WO2011158932A1 - 周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法 - Google Patents

周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法 Download PDF

Info

Publication number
WO2011158932A1
WO2011158932A1 PCT/JP2011/063903 JP2011063903W WO2011158932A1 WO 2011158932 A1 WO2011158932 A1 WO 2011158932A1 JP 2011063903 W JP2011063903 W JP 2011063903W WO 2011158932 A1 WO2011158932 A1 WO 2011158932A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
frequency offset
received signal
offset
estimation
Prior art date
Application number
PCT/JP2011/063903
Other languages
English (en)
French (fr)
Inventor
中川 匡夫
松井 宗大
浩一 石原
理一 工藤
小林 孝行
山崎 悦史
佐野 明秀
英二 吉田
匡人 溝口
宮本 裕
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2012520505A priority Critical patent/JP5404926B2/ja
Priority to US13/701,963 priority patent/US8781029B2/en
Priority to EP11795834.8A priority patent/EP2584720B1/en
Priority to EP15152605.0A priority patent/EP2903173B1/en
Priority to CN201180028973.0A priority patent/CN102934378B/zh
Publication of WO2011158932A1 publication Critical patent/WO2011158932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6164Estimation or correction of the frequency offset between the received optical signal and the optical local oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/65Intradyne, i.e. coherent receivers with a free running local oscillator having a frequency close but not phase-locked to the carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0032Correction of carrier offset at baseband and passband
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0046Open loops

