WO2011158984A1 - 통합 냉각유로를 갖춘 코어 캐쳐 - Google Patents

통합 냉각유로를 갖춘 코어 캐쳐 Download PDF

Info

Publication number
WO2011158984A1
WO2011158984A1 PCT/KR2010/004076 KR2010004076W WO2011158984A1 WO 2011158984 A1 WO2011158984 A1 WO 2011158984A1 KR 2010004076 W KR2010004076 W KR 2010004076W WO 2011158984 A1 WO2011158984 A1 WO 2011158984A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
main body
body container
core melt
cooling
Prior art date
Application number
PCT/KR2010/004076
Other languages
English (en)
French (fr)
Inventor
김용수
이종호
허선
김지환
윤순철
이희도
Original Assignee
한국수력원자력 주식회사
한국전력기술 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사, 한국전력기술 주식회사 filed Critical 한국수력원자력 주식회사
Priority to CN201080068588.4A priority Critical patent/CN103081023B/zh
Priority to EP10853285.4A priority patent/EP2581913B1/en
Publication of WO2011158984A1 publication Critical patent/WO2011158984A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/016Core catchers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a core catcher with an integrated cooling channel, and more particularly, to the core melt and the reactor pressure by effectively collecting, retaining and cooling the hot core melt discharged through the breakage portion of the reactor pressure vessel during a serious accident of a nuclear power plant.
  • the present invention relates to a core catcher having an integrated cooling flow path that prevents erosion due to mutual reaction of the holding structure to maintain the integrity of the reactor building.
  • the core melt refers to a high-temperature molten material in which enriched uranium, which is a nuclear fuel of the reactor core installed inside the reactor pressure vessel, zirconium used as a coating material, and a plurality of materials in the reactor pressure vessel are mixed.
  • the core melt generates heat by the collapse of the fission product therein.
  • the level of decay heat gradually decreases with the elapsed time after the reactor stops, and the heat of decay after 1 hour of reactor shutdown is approximately 1% of the reactor's rated heat output. Therefore, if the core melt discharged in the event of a serious accident of a nuclear power plant is not cooled properly, the hot core melt reacts with the bottom concrete of the reactor building to generate a large amount of non-condensable gas to melt and erode the bottom. There is a danger of seriously polluting the environment by causing breakage of the pressure-holding structure and leakage of radioactive material to the outside.
  • Core Catcher that collects, holds and cools the core melt in the cavity.
  • the core catcher developed by cooling the core melt by installing a cooling flow path at the bottom of the core melt collection container has AREVA EPR and GE ESBWR application technologies.
  • the AREVA EPR core catcher consists of a pre-catcher collecting core melt, core melt transfer channel, core melt spread and cooling space.
  • the cooling channel of the AREVA EPR is horizontal and has a rectangular cooling channel in which the cooling channel is separated by a structure supporting the core melt holding and spreading vessel.
  • the GE ESBWR core catcher has a funnel-shaped vessel installed directly below the reactor to perform core melt collection, spreading and cooling.
  • the cooling flow of GE ESBWR consists of inclined pipes, and is formed in a circular cooling channel with radially inclined pipes installed under the core melt holding and spreading vessel.
  • the conventional core catcher as described above has a cooling channel formed in the form of cooling channels separated from each other, so that the cross-sectional area is small and the flow resistance is relatively large, which delays the time for cooling the high-temperature core melt. There was a problem that is difficult to cope quickly when it occurs.
  • the present invention has been made to solve the above problems, the core having an integrated cooling flow passage consisting of a structure that can effectively collect, retain and cool the core melt discharged through the reactor pressure vessel breakage in the event of a serious accident in a nuclear power plant Its purpose is to provide a catcher.
  • the core catcher having the integrated cooling flow path of the present invention for realizing the above object holds and cools the core melt discharged through the breakage portion of the reactor pressure vessel in a serious accident in a nuclear power plant to maintain the core melt and the reactor building pressure.
  • a core catcher installed below the reactor pressure vessel to prevent mutual reaction of the structure, the core roof catcher installed below the reactor pressure vessel and collecting core melt, and a scattering point disposed below and outside the body vessel.
  • a lower structure which is disposed with the supporting supports interposed therebetween to form cooling passages at regular intervals for removing heat of the core melt.
  • the core melt spreads on the upper surface of the reverse roof type main body container to increase the heat transfer area of the core melt as well as the heat transfer area formed in the lower part of the main body container. The performance is improved.
  • the cooling flow path is formed by a conventional circular pipe or rectangular channel. Compared to the separated form, the cross-sectional area of the flow path is increased and the flow resistance is reduced, thereby further increasing the cooling performance.
  • the cooling passage in the lower portion of the main body container has an inclination angle of 5 ° to 20 ° from the center portion to the edge of the horizontal basis, the critical heat flux (CHF) is increased compared to the horizontal cooling passage to remove heat This has the effect of being improved.
  • CHF critical heat flux
  • a heat resistant layer made of a metal oxide material such as zirconia and magnesia is formed in the upper and rim of the main body container, so that the main body container and the cooling flow passage structure are heat-resistant layer while the core melt is spread and cooled in the main body container. It is protected from the core melt by the effect that the stable cooling can be continued.
  • FIG. 1 is a cross-sectional view schematically showing a core catcher having an integrated cooling passage according to the present invention installed in a lower cavity of a reactor building under a reactor pressure vessel;
  • FIG. 2 is an exploded perspective view of a core catcher having an integrated cooling channel according to the present invention
  • FIG. 3 is a perspective view of the combination of FIG.
  • FIG 4 is a perspective view showing an embodiment in which the overflow prevention plate is further provided on the upper portion of the main body container in Figure 3,
  • Figure 5 is a side view showing an embodiment provided with a heat-resistant layer and a protective plate on the upper surface of the body container in the core catcher with integrated cooling flow path according to the present invention
  • FIG. 6 is a cross-sectional view showing one embodiment of a cooling passage in a core catcher having an integrated cooling passage according to the present invention
  • FIG. 7 is a cross-sectional view showing another embodiment of a cooling passage in a core catcher having an integrated cooling passage according to the present invention.
  • valve 100 core catcher
  • main body container 110a main body container upper surface
  • center body container 112 the edge wall
  • FIG. 1 is a cross-sectional view schematically showing a core catcher having an integrated cooling passage according to the present invention installed in a lower cavity of a reactor building under a reactor pressure vessel.
  • the core catcher 100 having an integrated cooling flow path according to the present invention holds and cools the core melt 11 discharged through the breakage portion of the reactor pressure vessel 10 when a serious accident occurs in a nuclear power plant.
  • the reactor In order to prevent the mutual reaction of the pressure maintaining structure 20 of the reactor building and the reactor is to be installed in the lower cavity below the pressure vessel (10).
  • the core catcher 100 has a container shape in which a high temperature core melt 11 can be collected, and a coolant supply part is formed around the bottom and side of the core catcher 100 to cool the collected core melt 11.
  • the cooling flow path 101 through which the low temperature cooling water supplied from 30 flows is formed.
  • the coolant supply unit 30 is stored in the intermediate reservoir 34 and the reload tank 35 after the coolant condensed on the bottom 32 of the operating floor of the reactor building is passed through the condensate filter 33, the reload tank 35 It is configured to supply the cooling water to the cooling flow path 101 through the valve 37 installed in the cooling water supply pipe 36 connected to the outlet of the).
  • Figure 2 is an exploded perspective view of the core catcher having an integrated cooling passage according to the present invention
  • Figure 3 is a combined perspective view of FIG.
