligent pour une excavatrice hydraulique, dans lequel une base de données située dans une unité de commande principale est divisée en une zone de réglage et en une zone de récupération. L'unité de commande principale est connectée à une interface de modification d'affichage par le biais d'un bus CAN. Le procédé de fonctionnement de l'unité de commande principale comprend les étapes suivantes : a. une modification des données dans laquelle (1) l'unité de commande principale détecte des données et obtient des plages d'ajustement des paramètres de commande de l'excavatrice et de la puissance de sortie du moteur par une opération logique; (2) un opérateur règle les paramètres de commande de l'excavatrice et de la puissance de sortie du moteur dans les plages d'ajustement; et (3) les données d'autodéfinition modifiées sont stockées dans la zone de réglage via un bus CAN et l'excavatrice fonctionne en fonction de ces données; et b. une récupération des données dans laquelle l'unité de commande principale appelle les données dans la zone de récupération et couvre les données d'autodéfinition dans la zone de réglage. Dans cette invention, les plages d'ajustement de données sont données en fonction des données détectées, et l'opérateur peut modifier les données en fonction de la mise en œuvre des conditions et des habitudes de travail afin de répondre aux exigences d'environnement du site et de commande d'utilisateur, et de contribuer à l'amélioration des performances de fonctionnement de l'excavatrice.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102051813A CN101864780B (zh) | 2010-06-22 | 2010-06-22 | 一种液压挖掘机的智能控制方法 |
CN201010205181.3 | 2010-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011160580A1 true WO2011160580A1 (fr) | 2011-12-29 |
Family
ID=42956692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/076062 WO2011160580A1 (fr) | 2010-06-22 | 2011-06-21 | Procédé de commande intelligent pour excavatrice hydraulique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101864780B (fr) |
WO (1) | WO2011160580A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10689831B2 (en) | 2018-03-27 | 2020-06-23 | Deere & Company | Converting mobile machines into high precision robots |
US11162241B2 (en) | 2018-03-27 | 2021-11-02 | Deere & Company | Controlling mobile machines with a robotic attachment |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101864780B (zh) * | 2010-06-22 | 2011-10-12 | 三一重机有限公司 | 一种液压挖掘机的智能控制方法 |
US8498787B2 (en) * | 2011-05-27 | 2013-07-30 | Caterpillar Trimble Control Technologies Llc | Method and system for monitoring the operation of a cable shovel machine |
CN102587443A (zh) * | 2012-02-23 | 2012-07-18 | 上海三一重机有限公司 | 一种履带式挖掘机多路阀液压控制系统 |
CN103587140A (zh) * | 2013-11-04 | 2014-02-19 | 索特传动设备有限公司 | 液压系统的故障监测系统、方法及液压机 |
JP6665412B2 (ja) * | 2015-03-23 | 2020-03-13 | 株式会社タダノ | 作業機械の調整装置 |
CN105332399B (zh) * | 2015-10-23 | 2017-12-01 | 徐州徐工挖掘机械有限公司 | 一种基于权限机制的挖掘机控制装置及控制方法 |
CN106013314B (zh) * | 2016-08-02 | 2018-05-04 | 福州大学 | 装载机智能辅助方法 |
CN109358549B (zh) * | 2018-11-01 | 2020-11-03 | 三一重机有限公司 | 一种挖掘机的智能控制方法及装置 |
CN111930089B (zh) * | 2020-09-11 | 2021-01-01 | 湖南三一中型起重机械有限公司 | 工程机械设备的控制方法、装置、计算机设备及存储介质 |
CN112431252A (zh) * | 2020-12-15 | 2021-03-02 | 徐州徐工挖掘机械有限公司 | 一种挖掘机可定制作业报警控制系统 |
CN113188822A (zh) * | 2021-04-29 | 2021-07-30 | 山重建机有限公司 | 一种挖掘机自动检测装置 |
CN114482170B (zh) * | 2022-03-28 | 2023-09-12 | 上海华兴数字科技有限公司 | 一种双轮铣槽机控制方法、系统、电子设备和存储介质 |