Definitions

  • the present invention relates to a frequency offset estimation device, a reception device, a frequency offset estimation method, and a reception method in a digital coherent optical receiver and a wireless communication receiver.
  • This application claims priority based on Japanese Patent Application No. 2010-138402 filed in Japan on June 17, 2010 and Japanese Patent Application No. 2010-251868 filed in Japan on November 10, 2010. The contents thereof are incorporated herein.
  • a digital coherent communication system that combines digital signal processing with a synchronous detection method that dramatically improves frequency utilization efficiency has attracted attention.
  • the digital coherent communication system Compared with a system constructed by direct detection, the digital coherent communication system not only improves reception sensitivity, but also receives chromatic dispersion and polarization received by optical fiber transmission by receiving the transmission signal as a digital signal. It is known that the waveform distortion of a transmission signal due to mode dispersion can be compensated, and its introduction as a next generation optical communication technology is being studied.
  • the signal light received by the coherent receiver is multiplied by the local oscillation light and converted into a baseband signal.
  • Laser oscillators that generate carrier waves of signal light and local oscillation light are difficult to stabilize with a phase-locked loop that is generally used in oscillators for wireless communication.
  • the output frequency of the laser oscillator of the transmitter and the frequency of the receiver A large frequency offset occurs between the output frequency of the laser oscillator. In an actual optical communication system, the frequency offset reaches ⁇ 5 GHz.
  • a coherent communication system since information is carried on the phase of a carrier wave, it is necessary to estimate and compensate for a frequency offset in a receiver.
  • a frequency offset occurs due to an error in the oscillation frequency of a reference oscillator used in the transmitter and the receiver, and a Doppler shift accompanying movement of the transmitter and the receiver. Again, it is necessary to estimate and compensate for the frequency offset at the receiver.
  • Conventional frequency offset estimation includes a method using known pilot symbols (see Non-Patent Document 1).
  • this method has a drawback in that a transmission rate is reduced by adding a known pilot symbol that does not contribute to information transmission to a transmission signal, and a circuit or procedure for detecting a known pilot symbol is required.
  • a frequency offset estimation method that does not require a known pilot symbol includes a phase increase algorithm that uses symbol phase change information in one symbol period (see Non-Patent Document 2), and a method that uses a frequency spectrum (Non-Patent Document 2). Document 3) is known.
  • FIG. 17 is a block diagram showing a configuration example of a conventional frequency offset estimation apparatus that uses a phase increase algorithm for an M-PSK (M-Phase Shift Keying) modulated signal.
  • the frequency offset estimation apparatus shown in FIG. 17 includes a 1-symbol delay unit 101, a complex conjugate unit 102, a multiplication unit 103, an M-th power unit 104, an addition unit 105, and a phase detection unit 106.
  • the input signal I + jQ is a complex signal in which the received signal is sampled in advance at a predetermined sampling frequency.
  • This input signal is branched into two, and one branched signal passes through the 1-symbol delay unit 101 and the complex conjugate unit 102 and is multiplied by the other branched signal by the multiplier 103 to change the phase between 1 symbol. It becomes a complex signal with information.
  • the complex signal is multiplied by M (positive integer) in the M-th power unit 104 to remove a phase change caused by data modulation.
  • the signal from which the phase change has been removed is added over N (positive integer) symbols by the adder 105, thereby averaging the phase and removing the instantaneous change.
  • the phase is extracted from the signal after the addition by the phase detection unit 106, and the phase that is M times the phase change between 1 symbol by the M-th power calculation of the M-th power unit 104 is made 1 / M times.
  • a phase change ⁇ between one symbol caused by the frequency offset is obtained.
  • the frequency offset estimated value ⁇ f is calculated by the following equation.
  • R S is a symbol rate.
  • FIG. 18 is a block diagram showing a configuration example of a conventional frequency offset estimation apparatus using a frequency spectrum.
  • the frequency offset estimation apparatus in FIG. 18 includes a multiplier 107, an FFT (fast Fourier transform) unit 108, a frequency error detector 109, and an NCO (numerically-controlled oscillator) 110.
  • the input signal I + jQ is a complex signal in which the received signal is sampled in advance at a predetermined sampling frequency.
  • This input signal is multiplied by the output signal of the NCO 110 by the multiplier 107, and the frequency is changed.
  • the signal with the changed frequency is input to the FFT unit 108 and converted into a frequency spectrum in the frequency domain.
  • the frequency error detector 109 measures the frequency spectrum and outputs a frequency error signal. Based on this frequency error signal, the NCO 110 changes the frequency of the output signal in a predetermined step. The above loop calculation is repeated until the frequency error signal becomes substantially zero, and the frequency offset estimation is completed when the frequency error signal converges to almost zero.
  • Non-Patent Document 4 and Non-Patent Document 5 disclose frequency offset estimation methods that do not require a known pilot symbol for a signal modulated by QAM. Formulas representing the estimation methods described in these documents are as follows.
  • y (p, t) is a received signal and is a function of polarization p and time t.
  • N is the number of symbols used for estimation, and R S is the symbol rate.
  • FIG. 19 to FIG. 22 are explanatory diagrams showing the operation of the frequency offset estimation method according to Non-Patent Document 4 and Non-Patent Document 5 described above.
  • FIG. 19 shows a constellation in the case where a signal modulated by 64QAM has a frequency offset of 0 or an integral multiple of R S / 4 and a phase offset remains. The period of the signal point is the reciprocal 1 / R S of the symbol rate. If the frequency offset is R S / 4, the signal point on the constellation is just ⁇ / 2 rotated from the position where the frequency offset is 0. To position. That is, the same constellation arrangement is shown when the frequency offset is 0 and when the frequency offset is an integral multiple of R S / 4.
  • the signal modulated by QAM has a phase symmetry of ⁇ / 2
  • the phase of one signal point is phase ⁇
  • the distance from the origin is equal to the distance between this signal point and the origin.
  • the phase ⁇ of these four black dots k1, k2, k3, k4 is expressed by the following mathematical formula 4.
  • the four black points k1, k2, k3, k4 converge to the same point on the complex plane when raised to the fourth power.
  • every four points having the same distance from the origin and a phase difference of an integral multiple of ⁇ / 2 converge to the same point on the complex plane.
  • FIG. 20 is a signal point arrangement diagram when the signal points of the constellation in FIG. 19 are raised to the fourth power.
  • the 64 points in FIG. 19 converge to 16 points in FIG.
  • These signal points are asymmetric with respect to the real axis (horizontal axis) and the imaginary axis (vertical axis), and the added value or average value of the signal points takes a non-zero value.
  • FIG. 21 shows a constellation in the case where there is a frequency offset other than an integral multiple of R S / 4 with respect to a signal modulated by 64QAM. Signal points having the same distance from the origin are arranged on the circumference.
  • FIG. 22 is a signal point arrangement diagram when the signal points of the constellation in FIG. 21 are raised to the fourth power. Since these signal points are symmetric with respect to the real axis (horizontal axis) and the imaginary axis (vertical axis), the addition value or average value of the signal points is zero.
  • the above-described expression 2 has the following terms.
  • this term is an evaluation function ⁇ c (f)
  • this is obtained by taking the time average by applying the inverse rotation operator exp ( ⁇ j2 ⁇ ft) of the frequency f after the received signal y (p, t) is raised to the fourth power. It is an operation.
  • the action of the inverse rotation operator exp ( ⁇ j2 ⁇ ft) converts the frequency of the original signal by ⁇ f.
  • the received signal y (p, t) when the frequency offset is fo the evaluation function phi c evaluation function at the frequency f in the (f) is f ⁇ 4fo + kR S (k is an integer) phi c (f ) Is 0.
  • the evaluation function ⁇ c (f) takes a non-zero value.
  • the range of the frequency offset that can be estimated is limited by the phase uncertainty.
  • the phase range that can be extracted by the calculation “arg (•)” for extracting the phase is [ ⁇ to ⁇ ].
  • the phase range that can be detected by the phase detector 106 is [ ⁇ / M to ⁇ / M]. Therefore, the frequency range that can be estimated by the frequency offset estimation apparatus shown in FIG. 17 is limited to [ ⁇ R S / 2M to R S / 2M] by Equation 1.
  • the frequency of the output signal of the NCO 110 is changed in predetermined steps, and the number of data when performing FFT of several hundred to several thousand at each frequency is changed.
  • the number of data when performing FFT of several hundred to several thousand at each frequency is changed.
  • it takes time until the estimation process converges because it is necessary to fetch input signals having the same number of samples into the frequency offset estimation apparatus.
  • a frequency offset estimation device that uses a frequency spectrum, when the cut-off frequency of the band-pass filter in the transmission path or the low-pass filter in the receiver is small and the frequency offset is large, one side of the frequency spectrum is trimmed and asymmetric. As a result, there is a problem that the estimation accuracy of the frequency offset deteriorates.
  • Non-Patent Document 4 and Non-Patent Document 5 for a signal modulated by QAM represented by Formula 2 and Formula 3, a frequency band in which the estimable frequency range is the fourth power [-R S / 2 to R S / 2] and the original frequency band before the fourth power is limited to [-R S / 8 to R S / 8]. That is, a frequency offset exceeding this range is a problem because it is erroneously detected. Furthermore, when there is phase noise, the signal point on the constellation moves along the circumference, and the state is the same as in FIG. These problems will be specifically described with reference to FIGS. FIG. 23 to FIG. 25 are explanatory diagrams showing examples of simulation results for explaining the conventional problems.
  • the modulation is DP-64QAM (polarization multiplexing 64 quadrature amplitude modulation) with a symbol rate of 28 GBaud
  • OSNR optical signal to noise ratio
  • N 1028.
  • 5 GHz is given as a frequency offset
  • the frequency f and the evaluation function ⁇ c (f) expressed by the following formula 6 are plotted.
  • FIG. 23 shows a simulation result when the frequency f is swept from ⁇ 64 GHz to 64 GHz in a wide band. In this simulation, no phase noise is added.
  • FIG. 24 and FIG. 25 show the simulation results assuming that the laser line width is 10 MHz. In this simulation, phase noise is added. 24 and 25, 1028 symbol sequences used for estimation are different from each other. In FIG. 24, the largest value is shown at 20 GHz, which is four times the frequency offset, but many local peaks are also seen at other frequencies. In FIG. 25, there is a peak at 20 GHz, but a local peak different from 20 GHz shows the largest value in the whole. In other words, when f that maximizes the evaluation function ⁇ c (f) is obtained from FIG. 25, an incorrect value is estimated as the frequency offset. As described above, the frequency offset estimation methods described in Non-Patent Document 4 and Non-Patent Document 5 have a problem that an erroneous estimation result is often output depending on the state of phase noise or thermal noise.
  • the present invention has been made in view of such circumstances, and its purpose is to estimate the frequency offset of the received signal when estimating the frequency offset, which is the difference between the carrier frequency of the received signal and the frequency of the output signal of the local oscillator.
  • An object of the present invention is to provide a frequency offset estimation device, a reception device, a frequency offset estimation method, and a reception method that can appropriately estimate an offset.
  • the present invention has been made to solve the above-described problems, and the present invention provides a frequency offset estimation device that estimates a frequency offset that is a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator.
  • the frequency of the received signal sampled in advance at a predetermined sampling frequency is frequency-converted, and a frequency spectrum having N frequency components ordered from 1 to N (N is an arbitrary natural number) in order of frequency magnitude is output.
  • N is an arbitrary natural number
  • a negative frequency component having a frequency component number from 1 to N / 2 and a positive frequency component having a frequency component number from N / 2 + 1 to N in the frequency spectrum
  • a frequency band limiting unit that limits each frequency component, and the positive of the frequency spectrum that is frequency band limited.
  • Each power is calculated by adding the square of the wave number component and the negative frequency component to calculate each power, and the absolute value of the power difference calculated from the power of the positive frequency component and the power of the negative frequency component is calculated in advance. All frequency components of the frequency spectrum are circulated and moved on the frequency axis until the threshold value is less than or equal to the set threshold value, and the frequency offset is estimated based on the amount of movement that is moved until the threshold value is less than or equal to the threshold value.
  • a frequency offset estimation control unit is used to calculate the square of the wave number component and the negative frequency component to calculate each power, and the absolute value of the power difference calculated from the power of the positive frequency component and the power of the negative frequency component is calculated in advance. All frequency components of the frequency spectrum are circulated and moved on the frequency axis until the threshold value is less than or equal to the set threshold value, and the frequency offset is estimated based on the amount of movement that is moved until the threshold value is less than or equal to the threshold value.
  • a frequency offset estimation control unit is used to calculate the square of
  • the frequency offset estimation control unit when moving all the frequency components of the frequency spectrum in a circulating manner on the frequency axis, the power of the positive frequency component is the negative power. If the frequency component number after the movement is less than 1, move all frequency components of the frequency spectrum by a predetermined amount in the negative direction. When the power of the positive frequency component is less than or equal to the power of the negative frequency component, all frequency components of the frequency spectrum are moved in a positive direction by a predetermined amount, and the frequency component after the movement If the number exceeds N, N may be subtracted from the frequency component number.
  • the present invention provides a frequency offset estimation apparatus according to the present invention, and a first frequency offset that compensates for the frequency offset of the received signal based on a value of the frequency offset of the received signal estimated by the frequency offset estimation apparatus.
  • a phase increase frequency offset estimation unit for estimating the frequency offset based on a phase increase algorithm for the received signal compensated by the compensation unit, and the first frequency offset compensation unit; and the phase increase frequency offset estimation
  • a second frequency offset compensation unit that compensates the frequency offset based on the value of the frequency offset of the reception signal estimated by the unit.
  • the present invention relates to a frequency offset estimation method used in a frequency offset estimation apparatus for estimating a frequency offset which is a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator, and is pre-sampled at a predetermined sampling frequency.
  • a negative frequency component having a frequency component number from 1 to N / 2 and a positive frequency component having a frequency component number from N / 2 + 1 to N are respectively represented in frequency bands.
  • Frequency band limiting procedure for limiting and the positive frequency of the frequency spectrum limited by the frequency band Minute and the negative frequency component are squarely added to calculate each power, and the absolute value of the power difference calculated from the positive frequency component power and the negative frequency component power is preset. All frequency components of the frequency spectrum are circulated and moved on the frequency axis until the threshold value is less than or equal to the threshold value, and the frequency offset is estimated based on the amount of movement that has been moved to the threshold value or less.
  • the power of the positive frequency component is the negative power. If the frequency component number after the movement is less than 1, move all frequency components of the frequency spectrum by a predetermined amount in the negative direction. When the power of the positive frequency component is less than or equal to the power of the negative frequency component, all frequency components of the frequency spectrum are moved in a positive direction by a predetermined amount, and the frequency component after the movement When the number exceeds N, the frequency spectrum may be circulated and moved by subtracting N from the frequency component number.
  • the present invention compensates the frequency offset of the received signal based on the procedure by the frequency offset estimation method of the present invention and the value of the frequency offset of the received signal estimated by the procedure by the frequency offset estimation method.
  • 1 frequency offset compensation procedure a phase increase frequency offset estimation procedure for estimating the frequency offset based on a phase increase algorithm for the received signal compensated by the first frequency offset compensation procedure, and the phase
  • a second frequency offset compensation procedure for compensating the frequency offset based on the value of the frequency offset of the received signal estimated by an increased frequency offset estimation procedure.
  • the present invention relates to a frequency offset estimation device for estimating a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator, the frequency of the received signal comprising two polarized waves pre-sampled at a predetermined sampling frequency.
  • a frequency offset rough estimation unit that estimates a frequency offset from a spectrum
  • a sweep frequency range control unit that determines a sweep frequency range based on a rough estimation value of the frequency offset rough estimation unit
  • a sweep frequency range control unit A frequency offset fine estimation unit that estimates a frequency offset of the received signal in the sweep frequency range, and the frequency offset fine estimation unit has a signal point on the constellation having no frequency offset of the received signal.
  • a first computing unit that performs frequency conversion for subtracting the sweep frequency from the frequency of the received signal after the two polarized waves in the received signal are each raised to the W power; and the first computing unit A second computing unit that computes an absolute value or a power of an absolute value after averaging or adding N (N: positive integer) symbols to the computation result of each polarization in
  • N positive integer
  • U U: positive
  • (Integer) a third arithmetic unit that adds or averages frames, and a sweep frequency at which the arithmetic result of the third arithmetic unit becomes a maximum value, and the frequency offset is calculated by multiplying the sweep frequency by 1 / W. 4th operation part which estimates And a frequency offset estimation apparatus.
  • the present invention relates to a frequency offset estimation method for estimating a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator, the frequency of the received signal comprising two polarizations sampled in advance at a predetermined sampling frequency.
  • a frequency offset rough estimation procedure for estimating a frequency offset from a spectrum, a sweep frequency range control procedure for determining a sweep frequency range based on the rough estimation value estimated by the frequency offset rough estimation procedure, and the sweep frequency range control procedure A frequency offset fine estimation procedure for estimating a frequency offset of the received signal in the determined range of the sweep frequency, and the frequency offset fine estimation procedure includes signal points on a constellation having no frequency offset of the received signal.
  • the present invention relates to a frequency offset estimation device for estimating a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator, the frequency of the received signal comprising two polarized waves pre-sampled at a predetermined sampling frequency.
  • a rough frequency offset estimation unit for estimating a frequency offset from a spectrum a fine frequency offset estimation unit having a periodic frequency offset estimation characteristic with respect to the received signal or a signal whose dispersion of the received signal is compensated, and the frequency offset
  • a frequency uncertainty removal control unit that removes the frequency uncertainty of the frequency offset estimated by the frequency offset fine estimation unit and estimates the frequency offset Is a frequency offset estimation device.
  • the frequency offset precise estimation unit may estimate the frequency offset based on a phase increase algorithm for the received signal or a signal with compensated dispersion of the received signal. Good.
  • the frequency offset fine estimation unit defines the rotational symmetry of the signal point on the constellation having no frequency offset of the received signal as 2 ⁇ / W (W: positive integer).
  • W positive integer
  • the two polarizations in the received signal are each converted to a frequency spectrum after being raised to the power W, and an absolute value or a power of an absolute value is calculated for the conversion result, and the frequency spectrum of these two polarizations Or the frequency spectrum of the polarized wave having the larger peak value is selected, and addition or averaging of U (U: positive integer) frames is performed on the frequency spectrum of a frame composed of N (N: positive integer) symbols. And the frequency at which the calculation result becomes the maximum value may be detected.
  • the frequency uncertainty removal control unit removes the frequency uncertainty and estimates the frequency offset, to the frequency offset estimated by the frequency offset precision estimation unit. Based on the frequency offset candidate including the frequency uncertainty and calculating a frequency midpoint between adjacent frequency offset candidates on a frequency axis as a boundary between adjacent frequency offset candidates. And selecting a region including the value estimated by the frequency offset rough estimation unit from regions based on the boundary on the frequency axis, and selecting the frequency offset candidates included in the selected region May be selected as the estimated value of the frequency offset.
  • the frequency offset rough estimation unit performs frequency conversion on the received signal, and outputs N frequency components that are ordered from 1 to N (N is an arbitrary natural number) in order of frequency magnitude.
  • a frequency conversion unit that outputs a frequency spectrum, a negative frequency component having a frequency component number from 1 to N / 2, and a frequency component number from N / 2 + 1 to N of the frequency spectrum.
  • a frequency band limiting unit that limits each positive frequency component that is a frequency component, and a square addition of each of the positive frequency component and the negative frequency component of the frequency spectrum that is frequency band limited. Then, each power is calculated, and the absolute value of the power difference calculated from the power of the positive frequency component and the power of the negative frequency component is calculated in advance.
  • All frequency components of the frequency spectrum are circulated and moved on the frequency axis until the threshold value is less than or equal to the set threshold value, and the frequency offset is estimated based on the amount of movement that is moved until the threshold value is less than or equal to the threshold value.
  • a frequency offset estimation control unit that performs the operation.
  • the present invention provides a frequency offset estimator according to the present invention, and a frequency offset compensator for compensating the frequency offset of the received signal based on the value of the frequency offset of the received signal estimated by the frequency offset estimator.
  • a reception apparatus comprising: a phase compensation unit that compensates a phase of the reception signal compensated by the frequency offset compensation unit; and a determination unit that performs determination of a symbol of the reception signal compensated for the phase. is there.
  • the present invention relates to a frequency offset estimation method for estimating a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator, the frequency of the received signal comprising two polarizations sampled in advance at a predetermined sampling frequency.
  • a frequency offset estimation method comprising: .
  • the frequency offset fine estimation procedure may be configured to estimate the frequency offset based on a phase increase algorithm for the received signal or a signal whose dispersion of the received signal is compensated. Good.
  • the rotational symmetry of the signal point on the constellation having no frequency offset of the received signal is defined as 2 ⁇ / W (W: positive integer).
  • W positive integer
  • the two polarizations in the received signal are each converted to a frequency spectrum after being raised to the power W, and an absolute value or a power of an absolute value is calculated for the conversion result, and the frequency spectrum of these two polarizations Or the frequency spectrum of the polarized wave having the larger peak value is selected, and addition or averaging of U (U: positive integer) frames is performed on the frequency spectrum of a frame composed of N (N: positive integer) symbols. And the frequency at which the calculation result becomes the maximum value may be detected.
  • the frequency offset estimated by the frequency offset precision estimation procedure is added to the frequency offset. Based on the frequency offset candidate including the frequency uncertainty and calculating a frequency midpoint between adjacent frequency offset candidates on a frequency axis as a boundary between adjacent frequency offset candidates. And selecting a region including the value estimated by the frequency offset rough estimation procedure from regions based on the boundary on the frequency axis, and selecting the frequency offset candidates included in the selected region May be selected as the estimated value of the frequency offset.
  • the frequency offset rough estimation procedure performs frequency conversion on the received signal, and includes N frequency components ordered from 1 to N (N is an arbitrary natural number) in order of frequency magnitude.
  • the present invention provides a frequency offset compensation for compensating the frequency offset of the received signal based on a procedure by the frequency offset estimating method of the present invention and a value of the frequency offset of the received signal estimated by the frequency offset estimating method.