  • the core catcher 100 of the present invention is arranged to form a reverse roof type body container 110 for collecting the core melt 11 and cooling passages 101 at regular intervals on the lower and outer sides of the body container 110. It includes a lower structure 120 and the support 130 is scattered disposed between the main body container 110 and the lower structure (120).
  • the main body container 110 is formed of an inverted roof shape in which upwardly inclined surfaces are formed from both sides of the central portion 111, and both edge portions are formed in a structure in which the edge wall surface 112 protrudes upward, thereby forming a pressure vessel 10.
  • the core melt 11 discharged through the breakage portion is dropped and spread on the inclined upper surface 110a of the main body container 110 and collected by flowing down toward the central portion 111.
  • edge wall surface 112 of the main body container 110 serves as a protective wall to allow the core melt 11 to be retained without overflowing the main body container 110.
  • the lower structure 120 has an upper surface 120a formed of an inclined surface parallel to the lower surface of the main body container 110, and both side edge portions of the lower structure 120 have an outer side of the edge wall surface 112 of the main body container 110.
  • the edge wall surface 122 parallel to the side is configured to protrude upward.
  • a plurality of supports 130 are scattered at regular intervals on the inner surface of the upper surface 120a and the edge wall surface 122 of the lower structure 120, and the body container 110 is disposed on the support 130. It is fixed on the top.
  • the reverse roof type central portion of the lower structure 120 is formed with a coolant inlet 121 having a groove shape in the front-rear direction, and has an inclined upward slope to both sides based on the coolant inlet 121. have.
  • the main body container 110 when the main body container 110 is coupled to the lower structure 120, the main body container 110 and the lower structure by the support 130 is scattered from the center portion of the lower structure 120 to the edge portion.
  • the integrated cooling flow path 101 of the Piloti structure having a constant height and no division between the flow paths is formed between the 120.
  • the main body container 110 is made of stainless steel or carbon steel, and is subjected to the heat transfer necessary for removing heat from the core melt 11 to the integrated cooling flow path 101 and the load due to the retention and drop of the core melt 11. In addition to the structural characteristics to withstand, it is preferable to be configured to satisfy the corrosion resistance for when boric acid water is injected into the cooling flow path (101).
  • FIG. 4 is a perspective view showing an embodiment in which the overflow prevention plate is further provided on the upper portion of the main body container in FIG.
  • An overflow prevention plate 115 may be further provided at the upper portion of both side wall 112 of the main body container 110 so that the core melt 11 may be retained without overflowing the main body container 110. .
  • the overflow preventing plate 115 may be installed to be inclined at a predetermined angle toward the center of the main body container 110 with respect to the vertical line at the top of the edge wall 112, and thus the core melt 11 is excessively discharged When the accident occurs, the core melt 11 can be prevented from overflowing to the outside of the main body container 110.
  • Figure 5 is a side view showing an embodiment provided with a heat-resistant layer and a protective plate on the upper surface of the body container in the core catcher having an integrated cooling flow path according to the present invention.
  • the inner surface 112a of the upper surface 110a of the main body container 110 and the inner side surface 112a of the edge wall 112 may be formed with a heat-resistant layer 113 made of a metal oxide such as zirconia and magnesia. ) Protects the pressure holding structure 20 of the body container 110 and the cooling flow path 101 while being spread and cooled in the body container 110 so that stable cooling of the core melt 11 can be continued.
  • the heat-resistant layer 113 such as tantalum or tungsten, may be used.
  • a high melting point metal protective plate 114 may be installed, thereby maintaining the structural integrity of the core catcher 100.
  • the core melt 110 is collected in the main body container 110 to collect the inverted roof type inclined main body container upper surface 110a and the edge inner surface ( Spreading occurs at 112a).
  • the heat transfer is increased by the inclined surface such that the core melt 11 may be effectively cooled through the cooling passage 101 under the main body container 110 as well as the upper heat transfer of the core melt 11.
  • FIG. 6 is a cross-sectional view showing one embodiment of a cooling passage in a core catcher having an integrated cooling passage according to the present invention.
  • the cooling flow path 101 passes through a space between the main body container 110 and the lower structure 120 inclined upwardly from both sides of the cooling water inlet 121 to determine the body container 110.
  • the spacing between the body container 110 and the lower structure 120 is formed by installing the support 130, the spacing between the lower structure 120 and the pressure maintaining structure 20 is a separate support (Not shown) may be provided.
  • the cooling flow path 101 has an inclination angle of 5 ° to 20 ° from the center portion to the edge of the horizontal line, and thus the horizontal cooling flow path (CHF) increases as the critical heat flux (CHF) increases. Compared to heat removal ability.
  • the coolant When the injection of the coolant starts, the coolant is introduced through the coolant inlet 121 and the hot core melt 11 gradually increases in temperature through heat transfer between the coolant and the core melt 11 with the main body container 110 interposed therebetween. Will fall.
  • cooling water 31 moving to both upper portions of the core catcher 100 is recycled along the precipitation part 103 and the remaining cooling water 31 is the core melt solution.
  • 11 is supplied into the collected body container 110 to be in direct contact with the core melt 11 and filled in the upper portion of the core melt 11.
  • Cooling water passing through the inclined cooling flow path 101 between the main body container 110 and the lower structure 120 is lowered in density as the temperature is increased by heat transfer with the core melt 11 so as to move upward along the inclined surface. Therefore, such a natural circulation is made continuously, and continuous cooling is achieved by cocurrent natural circulation between the bubbles and the coolant 31 generated at this time.
  • FIG. 7 is a cross-sectional view showing another embodiment of a cooling passage in a core catcher having an integrated cooling passage according to the present invention.
  • Cooling flow path 102 according to another embodiment of the present invention, the space between the body container 110 and the lower structure 120 inclined upward from both sides of the cooling water inlet 121 and the edge of the body container 110 Counter-current natural circulation occurs along the upper space between the wall 112 and the edge wall 122 of the lower structure 120.
  • the cooling flow path 102 is installed so that the bottom surface and side surfaces of the lower structure 120 are in close contact with the pressure maintaining structure 20 as compared to the cooling flow path 101 shown in FIG. 6.
  • the support 130 is of the same configuration except that the height is adjusted higher.
  • the air bubbles and the coolant 31 are formed in the cooling flow path 102 from the coolant inlet 121 at the lower center of the lower part of the main body container 110 along the lower surface of the main body container 110 toward the edge walls 112 and 122. Flow is formed, and the generated bubbles are discharged to the upper portion of the core catcher 100, and new coolant is introduced.
  • the cooling water 31 absorbing heat through heat exchange with the core melt 11 is moved upward and filled into the main body container 110, and the relatively low temperature cooling water 31 filled in the main body container 110. ) Flows down the inclined surface of the lower structure 120 toward the lower central portion of the main body container 110 from the edge wall 122, and the bubbles and the coolant are continuously cooled through the countercurrent natural circulation.
  • the core catcher 100 having the integrated cooling passage of the present invention by forming a cooling passage having an inclined surface of the inverted roof type, the cross section of the core melt spreads during the fall of the core melt 11 and the cross section of the cooling oil becomes wide.
  • the series speed (CHF) is increased to increase the cooling efficiency, as well as made of a simple coupling structure of the main body container 110 and the lower structure 120 and the support 130 there is also an easy manufacturing and installation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