CN114960823A (zh) * | 2022-06-21 | 2022-08-30 | 徐州徐工矿业机械有限公司 | 一种挖掘机多功能电子监控系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6076030A (en) * | 1998-10-14 | 2000-06-13 | Carnegie Mellon University | Learning system and method for optimizing control of autonomous earthmoving machinery |
CN1651666A (zh) * | 2005-03-28 | 2005-08-10 | 广西柳工机械股份有限公司 | 用于液压挖掘机工作装置的轨迹控制系统及方法 |
CN101481918A (zh) * | 2009-01-08 | 2009-07-15 | 三一重机有限公司 | 一种液压挖掘机铲斗运动的控制方法及控制装置 |
JP2009179968A (ja) * | 2008-01-29 | 2009-08-13 | Hitachi Constr Mach Co Ltd | 油圧ショベルのフロント制御装置 |
CN101666105A (zh) * | 2009-07-08 | 2010-03-10 | 北汽福田汽车股份有限公司 | 控制挖掘机动臂上升速度的方法、控制系统及一种挖掘机 |
CN201459784U (zh) * | 2009-07-08 | 2010-05-12 | 北汽福田汽车股份有限公司 | 控制挖掘机动臂上升速度的控制系统及一种挖掘机 |
CN101864780A (zh) * | 2010-06-22 | 2010-10-20 | 三一重机有限公司 | 一种液压挖掘机的智能控制方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100433186B1 (ko) * | 2001-07-27 | 2004-05-27 | 현대중공업 주식회사 | 굴삭기의 엔진과 펌프의 출력 자동 제어 시스템 |
-
2010
- 2010-06-22 CN CN2010102051813A patent/CN101864780B/zh not_active Expired - Fee Related
-
2011
- 2011-06-21 WO PCT/CN2011/076062 patent/WO2011160580A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6076030A (en) * | 1998-10-14 | 2000-06-13 | Carnegie Mellon University | Learning system and method for optimizing control of autonomous earthmoving machinery |
CN1651666A (zh) * | 2005-03-28 | 2005-08-10 | 广西柳工机械股份有限公司 | 用于液压挖掘机工作装置的轨迹控制系统及方法 |
JP2009179968A (ja) * | 2008-01-29 | 2009-08-13 | Hitachi Constr Mach Co Ltd | 油圧ショベルのフロント制御装置 |
CN101481918A (zh) * | 2009-01-08 | 2009-07-15 | 三一重机有限公司 | 一种液压挖掘机铲斗运动的控制方法及控制装置 |
CN101666105A (zh) * | 2009-07-08 | 2010-03-10 | 北汽福田汽车股份有限公司 | 控制挖掘机动臂上升速度的方法、控制系统及一种挖掘机 |
CN201459784U (zh) * | 2009-07-08 | 2010-05-12 | 北汽福田汽车股份有限公司 | 控制挖掘机动臂上升速度的控制系统及一种挖掘机 |
CN101864780A (zh) * | 2010-06-22 | 2010-10-20 | 三一重机有限公司 | 一种液压挖掘机的智能控制方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10689831B2 (en) | 2018-03-27 | 2020-06-23 | Deere & Company | Converting mobile machines into high precision robots |
US11162241B2 (en) | 2018-03-27 | 2021-11-02 | Deere & Company | Controlling mobile machines with a robotic attachment |
Also Published As
Publication number | Publication date |
---|---|
CN101864780A (zh) | 2010-10-20 |
CN101864780B (zh) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011160580A1 (fr) | Procédé de commande intelligent pour excavatrice hydraulique | |
KR101298883B1 (ko) | 작업 기계의 원격 관리 시스템 | |
CN101413279B (zh) | 机电一体化挖掘装载机及控制方法 | |
CA2716175C (fr) | Systeme et procede de commande de plate-forme et de pelle retrocaveuse | |
CN104487681B (zh) | 工作车辆 | |
JP6397135B2 (ja) | 建設機械の出力特性変更システム | |
JP6605291B2 (ja) | 建設機械の制御パラメータ変更システム | |
US20160032949A1 (en) | Slewing drive apparatus for construction machine | |
KR20140048114A (ko) | 건설 기계의 제어 시스템 | |
CN107989085A (zh) | 一种装载机自动铲装的控制系统 | |
CN102912817A (zh) | 挖掘机及其控制方法和控制装置 | |
CN201134037Y (zh) | 无线阀门远程控制装置 | |
WO2021084886A1 (fr) | Machine de travail hydraulique et système de fonctionnement à distance | |
CN208056139U (zh) | 一种装载机自动铲装的控制系统 | |
JP2021143509A (ja) | 作業機械 | |
CN105544642A (zh) | 一种小型挖掘机远程控制系统及方法 | |
CN201317946Y (zh) | 一种挖掘装载组合机 | |
US11314223B2 (en) | Work tool data system and method thereof | |
CN207672651U (zh) | 控制松土器工作装置速度的系统 | |
JP2019047442A (ja) | 建設機械の遠隔操作システム | |
CN111335392B (zh) | 一种挖掘机辅助装置的控制系统和方法 | |
EP4159929A1 (fr) | Excavatrice | |
JP2023013028A (ja) | 建設機械及び作業現場適応システム | |
JP2002364453A (ja) | 作業機械の制御装置 | |
CN115387426B (zh) | 作业机械的控制方法、装置、设备及作业机械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11797611 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11797611 Country of ref document: EP Kind code of ref document: A1 |