  • a reception step comprising: a phase compensation procedure for compensating a phase of the reception signal compensated by the frequency offset compensation procedure; and a determination procedure for judging a symbol of the reception signal compensated for the phase. Is the method.
  • the frequency offset is estimated based on the movement amount until all frequency components are moved, so that the frequency offset can be estimated in a wide band as compared with the frequency offset estimation device using the phase increase algorithm.
  • it is a method that does not require a known pilot symbol and does not require an NCO. Therefore, the frequency offset can be estimated with high speed and high accuracy compared to a frequency offset estimation device that uses another wide frequency spectrum. can do.
  • the frequency offset of a received signal when estimating the frequency offset that is the difference between the carrier frequency of the received signal and the frequency of the output signal of the local oscillator, based on the roughly estimated frequency offset value, the frequency offset of a received signal can be estimated appropriately.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a frequency offset estimation apparatus 15 that estimates a frequency offset that is a difference between a carrier frequency of a received signal and a frequency of an output signal of a local oscillator on the receiving side according to the first embodiment of the present invention. It is a block diagram.
  • the frequency offset estimation device 15 includes an FFT unit 1, an SPDT (Single Pole, Double Throw) switch 2, a bandpass filter 3, and a frequency offset estimation control unit 12.
  • the frequency offset estimation control unit 12 includes a first square addition unit 4, a second square addition unit 5, a subtraction unit 6, a first determination unit 7, a second determination unit 8, and a frequency spectrum circular movement.
  • an input signal I + jQ is a complex signal in which a received signal is sampled in advance at a predetermined sampling frequency.
  • the FFT unit 1 converts this input signal into a frequency spectrum in the frequency domain. For example, if the number of data when the FFT unit 1 performs FFT is N (N is an arbitrary natural number), a frequency spectrum having N number frequency components ordered from 1 to N in order of frequency magnitude is output. .
  • frequency components having frequency component numbers from 1 to N / 2 in this frequency spectrum are defined as negative frequency components
  • frequency components having frequency component numbers from N / 2 + 1 to N in the frequency spectrum are defined as positive frequency components.
  • the SPDT switch 2 switches a signal input to the band pass filter 3 under the control of the first determination unit 7 described later.
  • the SPDT switch 2 inputs the output signal of the FFT unit 1 to the band-pass filter 3 when the determination of the first determination unit 7 is NO, and the output signal of the frequency spectrum cyclic shift unit 9 when the determination is YES. Switch to.
  • the initial setting is NO for the first determination unit 7, the common terminal of the SPDT switch 2 is connected to the upper contact, and the SPDT switch 2 passes the output signal of the FFT unit 1 to the bandpass filter 3. input.
  • the band pass filter 3 limits the frequency band of the signal input through the SPDT switch 2.
  • the band-pass filter 3 has a center frequency of 1 to N frequency components with respect to the positive frequency component signal and the negative frequency component signal of the received signal converted into the frequency spectrum by the FFT unit 1.
  • the frequency band is limited so that positive and negative are symmetric, a signal having a frequency component with a positive pass band is sent to the first square adder 4, and a signal having a frequency component having a negative pass band is a second signal.
  • the first square addition unit 4 and the second square addition unit 5 calculate the power value P P of the positive frequency component and the power value P M of the negative frequency component of the pass band of the bandpass filter 3, respectively. .
  • the subtraction unit 6 calculates a power difference between the two power values P P and P M.
  • FIG. 2 and FIG. 3 show the power value P P of the positive frequency component and the power value P M of the negative frequency component of the pass band of the band pass filter 3 for the received signal converted into this frequency spectrum.
  • It is explanatory drawing which shows the outline
  • the band pass filter 3 multiplies the signal of each frequency component by the transfer function of the band pass filter 3 for the signal converted into the frequency spectrum in the frequency domain by the FFT unit 1. For example, when a rectangular wave filter is used as the bandpass filter 3, the frequency component of the pass band is multiplied by 1, and the frequency component of the stop band is multiplied by 0.
  • the first square adder 4 and the second square adder 5 square the frequency components of the pass band and take the sum thereof to obtain the positive and negative frequency components of the pass band of the band pass filter 3.
  • a power value P P and a power value P M that are the total power are calculated.
  • the power value P P of the positive frequency component is equal to the power value P M of the negative frequency component due to the symmetry of the frequency spectrum.
  • the frequency spectrum is biased in either the positive direction or the negative direction, and the power value P P of the positive frequency component and the power value of the negative frequency component. power difference between P M occurs.
  • the first determination unit 7 in FIG. 1 compares the absolute value of the power difference between the power value P P and the power value P M with a predetermined threshold value T H to make a determination of magnitude. To do.
  • the first determination unit 7 starts the process of the second determination unit 8 when the absolute value of the power difference between the power value P P and the power value P M is larger than the threshold value T H and the determination is YES. Further, the contact point of the SPDT switch 2 is switched, and the input signal to the band pass filter 3 is changed from the output signal from the FFT unit 1 to the output signal from the frequency spectrum circulation moving unit 9.
  • the second determination unit 8 compares the power value P P and the power value P M and determines the magnitude. Based on the result of the determination, that is, the result of determining whether the frequency spectrum is biased in the positive direction or the negative direction, the second determination unit 8 moves in the frequency spectrum circulation moving unit 9 and the counter 10. Select control and notify.
  • the frequency spectrum cyclic movement unit 9 moves all frequency components on the frequency axis in a direction in which the bias in the positive direction or the negative direction of the frequency component determined by the second determination unit 8 is reduced.
  • the counter 10 counts and holds the number of times of moving in the positive direction and moving in the negative direction.
  • this movement is a cyclic movement in which the frequency component number is 1 to N even after the movement. That is, when the frequency component number after movement is less than 1, N is added to the frequency component number, and when the frequency component number after movement exceeds N, N is subtracted from the frequency component number.
  • the frequency spectrum circulation moving unit 9 circulates and moves the frequency components one by one in the negative direction. Increase the value d by one.
  • the frequency spectrum circulation moving unit 9 circulates and moves the frequency components one by one in the positive direction. The value d of the counter 10 is decreased by 1.
  • the contact point of the SPDT switch 2 is changed so that the output signal from the frequency spectrum circulation moving unit 9 is input to the bandpass filter 3.
  • the spectrum is input again to the bandpass filter 3, and signal processing is executed in the order of the first square addition unit 4, the second square addition unit 5, and the subtraction unit 6, and the power value P P and the power value P
  • the power difference from M is calculated and input to the first determination unit 7.
  • This loop signal processing is repeatedly executed until the first determination unit 7 determines NO. That is, the signal processing of the loop is repeated until the absolute value of the power difference between the power values P P and the power value P M is determined to be equal to or lower than a predetermined threshold value T H.
  • the signal processing of this loop converges, and the frequency spectrum movement distance detection unit 11 detects the value d of the counter 10 at the time of convergence.
  • This value is the sum of the movement distances on the frequency axis of the frequency spectrum, and the frequency offset is estimated based on the frequency corresponding to the movement amount that is the sum of the movement distances.
  • the frequency offset estimation is completed, and the first determination unit 7 switches the contact point of the SPDT switch 2 so that the output signal of the FFT unit 1 is input to the bandpass filter 3. Data is input to this loop signal processing and frequency offset estimation is started.
  • FIG. 4 is an explanatory diagram showing an example of a result of simulating the operation of the first embodiment
  • FIG. 5 is a result of simulating the operation of a frequency offset estimation apparatus using a conventional phase increase algorithm for comparison. It is explanatory drawing which showed an example.
  • the horizontal axis represents the set value of the frequency offset
  • the vertical axis represents the frequency offset estimation result.
  • the modulation method is 112 Gbit / s polarization multiplexed QPSK (Quadrature Phase Shift Keying), and the symbol rate R S is 28 Gbaud.
  • the frequency offset estimation apparatus 15 estimates a frequency offset that is a difference between the carrier frequency of the received signal and the frequency of the output signal of the local oscillator.
  • the absolute value of the power difference between the positive frequency component power value P P and the negative frequency component power value P M of the frequency band limited in the frequency spectrum of the received signal is equal to or less than a preset threshold value. All frequency components are circulated until the frequency reaches, and the frequency offset is estimated based on the amount of movement.
  • the frequency offset estimation device 15 of the first embodiment estimates the frequency offset in a wide band compared to the frequency offset range that can be estimated by the frequency offset estimation device using the conventional phase increase algorithm shown in FIG. can do.
  • the method according to the first embodiment is a method that does not require a known pilot symbol, and further, an NCO that is used in the conventional frequency offset estimation apparatus shown in FIG. 18 is unnecessary. Therefore, according to the present embodiment, it is not necessary to capture an input signal having the number of samples equal to the number of data when performing FFT of several hundred to several thousand at each frequency of stepwise frequency change. Therefore, according to the present embodiment, the frequency offset can be estimated with high speed and high accuracy.
  • the frequency offset estimating apparatus 15 does not need to be limited to 1 for moving the frequency component in a circulating manner. Therefore, by increasing the size to move in circulation when the absolute value of the power difference between the power values P P and the power value P M is large and the absolute value of the power difference between the power values P P and the power value P M it is possible to reduce the size to move circulating when approaching the threshold T H. As a result, the frequency offset can be estimated at a higher speed.
  • the value of the previously determined threshold T H of the first determination unit 7 may be determined by the power of the input signal. For example, assuming that the frequency spectrum of the output signal of the FFT unit 1 is a uniform rectangle, and if the sum of all the power of the frequency spectrum is the power value P TOTAL and the frequency component is cyclically moved by 1 in the negative direction, the power value P P is smaller by P TOTAL / N than before the movement, and the power value P M is larger by P TOTAL / N. Therefore, the difference between the power value P P and the power value P M changes by 2P TOTAL / N. At this time, if the threshold value T H of about 2P TOTAL / N, it is possible to estimate the frequency offset at approximately 1 frequency component of accuracy. If high estimation processing time is required even at the expense of estimation accuracy, the threshold TH may be increased.
  • the number N of data when the FFT unit 1 performs FFT can be determined by required estimation accuracy and estimation processing time. In general, the smaller N is, the lower the estimation accuracy is, but the estimation processing time is shortened.
  • the frequency offset estimation value output from the frequency spectrum movement distance detection unit 11 may be arithmetically averaged after a plurality of frequency offsets are accumulated, or may be averaged using a forgetting coefficient to follow temporal variations. You may let them.
  • the FFT unit 1 that converts an input signal into a frequency spectrum is not limited to fast Fourier transform as a frequency analysis method, and may use short-time Fourier transform, discrete Fourier transform, wavelet transform, or other frequency analysis methods.
  • the bandpass filter 3 is not limited to the bandpass filter as a filter for limiting the frequency band, and a lowpass filter, a highpass filter, or another filter for limiting the frequency band is used based on the characteristics of the received signal. Also good.
  • the second embodiment is a frequency offset estimation device that uses a conventional phase increase algorithm after roughly estimating a frequency offset by the frequency offset estimation device 15 described in the first embodiment and compensating the frequency offset with the estimated value.
  • This is a receiving apparatus having a configuration in which two types of frequency estimation apparatuses for estimating and further compensating for a frequency offset are combined.
  • FIG. 6 is a schematic block diagram illustrating a configuration example of a receiving device according to the second embodiment of the present invention.
  • the receiving device includes a frequency offset estimation device 15, a first frequency offset compensation unit 28, a polarization separation unit 19, a phase increase frequency offset estimation device 20, a second frequency offset compensation unit 29, a first phase compensation unit 24, A second phase compensation unit 25, a first determination unit 26, and a second determination unit 27 are provided.
  • the phase increase frequency offset estimation apparatus 20 has the same configuration as the conventional frequency offset estimation apparatus using the phase increase algorithm shown in the configuration example of FIG.
  • the frequency offset estimation apparatus 15 shown in FIG. 6 corresponds to the configuration described in the first embodiment shown in FIG.
  • the first frequency offset compensator 28 includes a first NCO 16, a first multiplier 17, and a second multiplier 18.
  • the second frequency offset compensation unit 29 includes a second NCO 21, a third multiplication unit 22, and a fourth multiplication unit 23.
  • the input signal I + jQ and the input signal I ′ + jQ ′ are complex signals obtained by pre-sampling X-polarized and Y-polarized received signals at a predetermined sampling frequency.
  • the frequency offset estimation device 15 roughly estimates the frequency offset in a wide band with respect to the input signal I + jQ and the input signal I ′ + jQ ′.
  • the frequency offset estimation device 15 is designed to satisfy the following conditions.
  • the condition is that when the frequency offset estimating device 15 roughly estimates the frequency offset, the phase-increasing frequency offset estimating device 20 estimates the frequency offset with respect to the input signal compensated for the roughly estimated frequency offset. In such a case, the condition falls within a frequency range that can be estimated without frequency uncertainty.
  • the frequency offset estimation value roughly estimated by the frequency offset estimation device 15 is input to the first frequency offset compensation unit 28.
  • the first frequency offset compensation unit 28 compensates for the frequency offset of the input signal. That is, the oscillation frequency of the first NCO 16 included in the first frequency offset compensation unit 28 is adjusted based on the estimated value of the frequency offset that is roughly estimated. Then, the input signal I + jQ and the input signal I ′ + jQ ′ and the adjusted signal having the oscillation frequency of the first NCO 16 are converted into the first multiplier 17 included in the first frequency offset compensator 28. And the second multiplier 18 compensates for the frequency offset of the input signal I + jQ and the input signal I ′ + jQ ′.
  • the polarization separation unit 19 performs polarization separation and removal of residual dispersion on the signal whose frequency offset of the input signal I + jQ and the input signal I ′ + jQ ′ is compensated by the first frequency offset compensation unit 28. Execute.
  • the phase increase frequency offset estimation apparatus 20 receives the signal output from the polarization separation unit 19 and executes frequency offset estimation.
  • the frequency offset estimation value estimated by the phase increase frequency offset estimation device 20 is input to the second frequency offset compensation unit 29.
  • the second frequency offset compensator 29 compensates for the frequency offset of the input signal. That is, the oscillation frequency of the second NCO 21 included in the second frequency offset compensator 29 is adjusted based on the frequency offset estimation value estimated by the phase increase frequency offset estimation device 20. Then, the input signal to the second frequency offset compensation unit 29 and the adjusted signal having the oscillation frequency of the second NCO 21 are converted into a third multiplication unit 22 included in the second frequency offset compensation unit 29 and Multiplication is performed by the fourth multiplication unit 23, and the frequency offset of the input signal to the second frequency offset compensation unit 29 is compensated.
  • the first phase compensation unit 24 and the second phase compensation unit 25 compensate the phase with respect to the signal whose frequency offset is compensated in the second frequency offset compensation unit 29, and the first determination unit 26 and the second determination unit 27.
  • the first determination unit 26 and the second determination unit 27 determine a symbol and generate a demodulated signal.
  • the receiving apparatus including the frequency offset estimating apparatus according to the second embodiment first compensates the input signal based on the value roughly estimated by the frequency offset estimating apparatus 15 and then increases the conventional phase increase. Input to the frequency offset estimation apparatus 20. Further, by executing both polarization separation and residual dispersion removal, it is possible to estimate the frequency offset using the phase increase algorithm for an input signal having both a small frequency offset and dispersion value. As a result, the receiving apparatus including the frequency offset estimating apparatus according to the second embodiment can estimate, compensate, and demodulate the received signal with a wide band and high accuracy.
  • the frequency offset estimation device using the frequency spectrum
  • the frequency offset estimation apparatus of the second embodiment after the frequency offset is roughly estimated and compensated by the frequency offset estimation apparatus 15, the frequency offset is estimated by the conventional phase increase frequency offset estimation apparatus 20. To do. Therefore, in the frequency offset estimation apparatus according to the second embodiment, even when the cutoff frequency of the band-pass filter in the transmission path or the low-pass filter in the receiver is small and the frequency offset is large, the frequency offset Can be prevented from degrading.
  • the signal input to the phase increase frequency offset estimation device 20 is replaced with the output signal from the polarization separation unit 19, instead of the first frequency offset compensation unit 28 before being input to the polarization separation unit 19. It may be a signal with compensated frequency offset. However, the frequency offset can be estimated with higher accuracy when the signal from which polarization separation and residual dispersion have been removed by the polarization separation unit 19 is input to the phase increase frequency offset estimation device 20.
  • the third embodiment of the present invention will be described below with reference to the drawings.
  • the input signal is compensated based on the value roughly estimated by the frequency offset estimating apparatus 15.
  • the receiving apparatus of the third embodiment does not compensate the input signal based on the value roughly estimated by the frequency offset estimating apparatus 15 and detects the phase when using the conventional phase increase algorithm.
  • This is a receiving apparatus having a configuration that estimates the frequency offset by removing the uncertainty.
  • it can replace with the frequency offset estimation apparatus of 1st Embodiment, and can utilize the invention of a nonpatent literature 3.
  • FIG. 7 is a schematic block diagram illustrating a configuration example of a receiving device according to the third embodiment of the present invention.
  • the receiving device includes a frequency offset estimation device 15, a frequency uncertainty removal control unit 30, a polarization separation unit 19, a phase increase frequency offset estimation device 20, a frequency offset compensation unit 29, a first phase compensation unit 24, a second A phase compensation unit 25, a first determination unit 26, and a second determination unit 27 are provided.
  • the frequency offset compensation unit 29 includes an NCO 21, a first multiplication unit 22, and a second multiplication unit 23.
  • the frequency offset estimation device 15 has the configuration described in the first embodiment, and a description thereof is omitted. In FIG. 7, the same reference numerals are given to the components corresponding to the respective parts in FIG. 6, and the description thereof is omitted.
  • an input signal I + jQ and an input signal I ′ + jQ ′ are complex signals obtained by sampling X-polarized and Y-polarized received signals in advance at a predetermined sampling frequency.
  • the frequency offset estimation device 15 roughly estimates the frequency offset in a wide band with respect to the input signal I + jQ and the input signal I ′ + jQ ′, and uses the estimated value as the frequency uncertainty.
  • the phase increase frequency offset estimation apparatus 20 estimates a frequency offset for the signal output from the polarization separation unit 19 and outputs the estimated value to the frequency uncertainty removal control unit 30.
  • the frequency uncertainty removal control unit 30 estimates the frequency offset based on the estimated values of the frequency offsets input from the frequency offset estimation device 15 and the phase increase frequency offset estimation device 20, and the frequency offset
  • the signal is output to the NCO 21 of the compensation unit 29 and the oscillation frequency of the NCO 21 is adjusted.
  • the frequency offset compensation unit 29 compensates the frequency offset of the input signal I + jQ and the input signal I ′ + jQ ′
  • the first phase compensation unit 24, the second phase compensation unit 25, and the first determination unit 26 and the second determination unit 27 demodulate.
  • the frequency uncertainty removal control unit 30 calculates a plurality of frequency offset candidate frequencies based on the estimated frequency offset value input from the phase-increasing frequency offset estimation device 20. Next, the frequency uncertainty removal control unit 30 calculates, as a boundary, a candidate that is adjacent on the frequency axis and a candidate midpoint among the plurality of calculated frequency offset candidates. Further, the frequency uncertainty removal control unit 30 detects that the estimated value of the frequency offset input from the frequency offset estimation device 15 is in a region between adjacent boundaries of the frequency offset candidates. Then, the frequency uncertainty removal control unit 30 selects a frequency offset candidate in the detected area as an estimated value of the frequency offset.
  • the frequency uncertainty removal control unit 30 removes the uncertainty of the frequency offset estimation result of the phase increase frequency offset estimation device 20.
  • the uncertainty of the frequency offset estimation result is due to the uncertainty of the phase detected by the phase increase algorithm in the phase increase frequency offset estimation apparatus 20, and has periodicity.
  • a frequency offset estimate value of the phase increment frequency offset estimation apparatus 20 and the frequency f Mth the frequency f CND candidates for potentially estimates a frequency f Mth frequency offset (k) is given by the following Equation 7 It is done.
  • a frequency offset estimate value of the frequency offset estimator 15 and the frequency f CO by the frequency f CO to design the frequency offset estimator 15 so as to satisfy the relationship of Equation 8, uncertainty Can be removed.
  • the frequency f CND (k) is arranged from the frequency f Mth to the R S / M period on the frequency axis, and the midpoint of the frequency of the adjacent frequency f CND (k) is set as the adjacent frequency offset candidate. It shows that it is a boundary.
  • the frequency uncertainty removal control unit 30 estimates the actual frequency offset as f CND (1).
  • the receiving apparatus including the frequency offset estimating apparatus according to the third embodiment first roughly estimates the frequency offset by the frequency offset estimating apparatus 15.
  • the frequency uncertainty removal control unit 30 removes the phase uncertainty detected by the phase increase algorithm based on the estimated value and estimates the frequency offset.
  • the receiving apparatus including the frequency offset estimating apparatus according to the third embodiment can estimate, compensate, and demodulate the received signal with a wide band and high accuracy.
  • an NCO and a multiplier for compensating for the frequency offset with the estimated value of the frequency offset estimation device 15 are not required, and the circuit scale can be reduced.
  • the input signal input to the phase increase frequency offset estimation device 20 is an output signal from the polarization separation unit 19 in FIG. 7 of the configuration example of the third embodiment, but is input to the polarization separation unit 19. It may be a signal before being processed.
  • FIG. 9 is a block diagram showing a configuration example of a frequency offset estimation apparatus 150 according to the fourth embodiment of the present invention.
  • the frequency offset estimation apparatus includes a frequency offset fine estimation unit 41, a frequency offset rough estimation unit 57, and a sweep frequency range control unit 58.
  • the frequency offset precision estimation unit 41 includes a first fourth-power circuit 42, a second fourth-power circuit 43, a first multiplication circuit 44, a second multiplication circuit 45, an NCO (numerically-controlled oscillator) 46, a first 1 N symbol addition circuit 47, second N symbol addition circuit 48, first 1 / N division circuit 49, second 1 / N division circuit 50, first absolute value squaring circuit 51, second An absolute value squaring circuit 52, a polarization adding circuit 53, a U frame adding circuit 54, a maximum value sweep frequency detecting circuit 55, and a 1/4 dividing circuit 56 are provided.
  • the frequency offset rough estimation unit 57 estimates the frequency offset from the frequency spectrum of the received signal composed of two polarized waves sampled in advance at a predetermined sampling frequency.
  • the frequency offset rough estimation unit 57 can use the frequency offset estimation device 15 that uses the frequency spectrum described in the first embodiment. Moreover, it can replace with the frequency offset estimation apparatus 15 described in 1st Embodiment, and the frequency offset estimation apparatus described in the nonpatent literature 3 can be used similarly.
  • the sweep frequency range control unit 58 determines the sweep frequency range based on the rough estimated value of the frequency offset rough estimation unit 57.