본 발명은 원자력발전소에서 중대사고 발생시 원자로 압력용기 파손부를 통해 방출되는 노심용융물을 효과적으로 수집, 보유 및 냉각할 수 있는 구조로 이루어진 통합 냉각유로를 갖춘 코어 캐쳐를 제공함에 그 목적이 있다. 이를 구현하기 위한 본 발명은, 원자력발전소에서 중대사고시 원자로 압력용기의 파손부를 통해 방출된 노심용융물을 보유 및 냉각시켜 상기 노심용융물과 원자로건물 압력 유지 구조물의 상호 반응을 방지하기 위해 원자로 압력용기 하측에 설치되는 코어 캐쳐에 있어서, 상기 원자로 압력용기 하측에 설치되어 노심용융물을 수집하는 역지붕형의 본체 용기와, 상기 본체 용기의 하부 및 외측에 산점 배치된 지지대를 사이에 두고 배치되어 상기 노심용융물의 열을 제거하기 위한 일정한 간격의 냉각유로를 형성하는 하부 구조물을 포함한다.

Description

통합 냉각유로를 갖춘 코어 캐쳐
본 발명은 통합 냉각유로를 갖춘 코어 캐쳐에 관한 것으로서, 더욱 상세하게는 원자력발전소의 중대사고시 원자로 압력용기의 파손부를 통해 방출되는 고온의 노심용융물을 효과적으로 수집, 보유 및 냉각시킴으로써 노심용융물과 원자로건물 압력 유지 구조물의 상호 반응에 의한 침식을 방지하여 원자로건물의 건전성을 유지할 수 있도록 하는 통합 냉각유로를 갖춘 코어 캐쳐에 관한 것이다.
발생가능성이 매우 낮기는 하나, 원자력발전소에서 중대사고 발생시 노심용융물이 원자로 압력용기의 파손부를 통해 원자로 하부공동으로 방출될 가능성이 있다. 여기서 노심용융물이란 원자로 압력용기의 내부에 설치되는 원자로 노심의 핵연료인 농축우라늄과, 피복재로 사용되는 지르코늄 및 상기 원자로 압력용기 내부 다수의 물질들이 혼합된 고온의 용융물질을 말한다.
상기 노심용융물은 그 내부의 핵분열 생성물의 붕괴로 열을 발생시킨다. 붕괴열의 수준은 원자로 정지 후 경과시간에 따라 점차 감소되며, 원자로 정지 1시간 후의 붕괴열은 원자로 정격 열출력의 약 1% 정도 수준이다. 따라서 원자력발전소의 중대사고 발생시 배출된 노심용융물이 적절히 냉각되지 않으면 결국 고온의 노심용융물은 원자로건물 하부공동 바닥 콘크리트와 반응하여 다량의 비응축성 가스를 발생시키면서 바닥을 용융 침식시키게 되며, 최종적으로 원자로건물 압력 유지 구조물의 파손을 야기시켜 방사능 물질이 외부로 누출됨으로써 환경을 심각하게 오염시킬 위험이 있다.
상기와 같은 원자력발전소의 중대사고시 원자로건물 건전성 상실에 대처하기 위해 노심용융물과 원자로건물 하부공동 바닥 콘크리트 간에 직접 반응하지 않도록 노심용융물을 보유 및 냉각하는 여러 가지 대응책이 있으며, 그 대표적인 설비로서 원자로건물 하부공동에서 노심용융물을 수집, 보유 및 냉각수 공급을 통해 냉각하는 것이 코어 캐쳐(Core Catcher)이다.
종래 노심용융물 수집 용기의 하부에 냉각유로를 설치하여 노심용융물을 냉각하는 방식으로 개발된 코어 캐쳐는 AREVA EPR과 GE ESBWR 적용 기술이 있다.
상기 AREVA EPR 코어 캐쳐는 노심용융물을 수집하는 프리-캐쳐(Pre-Catcher), 노심용융물 이송채널, 노심용융물 퍼짐 및 냉각 공간으로 구성된다. AREVA EPR의 냉각유로는 수평형이며, 노심용융물 보유 및 퍼짐 용기를 지지하는 구조물에 의해 냉각유로가 분리된 사각 냉각채널 형태이다.
상기 GE ESBWR 코어 캐쳐는 원자로 직하부에 노심용융물 수집, 퍼짐 및 냉각을 수행하는 깔때기 모양의 용기가 설치된 구조이다. GE ESBWR의 냉각유로는 경사진 배관으로 구성되며, 노심용융물 보유 및 퍼짐 용기 하부에 방사형으로 경사진 배관이 설치되어 냉각유로가 분리된 원형 냉각채널 형태이다.
그러나 상기와 같은 종래의 코어 캐쳐는 냉각유로가 서로 분리된 냉각채널 형태로 구성되어 있어, 유로 단면적이 작고, 유로 저항이 상대적으로 커서, 이로 인해 고온의 노심용융물을 냉각하기 위한 시간이 지연되어 사고발생시 신속하게 대처하기 어려운 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 원자력발전소에서 중대사고 발생시 원자로 압력용기 파손부를 통해 방출되는 노심용융물을 효과적으로 수집, 보유 및 냉각할 수 있는 구조로 이루어진 통합 냉각유로를 갖춘 코어 캐쳐를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 통합 냉각유로를 갖춘 코어 캐쳐는, 원자력발전소에서 중대사고시 원자로 압력용기의 파손부를 통해 방출된 노심용융물을 보유 및 냉각시켜 상기 노심용융물과 원자로건물 압력 유지 구조물의 상호 반응을 방지하기 위해 원자로 압력용기 하측에 설치되는 코어 캐쳐에 있어서, 상기 원자로 압력용기 하측에 설치되어 노심용융물을 수집하는 역지붕형의 본체 용기와, 상기 본체 용기의 하부 및 외측에 산점 배치된 지지대를 사이에 두고 배치되어 상기 노심용융물의 열을 제거하기 위한 일정한 간격의 냉각유로를 형성하는 하부 구조물을 포함한다.
본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에 의하면, 역지붕형 본체 용기의 상면에 노심용융물이 퍼짐으로 인하여 노심용융물의 상부 열전달 면적뿐 아니라 본체 용기 하부에 형성된 냉각유로로의 열전달 면적이 증가되어 냉각성능이 향상되는 효과가 있다.
또한 본 발명에 의하면, 본체 용기 하부의 냉각유로가 일정한 높이를 가지도록 중앙부로부터 가장자리까지 지지대가 산점 배치된 필로티(Piloti) 구조의 통합 냉각유로를 형성함으로써 종래 원형 파이프나 직사각형 채널 등에 의해 냉각유로가 분리된 형태에 비하여 유로 단면적이 증가하고 유로 저항이 감소되어 냉각성능을 더욱 높일 수 있는 효과가 있다.
또한 본 발명에 의하면, 본체 용기 하부의 냉각유로는 수평을 기준으로 중앙부로부터 가장자리 방향으로 5°~ 20°의 경사각도를 가지고 있어 수평 냉각유로에 비하여 임계열속(CHF)이 증가되어 열제거 능력이 향상되는 효과가 있다.
또한 본 발명에 의하면, 본체 용기의 상부 및 테두리 내측에는 지르코니아, 마그네시아와 같은 금속산화물 재질의 내열층이 형성됨으로써, 노심용융물이 본체 용기 내에서 퍼짐 및 냉각되는 동안 본체 용기 및 냉각유로 구조물이 내열층에 의해 노심용융물로부터 보호되어 안정적인 냉각이 지속될 수 있는 효과가 있다.
또한 본 발명에 의하면, 원자로 압력용기 파손부를 통해 노심용융물 제트 방출시 내열층 및 본체 용기의 침식을 방지하기 위해 상기 내열층 위에 탄탈륨이나 텅스텐과 같은 용융점이 높은 금속재질의 보호판을 설치함으로써 코어 캐쳐의 구조적 건전성을 유지할 수 있는 효과가 있다.
도 1은 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐가 원자로 압력용기 하측의 원자로건물 하부공동에 설치된 모습을 개략적으로 보여주는 단면 구성도,
도 2는 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐의 분리 사시도,
도 3은 도 2의 결합 사시도,
도 4는 도 3에서 본체 용기의 상부에 넘침방지판이 추가로 구비된 실시예를 보여주는 결합 사시도,
도 5는 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에서 본체 용기의 상면에 내열층과 보호판이 구비된 실시예를 보여주는 측면도,
도 6은 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에서 냉각유로의 일실시예를 보여주는 단면도,
도 7은 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에서 냉각유로의 다른 실시예를 보여주는 단면도이다.
<부호의 설명>
10 : 원자로 압력용기 11 : 노심용융물
20 : 압력 유지 구조물 30 : 냉각수 공급부
31 : 냉각수 32 : 원자로건물 운전층 바닥
33 : 응축수 필터 34 : 중간 저장조
35 : 재장전수탱크 36 : 냉각수 공급관
37 : 밸브 100 : 코어 캐쳐
101,102 : 냉각유로 103 : 강수부
110 : 본체 용기 110a : 본체 용기 상부면
111 : 본체 용기 중앙부 112 : 테두리 벽면
112a : 테두리 내측면 113 : 내열층
114 : 보호판 115 : 넘침방지판
120 : 하부 구조물 120a : 하부 구조물 상부면
121 : 냉각수 유입부 122 : 테두리 벽면
130 : 지지대
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 1은 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐가 원자로 압력용기 하측의 원자로건물 하부공동에 설치된 모습을 개략적으로 보여주는 단면 구성도이다.
본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐(100)는, 원자력발전소에서 중대사고 발생시 원자로 압력용기(10)의 파손부를 통해 방출된 노심용융물(11)을 보유 및 냉각시켜 상기 노심용융물(11)과 원자로 건물의 압력 유지 구조물(20)의 상호 반응을 방지하기 위해 원자로 압력용기(10) 하측의 하부공동에 설치되는 것이다.
상기 코어 캐쳐(100)는 고온의 노심용융물(11)이 수집될 수 있는 용기 형상으로 이루어지고, 수집된 노심용융물(11)을 냉각하기 위하여 코어 캐쳐(100)의 저면과 측부 둘레에는 냉각수 공급부(30)로부터 공급된 저온의 냉각수가 흐르는 냉각유로(101)가 형성되어 있다.
상기 냉각수 공급부(30)는 원자로건물의 운전층 바닥(32)에 응축된 냉각수가 응축수 필터(33)를 통과하여 중간 저장조(34)와 재장전수탱크(35)에 저장된 뒤에 상기 재장전수탱크(35)의 배출구에 연결된 냉각수공급관(36)에 설치된 밸브(37)를 통해 상기 냉각유로(101)에 냉각수를 공급하도록 구성되어 있다.