  • the precise frequency offset estimation unit 41 estimates the frequency offset of the received signal in the sweep frequency range determined by the sweep frequency range control unit 58.
  • the frequency offset precision estimation unit 41 includes a first calculation unit 41a, a second calculation unit 41b, a third calculation unit 41c, and a fourth calculation unit 41d.
  • the first computing unit 41a performs the frequency conversion by subtracting the sweep frequency from the frequency of the received signal on the received signal after each of the two polarized waves in the received signal is raised to the fourth power.
  • the second calculation unit 41b performs averaging (calculation of an average value) of N (N: positive integer) symbols on the calculation result of each polarization in the first calculation unit 41a,
  • the power of the absolute value is calculated (the power of the absolute value is calculated with respect to the average value).
  • the third calculation unit 41c performs addition processing of a U (U: positive integer) frame for a frame composed of N symbols.
  • the 4th calculating part 41d detects the sweep frequency from which the calculation result of the 3rd calculating part 41c becomes the maximum value, multiplies this sweep frequency, and outputs it, and estimates a frequency offset.
  • the first computing unit 41a includes a first fourth power circuit 42, a second fourth power circuit 43, a first multiplication circuit 44, a second multiplication circuit 45, and an NCO 46.
  • the second arithmetic unit 41b includes a first N symbol addition circuit 47, a second N symbol addition circuit 48, a first 1 / N division circuit 49, a second 1 / N division circuit 50, and a first absolute value.
  • a value square circuit 51 and a second absolute value square circuit 52 are provided.
  • the third arithmetic unit 41 c includes a polarization addition circuit 53 and a U frame addition circuit 54.
  • the fourth calculation unit 41 d includes a maximum value sweep frequency detection circuit 55 and a 1 ⁇ 4 division circuit 56.
  • Equations 9 and 10 represent the equations representing the operation of the fourth embodiment.
  • N is the number of symbols used for estimating one frame
  • u is the frame number of a frame consisting of N symbol sequences
  • U is the total number of frames used for estimation
  • y (u, p, t) is the received signal.
  • R S is a symbol rate
  • f coarse is a rough estimated frequency of the frequency offset rough estimation unit 57.
  • input signals I + jQ and I ′ + jQ ′ are respectively X-polarized wave and Y-polarized wave obtained by pre-sampling the received signal y (u, p, t) of Equation 9 at a predetermined sampling frequency. It is a complex signal.
  • the frequency offset precise estimation unit 41 squares this input signal with the first fourth power circuit 42 and the second fourth power circuit 43, and outputs the output signal exp ( ⁇ j2 ⁇ ft) of the NCO 46, the first multiplication circuit 44 and the first power circuit 44. Multiplication is performed in the multiplication circuit 45 of 2. This multiplication corresponds to an operation for performing frequency conversion by subtracting the frequency f from the frequency of the received signal raised to the fourth power.
  • the sweep frequency of the NCO 46 is controlled by the sweep frequency range controller 58. Specifically, the sweep frequency range control unit 58 determines the frequency range of the sweep frequency of the NCO 46 so as to satisfy Equation 10 from the coarse estimated frequency f coarse estimated by the frequency offset coarse estimation unit 57 and the symbol rate R S. The frequency f is changed in a predetermined step from the lower limit frequency to the upper limit frequency of Equation 10.
  • the frequency offset fine estimator 41 adds the operation results for the N symbols in the first N symbol adder circuit 47 and the second N symbol adder circuit 48 at each frequency f to obtain the first 1 / N
  • the division circuit 49 and the second 1 / N division circuit 50 divide by N to obtain N average values, and the first absolute value squaring circuit 51 and the second absolute value squaring circuit 52 obtain an absolute value of 2
  • the power is obtained, and the calculation result for the two polarized waves is added in the polarization adding circuit 53.
  • the frequency offset fine estimation unit 41 regards the N symbol sequences as the first frame and the next N symbol sequences as the second frame, and adds the calculation result of the U frame in the U frame addition circuit 54. By the addition process, the frequency offset fine estimation unit 41 removes the noise component.
  • the evaluation function ⁇ n (f) represented by the following formula 11 is obtained.
  • the frequency offset estimator 150 calculates the frequency f at which the evaluation function ⁇ n (f) becomes the maximum value by the maximum value sweep frequency detection circuit 55 and multiplies it by 1 ⁇ 4 by the 1 ⁇ 4 division circuit 56 to obtain the frequency An offset can be estimated.
  • the frequency offset rough estimation unit 57 and the sweep frequency range control unit 58 control the sweep frequency range of the NCO 46, so that the frequency offset estimation range can be widened.
  • the frequency offset estimation device 150 detects only the peak of 20 GHz and does not detect the peaks on both sides, the frequency offset estimation apparatus 150 detects 20 GHz as the maximum value sweep frequency without uncertainty, and 5/4 that is 1/4 of that is detected. It can be output as a frequency offset estimate.
  • the estimable frequency range is [f coarse ⁇ R S / 8 to f coarse + R S / 8], and the coarse estimated frequency f coarse is variable. It is possible to estimate over a wide band.
  • the frequency offset rough estimation unit 57 does not require high-precision characteristics.
  • the estimation range is [-14 GHz to 14 GHz]
  • -8 GHz is detected as the maximum sweep frequency
  • -2 GHz which is 1/4, is output as the frequency offset estimation value. .
  • FIG. 10 assumes that the same frequency offset as 5 GHz, laser line width 10 MHz, and OSNR 10 dB as in FIGS. 24 and 25, 1028 for the number of symbols N used to estimate one frame, and 80 for the total number of frames U used for estimation.
  • the results obtained by performing evaluation function ⁇ n (f) of Formula 11 are shown. Comparing FIG. 10 with FIG. 24 and FIG. 25, the peak at 20 GHz, which is four times the frequency offset, is emphasized, and the local peak that appeared temporarily for each frame is kept relatively low. Therefore, the frequency offset estimation apparatus 150 can calculate a correct estimation result without being affected by a local peak temporarily appearing for each frame due to phase noise or thermal noise.
  • the frequency offset estimation apparatus 150 uses the frequency offset coarse estimation unit 57 to roughly estimate the frequency offset based on the result of the rough estimation by the frequency offset coarse estimation unit 57.
  • the sweep frequency range control unit 58 determines the frequency range of the sweep frequency of the NCO 46 so as to eliminate the characteristics, and estimates the frequency offset.
  • the frequency offset estimation apparatus 150 removes the noise component of the received signal in the calculation process in which the frequency offset precision estimation unit 41 estimates the frequency offset. Thereby, the frequency offset estimation apparatus 150 of the fourth embodiment can estimate the frequency offset with high accuracy with respect to the received signal in a wide band.
  • FIG. 11 is a block diagram illustrating a configuration example of the frequency offset estimation apparatus 150 according to the fifth embodiment.
  • the same reference numerals are given to the components corresponding to the respective parts in FIG. 9, and the description thereof is omitted.
  • the first calculation unit 41a and the fourth calculation unit 41d are the first calculation unit 41a and the fourth calculation unit according to the fourth embodiment.
  • the configuration is the same as 41d.
  • the second calculation unit 41b and the third calculation unit 41c are the second calculation unit 41b and the third calculation unit according to the fourth embodiment.
  • the configuration is different from 41c.
  • the second calculation unit 41b includes a first N symbol addition circuit 47, a second N symbol addition circuit 48, a first absolute value circuit 59, and a first absolute value circuit 59. Two absolute value circuits 60 are provided.
  • the third arithmetic unit 41c includes a first U frame addition circuit 61, a second U frame addition circuit 62, a first 1 / U division circuit 63, a second 1 / U division circuit 64, and a bias.
  • a wave addition circuit 53 is provided.
  • the frequency offset fine estimation unit 41 adds the N symbols to the calculation result of each polarization in the first calculation unit 41a in the second calculation unit 41b, and then calculates the absolute value. (Absolute value is calculated for the added value). Further, after the frequency offset precision estimation unit 41 performs the U frame averaging process on the frame of N symbols on the calculation result obtained by the second calculation unit 41b in the third calculation unit 41c. The calculation results of the two polarizations are added. Then, in the fourth calculation unit 41d, the frequency offset precision estimation unit 41 detects the sweep frequency at which the calculation result of the third calculation unit 41c is the maximum value, and outputs the frequency obtained by multiplying this sweep frequency by 1 ⁇ 4. To estimate the frequency offset.
  • the frequency offset fine estimation unit 41 in the present embodiment has the first 1 / N division circuit 49 and the second 1 / N division circuit 50 deleted. Yes. Since the first 1 / N division circuit 49 and the second 1 / N division circuit 50 are deleted in this way, each frequency component of the evaluation function ⁇ n (f) becomes N times, but between the frequencies. The relative magnitude relationship does not change. Therefore, the fine frequency offset estimation unit 41 of the present embodiment estimates the frequency offset similarly to the fine frequency offset estimation unit 41 of the fourth embodiment.
  • averaging processing is performed, and when processing is performed by the N symbol addition circuit without the 1 / N division circuit, addition processing is performed.
  • the first absolute value squaring circuit 51 and the second absolute value squaring circuit 52 in the frequency offset fine estimation unit 41 of the fourth embodiment are the same as those in the frequency offset fine estimation unit 41 of the present embodiment.
  • the absolute value circuit 59 and the second absolute value circuit 60 are replaced with each other.
  • the fine frequency offset estimation unit 41 of the present embodiment estimates the frequency offset similarly to the fine frequency offset estimation unit 41 of the fourth embodiment.
  • the fine frequency offset estimation unit 41 of the present embodiment has a first 1 / U division circuit 63 and a second 1 / U division. A circuit 64 is added. As a result, each frequency component of the evaluation function ⁇ n (f) is 1 / U times, but the relative magnitude relationship between the frequencies does not change. Therefore, the fine frequency offset estimation unit 41 of the present embodiment estimates the frequency offset similarly to the fine frequency offset estimation unit 41 of the fourth embodiment.
  • averaging processing is performed, and when processing is performed by the U frame addition circuit by omitting the 1 / U division circuit, addition processing is performed.
  • the order from the polarization addition circuit 53 to the U frame addition circuit 54 in the frequency offset fine estimation unit 41 of the fourth embodiment is the same as the first U frame addition circuit in the frequency offset fine estimation unit 41 of the present embodiment.
  • 61 (or the second U frame addition circuit 62) is switched in order from the polarization addition circuit 53 via the 1 / U division circuit.
  • the fine frequency offset estimation unit 41 of the present embodiment estimates the frequency offset similarly to the fine frequency offset estimation unit 41 of the fourth embodiment. If the total number of frames U used for estimation is large, it is also possible to select only the evaluation function of the polarization having the larger peak value without performing polarization addition.
  • the frequency offset estimation apparatus 150 of the fifth embodiment is the same as the configuration of the frequency offset estimation unit 41 of the frequency offset estimation apparatus 150 of the fourth embodiment also in the configuration of the frequency offset estimation unit 41 described above. In addition, it is possible to estimate the frequency offset with high accuracy with respect to the received signal.
  • the fourth and fifth embodiments are not limited to signals modulated by QAM, and can be applied to PSK and PSK modulation schemes in which the amplitude of PSK is multistage, or PAM modulation schemes.
  • the rotational symmetry of the signal point on the constellation having no frequency offset is 2 ⁇ / W
  • the first fourth power circuit 42 and the second fourth power circuit 43 are replaced with a W power circuit and a 1/4 division circuit.
  • FIG. 12 is a block diagram illustrating a configuration example of the receiving device 200 according to the sixth embodiment of the present invention.
  • the receiving apparatus 200 includes a frequency offset fine estimation unit 41, a frequency offset rough estimation unit 57, a sweep frequency range control unit 58, a polarization separation unit 66, a frequency offset compensation unit 67, a first phase compensation unit 68, a second phase compensation unit 68, and a second phase compensation unit 68.
  • a phase compensation unit 69, a first determination unit 70, and a second determination unit 71 are provided.
  • the fine frequency offset estimation unit 41, the rough frequency offset estimation unit 57, and the sweep frequency range control unit 58 shown in FIG. 12 correspond to the same reference numerals shown in FIG. 9 and FIG.
  • the frequency offset compensation unit 67 compensates the frequency offset of the reception signal based on the value of the frequency offset of the reception signal estimated by the frequency offset estimation device 150.
  • the first phase compensation unit 68 and the second phase compensation unit 69 compensate the phase of the reception signal compensated by the frequency offset compensation unit 67.
  • the first determination unit 70 and the second determination unit 71 determine the symbol of the received signal whose phase has been compensated.
  • the receiving apparatus 200 of the sixth embodiment first sets the sweep frequency of the frequency offset fine estimation unit 41 to the sweep frequency so as to satisfy Equation 10 based on the value roughly estimated by the frequency offset coarse estimation unit 57. This is determined by the range control unit 58.
  • the polarization separation unit 66 performs polarization separation and removal of residual dispersion on the input signal I + jQ and the input signal I ′ + jQ ′.
  • the frequency offset precision estimation unit 41 receives the signal output from the polarization separation unit 66 and performs frequency offset estimation.
  • the frequency offset estimation value estimated by the frequency offset precision estimation unit 41 is input to the frequency offset compensation unit 67, and compensates for the frequency offset of the input signal I + jQ and the input signal I ′ + jQ ′.
  • the first phase compensation unit 68 and the second phase compensation unit 69 compensate the phase of the signal whose frequency offset is compensated by the frequency offset compensation unit 67, and the first determination unit 70 and the second determination unit 70, respectively. 2 to the determination unit 71.
  • the first determination unit 70 and the second determination unit 71 determine a symbol and generate a demodulated signal.
  • the frequency offset estimation unit 41 is operated with respect to an input signal having both a small frequency offset and a dispersion value by executing the polarization offset and the residual dispersion removal together with the frequency offset estimation. be able to.
  • the receiving apparatus 200 including the frequency offset estimating apparatus 150 of the sixth embodiment can estimate and compensate for and demodulate the received signal in a wide band and with high accuracy.
  • the signal input to the frequency offset fine estimation unit 41 may be the signal before being input to the polarization separation unit 66 instead of the output signal from the polarization separation unit 66.
  • the frequency offset can be estimated with higher accuracy when the signal from which polarization separation and residual dispersion have been removed by the polarization separation unit 66 is input to the frequency offset fine estimation unit 41.
  • FIG. 13 is a block diagram illustrating a configuration example of a frequency offset estimation apparatus 150 according to the seventh embodiment of the present invention.
  • the frequency offset estimation apparatus 150 includes a frequency offset rough estimation unit 57, a frequency offset fine estimation unit 41, and a frequency uncertainty removal control unit 97.
  • the frequency offset fine estimation unit 41 includes a first W power circuit 88, a second W power circuit 89, a first FFT unit 90, a second FFT unit 91, a first absolute value squaring circuit 92, a second The absolute value squaring circuit 93, the polarization spectrum adding circuit 94, the U frame spectrum adding circuit 95, and the maximum value frequency detecting circuit 96 are provided.
  • W is a number (a positive integer) determined by the modulation method, and the rotational symmetry of the signal point on the constellation having no frequency offset is 2 ⁇ / W.
  • W 4
  • the frequency offset rough estimation unit 57 can use the frequency offset estimation device 15 that uses the frequency spectrum described in the first embodiment. Moreover, it can replace with the frequency offset estimation apparatus 15 described in 1st Embodiment, and the invention described in the nonpatent literature 3 can be used similarly.
  • the present embodiment is a configuration that pays attention to the fact that an evaluation function that is a time average is also a discrete Fourier transform.
  • the frequency offset fine estimation unit 41 sets the two polarizations in the received signal to W Convert to frequency spectrum after riding. Then, the frequency offset precise estimation unit 41 performs an absolute value or a power of the absolute value on the conversion result, adds the frequency spectra of these two polarizations, and N (N: positive integer) symbols.
  • a U (U: positive integer) frame addition or averaging is performed on the frequency spectrum of each frame consisting of and the frequency at which this calculation result is the maximum value is detected.
  • the frequency offset precision estimation unit 41 uses the first FFT unit 90 and the first W power circuit 88 and the second W power circuit 89 to raise the input signals I + jQ and I ′ + jQ ′ to the W power.
  • the second FFT unit 91 collectively converts N symbol sequences into a frequency spectrum.
  • the frequency offset precise estimation unit 41 obtains the square of the absolute value of the frequency spectrum data by the first absolute value squaring circuit 92 and the second absolute value squaring circuit 93, and polarization polarization
  • the spectrum addition circuit 94 adds the frequency spectra of the two polarized waves.
  • the precise frequency offset estimation unit 41 regards the N symbol sequences as the first frame and the next N symbol sequences as the second frame, and adds the frequency spectrum of the U frame in the U frame spectrum addition circuit 95. . By the addition process, the frequency offset fine estimation unit 41 removes the noise component.
  • the maximum value frequency detection circuit 96 calculates the frequency f taking the maximum value.
  • the frequency f at which ⁇ n (f) becomes maximum is detected after the evaluation function ⁇ n (f) is obtained at each frequency by changing the sweep frequency of the NCO 46 in predetermined steps. did.
  • a frequency spectrum is obtained, and a frequency f at which the frequency spectrum is maximum in the frequency domain is detected.
  • the frequency range of the sweep frequency of the NCO 46 is limited by the sweep frequency range control unit 58 in advance in order to estimate the frequency offset without frequency uncertainty.
  • the frequency spectrum used in the seventh embodiment includes frequency uncertainty. This frequency uncertainty is removed by the frequency uncertainty removal control unit 97.
  • the frequency uncertainty removal control unit 97 removes the frequency uncertainty of the frequency offset estimated by the frequency offset fine estimation unit 41 based on the value of the frequency offset estimated by the frequency offset rough estimation unit 57, Estimate the offset.
  • the frequency uncertainty removal control unit 97 includes the frequency uncertainty based on the frequency offset estimated by the frequency offset refinement estimation unit 41 when the frequency uncertainty is removed and the frequency offset is estimated. A frequency that is a candidate for a frequency offset is calculated. Further, the frequency uncertainty removal control unit 97 sets the midpoint of the frequency that is a candidate for the frequency offset adjacent on the frequency axis as the boundary of the adjacent frequency offset candidate, and is an area based on the boundary on the frequency axis. The region including the value estimated by the frequency offset rough estimation unit 57 is selected from among the regions. The frequency uncertainty removal control unit 97 selects a frequency offset candidate included in the selected region as an estimated value of the frequency offset.
  • FIG. 14 is an explanatory diagram illustrating an outline of an operation in which the frequency offset estimation apparatus 150 according to the seventh embodiment estimates a frequency offset.
  • the discrete Fourier transform is related to y W (u, p, t). That is, the frequency spectrum is related to y W (u, p, t).
  • the frequency range for obtaining the maximum value of the frequency spectrum is limited to [-R S / 2 to R S / 2], which is the first Nyquist zone that is not affected by the aliasing, by Equation 13.
  • the frequency f CND candidate frequency offset that may estimate the frequency offset is f MAX (k) is expressed by Equation 14
  • f MAX is plotted on the vertical axis and f CND (k) is plotted on the horizontal axis.
  • the coarse estimated value of the frequency offset coarse estimator 97 is set as f CO, and the midpoint between adjacent f CND (k) is set as a determination boundary. At this time, the region including fCO among the regions sandwiched between the two determination boundaries gives an actual frequency offset.
  • the frequency offset estimation apparatus 150 uses the frequency offset estimated by the frequency offset fine estimation unit 41 based on the frequency offset value estimated by the frequency offset rough estimation unit 57. Remove uncertainty and estimate frequency offset. Thereby, the frequency offset estimation apparatus 150 of the seventh embodiment can estimate the frequency offset with high accuracy with respect to the received signal in a wide band. Further, compared with the fourth embodiment and the fifth embodiment, the sweep frequency range control unit 58 and the NCO 46 are replaced with FFT units 90 and 91 and converted into a frequency spectrum for estimation. It can be shortened.
  • the FFT unit 90 and the FFT unit 91 that convert to a frequency spectrum are not limited to the fast Fourier transform as a frequency analysis method, and a short-time Fourier transform, discrete Fourier transform, wavelet transform, or other frequency analysis method may be used. good. Further, even if the squares of the first absolute value squaring circuit 92 and the second absolute value squaring circuit 93 are changed to the first power or other powers, the relative magnitude relationship of each frequency component of the frequency spectrum does not change. Does not affect the operation. It is also possible to select the frequency spectrum of the polarization having the larger peak value without performing the polarization addition in the polarization spectrum adding circuit 94.
  • FIG. 15 is an explanatory diagram illustrating an example of an experimental result of the seventh embodiment.
  • This experimental result shows the frequency spectrum of the output signal of the U frame spectrum addition circuit 95 when a signal modulated with 64QAM having a symbol rate R S of 10 GHz is received.
  • the estimated value f CO of the frequency offset rough estimation unit 57 was 3.7 GHz.
  • f MAX in Expression 12 is ⁇ 4 GHz.
  • W 4
  • FIG. 16 is a block diagram illustrating a configuration example of a receiving device 200 according to the eighth embodiment of the present invention.
  • the polarization separation unit 66 performs polarization separation and removal of residual dispersion on the input signal I + jQ and the input signal I ′ + jQ ′.
  • the frequency offset precision estimation unit 41 receives the signal output from the polarization separation unit 66 and performs frequency offset estimation.
  • the frequency uncertainty removal control unit 97 receives the estimated value of the frequency offset rough estimation unit 57 and the estimated value of the frequency offset fine estimation unit 41, and determines the frequency offset estimation value according to Equations 12 to 16.
  • the frequency offset compensation unit 67 receives the estimated frequency offset value output from the frequency uncertainty removal control unit 97 and compensates for the frequency offset of the input signal.
  • the first phase compensation unit 68 and the second phase compensation unit 69 compensate the phase of the signal whose frequency offset is compensated by the frequency offset compensation unit 67, and the first determination unit 70 and the second determination unit 70, respectively. 2 to the determination unit 71.
  • the first determination unit 70 and the second determination unit 71 determine a symbol and generate a demodulated signal.
  • the receiving apparatus 200 according to the eighth embodiment performs the estimation of the frequency offset by the frequency offset estimating apparatus 150 and the combined execution of the polarization separation and the removal of the residual dispersion so that the frequency offset and the dispersion value can be obtained.
  • the frequency offset precision estimation unit 41 can be operated for both small input signals. As a result, the receiving apparatus 200 according to the eighth embodiment can estimate, compensate, and demodulate the frequency offset of the received signal with a wide bandwidth and high accuracy.
  • the signal input to the frequency offset fine estimation unit 41 may be the signal before being input to the polarization separation unit 66 instead of the output signal from the polarization separation unit 66.
  • the frequency offset can be estimated with higher accuracy when the signal from which polarization separation and residual dispersion have been removed by the polarization separation unit 66 is input to the frequency offset fine estimation unit 41.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW (world wide web) system is used.
  • the “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM (read only memory), a CD (compact disc) -ROM, or a hard disk built in the computer system. Refers to the device. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • a configuration for realizing precise estimation of the frequency offset is a phase increase frequency offset estimation apparatus (unit) 20 (FIG. 7) or a frequency. It is not limited to the configuration of the fine offset estimator 41 (FIGS. 13 and 16). Instead, a periodic frequency offset estimation characteristic as shown in a sawtooth waveform in FIGS. 5 and 14 is used. You may use the conventional general structure which has.
  • the present invention can be used for, for example, a digital coherent optical receiver or a wireless communication receiver.
  • the frequency offset of the received signal can be estimated with a wide band, high speed, and high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Circuits Of Receivers In General (AREA)
  • Optical Communication System (AREA)
  • Superheterodyne Receivers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する場合に、受信信号の周波数オフセットを適切に推定し補償する、周波数オフセット推定装置を提供する。周波数オフセット推定装置は、所定のサンプリング周波数で予めサンプリングされた受信信号を、N個の周波数成分を持つ周波数スペクトルに変換し、周波数スペクトルの、1からN/2までの負の周波数成分とN/2+1からNまでの正の周波数成分とを、それぞれ周波数帯域制限し、周波数帯域制限された周波数スペクトルの正の周波数成分と負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、それぞれの電力の電力差の絶対値が予め設定されたしきい値以下になるまで周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、しきい値以下になるまで移動させた移動量に基づいて周波数オフセットを推定する。