이하, 도 1에서 개략적으로 도시한 코어 캐쳐(100)의 세부 구성 및 작용을 설명한다.
도 2는 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐의 분리 사시도, 도 3은 도 2의 결합 사시도이다.
본 발명의 코어 캐쳐(100)는 노심용융물(11)을 수집하는 역지붕형의 본체 용기(110)와, 상기 본체 용기(110)의 하부 및 외측에 일정한 간격의 냉각유로(101)를 형성하며 배치되는 하부 구조물(120) 및 상기 본체 용기(110)와 하부 구조물(120) 사이에 산점 배치되는 지지대(130)를 포함한다.
상기 본체 용기(110)는 중앙부(111)로부터 양측으로 상향 경사면이 형성되는 역지붕형으로 이루어지고, 양측 가장자리부에는 상향으로 테두리 벽면(112)이 돌출된 구조로 이루어져 있어, 압력용기(10)의 파손부를 통해 방출된 노심용융물(11)은 본체 용기(110)의 경사진 상부면(110a)에 낙하되어 퍼지면서 중앙부(111)를 향해 흘러내려 수집된다.
여기서 상기 본체 용기(110)의 테두리 벽면(112)은 노심용융물(11)이 본체 용기(110)의 바깥으로 범람하지 않고 보유될 수 있도록 하는 방어벽 역할을 한다.
상기 하부 구조물(120)은 그 상부면(120a)이 상기 본체 용기(110)의 하부면과 평행한 경사면으로 이루어지고, 그 양측 가장자리부에는 상기 본체 용기(110)의 테두리 벽면(112)의 외측면과 평행한 테두리 벽면(122)이 상향으로 돌출된 구조로 이루어져 있다.
그리고 상기 하부 구조물(120)의 상부면(120a)과 테두리 벽면(122)의 내측면에는 다수의 지지대(130)가 일정 간격으로 산점 배치되어 있고, 상기 지지대(130) 위로 본체 용기(110)가 얹어져 고정된다.
또한 상기 하부 구조물(120)의 역지붕형 중앙부에는 전후 방향으로 도랑 형상의 냉각수 유입부(121)가 형성되어 있고, 상기 냉각수 유입부(121)를 기준으로 양측으로 상향 경사면이 대칭된 형상으로 배치되어 있다.
도 3을 참조하면, 상기 하부 구조물(120) 위에 본체 용기(110)가 결합되면, 하부 구조물(120)의 중앙부로부터 가장자리부까지 산점 배치된 지지대(130)에 의해 본체 용기(110)와 하부 구조물(120) 사이에는 일정한 높이를 가지며 유로 사이에 구분이 없는 필로티(Piloti) 구조의 통합형 냉각유로(101)가 형성된다.
상기 본체 용기(110)는 스테인레스 스틸 또는 카본 스틸로 제작되어, 노심용융물(11)에서 상기 통합형 냉각유로(101)로 열을 제거하는데 필요한 열전달과 노심용융물(11)의 보유 및 낙하 등에 의한 하중에 견디는 구조적 특성과 함께 냉각유로(101)에 붕산수가 주입되었을 때에 대비한 내부식성을 만족할 수 있도록 구성됨이 바람직하다.
도 4는 도 3에서 본체 용기의 상부에 넘침방지판이 추가로 구비된 실시예를 보여주는 결합 사시도이다.
본체 용기(110)의 양측 테두리 벽면(112)의 상부에는 노심용융물(11)이 본체 용기(110)의 바깥으로 범람하지 않고 보유될 수 있도록 하는 넘침방지판(115)이 추가로 구비될 수 있다.
상기 넘침방지판(115)은 테두리 벽면(112)의 상부에서 수직선을 기준으로 본체 용기(110)의 중앙부를 향하여 소정 각도 경사지게 설치될 수 있고, 이에 따라 노심용융물(11)이 과다하게 방출되는 중대사고 발생시에 노심용융물(11)이 본체 용기(110)의 외부로 범람하는 것을 방지할 수 있다.
도 5는 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에서 본체 용기의 상면에 내열층과 보호판이 구비된 실시예를 보여주는 측면도이다.
본체 용기(110)의 상부면(110a)과 테두리 벽면(112)의 내측면(112a)에는 지르코니아, 마그네시아와 같은 금속산화물 재질의 내열층(113)이 형성될 수 있으며, 이에 따라 노심용융물(11)이 본체 용기(110) 내에서 퍼짐 및 냉각되는 동안 본체 용기(110) 및 냉각유로(101)의 압력 유지 구조물(20)을 보호하여 노심용융물(11)의 안정적인 냉각이 지속될 수 있도록 한다.
또한 원자로 압력용기(10)의 파손부를 통해 노심용융물(11)의 제트 방출시 내열층(113) 및 본체 용기(110)의 침식을 방지하기 위해 상기 내열층(113)의 위에는 탄탈륨이나 텅스텐과 같은 용융점이 높은 금속재질의 보호판(114)이 설치될 수 있으며, 이에 따라 코어 캐쳐(100)의 구조적 건전성을 유지할 수 있다.
상기와 같이 구성된 코어 캐쳐(100)에 노심용융물(11)이 낙하되면, 노심용융물(110)은 본체 용기(110) 내에 수집되어 역지붕형의 경사진 본체 용기 상부면(110a)과 테두리 내측면(112a)에 퍼짐이 이루어진다. 이와 같은 경사면에 의해 열전달이 증가되어 노심용융물(11)의 상부 열전달뿐 아니라 본체 용기(110) 하부의 냉각유로(101)를 통해 효과적으로 노심용융물(11)의 냉각이 이루어질 수 있다.