Description

周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法
 本発明は、ディジタルコヒーレント光受信機および無線通信受信機における周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法に関する。
 本願は、2010年6月17日に日本へ出願された特願2010-138402号、および、2010年11月10日に日本へ出願された特願2010-251868号に基づき優先権を主張し、それらの内容をここに援用する。
 光通信の分野において、周波数利用効率を飛躍的に向上させる同期検波方式とディジタル信号処理を組み合わせたディジタルコヒーレント通信システムが注目されている。ディジタルコヒーレント通信システムは、直接検波により構築されていたシステムと比較すると、受信感度を向上させることができるだけでなく、送信信号をディジタル信号として受信することで、光ファイバ伝送によって受ける波長分散や偏波モード分散による送信信号の波形歪みを補償することができることが知られており、次世代の光通信技術として導入が検討されている。
 コヒーレント受信機において受信された信号光は、局部発振光と掛け合わされてベースバンド信号に変換される。信号光の搬送波や局部発振光を生成するレーザ発振器は、無線通信用の発振器で一般に用いられている位相同期ループによる周波数安定化が困難であり、送信機のレーザ発振器の出力周波数と受信機のレーザ発振器の出力周波数との間に大きな周波数オフセットが生じる。実際の光通信システムにおいて周波数オフセットは、±5GHzに達する。コヒーレント通信システムでは搬送波の位相に情報を乗せているため、受信機において周波数オフセットを推定し、補償する必要がある。
 また無線通信においては、送信機と受信機に用いている基準発振器の発振周波数の誤差や送信機と受信機の移動に伴うドップラーシフトにより周波数オフセットが生じる。この場合も受信機において周波数オフセットを推定し、補償する必要がある。
 従来の周波数オフセットの推定には、既知のパイロットシンボルを用いる方法がある(非特許文献1参照)。しかしながらこの方法には、情報伝送に寄与しない既知のパイロットシンボルを送信信号に付加することによる伝送速度の低下や、既知のパイロットシンボルを検出するための回路や手順が必要となるという欠点がある。
 一方、既知のパイロットシンボルを必要としない周波数オフセット推定方法には、1シンボル周期におけるシンボルの位相変化情報を利用する位相増加アルゴリズムや(非特許文献2参照)、周波数スペクトルを利用する方法(非特許文献3参照)が知られている。
 図17はM-PSK(M-Phase Shift Keying)変調信号に対して位相増加アルゴリズムを用いる従来の周波数オフセット推定装置の構成例を示すブロック図である。図17に示される周波数オフセット推定装置は、1シンボル遅延部101、複素共役部102、乗算部103、M乗部104、加算部105、位相検出部106を備えている。
 入力信号I+jQは、受信信号が所定のサンプリング周波数で予めサンプリングされた複素信号である。この入力信号は二分岐され、分岐された一方の信号は1シンボル遅延部101および複素共役部102を通過し、分岐された他方の信号と乗算部103で乗算されて、1シンボル間の位相変化情報を持った複素信号となる。この複素信号をM乗部104でM(正の整数)乗することにより、データの変調に起因する位相変化を取り除く。この位相変化を取り除いた信号を加算部105でN(正の整数)シンボルに渡って加算することにより、位相に関する平均化を行い、瞬時的な変化を取り除く。この加算後の信号から位相検出部106で位相を取り出し、さらに、M乗部104のM乗の演算によって1シンボル間の位相変化のM倍になっている位相を1/M倍にしている。この結果、周波数オフセットによって生じる1シンボル間の位相変化Δθを得る。周波数オフセット推定値Δfは次式によって算出される。ただし、この式においてRSはシンボルレートである。
Figure JPOXMLDOC01-appb-M000001
 図18は周波数スペクトルを利用する従来の周波数オフセット推定装置の構成例を示すブロック図である。図18の周波数オフセット推定装置は、乗算部107、FFT(fast Fourier transform)部108、周波数誤差検出部109、NCO(numerically-controlled oscillator)110を備えている。
 入力信号I+jQは、受信信号が所定のサンプリング周波数で予めサンプリングされた複素信号である。この入力信号はNCO110の出力信号と乗算部107で乗算されて、その周波数が変更される。この周波数が変更された信号はFFT部108に入力されて周波数領域の周波数スペクトルに変換される。周波数誤差検出部109は周波数スペクトルを測定し周波数誤差信号を出力する。この周波数誤差信号を元に、NCO110はその出力信号の周波数を所定のステップで変化させる。以上のループの演算を周波数誤差信号がほぼ0となるまで繰り返し、周波数誤差信号がほぼ0となって収束した時点で周波数オフセット推定が完了する。
 図17に示される位相増加アルゴリズムは、コンスタレーション上で信号点が等位相間隔に配置されているM-PSK変調信号に対してのみ正確に動作し、直交振幅変調(QAM: quadrature amplitude modulation)で変調された信号に対しては動作しない。QAMで変調された信号に対して、既知のパイロットシンボルを必要としない周波数オフセット推定方法が非特許文献4や非特許文献5に開示されている。これら文献に記載されている推定方法を表す数式は以下の通りである。
Figure JPOXMLDOC01-appb-M000002
 ここで、y(p,t)は受信信号であり、偏波pと時間tの関数である。また、Nは推定に用いるシンボル数、RSはシンボルレートである。
Figure JPOXMLDOC01-appb-M000003
 ここで、数式2の周波数オフセットの推定範囲は、数式3により制限されている。
 次に、この推定方法の動作について、図19から図22を参照して説明する。
 図19から図22は、上述の非特許文献4や非特許文献5に係る周波数オフセット推定方法の動作を示す説明図である。
 図19に示すものは、64QAMで変調された信号に対して、0またはRS/4の整数倍の周波数オフセットを持っており、また位相オフセットが残留している場合のコンスタレーションである。信号点の周期はシンボルレートの逆数1/RSであり、周波数オフセットがRS/4であればコンスタレーション上の信号点は周波数オフセットが0の時の位置から丁度π/2回転したところに位置にする。すなわち周波数オフセットが0の時とRS/4の整数倍の周波数オフセットの時とでは同じコンスタレーション配置を示す。QAMで変調された信号はπ/2の位相対称性を持っているため、ある1つの信号点の位相を位相θとすると、原点からの距離がこの信号点と原点との距離に等しい点であって、且つこの信号点に対してπ/2の整数倍の位相差を持つ点が他に3点ある。図19においては、これらの点を黒丸k1からk4で示している。これら4点の黒丸k1,k2,k3,k4の位相βは、次の数式4で表される。
Figure JPOXMLDOC01-appb-M000004
 これらの信号を4乗した場合の位相は4βであり、次の数式5で表される。
Figure JPOXMLDOC01-appb-M000005
 すなわち、黒丸の4点k1,k2,k3,k4は4乗すると複素平面上の同一点に収束する。同様に他の信号点も4乗すると原点からの距離が等しくπ/2の整数倍の位相差を持つ4点ごとに複素平面上の同一点に収束する。
 図20は、図19のコンスタレーションの信号点を4乗した場合の信号点配置図である。図19の64点は図20では16点に収束している。これらの信号点は実軸(横軸)および虚軸(縦軸)に対して非対称であり、信号点の加算値または平均値は0ではない値を取る。
 図21に示すものは、64QAMで変調された信号に対して、RS/4の整数倍以外の周波数オフセットが有る場合のコンスタレーションである。原点からの距離が等しい信号点が円周上に配置されている。図22は、図21のコンスタレーションの信号点を4乗した場合の信号点配置図である。これらの信号点は実軸(横軸)および虚軸(縦軸)に対して対称であるため、信号点の加算値または平均値は0になる。
 上述した数式2には、次に示す項が存在する。
Figure JPOXMLDOC01-appb-M000006
 この項を評価関数φc(f)とすると、これは、受信信号y(p,t)を4乗した後に、周波数fの逆回転演算子exp(-j2πft)を作用させて時間平均を取る操作である。逆回転演算子exp(-j2πft)の作用は、元の信号の周波数を-fだけ周波数変換する。従って、受信信号y(p,t)の周波数オフセットがfoの時、評価関数φc(f)の中の周波数fがf≠4fo+kRS(kは整数)の時に評価関数φc(f)は0となる。また、周波数fがf=4fo+kRS (kは整数)の時に評価関数φc(f)は0ではない値を取る。
 さらに、数式3の周波数オフセットの推定範囲の制限によってkRS(kは整数)の不確定性はなくなるため、評価関数φc(f)が最大値となるfを求めて1/4倍することにより、周波数オフセットfoを推定することができる。
M. K. Nezami et al., "DFT-based frequency acquisition algorithm for large carrier offsets in mobile satellite receivers," Electronics Letters, volume 37, pp. 386-387, March 2001. A. Leven et al., "Frequency estimation in intradyne reception," IEEE Photonics Technology Letters, volume 19, pp. 366-368, March 2007. K. Piyawanno et al., "Fast and accurate automatic frequency control for coherent receivers," ECOC2009, paper7.3.1, Sept., 2009. P. Ciblat et al., "Blind NLLS carrier frequency-offset estimation for QAM, PSK, and PAM modulations: performance at low SNR," IEEE Transactions on Communications, volume 54, pp. 1725-1730, Oct. 2006. M. Selmi et al., "Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems," ECOC2009, paperP3.08, Sept.,2009.
 しかしながら図17に示す位相増加アルゴリズムを用いる従来の周波数オフセット推定装置では、位相の不確定性によって推定できる周波数オフセットの範囲が限定される。位相検出部106において、位相を取り出す演算「arg(・)」によって取り出すことのできる位相の範囲は[-π~π]である。この取り出した位相をさらに1/M倍にするために、位相検出部106が検出することのできる位相の範囲は[-π/M~π/M]である。従って図17に示す周波数オフセット推定装置が推定できる周波数範囲は数式1によって、[-RS/2M~RS/2M]に限定されるという問題がある。
 また、図18に示す周波数スペクトルを利用する従来の周波数オフセット推定装置では、NCO110の出力信号の周波数を所定のステップで変えながら、それぞれの周波数で数百から数千のFFTする際のデータ数に等しいサンプル数の入力信号を周波数オフセット推定装置に取り込む必要があるため、推定処理が収束するまでに時間がかかるという問題がある。さらに周波数スペクトルを利用する周波数オフセット推定装置では、伝送路中のバンドパスフィルタや受信機中のローパスフィルタのカットオフ周波数が小さく、かつ、周波数オフセットが大きい場合に周波数スペクトルの片側が削られて非対称となることにより、周波数オフセットの推定精度が劣化するという問題点がある。
 また、数式2および数式3で表される、従来のQAMで変調された信号に対する周波数オフセットの推定方法(非特許文献4、非特許文献5)では、推定可能な周波数範囲が4乗した周波数帯で[-RS/2~RS/2]、4乗する前の元の周波数帯で[-RS/8~RS/8]に限定されるという問題がある。すなわち、この範囲を超えた周波数オフセットについては、誤って検出されることとなり問題である。さらに、位相雑音がある場合、コンスタレーション上の信号点が円周に沿って移動し、周波数オフセットが有る場合の図21と同様の状態となるため正しく推定できないという問題がある。これらの問題について、図23から図25を参照して具体的に説明する。図23から図25は、従来の問題点を説明するためのシミュレーション結果の一例を示す説明図である。
 なお、これらのシミュレーション結果においては、変調はシンボルレート28GBaudのDP-64QAM(偏波多重64直交振幅変調)、OSNR(光信号対雑音比)は10dB、推定に用いるシンボル数Nは1028であり、また周波数オフセットとして5GHzを与えて、周波数fと、次の数式6で表される評価関数φc(f)をプロットしている。
Figure JPOXMLDOC01-appb-M000007
 図23に示すものは、周波数fを-64GHzから64GHzと広帯域に掃引した場合のシミュレーション結果である。なお、本シミュレーションでは、位相雑音を付加していない。この図23では、周波数オフセットの4倍である20GHzから、RS=28GHzの周波数間隔ごとに評価関数が大きくなる不確定性を示している。従って、非特許文献4や非特許文献5に記載された周波数オフセット推定方法では、評価関数のピークが常に2つ以上含まれない周波数範囲は[-RS/2~RS/2]に制限されるという問題があることが分かる。
 また、図24および図25に示すものは、レーザの線幅として10MHzを仮定してシミュレーションした結果である。なお、本シミュレーションでは、位相雑音を付加している。これらの図24と図25では、推定に用いている1028個のシンボル系列が互いに異なっている。図24では、周波数オフセットの4倍である20GHzで最も大きな値を示しているが、他の周波数でも局所的なピークが多数見られる。図25では、20GHzにもピークはあるが、20GHzとは異なる局所的なピークの方が全体の中で最も大きな値を示している。すなわち、図25から評価関数φc(f)を最大とするfを求めると、誤った値を周波数オフセットとして推定することになる。このように、非特許文献4や非特許文献5に記載された周波数オフセット推定方法では、位相雑音や熱雑音の状態によって、しばしば誤った推定結果を出力するという問題がある。
 本発明は、このような事情に鑑みてなされたもので、その目的は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する場合に、受信信号の周波数オフセットを適切に推定することができる、周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法を提供することにある。
 この発明は上述した課題を解決するためになされたもので、本発明は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する周波数オフセット推定装置であって、所定のサンプリング周波数で予めサンプリングされた前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換部と、前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限部と、前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御部と、を備える周波数オフセット推定装置である。
 本発明の周波数オフセット推定装置において、前記周波数オフセット推定制御部は、前記周波数スペクトルの前記全ての周波数成分を前記周波数軸上で循環して移動させる場合に、前記正の周波数成分の電力が前記負の周波数成分の電力より大きい場合は、前記周波数スペクトルの全周波数成分を負の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号が1未満の場合は周波数成分番号にNを加算し、前記正の周波数成分の電力が前記負の周波数成分の電力以下の場合は、前記周波数スペクトルの全周波数成分を正の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号がNを越える場合は周波数成分番号からNを減算するようにしてもよい。
 本発明は、本発明の周波数オフセット推定装置と、前記周波数オフセット推定装置によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する第1の周波数オフセット補償部と、前記第1の周波数オフセット補償部によって補償された前記受信信号に対して、前記周波数オフセットを位相増加アルゴリズムに基づいて推定する、位相増加周波数オフセット推定部と、前記位相増加周波数オフセット推定部によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記周波数オフセットを補償する第2の周波数オフセット補償部と、を備える受信装置である。
 本発明は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する周波数オフセット推定装置において用いられる、周波数オフセット推定方法であって、所定のサンプリング周波数で予めサンプリングされた前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換手順と、前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限手順と、前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御手順と、を備える周波数オフセット推定方法である。
 本発明の周波数オフセット推定方法では、前記周波数オフセット推定制御手順において、前記周波数スペクトルの前記全ての周波数成分を前記周波数軸上で循環して移動させる場合に、前記正の周波数成分の電力が前記負の周波数成分の電力より大きい場合は、前記周波数スペクトルの全周波数成分を負の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号が1未満の場合は周波数成分番号にNを加算し、前記正の周波数成分の電力が前記負の周波数成分の電力以下の場合は、前記周波数スペクトルの全周波数成分を正の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号がNを越える場合は周波数成分番号からNを減算することにより、前記周波数スペクトルを循環して移動するようにしてもよい。
 本発明は、本発明の周波数オフセット推定方法による手順と、前記周波数オフセット推定方法による手順によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する第1の周波数オフセット補償手順と、前記第1の周波数オフセット補償手順によって補償された前記受信信号に対して、前記周波数オフセットを位相増加アルゴリズムに基づいて推定する、位相増加周波数オフセット推定手順と、前記位相増加周波数オフセット推定手順によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記周波数オフセットを補償する第2の周波数オフセット補償手順と、を備える受信方法である。
 本発明は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定装置であって、所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定部と、前記周波数オフセット粗推定部の粗推定値に基づいて掃引周波数の範囲を決定する掃引周波数範囲制御部と、前記掃引周波数範囲制御部により決定された前記掃引周波数の範囲において前記受信信号の周波数オフセットを推定する周波数オフセット精推定部と、を備え、前記周波数オフセット精推定部は、前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後、該受信信号に対して該受信信号の周波数から前記掃引周波数を減算する周波数変換を行う第1の演算部と、前記第1の演算部における各偏波の演算結果に対して、N(N:正の整数)シンボルの平均化または加算を行った後、絶対値または絶対値のべき乗の演算を行う第2の演算部と、前記第2の演算部の後段側において、前記2つの偏波の演算結果を加算、またはピーク値の大きい方の偏波の演算結果を選択するとともに、前記NシンボルからなるフレームについてU(U:正の整数)フレームの加算または平均化を行う第3の演算部と、前記第3の演算部の演算結果が最大値となる掃引周波数を検出し、当該掃引周波数を1/W倍して前記周波数オフセットを推定する第4の演算部と、を有する周波数オフセット推定装置である。
 本発明は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定方法であって、所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定手順と、前記周波数オフセット粗推定手順により推定された粗推定値に基づいて掃引周波数範囲を決定する掃引周波数範囲制御手順と、前記掃引周波数範囲制御手順により決定された前記掃引周波数の範囲において前記受信信号の周波数オフセットを推定する周波数オフセット精推定手順と、を備え、前記周波数オフセット精推定手順は、前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後、該受信信号に対して該受信信号の周波数から前記掃引周波数を減算する周波数変換を行う第1の演算手順と、前記第1の演算手順における各偏波の演算結果に対して、N(N:正の整数)シンボルの加算または平均化を行った後、絶対値または絶対値のべき乗の演算を行う第2の演算手順と、前記第2の演算手順の後において、前記2つの偏波の演算結果を加算、またはピーク値の大きい方の偏波の演算結果を選択するとともに、前記NシンボルからなるフレームについてU(U:正の整数)フレームの加算または平均化を行う第3の演算手順と、前記第3の演算手順の演算結果が最大値となる掃引周波数を検出し、当該掃引周波数を1/W倍して前記周波数オフセットを推定する第4の演算手順と、を含む周波数オフセット推定方法である。
 本発明は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定装置であって、所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定部と、前記受信信号または前記受信信号の分散が補償された信号に対して周期的な周波数オフセット推定特性を有する周波数オフセット精推定部と、前記周波数オフセット粗推定部によって推定された前記周波数オフセットの値に基づいて、前記周波数オフセット精推定部によって推定された周波数オフセットの周波数不確定性を除去し、前記周波数オフセットを推定する周波数不確定性除去制御部とを備える周波数オフセット推定装置である。
 本発明の周波数オフセット推定装置において、前記周波数オフセット精推定部は、前記受信信号または前記受信信号の分散が補償された信号に対して位相増加アルゴリズムに基づいて前記周波数オフセットを推定するようにしてもよい。
 本発明の周波数オフセット推定装置において、前記周波数オフセット精推定部は、前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後に周波数スペクトルに変換し、その変換結果に対して絶対値または絶対値のべき乗の演算を行い、これら2つの偏波の周波数スペクトルを加算、またはピーク値の大きい方の偏波の周波数スペクトルを選択するとともに、N(N:正の整数)シンボルからなるフレームの周波数スペクトルについてU(U:正の整数)フレームの加算または平均化を行い、この演算結果が最大値となる周波数を検出するようにしてもよい。
 本発明の周波数オフセット推定装置において、前記周波数不確定性除去制御部は、前記周波数不確定性を除去し前記周波数オフセットを推定する際に、前記周波数オフセット精推定部によって推定された前記周波数オフセットに基づいて、前記周波数不確定性を含む前記周波数オフセットの候補となる周波数を算出し、周波数軸上で隣り合う前記周波数オフセットの候補となる周波数の中点を、隣り合う前記周波数オフセットの候補の境界とし、前記周波数軸上で前記境界に基づいた領域の中から、前記周波数オフセット粗推定部によって推定された前記値が含まれる領域を選択し、前記選択した領域に含まれる前記周波数オフセットの候補となる周波数を、前記周波数オフセットの推定値として選択するようにしてもよい。
 本発明の周波数オフセット推定装置において、前記周波数オフセット粗推定部は、前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換部と、前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限部と、前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御部と、を備えるようにしてもよい。
 本発明は、本発明の周波数オフセット推定装置と、前記周波数オフセット推定装置によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する周波数オフセット補償部と、前記周波数オフセット補償部によって補償された前記受信信号に対して、位相を補償する位相補償部と、前記位相を補償された前記受信信号のシンボルの判定を行う判定部と、を備える受信装置である。
 本発明は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定方法であって、所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定手順と、前記受信信号または前記受信信号の分散が補償された信号に対して周期的な周波数オフセット推定特性を有する周波数オフセット精推定手順と、前記周波数オフセット粗推定手順によって推定された前記周波数オフセットの値に基づいて、前記周波数オフセット精推定手順によって推定された周波数オフセットの周波数不確定性を除去し、前記周波数オフセットを推定する周波数不確定性除去制御手順と、を備える周波数オフセット推定方法である。
 本発明の周波数オフセット推定方法において、前記周波数オフセット精推定手順は、前記受信信号または前記受信信号の分散が補償された信号に対して位相増加アルゴリズムに基づいて前記周波数オフセットを推定するようにしてもよい。
 本発明の周波数オフセット推定方法において、前記周波数オフセット精推定手順は、前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後に周波数スペクトルに変換し、その変換結果に対して絶対値または絶対値のべき乗の演算を行い、これら2つの偏波の周波数スペクトルを加算、またはピーク値の大きい方の偏波の周波数スペクトルを選択するとともに、N(N:正の整数)シンボルからなるフレームの周波数スペクトルについてU(U:正の整数)フレームの加算または平均化を行い、この演算結果が最大値となる周波数を検出するようにしてもよい。
 本発明の周波数オフセット推定方法において、前記周波数不確定性除去制御手順は、前記周波数不確定性を除去し前記周波数オフセットを推定する際に、前記周波数オフセット精推定手順によって推定された前記周波数オフセットに基づいて、前記周波数不確定性を含む前記周波数オフセットの候補となる周波数を算出し、周波数軸上で隣り合う前記周波数オフセットの候補となる周波数の中点を、隣り合う前記周波数オフセットの候補の境界とし、前記周波数軸上で前記境界に基づいた領域の中から、前記周波数オフセット粗推定手順によって推定された前記値が含まれる領域を選択し、前記選択した領域に含まれる前記周波数オフセットの候補となる周波数を、前記周波数オフセットの推定値として選択するようにしてもよい。
 本発明の周波数オフセット推定方法において、前記周波数オフセット粗推定手順は、前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換手順と、前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限手順と、前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御手順と、を備えるようにしてもよい。