이하, 본 발명에 따른 코어 캐쳐(100)에서의 노심용융물(11)의 냉각 작용을 설명한다.
도 6은 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에서 냉각유로의 일실시예를 보여주는 단면도이다.
본체 용기(110) 내에서 노심용융물(11)의 퍼짐이 이루어진 후에, 상기 냉각수 공급부(30)로부터 냉각수 유입부(121)로 냉각수의 주입이 시작된다.
본 발명의 일실시예에 따른 냉각유로(101)는, 냉각수 유입부(121)로부터 양측으로 상향 경사진 본체 용기(110)와 하부 구조물(120) 사이의 공간을 통과하여 본체 용기(110)의 테두리 벽면(112)과 하부 구조물(120)의 테두리 벽면(122) 사이의 상부 공간을 경유한 후에 하부 구조물(120)의 외측면과 압력 유지 구조물(20)의 내측면 사이 공간의 강수부(103)를 통해 하향 이동되어 다시 상기 냉각수 유입부(121)로 회귀하는 병류식(Co-current) 자연 순환이 이루어지도록 구성된 것이다.
여기서, 상기 본체 용기(110)와 하부 구조물(120) 사이의 간격은 상기한 지지대(130)를 설치함으로써 형성되고, 상기 하부 구조물(120)과 압력 유지 구조물(20) 사이의 간격은 별도의 지지대(미도시됨)가 설치됨으로써 이루어질 수 있다.
본 실시예에 따른 냉각유로(101)는 수평선을 기준으로 중앙부로부터 가장자리 방향으로 5°~ 20°의 경사각도를 가지고 있어 임계열속(CHF; Critical Heat Flux) 이 증가됨에 따라서 수평한 냉각유로에 비해 열 제거 능력을 향상시킬 수 있다.
냉각수의 주입이 시작되면, 냉각수 유입부(121)를 통해 냉각수가 유입되고 본체 용기(110)를 사이에 두고 냉각수와 노심용융물(11) 사이의 열전달을 통해 고온의 노심용융물(11)은 점차 온도가 떨어지게 된다.
상기 냉각유로(101)를 따라서 냉각수의 순환이 계속되면서 코어 캐쳐(100)의 양측 상부로 이동하는 일부의 냉각수(31)는 상기 강수부(103)를 따라서 재순환되고 나머지 냉각수(31)는 노심용융액(11)이 수집된 본체 용기(110)의 내측으로 공급되어 노심용융액(11)과 직접 접촉하게 되며 노심용융액(11)의 상부에 충진된다.
상기 본체 용기(110)와 하부 구조물(120) 사이의 경사진 냉각유로(101)를 통과하는 냉각수는 노심용융물(11)과의 열전달에 의해 온도가 상승함에 따라서 밀도가 낮아져 경사면을 따라 상향 이동하게 되므로 이와 같은 자연 순환이 계속적으로 이루어져 이때 발생하는 기포와 냉각수(31) 간의 병류식 자연 순환으로 지속적인 냉각이 이루어지게 된다.
도 7은 본 발명에 따른 통합 냉각유로를 갖춘 코어 캐쳐에서 냉각유로의 다른 실시예를 보여주는 단면도이다.
본 발명의 다른 실시예에 따른 냉각유로(102)는, 냉각수 유입부(121)로부터 양측으로 상향 경사진 본체 용기(110)와 하부 구조물(120) 사이의 공간과 상기 본체 용기(110)의 테두리 벽면(112)과 하부 구조물(120)의 테두리 벽면(122) 사이의 상부 공간을 따라서 향류식(Counter-current) 자연 순환이 이루어지도록 구성된 것이다.
본 실시예에 따른 냉각유로(102)는, 상술한 도 6에 도시된 냉각유로(101)와 비교하여 하부 구조물(120)의 바닥면과 측면이 압력 유지 구조물(20)에 밀착되도록 설치되어 코어 캐쳐(100)의 양측 상부로부터 본체 용기(110)의 하부 중앙으로 연결되는 강수부(103)가 없는 점과, 통합 냉각유로(102) 내에서 향류식 유동이 일어날 수 있도록 상기 냉각유로(102)의 지지대(130) 높이가 더 높게 조정되는 점을 제외하고는 동일하게 구성된 것이다.
냉각수 주입 후, 상기 냉각유로(102) 내에서 본체 용기(110) 하부면을 따라서 본체 용기(110) 하부 중앙의 냉각수 유입부(121)로부터 테두리 벽면(112,122) 방향으로 기포와 냉각수(31)의 유동이 형성되며, 발생된 기포는 코어 캐쳐(100) 상부로 배출되면서 새로운 냉각수가 유입된다.
상기 노심용융물(11)과의 열교환을 통해 열을 흡수한 냉각수(31)는 상향 이동되어 본체 용기(110) 내부로 충진되고, 본체 용기(110) 내에 충진되어 있던 상대적으로 온도가 낮은 냉각수(31)는 하부 구조물(120)의 경사면을 따라 테두리 벽면(122)에서 본체 용기(110)의 하부 중앙부 방향으로 흘러내려가 다시 기포와 냉각수가 향류식 자연 순환을 통해 지속적으로 냉각이 이루어지게 된다.
상기와 같은 본 발명의 통합 냉각유로를 갖춘 코어 캐쳐(100)의 구성에 의하면, 역지붕형의 경사면을 갖는 냉각유로를 형성함으로써 노심용융물(11)의 낙하시 퍼짐 및 냉각유로 단면적이 넓어짐과 아울러 임계열속(CHF)이 증가되어 냉각 효율을 높일 수 있을 뿐만 아니라 본체 용기(110)와 하부 구조물(120) 및 지지대(130)의 간단한 결합 구조로 이루어져 제작 및 설치 또한 용이한 이점이 있다.

Claims (8)

  1. 원자력발전소에서 중대사고시 원자로 압력용기의 파손부를 통해 방출된 노심용융물을 보유 및 냉각시켜 상기 노심용융물과 원자로건물 압력 유지 구조물의 상호 반응을 방지하기 위해 원자로 압력용기 하측에 설치되는 코어 캐쳐에 있어서,
    상기 원자로 압력용기 하측에 설치되어 노심용융물을 수집하는 역지붕형의 본체 용기와,
    상기 본체 용기의 하부 및 외측에 산점 배치된 지지대를 사이에 두고 배치되어 상기 노심용융물의 열을 제거하기 위한 일정한 간격의 냉각유로를 형성하는 하부 구조물을 포함하는 통합 냉각유로를 갖춘 코어 캐쳐.
  2. 제1항에 있어서,
    상기 본체 용기는 역지붕형 중앙 경사면 위에 노심용융물의 수집 및 퍼짐이 이루어지고,
    상기 본체 용기의 가장자리부에는 상기 노심용융물이 본체 용기의 바깥으로 범람하지 않고 보유될 수 있도록 하는 테두리 벽면이 구비된 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
  3. 제2항에 있어서,
    상기 본체 용기의 하부 경사면 및 테두리 벽면 외부와 냉각유로가 접촉되고,
    상기 냉각유로는 본체 용기와 하부 구조물 사이에 일정한 간격을 갖도록 지지대가 산점 배치된 필로티 구조로 이루어져 냉각유로 사이의 구분이 없는 통합 냉각유로를 형성하는 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
  4. 제3항에 있어서,
    상기 냉각유로는 노심용융물을 보유한 상기 본체 용기의 경사면과 수평인 경사형 냉각유로를 형성하는 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
  5. 제2항에 있어서,
    상기 노심용융물이 낙하한 초기에는 상기 본체 용기의 하부 중앙으로 냉각수가 주입되고,
    냉각수 주입이 완료되면 상기 냉각유로의 중앙부로부터 상기 테두리 벽면의 냉각유로를 거쳐 코어 캐쳐 상부로부터 본체 용기의 하부 중앙으로 연결된 강수부를 통해 기포와 냉각수가 병류식 자연 순환되어 상기 노심용융물의 열이 제거되는 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
  6. 제2항에 있어서,
    상기 노심용융물이 낙하한 초기에는 상기 본체 용기의 하부 중앙으로 냉각수가 주입되고,
    냉각수 주입이 완료되면 상기 냉각유로 내에서 냉각수가 향류식 자연 순환되어 상기 노심용융물의 열이 제거되는 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
  7. 제2항에 있어서,
    상기 본체 용기의 상부면 및 테두리 벽면의 내측면에는 내열층이 형성되고,
    상기 내열층의 상부면에는 원자로 압력용기의 파손부를 통해 낙하 또는 제트 방출되는 노심용융물에 의해 상기 내열층과 본체 용기의 침식을 방지하기 위한 보호판이 설치된 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
  8. 제2항에 있어서,
    상기 본체 용기의 양측 테두리 벽면의 상부에는 노심용융물이 본체 용기의 바깥으로 범람하지 않고 보유될 수 있도록 하는 넘침방지판이 추가로 구비된 것을 특징으로 하는 통합 냉각유로를 갖춘 코어 캐쳐.
PCT/KR2010/004076 2010-06-14 2010-06-23 통합 냉각유로를 갖춘 코어 캐쳐 WO2011158984A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080068588.4A CN103081023B (zh) 2010-06-14 2010-06-23 具有集成冷却通道的堆芯捕集器
EP10853285.4A EP2581913B1 (en) 2010-06-14 2010-06-23 Core catcher having an integrated cooling path

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0056075 2010-06-14
KR1020100056075A KR101005668B1 (ko) 2010-06-14 2010-06-14 통합 냉각유로를 갖춘 코어 캐쳐

Publications (1)

Publication Number Publication Date
WO2011158984A1 true WO2011158984A1 (ko) 2011-12-22