 本発明は、本発明の周波数オフセット推定方法による手順と、前記周波数オフセット推定方法によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する周波数オフセット補償手順と、前記周波数オフセット補償手順によって補償された前記受信信号に対して、位相を補償する位相補償手順と、前記位相を補償された前記受信信号のシンボルの判定を行う判定手順と、を備える受信方法である。
 この発明によれば、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する場合に、受信信号の周波数スペクトルの中の周波数帯域制限された正の周波数成分の電力値と負の周波数成分の電力値との電力差の絶対値が予め設定されたしきい値以下になるまで全周波数成分を移動し、その移動量に基づいて周波数オフセットを推定することにより、受信信号の周波数オフセットを適切に推定することができる。
 すなわち、上記のように受信信号の周波数スペクトルの中の周波数帯域制限された正の周波数成分の電力値と負の周波数成分の電力値との電力差の絶対値が予め設定されたしきい値以下になるまで全周波数成分を移動し、その移動量に基づいて周波数オフセットを推定するため、位相増加アルゴリズムを用いる周波数オフセット推定装置と比較して、広帯域に周波数オフセットを推定することができる。また、既知のパイロットシンボルを必要としない方法であって、さらにNCOも不要であるため、広帯域な他の周波数スペクトルを利用する周波数オフセット推定装置に比較して、高速かつ高精度に周波数オフセットを推定することができる。
 また、この発明によれば、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する場合に、粗推定した周波数オフセットの値に基づいて、広帯域な周波数範囲において推定するため、受信信号の周波数オフセットを適切に推定することができる。
本発明の第1実施形態による周波数オフセット推定装置の構成例を示すブロック図である。 本第1実施形態の動作の概要を示す説明図であり、周波数オフセットがないときの周波数スペクトルを示す説明図である。 本第1実施形態の動作の概要を示す説明図であり、周波数オフセットがあるときの周波数スペクトルを示す説明図である。 本第1実施形態の動作をシミュレーションした結果の一例を示した説明図である。 従来の位相増加アルゴリズムを用いる周波数オフセット推定装置の動作をシミュレーションした結果の一例を示した説明図である。 本発明の第2実施形態による受信装置の構成例を示すブロック図である。 本発明の第3実施形態による受信装置の構成例を示すブロック図である。 本第3実施形態の動作の概要を示す説明図である。 第4の実施形態による周波数オフセット推定装置の構成例を示すブロック図である。 第4の実施形態による周波数オフセット推定装置の動作をシミュレーションした結果の一例を示す説明図である。 第5実施形態による周波数オフセット推定装置の構成例を示すブロック図である。 第6実施形態による受信装置の構成例を示すブロック図である。 第7実施形態による周波数オフセット推定装置の構成例を示すブロック図である。 第7実施形態による周波数オフセット推定装置が、周波数オフセットを推定する動作の概要を示す説明図である。 第7実施形態の実験結果の一例を示す説明図である。 第8実施形態による受信装置の構成例を示すブロック図である。 従来の位相増加アルゴリズムを用いる周波数オフセット推定装置の構成例を示すブロック図である。 従来の周波数スペクトルを利用する周波数オフセット推定装置の構成例を示すブロック図である。 従来の周波数オフセット推定方法の動作を示す第1の説明図である。 従来の周波数オフセット推定方法の動作を示す第2の説明図である。 従来の周波数オフセット推定方法の動作を示す第3の説明図である。 従来の周波数オフセット推定方法の動作を示す第4の説明図である。 従来の問題点を説明するためのシミュレーション結果の一例を示す第1の説明図である。 従来の問題点を説明するためのシミュレーション結果の一例を示す第2の説明図である。 従来の問題点を説明するためのシミュレーション結果の一例を示す第3の説明図である。
 以下、本発明の実施形態を、図面を参照して説明する。なお、各図において、同一または対応する構成には同一の符号を用いている。
<第1実施形態>
 以下、図面を参照して、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態による、受信信号の搬送波周波数と受信側の局部発振器の出力信号の周波数との差である周波数オフセットを推定する周波数オフセット推定装置15の構成例を示す概略ブロック図である。
 周波数オフセット推定装置15は、FFT部1、SPDT(Single Pole, Double Throw)スイッチ2、バンドパスフィルタ3、および周波数オフセット推定制御部12を備えている。さらに、周波数オフセット推定制御部12は、第1の2乗加算部4、第2の2乗加算部5、減算部6、第1の判定部7、第2の判定部8、周波数スペクトル循環移動部9、カウンタ10、および周波数スペクトル移動距離検出部11を備えている。
 図1において、入力信号I+jQは、受信信号が所定のサンプリング周波数で予めサンプリングされた複素信号である。
 FFT部1は、この入力信号を周波数領域の周波数スペクトルに変換する。例えば、FFT部1がFFTする際のデータ数をN(Nは任意の自然数)とすると、周波数の大きさの順に1からNまで順序付けしたN個の番号の周波数成分を持つ周波数スペクトルを出力する。ここで、この周波数スペクトルの1からN/2までの周波数成分番号の周波数成分を負の周波数成分、周波数スペクトルのN/2+1からNまでの周波数成分番号の周波数成分を正の周波数成分としてこの後の信号処理を説明する。
 SPDTスイッチ2は、後述する第1の判定部7からの制御によりバンドパスフィルタ3に入力する信号を切り替える。SPDTスイッチ2は、第1の判定部7の判定がNOの場合はFFT部1の出力信号を、YESの場合は周波数スペクトル循環移動部9の出力信号を、それぞれバンドパスフィルタ3に入力するように切り替える。
 初期設定は第1の判定部7はNOの判定で、SPDTスイッチ2の共通端子は上側の接点に接続されており、SPDTスイッチ2はFFT部1の出力信号を通過させてバンドパスフィルタ3に入力する。
 バンドパスフィルタ3は、SPDTスイッチ2を通過して入力された信号に対して周波数帯域制限をする。ここで、バンドパスフィルタ3は、FFT部1で周波数スペクトルに変換された受信信号の正の周波数成分の信号と負の周波数成分の信号とに対して、1からNの周波数成分における中心周波数に対して正と負が対称となるように周波数帯域制限をし、通過帯域が正の周波数成分の信号を第1の2乗加算部4へ、また通過帯域が負の周波数成分の信号を第2の2乗加算部5へ出力する。
 第1の2乗加算部4および第2の2乗加算部5は、それぞれバンドパスフィルタ3の通過帯域の正の周波数成分の電力値PPおよび負の周波数成分の電力値PMを算出する。減算部6は、これら2つの電力値PPと電力値PMとの間の電力差を算出する。
 ここで、図2および図3は、この周波数スペクトルに変換された受信信号に対して、バンドパスフィルタ3の通過帯域の正の周波数成分の電力値PPおよび負の周波数成分の電力値PMを算出する動作の概要を示す説明図である。図2と図3の横軸は周波数、縦軸は電力である。
 バンドパスフィルタ3はFFT部1で周波数領域の周波数スペクトルに変換された信号に対して、その各周波数成分の信号にバンドパスフィルタ3の伝達関数を乗算する。例えばバンドパスフィルタ3は矩形波フィルタを用いた場合に、通過帯域の周波数成分には1、阻止帯域の周波数成分には0を乗算する。第1の2乗加算部4および第2の2乗加算部5は、通過帯域の周波数成分を2乗してその総和を取ることで、バンドパスフィルタ3の通過帯域の正負それぞれの周波数成分の電力の総和である電力値PPおよび電力値PMを算出する。
 図2に示すように、周波数オフセットがない場合には、周波数スペクトルの対称性によって正の周波数成分の電力値PPと負の周波数成分の電力値PMは等しくなる。一方、図3に示すように、周波数オフセットがある場合には、周波数スペクトルは正の方向あるいは負の方向のいずれかに偏り、正の周波数成分の電力値PPと負の周波数成分の電力値PMとの間には電力差が生じる。
 次に、図1の第1の判定部7は、電力値PPと電力値PMとの電力差の絶対値と、予め定められたしきい値THとを比較して大小の判定をする。第1の判定部7は、電力値PPと電力値PMの電力差の絶対値がしきい値THより大きく、YESと判定した場合は、第2の判定部8の処理を開始させ、また、SPDTスイッチ2の接点を切り替え、バンドパスフィルタ3への入力信号を、FFT部1からの出力信号から、周波数スペクトル循環移動部9からの出力信号に変更する。
 第2の判定部8は、電力値PPと電力値PMとを比較して大小の判定をする。第2の判定部8は、その判定した結果すなわち周波数スペクトルが正の方向あるいは負の方向のいずれに偏っているかを判定した結果に基づいて、周波数スペクトル循環移動部9およびカウンタ10の中の移動制御を選択して通知する。周波数スペクトル循環移動部9は、第2の判定部8で判定した周波数成分の正の方向あるいは負の方向のいずれかの偏りが小さくなる方向に、全周波数成分を周波数軸上で移動させる。カウンタ10は、正の方向に移動した場合と負の方向に移動した場合とのそれぞれの回数を計数し保持する。
 ここで、全周波数成分を周波数軸上で移動するための制御について説明する。
 この移動は、FFT部1で変換された周波数スペクトルの周波数成分番号が1からNとすると、移動後も周波数成分番号が1からNになるような循環した移動とする。すなわち移動後の周波数成分番号が1未満の場合は周波数成分番号にNを加算し、移動後の周波数成分番号がNを越える場合は周波数成分番号からNを減算する。
 第2の判定部8において電力値PPが電力値PMより大きいと判定された場合、周波数スペクトル循環移動部9は、負の方向に周波数成分を1ずつ循環して移動させ、カウンタ10の値dを1増やす。反対に、第2の判定部8において電力値PPが電力値PMより小さいと判定された場合は、周波数スペクトル循環移動部9は、正の方向に周波数成分を1ずつ循環して移動させ、カウンタ10の値dを1減らす。
 また、このときSPDTスイッチ2の接点は、周波数スペクトル循環移動部9からの出力信号がバンドパスフィルタ3に入力されるように変更されているため、周波数スペクトル循環移動部9によって循環移動された周波数スペクトルが、再びバンドパスフィルタ3に入力され、第1の2乗加算部4、第2の2乗加算部5、および減算部6の順に信号処理が実行され、電力値PPと電力値PMとの電力差が算出され第1の判定部7に入力される。このループの信号処理は、第1の判定部7がNOと判定するまで、繰り返し実行される。すなわち、このループの信号処理は、電力値PPと電力値PMとの電力差の絶対値が予め定められたしきい値TH以下と判定されるまで繰り返し実行される。
 第1の判定部7がNOと判定した場合にこのループの信号処理は収束し、周波数スペクトル移動距離検出部11は、収束時点でのカウンタ10の値dの値を検出する。この値は周波数スペクトルの周波数軸上での移動距離の総和であり、この移動距離の総和である移動量に対応する周波数に基づいて周波数オフセットを推定する。
 以上で周波数オフセット推定は終了し、第1の判定部7は、SPDTスイッチ2の接点をFFT部1の出力信号がバンドパスフィルタ3に入力されるように切り替え、FFT部1から新たに周波数スペクトルデータをこのループ信号処理に入力し、周波数オフセットの推定は開始される。
 図4は本第1実施形態の動作をシミュレーションした結果の一例を示した説明図であり、図5は比較のために、従来の位相増加アルゴリズムを用いる周波数オフセット推定装置の動作をシミュレーションした結果の一例を示した説明図である。
 図4、図5共に、横軸は周波数オフセットの設定値、縦軸は周波数オフセット推定結果である。変調方式は112Gbit/s偏波多重QPSK(Quadrature Phase Shift Keying)であり、シンボルレートRSは28Gbaudである。
 図5に示す従来の位相増加アルゴリズムを用いる周波数オフセット推定装置では、±RS/2M=±3.5GHz(位相数M=4)の範囲内で精度良く推定できているが、その範囲を越えると位相の不確定性により誤った推定結果となっている。一方、図4に示す本第1実施形態では、±5GHzの広帯域に渡って精度良く推定できていることが分かる。
 図1から図4を用いて説明したように、本第1実施形態の周波数オフセット推定装置15は、受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する場合に、受信信号の周波数スペクトルの中の周波数帯域制限された正の周波数成分の電力値PPと負の周波数成分の電力値PMとの電力差の絶対値が予め設定されたしきい値以下になるまで全周波数成分を循環して移動し、その移動量に基づいて周波数オフセットを推定する。
 これにより、本第1実施形態の周波数オフセット推定装置15は、図17に示した従来の位相増加アルゴリズムを用いる周波数オフセット推定装置が推定できる周波数オフセットの範囲に比較して、広帯域に周波数オフセットを推定することができる。また、本第1実施形態による方法は、既知のパイロットシンボルを必要としない方法であって、さらに、図18に示した従来の周波数オフセット推定装置で用いていたNCOは不要な方法である。そのため本実施形態によれば、ステップ的な周波数変化の各周波数で数百から数千のFFTする際のデータ数に等しいサンプル数の入力信号を取り込む必要がない。よって本実施形態によれば、周波数オフセットを高速かつ高精度に推定することができる。
 また、本第1実施形態の周波数オフセット推定装置15は、周波数成分を循環して移動する大きさは1に限る必要はない。そのため、電力値PPと電力値PMとの電力差の絶対値が大きい時には循環して移動する大きさを大きくし、電力値PPと電力値PMとの電力差の絶対値がしきい値THに近づいた時に循環して移動する大きさを小さくすることができる。これにより、さらに周波数オフセットを高速に推定することができる。
 なお、第1の判定部7の予め定めるしきい値THの値は、入力信号の電力によって決めれば良い。例えばFFT部1の出力信号の周波数スペクトルが一様な矩形であると仮定し、また周波数スペクトルの全電力の総和を電力値PTOTALとして周波数成分を負の方向に1だけ循環移動すると、電力値PPは移動前に比べてPTOTAL/N 小さくなり、電力値PMはPTOTAL/N 大きくなる。従って電力値PPと電力値PMとの差は2PTOTAL/N変化する。このとき、しきい値THを2PTOTAL/N程度とすれば、ほぼ1周波数成分の精度で周波数オフセットを推定することができる。推定精度を犠牲にしても高速な推定処理時間が要求される場合には、しきい値THを大きくすれば良い。
 なお、FFT部1がFFTする際のデータ数Nは、要求される推定精度と推定処理時間とによって決めることができる。一般にNが小さいほど推定精度は劣化するが、推定処理時間は短縮される。
 また、周波数スペクトル移動距離検出部11より出力される周波数オフセット推定値は、複数個を蓄積した後に相加平均しても良いし、忘却係数を用いた平均化を行って時間的な変動に追随させても良い。
 なお、入力信号を周波数スペクトルに変換するFFT部1は、周波数解析方法として高速フーリエ変換に限らず、短時間フーリエ変換、離散フーリエ変換、ウエーブレット変換、あるいはその他の周波数解析方法を用いても良い。
 また、バンドパスフィルタ3は、周波数帯域を制限するフィルタとして、バンドパスフィルタに限らず、受信する信号の特性に基づいて、ローパスフィルタ、ハイパスフィルタ、あるいはその他の周波数帯域を制限するフィルタを用いても良い。
<第2実施形態>
 以下、図面を参照して、本発明の第2実施形態について説明する。本第2実施形態は、第1実施形態に記載した周波数オフセット推定装置15により周波数オフセットを粗く推定し、その推定値で周波数オフセットを補償した後に、従来の位相増加アルゴリズムを用いる周波数オフセット推定装置で周波数オフセットを推定し、さらに補償するという2種類の周波数推定装置を組み合わせた構成を持つ受信装置である。
 図6は、本発明の第2実施形態による受信装置の構成例を示す概略ブロック図である。
 受信装置は、周波数オフセット推定装置15、第1の周波数オフセット補償部28、偏波分離部19、位相増加周波数オフセット推定装置20、第2の周波数オフセット補償部29、第1の位相補償部24、第2の位相補償部25、第1の判定部26、および第2の判定部27を備えている。ここで、位相増加周波数オフセット推定装置20は、図17に構成例を示した位相増加アルゴリズムを用いる従来の周波数オフセット推定装置と同様の構成を有している。図6に示す周波数オフセット推定装置15は、図1に示す第1実施形態に記載の構成に対応しており、その説明を省略する。
 第1の周波数オフセット補償部28は、第1のNCO16、第1の乗算部17、および第2の乗算部18を備えている。
 第2の周波数オフセット補償部29は、第2のNCO21、第3の乗算部22、および第4の乗算部23を備えている。
 入力信号I+jQおよび入力信号I’+jQ’はそれぞれX偏波とY偏波の受信信号が所定のサンプリング周波数で予めサンプリングされた複素信号である。
 本第2実施形態では、まず初めに、周波数オフセット推定装置15は、入力信号I+jQおよび入力信号I’+jQ’に対して、周波数オフセットを広帯域に粗く推定する。ただし、周波数オフセット推定装置15は、次のような条件を満たすように設計されている。その条件とは、周波数オフセット推定装置15がこの周波数オフセットを粗く推定する際は、この粗く推定された周波数オフセットを補償した入力信号に対して、位相増加周波数オフセット推定装置20が周波数オフセットを推定する場合に、周波数の不確定性なく推定できる周波数の範囲の中に入るような条件である。
 次に、周波数オフセット推定装置15で粗く推定された周波数オフセット推定値は、第1の周波数オフセット補償部28に入力される。そして第1の周波数オフセット補償部28は、入力信号の周波数オフセットを補償する。
 つまり、粗く推定された周波数オフセットの推定値に基づいて、第1の周波数オフセット補償部28が有する第1のNCO16の発振周波数は調整される。そして、入力信号I+jQおよび入力信号I’+jQ’と、調整された第1のNCO16の発振周波数を持った信号とが、第1の周波数オフセット補償部28が有する第1の乗算部17および第2の乗算部18において乗算され、入力信号I+jQおよび入力信号I’+jQ’の周波数オフセットは補償される。
 偏波分離部19は、第1の周波数オフセット補償部28で入力信号I+jQおよび入力信号I’+jQ’の周波数オフセットを補償された信号に対して、偏波分離および残留分散の除去を実行する。位相増加周波数オフセット推定装置20は、偏波分離部19から出力された信号を入力し、周波数オフセットの推定を実行する。
 この、位相増加周波数オフセット推定装置20で推定した周波数オフセット推定値は、第2の周波数オフセット補償部29に入力される。そして第2の周波数オフセット補償部29は、入力信号の周波数オフセットを補償する。
 つまり、位相増加周波数オフセット推定装置20で推定した周波数オフセット推定値に基づいて、第2の周波数オフセット補償部29が有する第2のNCO21の発振周波数は調整される。そして、第2の周波数オフセット補償部29への入力信号と、調整された第2のNCO21の発振周波数を持った信号とが、第2の周波数オフセット補償部29が有する第3の乗算部22および第4の乗算部23において乗算され、第2の周波数オフセット補償部29への入力信号の周波数オフセットは補償される。
 次に、第2の周波数オフセット補償部29において周波数オフセットが補償された信号に対して、第1の位相補償部24および第2の位相補償部25は位相を補償し、それぞれ第1の判定部26および第2の判定部27へ出力する。第1の判定部26および第2の判定部27は、シンボルの判定をして復調信号を生成する。
 このように、本第2実施形態の周波数オフセットの推定装置を備える受信装置は、まず周波数オフセット推定装置15で周波数オフセットを粗く推定した値に基づいて入力信号を補償してから、従来の位相増加周波数オフセット推定装置20に入力する。また、偏波分離および残留分散の除去を合わせて実行することで、周波数オフセットおよび分散値が共に小さい入力信号に対して、位相増加アルゴリズムを用いて周波数オフセットを推定することができる。これにより、本第2実施形態の周波数オフセットの推定装置を備える受信装置は、受信信号に対して、広帯域かつ高精度に周波数オフセットを推定して補償し、復調することができる。
 ところで、周波数スペクトルを利用する周波数オフセット推定装置において、伝送路中のバンドパスフィルタや受信機中のローパスフィルタのカットオフ周波数が小さく、かつ周波数オフセットが大きい場合に周波数スペクトルの片側が削られて非対称となることがある。これに対して、本第2実施形態の周波数オフセットの推定装置においては、周波数オフセット推定装置15で周波数オフセットを粗く推定し補償した後に、さらに従来の位相増加周波数オフセット推定装置20で周波数オフセットを推定する。そのため、本第2実施形態の周波数オフセットの推定装置においては、伝送路中のバンドパスフィルタや受信機中のローパスフィルタのカットオフ周波数が小さく、かつ周波数オフセットが大きい場合であっても、周波数オフセットの推定精度が劣化してしまうことを防ぐことができる。
 なお、位相増加周波数オフセット推定装置20に入力される信号は、偏波分離部19からの出力信号に代えて、偏波分離部19に入力される前の、第1の周波数オフセット補償部28で周波数オフセットを補償された信号であっても良い。ただし、偏波分離部19において偏波分離および残留分散の除去をされた信号を、位相増加周波数オフセット推定装置20へ入力した方が、より高精度に周波数オフセットを推定できる。
<第3実施形態>
 以下、図面を参照して、本発明の第3実施形態について説明する。
 上記に説明したように、第2実施形態の受信装置においては、周波数オフセット推定装置15が粗く推定した値に基づいて入力信号を補償している。これに対して、本第3実施形態の受信装置は、周波数オフセット推定装置15が粗く推定した値に基づいて、入力信号は補償せずに、従来の位相増加アルゴリズムを用いて検出する際の位相の不確定性を除去して周波数オフセットを推定する構成を持つ受信装置である。なお、本実施形態における受信装置では、第1実施形態の周波数オフセット推定装置に代えて、非特許文献3に記載の発明を利用することも可能である。
 図7は、本発明の第3実施形態による受信装置の構成例を示す概略ブロック図である。
 受信装置は、周波数オフセット推定装置15、周波数不確定性除去制御部30、偏波分離部19、位相増加周波数オフセット推定装置20、周波数オフセット補償部29、第1の位相補償部24、第2の位相補償部25、第1の判定部26、および第2の判定部27を備えている。周波数オフセット補償部29は、NCO21、第1の乗算部22、および第2の乗算部23を備えている。
 周波数オフセット推定装置15は、第1実施形態に記載の構成であり説明を省略する。
 図7において図6の各部に対応する構成には同一の符号をつけており、その説明を省略する。
 図7において、入力信号I+jQおよび入力信号I’+jQ’はそれぞれX偏波とY偏波の受信信号が所定のサンプリング周波数で予めサンプリングされた複素信号である。
 本第3実施形態では、まず、周波数オフセット推定装置15は、入力信号I+jQおよび入力信号I’+jQ’に対して、周波数オフセットを広帯域に粗く推定し、その推定値を周波数不確定性除去制御部30に出力する。
 また、位相増加周波数オフセット推定装置20は、偏波分離部19から出力された信号に対して周波数オフセットを推定し、その推定値を周波数不確定性除去制御部30に出力する。
 次に、周波数不確定性除去制御部30は、周波数オフセット推定装置15、および位相増加周波数オフセット推定装置20から入力されたそれぞれの周波数オフセットの推定値に基づいて、周波数オフセットを推定し、周波数オフセット補償部29のNCO21に出力し、NCO21の発振周波数を調整する。
 周波数オフセット補償部29で、入力信号I+jQおよび入力信号I’+jQ’の周波数オフセットが補償されたあと、第1の位相補償部24、第2の位相補償部25、第1の判定部26、および第2の判定部27で復調される。
 ここで、周波数不確定性除去制御部30が、位相増加周波数オフセット推定装置20の周波数オフセット推定結果の不確定性を除去し、周波数オフセットを推定する際の動作について説明する。
 まず、周波数不確定性除去制御部30は、位相増加周波数オフセット推定装置20から入力された周波数オフセットの推定値に基づいて、複数の周波数オフセットの候補の周波数を算出する。次に、周波数不確定性除去制御部30は、算出した複数の周波数オフセットの候補において、周波数軸上で隣り合う候補と候補の中点を算出し境界とする。さらに、周波数不確定性除去制御部30は、周波数オフセット推定装置15から入力された周波数オフセットの推定値が、上記周波数オフセットの候補の隣り合う境界と境界の間の領域にあることを検出する。そして、周波数不確定性除去制御部30は、上記検出された領域の中にある周波数オフセットの候補を、周波数オフセットの推定値として選択する。
 次に、図8を用いて、本第3実施形態における周波数オフセットを推定する動作の概要について説明する。
 周波数オフセット推定装置15の推定値に基づいて、周波数不確定性除去制御部30は、位相増加周波数オフセット推定装置20の周波数オフセット推定結果の不確定性を除去する。
 この周波数オフセット推定結果の不確定性は、位相増加周波数オフセット推定装置20において、位相増加アルゴリズムで検出する位相の不確定性に起因するものであり、周期性を持っている。位相増加周波数オフセット推定装置20の周波数オフセット推定値を周波数fMthとすると、推定値が周波数fMthとなる可能性のある周波数オフセットの候補の周波数fCND(k)は、次の数式7で与えられる。
Figure JPOXMLDOC01-appb-M000008
 実際の周波数オフセットを周波数fCND(L)とする。すなわち不確定性を表す係数kをk=Lとする(Lは整数)。この時、周波数オフセット推定装置15の周波数オフセット推定値を周波数fCOとすると、周波数fCOが次の数式8の関係式を満足するように周波数オフセット推定装置15を設計することで、不確定性を除去することができる。
Figure JPOXMLDOC01-appb-M000009
 図8は、周波数軸上に周波数fMthからRS/M周期に周波数fCND(k)が並んでおり、隣り合う周波数fCND(k)の周波数の中点を、隣り合う周波数オフセットの候補の境界としていることを示している。図8では、周波数fCOが周波数オフセットの候補の周波数fCND(1)の領域にあるため、周波数不確定性除去制御部30は、実際の周波数オフセットをfCND(1)と推定する。
 このように、本第3実施形態の周波数オフセットの推定装置を備える受信装置は、まず周波数オフセット推定装置15で周波数オフセットを粗く推定する。次に、周波数不確定性除去制御部30は、その推定値に基づいて位相増加アルゴリズムで検出する位相の不確定性を除去するとともに、周波数オフセットを推定する。これにより、本第3実施形態の周波数オフセットの推定装置を備える受信装置は、受信信号に対して、広帯域、かつ高精度に周波数オフセットを推定して補償し、復調することができる。また第2実施形態と比較すると、周波数オフセット推定装置15の推定値で周波数オフセットを補償するためのNCOや乗算器が不要となり、回路規模を低減することができる。
 なお、位相増加周波数オフセット推定装置20に入力される入力信号は、本第3実施形態の構成例の図7では、偏波分離部19からの出力信号であるが、偏波分離部19に入力される前の信号であっても良い。
<第4実施形態>
 以下、図面を参照して、本発明の第4実施形態について説明する。
 図9は、本発明の第4の実施形態による周波数オフセット推定装置150の構成例を示すブロック図である。
 この周波数オフセット推定装置は、周波数オフセット精推定部41、周波数オフセット粗推定部57、および掃引周波数範囲制御部58を備えている。さらに、周波数オフセット精推定部41は、第1の4乗回路42、第2の4乗回路43、第1の乗算回路44、第2の乗算回路45、NCO(numerically-controlled oscillator)46、第1のNシンボル加算回路47、第2のNシンボル加算回路48、第1の1/N除算回路49、第2の1/N除算回路50、第1の絶対値2乗回路51、第2の絶対値2乗回路52、偏波加算回路53、Uフレーム加算回路54、最大値掃引周波数検出回路55、および1/4除算回路56を備えている。