Family

ID=43615770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004076 WO2011158984A1 (ko) 2010-06-14 2010-06-23 통합 냉각유로를 갖춘 코어 캐쳐

Country Status (4)

Country Link
EP (1) EP2581913B1 (ko)
KR (1) KR101005668B1 (ko)
CN (1) CN103081023B (ko)
WO (1) WO2011158984A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177778A (zh) * 2013-01-08 2013-06-26 上海核工程研究设计院 底部注水叠加外部冷却的大型非能动核电厂堆芯捕集器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165198A (zh) * 2013-01-08 2013-06-19 上海核工程研究设计院 有熔融物扩展室的大型非能动压水堆核电厂堆芯捕集器
KR101585841B1 (ko) * 2014-10-20 2016-01-15 한국수력원자력 주식회사 코어냉각성능이 향상된 코어캐쳐
RU2576516C1 (ru) * 2014-12-16 2016-03-10 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
CN105551541B (zh) * 2015-12-16 2020-06-23 中国核电工程有限公司 一种堆芯熔融物分组捕集和冷却系统
CN105609146B (zh) * 2015-12-25 2019-10-29 中国核电工程有限公司 一种堆芯熔融物捕集器
RU2606381C1 (ru) * 2016-04-04 2017-01-10 Константин Иванович Головко Дифференциальная система локализации тяжёлой аварии атомного реактора с разрушающимся полом реактора и ловушкой большой площади
WO2018062918A1 (ko) * 2016-09-28 2018-04-05 한국수력원자력 주식회사 코어확산성능이 향상된 계단형 코어캐쳐
KR101923802B1 (ko) * 2017-01-03 2018-11-29 한국수력원자력 주식회사 피동 작동형 노심 용융물 냉각장치
KR20220111563A (ko) * 2021-02-02 2022-08-09 한국수력원자력 주식회사 코어 캐쳐
KR102501198B1 (ko) * 2021-08-18 2023-02-21 한국원자력연구원 냉각성능의 안정성이 향상된 코어캐처
KR102510478B1 (ko) * 2021-11-09 2023-03-14 한국수력원자력 주식회사 코어캐쳐 시스템
KR102510484B1 (ko) * 2021-11-09 2023-03-14 한국수력원자력 주식회사 코어캐쳐 시스템
KR102510486B1 (ko) * 2021-11-09 2023-03-14 한국수력원자력 주식회사 코어캐쳐 시스템
CN118094364A (zh) * 2024-02-27 2024-05-28 阳江核电有限公司 一种反应堆堆芯象限功率倾斜状态评价方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195595A (ja) * 2003-12-31 2005-07-21 General Electric Co <Ge> 炉心キャッチャ冷却
US20090080589A1 (en) * 2006-02-22 2009-03-26 Takashi Sato Core catcher, manufacturing method thereof, reactor containment vessel and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612558B2 (ja) * 2006-02-22 2011-01-12 株式会社東芝 コアキャッチャーおよび原子炉格納容器
JP4987681B2 (ja) * 2007-12-12 2012-07-25 株式会社東芝 原子炉格納容器及び漏水検知床

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195595A (ja) * 2003-12-31 2005-07-21 General Electric Co <Ge> 炉心キャッチャ冷却
US20090080589A1 (en) * 2006-02-22 2009-03-26 Takashi Sato Core catcher, manufacturing method thereof, reactor containment vessel and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177778A (zh) * 2013-01-08 2013-06-26 上海核工程研究设计院 底部注水叠加外部冷却的大型非能动核电厂堆芯捕集器

Also Published As

Publication number Publication date
KR101005668B1 (ko) 2011-01-05
EP2581913B1 (en) 2020-01-01
CN103081023B (zh) 2015-10-21
EP2581913A1 (en) 2013-04-17
EP2581913A4 (en) 2017-04-26
CN103081023A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2011158984A1 (ko) 통합 냉각유로를 갖춘 코어 캐쳐
JP4612558B2 (ja) コアキャッチャーおよび原子炉格納容器
EP3166114B1 (en) Passive containment cooling and filtered venting system for a nuclear power plant
EP1988551A1 (en) Core catcher and its manufacturing method, and reactor container and its modifying method
TWI437578B (zh) Atomic furnace storage container drainage tank
CN105551536B (zh) 一种具有内部冷却能力的堆芯熔融物捕集器
US11227695B2 (en) Core catcher and boiling water nuclear plant using the same
CN108053895B (zh) 一种分装强化冷却的反应堆堆芯熔融物捕集装置
EP1555677B1 (en) Core catcher cooling
JP2014081212A (ja) 炉心溶融物保持装置および原子炉格納容器
CZ283111B6 (cs) Zařízení k chlazení jádra a k ochraně betonové konstrukce nukleárního reaktoru s jádrem roztaveným následkem nehody
JP2009052951A (ja) 炉心溶融物冷却装置および原子炉格納容器
WO2013159439A1 (zh) 一种核电站事故后ⅳ型堆外熔融物滞留装置
JPH07140288A (ja) コリウム遮蔽体
WO2020009310A1 (ko) 원자로 외벽냉각용 단열체를 포함하는 냉각 시스템
CN109102906B (zh) 一种基于内置换料水箱的堆芯捕集器系统
CN105551537B (zh) 一种分层强制铺展的堆芯熔融物捕集器
JP4031259B2 (ja) 原子炉格納容器冷却設備
JP2013108772A (ja) 溶融物の捕集装置
WO2011037379A2 (ko) 습식정화장치
WO2018062919A1 (ko) 코어확산성능이 향상된 코어캐쳐
JP2012021877A (ja) 炉心溶融物保持装置および格納容器
WO2018128338A1 (ko) 피동 작동형 노심 용융물 냉각장치
JP2015031614A (ja) 原子炉格納容器
WO2020009308A1 (ko) 노심용융물의 노외냉각장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068588.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010853285

Country of ref document: EP