 周波数オフセット粗推定部57は、所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する。周波数オフセット粗推定部57には、第2実施形態と同様、第1実施形態に記載の周波数スペクトルを利用する周波数オフセット推定装置15を用いることができる。また、第1実施形態に記載の周波数オフセット推定装置15に代えて、非特許文献3に記載の周波数オフセット推定装置も同様に用いることができる。掃引周波数範囲制御部58は、周波数オフセット粗推定部57の粗推定値に基づいて掃引周波数範囲を決定する。周波数オフセット精推定部41は、掃引周波数範囲制御部58により決定された掃引周波数範囲において受信信号の周波数オフセットを推定する。ここで、受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/Wとする。なお、Wは変調方式によって定まる数(正の整数)であり、QAM変調であればW=4、PAM(pulse amplitude modulation)変調であればW=2、M-PSK変調であればW=Mである。本第4実施形態においては、W=4の場合として、説明する。
 周波数オフセット精推定部41は、第1の演算部41a、第2の演算部41b、第3の演算部41c、および第4の演算部41dを備えている。第1の演算部41aは、受信信号における2つの偏波をそれぞれ4乗した後、該受信信号に対して該受信信号の周波数から前記掃引周波数を減算する周波数変換を行う。そして、第2の演算部41bは、第1の演算部41aにおける各偏波の演算結果に対して、N(N:正の整数)シンボルの平均化(平均値の算出)を行った後、絶対値のべき乗の演算(平均値に対して絶対値のべき乗を算出)を行う。さらに、第3の演算部41cは、第2の演算部41bによる2つの偏波の演算結果を加算した後、NシンボルからなるフレームについてU(U:正の整数)フレームの加算処理を行う。そして、第4の演算部41dは、第3の演算部41cの演算結果が最大値となる掃引周波数を検出し、この掃引周波数を1/4倍して出力して周波数オフセットを推定する。
 なお、第1の演算部41aは、第1の4乗回路42、第2の4乗回路43、第1の乗算回路44、第2の乗算回路45、およびNCO46を備えている。第2の演算部41bは、第1のNシンボル加算回路47、第2のNシンボル加算回路48、第1の1/N除算回路49、第2の1/N除算回路50、第1の絶対値2乗回路51、および第2の絶対値2乗回路52を備えている。また、第3の演算部41cは、偏波加算回路53およびUフレーム加算回路54を備えている。第4の演算部41dは、最大値掃引周波数検出回路55および1/4除算回路56を備えている。
 以下、本実施形態における周波数オフセット精推定部41の具体的な動作例を説明する。
 この第4実施形態の動作を表す数式を数式9および数式10に示す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ここで、Nは1フレームの推定に用いるシンボル数、uはN個のシンボル系列からなるフレームのフレーム番号、Uは推定に用いる総フレーム数、y(u,p,t)は受信信号であり、フレームu、偏波p、および時間tの関数である。また、RSはシンボルレートであり、fcoarseは周波数オフセット粗推定部57の粗推定周波数である。
 図9において、入力信号I+jQおよびI'+jQ'は、それぞれ、数式9の受信信号y(u,p,t)が所定のサンプリング周波数で予めサンプリングされたX偏波およびY偏波の複素信号である。周波数オフセット精推定部41は、この入力信号を第1の4乗回路42および第2の4乗回路43で4乗し、NCO46の出力信号exp(-j2πft)と第1の乗算回路44および第2の乗算回路45において乗算する。この乗算は、4乗した受信信号の周波数から周波数fを減算する周波数変換を行う演算に相当する。
 NCO46の掃引周波数は、掃引周波数範囲制御部58により制御される。具体的には、掃引周波数範囲制御部58は、周波数オフセット粗推定部57により推定された粗推定周波数fcoarseとシンボルレートRSから数式10を満足するようにNCO46の掃引周波数の周波数範囲を決め、数式10の下限周波数から上限周波数まで所定のステップで周波数fを変化させる。周波数オフセット精推定部41は、各々の周波数fにおいて、第1のNシンボル加算回路47および第2のNシンボル加算回路48でのN個のシンボルに対する演算結果を加算し、第1の1/N除算回路49および第2の1/N除算回路50においてNで除算してN個の平均値とし、第1の絶対値2乗回路51および第2の絶対値2乗回路52において絶対値の2乗を求め、偏波加算回路53において2つの偏波に対する演算結果を加算する。ここで、周波数オフセット精推定部41は、N個のシンボル系列を1フレーム目、次のN個のシンボル系列を2フレーム目とみなし、Uフレームの演算結果をUフレーム加算回路54において加算する。当該加算処理により、周波数オフセット精推定部41は雑音成分を除去する。ここまでの演算により、次の数式11で示す評価関数φn(f)が求まる。
Figure JPOXMLDOC01-appb-M000012
 周波数オフセット推定装置150は、この評価関数φn(f)が最大値となる周波数fを最大値掃引周波数検出回路55で算出し、1/4除算回路56で1/4倍することにより、周波数オフセットを推定することができる。
 本第4実施形態では、周波数オフセット粗推定部57と掃引周波数範囲制御部58とがNCO46の掃引周波数範囲を制御することにより、周波数オフセットの推定範囲を広帯域にすることができる。この点について、図23を用いて説明する。
 例えば、周波数オフセットが5GHzである図23において、粗推定周波数fcoarseが4GHzであったとすると、シンボルレートRSは28GHzであることから、数式10よりNCO46の掃引周波数範囲は[2GHz~30GHz]となる。このため、周波数オフセット推定装置150は、20GHzのピークのみを検出してその両隣のピークは検出しないため、不確定性が無く20GHzを最大値掃引周波数として検出し、その1/4である5GHzを周波数オフセット推定値として出力することができる。
 本実施形態の周波数オフセット推定装置150は、推定可能な周波数範囲が [fcoarse-RS/8~fcoarse+RS/8]であり、また粗推定周波数fcoarseが可変であることから、広帯域に推定が可能である。また本実施形態では、真の周波数オフセット値と粗推定周波数fcoarseとの誤差には±RS/8と大きな値が許容できるため、周波数オフセット粗推定部57には高精度な特性が要求されない。なお、従来の技術では、推定範囲が[-14GHz~14GHz]となるため、-8GHzを最大値掃引周波数として検出し、その1/4である-2GHzを周波数オフセット推定値として出力することとなる。
 図10は、図24および図25と同じ周波数オフセット5GHz、レーザの線幅10MHz、OSNR10dBを仮定し、1フレームの推定に用いるシンボル数Nを1028、推定に用いる総フレーム数Uを80としてシミュレーションを行って、数式11の評価関数φn(f)を求めた結果を示している。
 この図10を図24および図25と比べると、周波数オフセットの4倍である20GHzのピークが強調され、フレームごとに一時的に現れていた局所的なピークは相対的に低く抑えられている。従って、周波数オフセット推定装置150は、位相雑音や熱雑音によりフレームごとに一時的に現れていた局所的なピークに影響されることなく、正しい推定結果を算出することが可能となる。
 以上のように、本第4実施形態の周波数オフセット推定装置150は、周波数オフセット粗推定部57が粗く推定した結果に基づいて、周波数オフセット精推定部41が周波数オフセットを推定する際の周波数不確定性を除去するように、掃引周波数範囲制御部58がNCO46の掃引周波数の周波数範囲を決め、周波数オフセットを推定する。また、周波数オフセット推定装置150は、周波数オフセット精推定部41が周波数オフセットを推定する演算処理において、受信信号の雑音成分を除去する。これにより、本第4実施形態の周波数オフセット推定装置150は、受信信号に対して広帯域かつ高精度に周波数オフセットを推定することができる。
<第5実施形態>
 以下、図面を参照して、本発明の第5実施形態について説明する。
 図11は、本第5実施形態による周波数オフセット推定装置150の構成例を示すブロック図である。なお、図11において図9の各部に対応する構成には同一の符号をつけており、その説明を省略する。
 なお、本第5実施形態による周波数オフセット精推定部41において、第1の演算部41a、および第4の演算部41dは、第4実施形態による第1の演算部41a、および第4の演算部41dと同様の構成である。一方、本第5実施形態による周波数オフセット精推定部41において、第2の演算部41b、および第3の演算部41cは、第4実施形態による第2の演算部41b、および第3の演算部41cと異なる構成である。本第5実施形態による周波数オフセット精推定部41において、第2の演算部41bは、第1のNシンボル加算回路47、第2のNシンボル加算回路48、第1の絶対値回路59、および第2の絶対値回路60を備えている。また、第3の演算部41cは、第1のUフレーム加算回路61,第2のUフレーム加算回路62、第1の1/U除算回路63、第2の1/U除算回路64、および偏波加算回路53を備えている。
 本実施形態において周波数オフセット精推定部41は、第2の演算部41bにおいて、第1の演算部41aにおける各偏波の演算結果に対して、Nシンボルの加算を行った後、絶対値の演算(加算した値に対して絶対値を算出)を行う。さらに、周波数オフセット精推定部41は、第3の演算部41cにおいて、第2の演算部41bで得られた演算結果に対して、NシンボルからなるフレームについてUフレームの平均化処理を行った後、2つの偏波の演算結果を加算する。そして、周波数オフセット精推定部41は、第4の演算部41dにおいて、第3の演算部41cの演算結果が最大値となる掃引周波数を検出し、この掃引周波数を1/4倍して出力して周波数オフセットを推定する。
 本実施形態における周波数オフセット精推定部41は、図9に示す第4実施形態の構成と比較して、第1の1/N除算回路49および第2の1/N除算回路50が削除されている。このように第1の1/N除算回路49および第2の1/N除算回路50が削除されることにより、評価関数φn(f)の各周波数成分はN倍になるものの、周波数間の相対的な大小関係は変わらない。よって、本実施形態の周波数オフセット精推定部41は、第4実施形態の周波数オフセット精推定部41と同様に周波数オフセットを推定する。ここで、Nシンボル加算回路と1/N除算回路との両方により処理される場合は平均化処理、1/N除算回路を省いてNシンボル加算回路により処理される場合は加算処理となる。
 また、第4実施形態の周波数オフセット精推定部41における第1の絶対値2乗回路51および第2の絶対値2乗回路52は、本実施形態の周波数オフセット精推定部41においては、第1の絶対値回路59および第2の絶対値回路60に置き換えられている。このように2乗を1乗や他のべき乗に変えても、評価関数φn(f)の各周波数成分の相対的な大小関係は変わらない。そのため、本実施形態の周波数オフセット精推定部41は、第4実施形態の周波数オフセット精推定部41と同様に周波数オフセットを推定する。
 また、第4実施形態の周波数オフセット精推定部41の構成と比較して、本実施形態の周波数オフセット精推定部41においては、第1の1/U除算回路63および第2の1/U除算回路64が追加されている。これによって評価関数φn(f)の各周波数成分は1/U倍になるものの、周波数間の相対的な大小関係は変わらない。そのため、本実施形態の周波数オフセット精推定部41は、第4実施形態の周波数オフセット精推定部41と同様に周波数オフセットを推定する。ここで、Uフレーム加算回路と1/U除算回路との両方により処理される場合は平均化処理、1/U除算回路を省いて、Uフレーム加算回路により処理される場合は加算処理となる。
 さらに、第4実施形態の周波数オフセット精推定部41における偏波加算回路53からUフレーム加算回路54への順番は、本実施形態の周波数オフセット精推定部41においては、第1のUフレーム加算回路61(または、第2のUフレーム加算回路62)から、1/U除算回路を介して偏波加算回路53への順番に入れ替えられている。このようにフレーム加算と偏波加算との順番が入れ替えられても評価関数φn(f)の各周波数成分の相対的な大小関係は変わらない。そのため、本実施形態の周波数オフセット精推定部41は、第4実施形態の周波数オフセット精推定部41と同様に周波数オフセットを推定する。なお、推定に用いる総フレーム数Uが大きければ、偏波加算を行わず、ピーク値の大きい方の偏波の評価関数のみを選択することも可能である。
 これにより、本第5実施形態の周波数オフセット推定装置150は、上述の周波数オフセット精推定部41の構成においても、第4実施形態の周波数オフセット推定装置150の周波数オフセット精推定部41の構成と同様に、受信信号に対して広帯域かつ高精度に周波数オフセットを推定することができる。
 また、第4実施形態や第5実施形態はQAMで変調された信号に限るものではなく、PSKやPSKの振幅を多段階とした変調方式、あるいはPAM変調方式についても適用できる。この場合、周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/Wとすると、第1の4乗回路42および第2の4乗回路43をW乗回路、1/4除算回路56を1/W除算回路に変更すれば良い。例えばPAM変調であればW=2、8PSK変調であればW=8となる。
<第6実施形態>
 以下、図面を参照して、本発明の第6実施形態について説明する。
 図12は、本発明の第6実施形態による受信装置200の構成例を示すブロック図である。
 この受信装置200は、周波数オフセット精推定部41、周波数オフセット粗推定部57、掃引周波数範囲制御部58、偏波分離部66、周波数オフセット補償部67、第1の位相補償部68、第2の位相補償部69、第1の判定部70、および第2の判定部71を備えている。ここで、図12に示す、周波数オフセット精推定部41、周波数オフセット粗推定部57、および掃引周波数範囲制御部58は、図9および図11に示す同一符号の各部とそれぞれ対応している。
 周波数オフセット補償部67は、周波数オフセット推定装置150によって推定された受信信号の周波数オフセットの値に基づいて、受信信号の周波数オフセットを補償する。第1の位相補償部68および第2の位相補償部69は、周波数オフセット補償部67によって補償された受信信号に対して、位相を補償する。第1の判定部70および第2の判定部71は、前記位相を補償された前記受信信号のシンボルの判定を行う。
 本第6実施形態の受信装置200は、まず周波数オフセット粗推定部57で周波数オフセットを粗く推定した値に基づいて、数式10を満足するように、周波数オフセット精推定部41の掃引周波数を掃引周波数範囲制御部58において決める。
 偏波分離部66は、入力信号I+jQおよび入力信号I’+jQ’に対して偏波分離および残留分散の除去を実行する。周波数オフセット精推定部41は、偏波分離部66から出力された信号を入力し、周波数オフセットの推定を実行する。
 この周波数オフセット精推定部41で推定した周波数オフセット推定値は、周波数オフセット補償部67に入力され、入力信号I+jQおよび入力信号I’+jQ’の周波数オフセットを補償する。次に、周波数オフセット補償部67において周波数オフセットが補償された信号に対して、第1の位相補償部68および第2の位相補償部69は位相を補償し、それぞれ第1の判定部70および第2の判定部71へ出力する。第1の判定部70および第2の判定部71は、シンボルの判定をして復調信号を生成する。
 以上のように、周波数オフセットの推定と共に、偏波分離および残留分散の除去を合わせて実行することで、周波数オフセットおよび分散値が共に小さい入力信号に対して、周波数オフセット精推定部41を動作させることができる。これにより、本第6実施形態の周波数オフセット推定装置150を備える受信装置200は、受信信号に対して、広帯域かつ高精度に周波数オフセットを推定して補償し、復調することができる。
 なお、周波数オフセット精推定部41に入力される信号は、偏波分離部66からの出力信号に代えて、偏波分離部66に入力される前の信号を入力しても良い。ただし、偏波分離部66において偏波分離および残留分散の除去をされた信号を周波数オフセット精推定部41へ入力した方が、より高精度に周波数オフセットを推定することができる。
<第7実施形態>
 以下、図面を参照して、本発明の第7実施形態について説明する。
 図13は、本発明の第7実施形態による周波数オフセット推定装置150の構成例を示すブロック図である。
 この周波数オフセット推定装置150は、周波数オフセット粗推定部57、周波数オフセット精推定部41、および周波数不確定性除去制御部97を備えている。周波数オフセット精推定部41は、第1のW乗回路88、第2のW乗回路89、第1のFFT部90、第2のFFT部91、第1の絶対値2乗回路92、第2の絶対値2乗回路93、偏波スペクトル加算回路94、Uフレームスペクトル加算回路95、および最大値周波数検出回路96を備えている。なお、Wは変調方式によって定まる数(正の整数)であり、周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/Wとする。QAM変調であればW=4、PAM変調であればW=2、M-PSK変調であればW=Mである。
 周波数オフセット粗推定部57には、第1実施形態に記載の周波数スペクトルを利用する周波数オフセット推定装置15を使うことができる。また、第1実施形態に記載の周波数オフセット推定装置15に代えて、非特許文献3に記載の発明も同様に使うことができる。本実施形態は、時間平均である評価関数が離散フーリエ変換にもなっていることに着目した構成である。
 本実施形態において周波数オフセット精推定部41は、受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/Wと定義した場合に、受信信号における2つの偏波をそれぞれW乗した後に周波数スペクトルに変換する。そして、周波数オフセット精推定部41は、その変換結果に対して絶対値または絶対値のべき乗の演算を行い、これら2つの偏波の周波数スペクトルを加算するとともに、N(N:正の整数)シンボルからなる各フレームの周波数スペクトルに対してU(U:正の整数)フレーム加算または平均化を行い、この演算結果が最大値となる周波数を検出する。
 まず、周波数オフセット精推定部41は、入力信号I+jQ およびI'+jQ'を第1のW乗回路88および第2のW乗回路89でW乗した後、第1のFFT部90および第2のFFT部91でN個のシンボル系列を一括して周波数スペクトルに変換する。次に、周波数オフセット精推定部41は、この周波数スペクトルのデータに対して、第1の絶対値2乗回路92および第2の絶対値2乗回路93で絶対値の2乗を求め、偏波スペクトル加算回路94において2つの偏波の周波数スペクトルを加算する。ここで、周波数オフセット精推定部41は、N個のシンボル系列を1フレーム目、次のN個のシンボル系列を2フレーム目とみなし、Uフレームの周波数スペクトルをUフレームスペクトル加算回路95において加算する。当該加算処理により、周波数オフセット精推定部41は、雑音成分を除去する。
 この加算された周波数スペクトルから、最大値周波数検出回路96は、最大値を取る周波数fを算出する。第4実施形態や第5実施形態では、NCO46の掃引周波数を所定のステップで変化させて、各々の周波数において評価関数φn(f)を求めた後にφn(f)が最大となる周波数fを検出した。これに対し本第7実施形態では、周波数スペクトルを求め、周波数領域で周波数スペクトルが最大となる周波数fを検出する。
 また、第4実施形態や第5実施形態では、周波数不確定性のない周波数オフセットを推定するために、NCO46の掃引周波数の周波数範囲を予め掃引周波数範囲制御部58で制限していた。一方、本第7実施形態で用いる周波数スペクトルには周波数不確定性が含まれている。この周波数不確定性を周波数不確定性除去制御部97で除去する。周波数不確定性除去制御部97は、周波数オフセット粗推定部57によって推定された周波数オフセットの値に基づいて、周波数オフセット精推定部41によって推定された周波数オフセットの周波数不確定性を除去し、周波数オフセットを推定する。
 例えば、周波数不確定性除去制御部97は、周波数不確定性を除去し周波数オフセットを推定する際に、周波数オフセット精推定部41によって推定された周波数オフセットに基づいて、周波数不確定性を含む前記周波数オフセットの候補となる周波数を算出する。さらに、周波数不確定性除去制御部97は、周波数軸上で隣り合う周波数オフセットの候補となる周波数の中点を、隣り合う前記周波数オフセットの候補の境界とし、周波数軸上で境界に基づいた領域の中から、周波数オフセット粗推定部57によって推定された値が含まれる領域を選択する。そして、周波数不確定性除去制御部97は、前記選択した領域に含まれる周波数オフセットの候補となる周波数を、周波数オフセットの推定値として選択する。
 以下、周波数不確定性を除去して周波数オフセットを推定する本実施形態の動作の具体例について、図14および数式12~数式16を用いて説明する。図14は、第7実施形態による周波数オフセット推定装置150が周波数オフセットを推定する動作の概要を示す説明図である。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 数式12の絶対値記号の中は、yW(u,p,t)に関する離散フーリエ変換となっている。すなわちyW(u,p,t)に関する周波数スペクトルとなっている。この周波数スペクトルの最大値を求める周波数範囲は、数式13によって、折り返しの影響を受けない第1ナイキストゾーンである[-RS/2からRS/2]に制限している。受信信号のW乗の周波数スペクトルが最大となる周波数をfMAX とすると、周波数オフセットの推定値がfMAXとなる可能性のある周波数オフセットの候補の周波数fCND(k)は数式14で表される。図14はW=4の場合について示している。この図14にはfMAX を縦軸に、またfCND(k)を横軸にプロットしている。
 周波数オフセット粗推定部97の粗推定値をfCO とし、隣り合うfCND(k)の中点を判定境界とする。この時、2つの判定境界に挟まれる領域のうち、fCO を含む領域が実際の周波数オフセットを与える。数式15ではk=i の領域がfCO を含んでいることを表し、数式16により周波数オフセットの推定値を確定することができる。この場合、図14に示している例では、次の数式17が成り立つ。
Figure JPOXMLDOC01-appb-M000018
 以上のように、本第7実施形態の周波数オフセット推定装置150は、周波数オフセット粗推定部57によって推定された周波数オフセットの値に基づいて、周波数オフセット精推定部41によって推定された周波数オフセットの周波数不確定性を除去し、周波数オフセットを推定する。これにより、本第7実施形態の周波数オフセット推定装置150は、受信信号に対して広帯域かつ高精度に周波数オフセットを推定することができる。また、第4実施形態や第5実施形態と比較すると、掃引周波数範囲制御部58およびNCO46をFFT部90および91に置き換えて一括して周波数スペクトルに変換して推定するため、推定に要する時間を短縮することができる。
 なお、周波数スペクトルに変換するFFT部90およびFFT部91は、周波数解析方法として高速フーリエ変換に限らず、短時間フーリエ変換、離散フーリエ変換、ウエーブレット変換、あるいはその他の周波数解析方法を用いても良い。また、第1の絶対値2乗回路92および第2の絶対値2乗回路93の2乗を1乗や他のべき乗に変えても周波数スペクトルの各周波数成分の相対的な大小関係は変わらず、動作に影響しない。また偏波スペクトル加算回路94において偏波加算を行わず、ピーク値の大きい方の偏波の周波数スペクトルを選択することも可能である。
 図15は、本第7実施形態の実験結果の一例を示す説明図である。
 この実験結果は、シンボルレートRSが10GHzの64QAMで変調された信号を受信した時のUフレームスペクトル加算回路95の出力信号の周波数スペクトルを示している。また周波数オフセット粗推定部57の推定値fCO は3.7GHzであった。図15より、数式12のfMAX は-4GHzである。数式14およびW=4 よりfCND(k)は、-1GHz(k=0)、1.5GHz(k=1)、4GHz(k=2)、6.5GHz(k=3)、…となり、このうち数式15を満たすiは2である。従って、数式16より周波数オフセットは4GHzと定めることができる。以上のように本実施形態により、RS/8=1.25GHzを越える周波数オフセットを推定することが可能となる。
<第8実施形態>
 以下、図面を参照して、本発明の第8実施形態について説明する。
 図16は、本発明の第8実施形態による受信装置200の構成例を示すブロック図である。なお、図16において図12の各部に対応する構成には同一の符号をつけており、その説明を省略する。
 偏波分離部66は、入力信号I+jQおよび入力信号I’+jQ’に対して偏波分離および残留分散の除去を実行する。周波数オフセット精推定部41は、偏波分離部66から出力された信号を入力し、周波数オフセットの推定を実行する。
 周波数不確定性除去制御部97は、周波数オフセット粗推定部57の推定値および周波数オフセット精推定部41の推定値がそれぞれ入力され、数式12から数式16に従って周波数オフセット推定値を確定する。そして、周波数オフセット補償部67は、周波数不確定性除去制御部97から出力される確定した周波数オフセットの推定値が入力され、入力信号の周波数オフセットを補償する。
 次に、周波数オフセット補償部67において周波数オフセットが補償された信号に対して、第1の位相補償部68および第2の位相補償部69は位相を補償し、それぞれ第1の判定部70および第2の判定部71へ出力する。第1の判定部70および第2の判定部71は、シンボルの判定をして復調信号を生成する。
 以上のように、本第8実施形態の受信装置200は、周波数オフセット推定装置150による周波数オフセットの推定と共に、偏波分離および残留分散の除去を合わせて実行することで、周波数オフセットおよび分散値が共に小さい入力信号に対して、周波数オフセット精推定部41を動作させることができる。これにより、本第8実施形態の受信装置200は、受信信号に対して、広帯域かつ高精度に周波数オフセットを推定して補償し、復調することができる。
 なお、周波数オフセット精推定部41に入力される信号は、偏波分離部66からの出力信号に代えて、偏波分離部66に入力される前の信号を入力しても良い。ただし、偏波分離部66において偏波分離および残留分散の除去をされた信号を周波数オフセット精推定部41へ入力した方が、より高精度に周波数オフセットを推定することができる。
 また、図1、図6、図7、図9,図11,図12、図13、および図16における周波数オフセットの推定装置を構成する各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各構成による処理が実行されてもよい。なお、ここでいう「コンピュータシステム」とは、OS(operating system)や周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWW(world wide web)システムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(read only memory)、CD(compact disc)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 例えば、周波数不確定性除去制御部を備えた受信装置または周波数オフセット推定装置において、周波数オフセットの精推定を実現するための構成は、位相増加周波数オフセット推定装置(部)20(図7)や周波数オフセット精推定部41(図13,図16)の構成に限定されるものではなく、これらに代えて、図5や図14にのこぎり波状に示されているような周期的な周波数オフセット推定特性を持つ従来の一般的な構成を用いてもよい。
 本発明は、例えば、ディジタルコヒーレント光受信機や無線通信受信機に利用することができる。本発明によれば、受信信号の周波数オフセットを広帯域,高速かつ高精度に推定することができる。
1・・・FFT部、3・・・バンドパスフィルタ、12・・・周波数オフセット推定制御部、15、150・・・周波数オフセット推定装置、20、67・・・位相増加周波数オフセット推定装置、24、25、68、69・・・位相補償部、26,27、70,71・・・判定部、28、29・・・周波数オフセット補償部、30、97・・・周波数不確定性除去制御部、41・・・周波数オフセット精推定部、41a・・・第1の演算部、41b・・・第2の演算部、41c・・・第3の演算部、41d・・・第4の演算部、57・・・周波数オフセット粗推定部、58・・・掃引周波数範囲制御部、200・・・受信装置

Claims (20)

  1.  受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する周波数オフセット推定装置であって、
     所定のサンプリング周波数で予めサンプリングされた前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換部と、
     前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限部と、
     前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御部と、
     を備える周波数オフセット推定装置。
  2.  前記周波数オフセット推定制御部は、前記周波数スペクトルの前記全ての周波数成分を前記周波数軸上で循環して移動させる場合に、
     前記正の周波数成分の電力が前記負の周波数成分の電力より大きい場合は、前記周波数スペクトルの全周波数成分を負の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号が1未満の場合は周波数成分番号にNを加算し、
     前記正の周波数成分の電力が前記負の周波数成分の電力以下の場合は、前記周波数スペクトルの全周波数成分を正の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号がNを越える場合は周波数成分番号からNを減算する請求項1に記載の周波数オフセット推定装置。
  3.  請求項1あるいは請求項2に記載の周波数オフセット推定装置と、
     前記周波数オフセット推定装置によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する第1の周波数オフセット補償部と、
     前記第1の周波数オフセット補償部によって補償された前記受信信号に対して、前記周波数オフセットを位相増加アルゴリズムに基づいて推定する、位相増加周波数オフセット推定部と、
     前記位相増加周波数オフセット推定部によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記周波数オフセットを補償する第2の周波数オフセット補償部と、
     を備える受信装置。
  4.  受信信号の搬送波周波数と局部発振器の出力信号の周波数との差である周波数オフセットを推定する周波数オフセット推定装置において用いられる、周波数オフセット推定方法であって、
     所定のサンプリング周波数で予めサンプリングされた前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換手順と、
     前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限手順と、
     前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御手順と、
     を備える周波数オフセット推定方法。
  5.  前記周波数オフセット推定制御手順において、前記周波数スペクトルの前記全ての周波数成分を前記周波数軸上で循環して移動させる場合に、
     前記正の周波数成分の電力が前記負の周波数成分の電力より大きい場合は、前記周波数スペクトルの全周波数成分を負の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号が1未満の場合は周波数成分番号にNを加算し、
     前記正の周波数成分の電力が前記負の周波数成分の電力以下の場合は、前記周波数スペクトルの全周波数成分を正の方向に予め定められた大きさだけ移動し、移動後の周波数成分番号がNを越える場合は周波数成分番号からNを減算することにより、前記周波数スペクトルを循環して移動する請求項4に記載の周波数オフセット推定方法。
  6.  請求項4あるいは請求項5に記載の周波数オフセット推定方法による手順と、
     前記周波数オフセット推定方法による手順によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する第1の周波数オフセット補償手順と、
     前記第1の周波数オフセット補償手順によって補償された前記受信信号に対して、前記周波数オフセットを位相増加アルゴリズムに基づいて推定する、位相増加周波数オフセット推定手順と、
     前記位相増加周波数オフセット推定手順によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記周波数オフセットを補償する第2の周波数オフセット補償手順と、
     を備える受信方法。
  7.  受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定装置であって、
     所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定部と、
     前記周波数オフセット粗推定部の粗推定値に基づいて掃引周波数の範囲を決定する掃引周波数範囲制御部と、
     前記掃引周波数範囲制御部により決定された前記掃引周波数の範囲において前記受信信号の周波数オフセットを推定する周波数オフセット精推定部と、
     を備え、
     前記周波数オフセット精推定部は、
     前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後、該受信信号に対して該受信信号の周波数から前記掃引周波数を減算する周波数変換を行う第1の演算部と、
     前記第1の演算部における各偏波の演算結果に対して、N(N:正の整数)シンボルの平均化または加算を行った後、絶対値または絶対値のべき乗の演算を行う第2の演算部と、
     前記第2の演算部の後段側において、前記2つの偏波の演算結果を加算、またはピーク値の大きい方の偏波の演算結果を選択するとともに、前記NシンボルからなるフレームについてU(U:正の整数)フレームの加算または平均化を行う第3の演算部と、
     前記第3の演算部の演算結果が最大値となる掃引周波数を検出し、当該掃引周波数を1/W倍して前記周波数オフセットを推定する第4の演算部と、
     を有する周波数オフセット推定装置。
  8.  受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定方法であって、
     所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定手順と、
     前記周波数オフセット粗推定手順により推定された粗推定値に基づいて掃引周波数の範囲を決定する掃引周波数範囲制御手順と、
     前記掃引周波数範囲制御手順により決定された前記掃引周波数の範囲において前記受信信号の周波数オフセットを推定する周波数オフセット精推定手順と、
     を備え、
     前記周波数オフセット精推定手順は、
     前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後、該受信信号に対して該受信信号の周波数から前記掃引周波数を減算する周波数変換を行う第1の演算手順と、
     前記第1の演算手順における各偏波の演算結果に対して、N(N:正の整数)シンボルの加算または平均化を行った後、絶対値または絶対値のべき乗の演算を行う第2の演算手順と、
     前記第2の演算手順の後において、前記2つの偏波の演算結果を加算、またはピーク値の大きい方の偏波の演算結果を選択するとともに、前記NシンボルからなるフレームについてU(U:正の整数)フレームの加算または平均化を行う第3の演算手順と、
     前記第3の演算手順の演算結果が最大値となる掃引周波数を検出し、当該掃引周波数を1/W倍して前記周波数オフセットを推定する第4の演算手順と、
     を含む周波数オフセット推定方法。
  9.  受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定装置であって、
     所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定部と、
     前記受信信号または前記受信信号の分散が補償された信号に対して周期的な周波数オフセット推定特性を有する周波数オフセット精推定部と、
     前記周波数オフセット粗推定部によって推定された前記周波数オフセットの値に基づいて、前記周波数オフセット精推定部によって推定された周波数オフセットの周波数不確定性を除去し、前記周波数オフセットを推定する周波数不確定性除去制御部と
     を備える周波数オフセット推定装置。
  10.  前記周波数オフセット精推定部は、前記受信信号または前記受信信号の分散が補償された信号に対して位相増加アルゴリズムに基づいて前記周波数オフセットを推定する請求項9に記載の周波数オフセット推定装置。
  11.  前記周波数オフセット精推定部は、前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後に周波数スペクトルに変換し、その変換結果に対して絶対値または絶対値のべき乗の演算を行い、これら2つの偏波の周波数スペクトルを加算、またはピーク値の大きい方の偏波の周波数スペクトルを選択するとともに、N(N:正の整数)シンボルからなるフレームの周波数スペクトルについてU(U:正の整数)フレームの加算または平均化を行い、この演算結果が最大値となる周波数を検出する請求項9に記載の周波数オフセット推定装置。
  12.  前記周波数不確定性除去制御部は、前記周波数不確定性を除去し前記周波数オフセットを推定する際に、
     前記周波数オフセット精推定部によって推定された前記周波数オフセットに基づいて、前記周波数不確定性を含む前記周波数オフセットの候補となる周波数を算出し、
     周波数軸上で隣り合う前記周波数オフセットの候補となる周波数の中点を、隣り合う前記周波数オフセットの候補の境界とし、
     前記周波数軸上で前記境界に基づいた領域の中から、前記周波数オフセット粗推定部によって推定された前記値が含まれる領域を選択し、
     前記選択した領域に含まれる前記周波数オフセットの候補となる周波数を、前記周波数オフセットの推定値として選択する請求項9~11のいずれか1項に記載の周波数オフセット推定装置。
  13.  前記周波数オフセット粗推定部は、
     前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換部と、
     前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限部と、
     前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御部と、
     を備える請求項9~12のいずれか1項に記載の周波数オフセット推定装置。
  14.  請求項7、請求項9、請求項10、請求項11、請求項12、または請求項13に記載の周波数オフセット推定装置と、
     前記周波数オフセット推定装置によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する周波数オフセット補償部と、
     前記周波数オフセット補償部によって補償された前記受信信号に対して、位相を補償する位相補償部と、
     前記位相を補償された前記受信信号のシンボルの判定を行う判定部と、
     を備える受信装置。
  15.  受信信号の搬送波周波数と局部発振器の出力信号の周波数との差を推定する周波数オフセット推定方法であって、
     所定のサンプリング周波数で予めサンプリングされた2つの偏波から成る受信信号の周波数スペクトルから周波数オフセットを推定する周波数オフセット粗推定手順と、
     前記受信信号または前記受信信号の分散が補償された信号に対して周期的な周波数オフセット推定特性を有する周波数オフセット精推定手順と、
     前記周波数オフセット粗推定手順によって推定された前記周波数オフセットの値に基づいて、前記周波数オフセット精推定手順によって推定された周波数オフセットの周波数不確定性を除去し、前記周波数オフセットを推定する周波数不確定性除去制御手順と、
     を備える周波数オフセット推定方法。
  16.  前記周波数オフセット精推定手順は、前記受信信号または前記受信信号の分散が補償された信号に対して位相増加アルゴリズムに基づいて前記周波数オフセットを推定する請求項15に記載の周波数オフセット推定方法。
  17.  前記周波数オフセット精推定手順は、前記受信信号の周波数オフセットの無いコンスタレーション上の信号点の持つ回転対称性を2π/W(W:正の整数)と定義した場合に、前記受信信号における前記2つの偏波をそれぞれW乗した後に周波数スペクトルに変換し、その変換結果に対して絶対値または絶対値のべき乗の演算を行い、これら2つの偏波の周波数スペクトルを加算、またはピーク値の大きい方の偏波の周波数スペクトルを選択するとともに、N(N:正の整数)シンボルからなるフレームの周波数スペクトルについてU(U:正の整数)フレームの加算または平均化を行い、この演算結果が最大値となる周波数を検出する請求項15に記載の周波数オフセット推定方法。
  18.  前記周波数不確定性除去制御手順は、前記周波数不確定性を除去し前記周波数オフセットを推定する際に、
     前記周波数オフセット精推定手順によって推定された前記周波数オフセットに基づいて、前記周波数不確定性を含む前記周波数オフセットの候補となる周波数を算出し、
     周波数軸上で隣り合う前記周波数オフセットの候補となる周波数の中点を、隣り合う前記周波数オフセットの候補の境界とし、
     前記周波数軸上で前記境界に基づいた領域の中から、前記周波数オフセット粗推定手順によって推定された前記値が含まれる領域を選択し、
     前記選択した領域に含まれる前記周波数オフセットの候補となる周波数を、前記周波数オフセットの推定値として選択する請求項15~17のいずれか1項に記載の周波数オフセット推定方法。
  19.  前記周波数オフセット粗推定手順は、
     前記受信信号を周波数変換し、周波数の大きさの順に1からN(Nは任意の自然数)まで順序付けしたN個の周波数成分を持つ周波数スペクトルを出力する周波数変換手順と、
     前記周波数スペクトルの、1からN/2までの周波数成分番号を持った周波数成分である負の周波数成分とN/2+1からNまでの周波数成分番号を持った周波数成分である正の周波数成分とを、それぞれ周波数帯域制限する周波数帯域制限手順と、
     前記周波数帯域制限された前記周波数スペクトルの前記正の周波数成分と前記負の周波数成分とをそれぞれ2乗加算してそれぞれの電力を算出し、前記正の周波数成分の電力と前記負の周波数成分の電力とから算出した電力差の絶対値が、予め設定されたしきい値以下になるまで前記周波数スペクトルの全ての周波数成分を周波数軸上で循環して移動させ、前記しきい値以下になるまで移動させた移動量に基づいて前記周波数オフセットを推定する周波数オフセット推定制御手順と、
     を備える請求項15~18のいずれか1項に記載の周波数オフセット推定方法。
  20.  請求項8、請求項15、請求項16、請求項17、請求項18、または請求項19に記載の周波数オフセット推定方法による手順と、
     前記周波数オフセット推定方法による手順によって推定された前記受信信号の前記周波数オフセットの値に基づいて、前記受信信号の前記周波数オフセットを補償する周波数オフセット補償手順と、
     前記周波数オフセット補償手順によって補償された前記受信信号に対して、位相を補償する位相補償手順と、
     前記位相を補償された前記受信信号のシンボルの判定を行う判定手順と、
     を備える受信方法。
PCT/JP2011/063903 2010-06-17 2011-06-17 周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法 WO2011158932A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012520505A JP5404926B2 (ja) 2010-06-17 2011-06-17 周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法
US13/701,963 US8781029B2 (en) 2010-06-17 2011-06-17 Frequency offset estimation apparatus, reception apparatus, frequency offset estimation method, and reception method
EP11795834.8A EP2584720B1 (en) 2010-06-17 2011-06-17 Frequency offset estimation apparatus, receiver apparatus, frequency offset estimation method, and reception method
EP15152605.0A EP2903173B1 (en) 2010-06-17 2011-06-17 Frequency offset estimation apparatus and method
CN201180028973.0A CN102934378B (zh) 2010-06-17 2011-06-17 频率偏移估计装置、接收装置、频率偏移估计方法及接收方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-138402 2010-06-17
JP2010138402 2010-06-17
JP2010-251868 2010-11-10
JP2010251868 2010-11-10

Publications (1)

Publication Number Publication Date
WO2011158932A1 true WO2011158932A1 (ja) 2011-12-22

Family

ID=45348324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063903 WO2011158932A1 (ja) 2010-06-17 2011-06-17 周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法

Country Status (5)

Country Link
US (1) US8781029B2 (ja)
EP (2) EP2584720B1 (ja)
JP (1) JP5404926B2 (ja)
CN (2) CN102934378B (ja)
WO (1) WO2011158932A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097583A1 (ja) * 2012-12-20 2014-06-26 日本電気株式会社 周波数オフセット補償装置および周波数オフセット補償方法
CN105141564A (zh) * 2015-07-28 2015-12-09 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种高子载波数高阶调制水平ofdm采样频率同步方法
JP2016521045A (ja) * 2013-04-10 2016-07-14 富士通株式会社 周波数オフセット推定方法、装置及びシステム
JP2018509038A (ja) * 2015-01-23 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. コヒーレント受信機における微細周波数オフセット推定のための推定精度及びロバスト性の向上した方法及び装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422571B (zh) 2009-05-18 2016-06-15 日本电信电话株式会社 信号生成电路、光信号发送装置、信号接收电路、光信号同步确立方法以及光信号同步系统
US9264278B2 (en) * 2012-10-19 2016-02-16 Apple Inc. Robust scalable and adaptive frequency estimation and frequency tracking for wireless systems
EP2932673B1 (en) * 2012-12-14 2018-08-15 Telefonaktiebolaget LM Ericsson (publ) A receiver for multi carrier modulated signals
CN104521206B (zh) * 2013-07-31 2017-11-24 华为技术有限公司 一种多波带ofdm接收机、频率偏移补偿方法及系统
WO2015025468A1 (ja) * 2013-08-21 2015-02-26 日本電気株式会社 周波数偏差補償方式、周波数偏差補償方法及び記憶媒体
EP2849362A1 (en) * 2013-09-11 2015-03-18 Alcatel Lucent Blind frequency offset estimation for pulse-shaped signals
WO2015052874A1 (ja) * 2013-10-09 2015-04-16 日本電信電話株式会社 光伝送システム
US9866364B2 (en) 2014-08-29 2018-01-09 Huawei Technologies Co., Ltd. System and method for semi-orthogonal multiple access
ES2782950T3 (es) * 2014-09-24 2020-09-16 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y dispositivo de comunicación inalámbrica para estimar el desplazamiento de frecuencia de la señal recibida
WO2016161638A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种相干光源频偏估计和补偿的相干接收机、方法和系统
US9819405B2 (en) * 2015-06-12 2017-11-14 Huawei Technologies Co., Ltd. Systems and methods for transmission pairing mixed transmission modes
EP3360476B1 (en) * 2017-02-13 2020-09-30 Stichting IMEC Nederland A method and a device for detecting of a vital sign
BR112020008286A2 (pt) 2017-11-24 2020-10-20 Huawei Technologies Co., Ltd. dispositivo de processamento para um nó de acesso à rede para gerar símbolos de modulação compensados por fase, e método associado a esse dispositivo
JP7064141B2 (ja) * 2018-09-05 2022-05-10 日本電信電話株式会社 光受信装置、及び周波数オフセット推定方法
CN110995632B (zh) * 2019-11-29 2023-03-21 深圳市统先科技股份有限公司 卫星通信带宽复用电路
US11251766B2 (en) * 2020-01-13 2022-02-15 Maxim Integrated Products, Inc. Ultra-wide band frequency offset estimation systems and methods for analog coherent receivers
CN115865239B (zh) * 2021-09-27 2023-08-08 中国电信股份有限公司 基于载波聚合的信息上报方法、装置、介质及电子设备
CN114422314B (zh) * 2021-12-22 2024-05-24 江苏科大亨芯半导体技术有限公司 多载波鉴频方法及系统
CN115333603B (zh) * 2022-07-14 2023-06-27 航天恒星科技有限公司 载波同步方法、装置、电子设备及存储介质
CN115333654B (zh) * 2022-10-13 2023-02-03 成都爱旗科技有限公司 一种频偏检测方法、系统及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509691A (ja) * 1991-08-05 1994-10-27 フォード モーター カンパニー ラジオ受信機用の隣接チャネル・コントローラ
JP2005524327A (ja) * 2002-05-01 2005-08-11 アイビキュイティ・デジタル・コーポレイション Fmデジタル音声放送受信機のための隣接チャンネル干渉の軽減
JP2009530918A (ja) * 2006-03-15 2009-08-27 クゥアルコム・インコーポレイテッド タイミング同期に適応する周波数トラッキング
JP2010516076A (ja) * 2007-01-05 2010-05-13 エルジー エレクトロニクス インコーポレイティド 周波数オフセットを考慮して循環シフトを設定する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482699A3 (en) * 1998-06-08 2005-02-09 Telefonaktiebolaget LM Ericsson (publ) Burst structure for multicarrier transmission, and synchronisation of bursts, symbols and frequency
JP4983365B2 (ja) * 2006-05-16 2012-07-25 ソニー株式会社 無線通信装置
CN101442364B (zh) * 2007-11-19 2011-10-19 富士通株式会社 光相干接收机、光相干接收机用频差估计装置及方法
WO2009093579A1 (ja) 2008-01-21 2009-07-30 Nec Corporation 通信装置、通信システム、制御方法及び制御プログラム
US8649750B2 (en) * 2008-03-11 2014-02-11 Intel Corporation Techniques for efficient carrier recovery for passband communciation systems
CN102422571B (zh) * 2009-05-18 2016-06-15 日本电信电话株式会社 信号生成电路、光信号发送装置、信号接收电路、光信号同步确立方法以及光信号同步系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509691A (ja) * 1991-08-05 1994-10-27 フォード モーター カンパニー ラジオ受信機用の隣接チャネル・コントローラ
JP2005524327A (ja) * 2002-05-01 2005-08-11 アイビキュイティ・デジタル・コーポレイション Fmデジタル音声放送受信機のための隣接チャンネル干渉の軽減
JP2009530918A (ja) * 2006-03-15 2009-08-27 クゥアルコム・インコーポレイテッド タイミング同期に適応する周波数トラッキング
JP2010516076A (ja) * 2007-01-05 2010-05-13 エルジー エレクトロニクス インコーポレイティド 周波数オフセットを考慮して循環シフトを設定する方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. LEVEN ET AL.: "Frequency estimation in intradyne reception", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 19, March 2007 (2007-03-01), pages 366 - 368
CIBLAT ET AL.: "Blind NLLS carrier frequency-offset estimation for QAM, PSK, and PAM modulations: performance at low SNR", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 54, October 2006 (2006-10-01), pages 1725 - 1730
K. PIYAWANNO ET AL.: "Fast and accurate automatic frequency control for coherent receivers", ECOC2009, September 2009 (2009-09-01)
M. K. NEZAMI ET AL.: "DFT-based frequency acquisition algorithm for large carrier offsets in mobile satellite receivers", ELECTRONICS LETTERS, vol. 37, March 2001 (2001-03-01), pages 386 - 387
M. SELMI ET AL.: "Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems", ECOC2009, 8 September 2009 (2009-09-08)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097583A1 (ja) * 2012-12-20 2014-06-26 日本電気株式会社 周波数オフセット補償装置および周波数オフセット補償方法
JPWO2014097583A1 (ja) * 2012-12-20 2017-01-12 日本電気株式会社 周波数オフセット補償装置および周波数オフセット補償方法
US9621278B2 (en) 2012-12-20 2017-04-11 Nec Corporation Frequency offset compensation apparatus and frequency offset compensation method
JP2016521045A (ja) * 2013-04-10 2016-07-14 富士通株式会社 周波数オフセット推定方法、装置及びシステム
JP2018509038A (ja) * 2015-01-23 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. コヒーレント受信機における微細周波数オフセット推定のための推定精度及びロバスト性の向上した方法及び装置
CN105141564A (zh) * 2015-07-28 2015-12-09 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种高子载波数高阶调制水平ofdm采样频率同步方法
CN105141564B (zh) * 2015-07-28 2018-10-12 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种高子载波数高阶调制水平ofdm采样频率同步方法

Also Published As

Publication number Publication date
JPWO2011158932A1 (ja) 2013-08-19
EP2903173B1 (en) 2019-09-04
US8781029B2 (en) 2014-07-15
JP5404926B2 (ja) 2014-02-05
CN102934378A (zh) 2013-02-13
CN102934378B (zh) 2015-01-14
CN104539342B (zh) 2018-01-09
EP2584720A1 (en) 2013-04-24
EP2584720A4 (en) 2013-11-27
EP2903173A1 (en) 2015-08-05
US20130070874A1 (en) 2013-03-21
CN104539342A (zh) 2015-04-22
EP2584720B1 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5404926B2 (ja) 周波数オフセット推定装置、受信装置、周波数オフセット推定方法、および受信方法
JP5304083B2 (ja) 周波数オフセットモニタリング装置及びコヒーレント光受信機
US8908809B2 (en) Complexity reduced feed forward carrier recovery methods for M-QAM modulation formats
JP5391660B2 (ja) 光コヒーレント受信機、周波数オフセット推定装置、及び光コヒーレント受信機の方法
JP5651990B2 (ja) デジタルコヒーレント受信器および受信方法
EP2583424B1 (en) Method for phase and oscillator frequency estimation
US8514922B2 (en) Filter coefficient control apparatus and method
US8463121B2 (en) Ultra wide-range frequency offset estimation for digital coherent optical receivers
KR0157500B1 (ko) 자동주파수조절방법 및 그 장치
US9960857B2 (en) System and method for blind frequency recovery
CN105612700B (zh) 用于表征光接收信号的色度色散的装置
US20170288932A1 (en) Carrier frequency offset estimation in a receiver
US7430247B2 (en) Carrier frequency detection for N-ary phase modulated signal
US8989316B1 (en) Method for estimating and correcting a carrier frequency offset over dispersive but spectrally flat channels
JP2020010195A (ja) 周波数推定装置および追尾受信機
KR100594269B1 (ko) 주파수 위상 동기루프회로 및 이를 사용하는 atscdtv 복조기.
Zhou et al. DFT-based carrier recovery for Satellite DVB Receivers
KR100665100B1 (ko) 디지털 초협대역 단말기용 주파수 옵셋 자동 보상 장치 및그 방법과 그를 이용한 수신 시스템
JP2000156655A (ja) 等化器
JP5656750B2 (ja) シングルキャリア受信装置
JP2014017609A (ja) 受信装置および受信方法
KR0157498B1 (ko) 자동주파수조절장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028973.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520505

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13701963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011795834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE