WO2011158675A1 - 複合水酸化マグネシウム、その製造方法および吸着剤 - Google Patents

複合水酸化マグネシウム、その製造方法および吸着剤 Download PDF

Info

Publication number
WO2011158675A1
WO2011158675A1 PCT/JP2011/062874 JP2011062874W WO2011158675A1 WO 2011158675 A1 WO2011158675 A1 WO 2011158675A1 JP 2011062874 W JP2011062874 W JP 2011062874W WO 2011158675 A1 WO2011158675 A1 WO 2011158675A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
composite magnesium
surface area
specific surface
adsorbent
Prior art date
Application number
PCT/JP2011/062874
Other languages
English (en)
French (fr)
Inventor
智子 立藤
Original Assignee
協和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和化学工業株式会社 filed Critical 協和化学工業株式会社
Priority to CN201180024621.8A priority Critical patent/CN102892710B/zh
Priority to JP2012520372A priority patent/JP5656298B2/ja
Priority to EP11795583.1A priority patent/EP2583944A4/en
Priority to KR1020127032265A priority patent/KR20130085951A/ko
Priority to US13/703,772 priority patent/US20130092625A1/en
Publication of WO2011158675A1 publication Critical patent/WO2011158675A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to composite magnesium hydroxide containing carbonate ions and having a large BET specific surface area, a method for producing the same, and an adsorbent using the same.
  • Magnesium hydroxide has been known for a long time, and since it is a solid base, it is used in a wide range of fields for adsorption (neutralization) of acidic substances.
  • adsorption neutralization
  • adsorption neutralization
  • Known methods for producing magnesium hydroxide include a seawater method in which seawater and slaked lime are reacted, a hydration method in which magnesium oxide is hydrated with decarbonated water, and the like.
  • the BET specific surface area of the magnesium hydroxide particles synthesized by these methods does not exceed 80 m 2 / g.
  • a method for obtaining magnesium hydroxide particles having a large BET specific surface area it is known to add a divalent anion that inhibits magnesium hydroxide crystal growth in the process of forming magnesium hydroxide. That is, when a magnesium salt solution and an alkali metal hydroxide or ammonia water are reacted in the presence of carbonate ions, a carbonate group-containing magnesium hydroxide containing a carbonate group and having a BET specific surface area of 80 m 2 / g or more is obtained. Obtained (Patent Document 1).
  • an object of the present invention is to provide a composite magnesium hydroxide having a large BET method specific surface area and an excellent adsorption performance for hydrogen sulfide gas, methyl mercaptan as well as hydrogen chloride gas, SOx gas, and acetic acid gas, and a method for producing the same Is to provide.
  • Another object of the present invention is to provide an adsorbent containing this composite magnesium hydroxide.
  • FIG. 1 is an X-ray diffraction image of the composite magnesium hydroxide compound of the present invention.
  • FIG. 2 is an SEM photograph of the composite magnesium hydroxide compound of the present invention granulated by spray drying.
  • the composite magnesium hydroxide of the present invention is represented by the following formula (1).
  • M represents at least one divalent metal ion selected from the group consisting of Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Ca 2+ , Mn 2+ , Fe 2+ , and Ba 2+ .
  • Metal ions can be selected depending on the substance to be adsorbed. For example, when it is desired to have the ability to adsorb hydrogen sulfide gas, it is preferable to combine Cu 2+ , Ni 2+ , Zn 2+ and the like.
  • Cu 2+ and Ni 2+ have a high hydrogen sulfide gas adsorption rate and are excellent in sustainability.
  • x satisfies 0 ⁇ x ⁇ 0.5, preferably 0 ⁇ x ⁇ 0.2, more preferably 0 ⁇ x ⁇ 0.1.
  • y satisfies 0.02 ⁇ y ⁇ 0.7, preferably 0.04 ⁇ y ⁇ 0.6, and more preferably 0.1 ⁇ y ⁇ 0.4.
  • m satisfies 0 ⁇ m ⁇ 1, preferably 0 ⁇ m ⁇ 0.6, more preferably 0 ⁇ m ⁇ 0.4.
  • the composite magnesium hydroxide of the present invention has a specific surface area by BET method of 100 to 400 m 2 / g, preferably 120 to 350 m 2 / g, more preferably 150 to 300 m 2 / g.
  • the present invention includes a fired product obtained by firing the composite magnesium hydroxide at 350 ° C. or higher.
  • the composite magnesium hydroxide of the present invention is obtained by adding Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Ca 2+ , Mn 2+ , Fe 2+ to a slurry of carbonate group-containing magnesium hydroxide having a BET specific surface area of 100 m 2 / g or more.
  • the composite magnesium hydroxide of the present invention uses a carbonate group-containing magnesium hydroxide slurry having a BET specific surface area of 100 m 2 / g or more as a raw material (hereinafter sometimes referred to as a raw material slurry).
  • the raw material slurry can be produced by reacting a water-soluble magnesium salt and an alkali metal hydroxide or aqueous ammonia in water in the presence of a carbonate.
  • Examples of the water-soluble magnesium salt include magnesium sulfate, magnesium chloride, magnesium nitrate, and magnesium acetate.
  • Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Ammonia water may be used in place of the alkali metal hydroxide.
  • Examples of the carbonate include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, and ammonium carbonate.
  • the reaction temperature is preferably 5 to 60 ° C.
  • the reaction time is preferably 3 to 180 minutes.
  • the washing is preferably carried out by water washing or emulsification washing with water having a solid content of 5 to 50 times weight.
  • the drying temperature is preferably 90 to 350 ° C.
  • the divalent metal is at least one selected from the group consisting of Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Ca 2+ , Mn 2+ , Fe 2+ and Ba 2+ .
  • These salts include chlorides, sulfates, nitrates, acetates and the like.
  • the divalent metal can be supported by adding an aqueous solution of a divalent metal salt to the carbonate group-containing magnesium hydroxide slurry, and mixing and supporting the divalent metal.
  • the supporting temperature is preferably 5 to 60 ° C.
  • the loading time is preferably 5 to 120 minutes.
  • carbonate group-containing magnesium hydroxide having a large BET specific surface area is prepared in advance and then synthesized by a method in which an aqueous solution of a divalent metal salt such as Zn or Cu is added to the slurry later, it can be used according to the application. Since various types of composite magnesium hydroxide can be easily synthesized and the divalent metal ions to be combined are unevenly distributed on the particle surface, the effect of the divalent metal ions can be easily obtained with a small amount of addition.
  • the composite magnesium hydroxide of the present invention is at least selected from the group consisting of Mg ions, Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Ca 2+ , Mn 2+ , Fe 2+ and Ba 2+ in the presence of CO 3 ions. It can be produced by contacting a kind of divalent metal ion and OH ion in water.
  • the composite magnesium hydroxide of the present invention can also be synthesized by reacting a mixed metal salt aqueous solution of a magnesium salt with another metal salt such as Zn or Cu and an alkaline substance in the presence of CO 3 ions.
  • magnesium hydroxide when magnesium hydroxide is used as an adsorbent, it is better to synthesize other metal hydroxides such as Cu and Zn on the surface of the magnesium hydroxide particles and to produce effects such as Cu and Zn with a smaller amount of other metals. Is preferable.
  • the aqueous solution of Cu or Zn is weakly acidic, the BET specific surface area is slightly lowered when it is synthesized by the production method (1) than before the loading. If it is a manufacturing method (2), there is no this worry.
  • the reaction method is simply changing the aqueous solution portion of the water-soluble magnesium salt to an aqueous solution obtained by mixing a water-soluble magnesium salt and an aqueous solution of a water-soluble divalent metal salt such as Zn or Cu, and the rest is described in the production method (1). This is exactly the same as the raw slurry manufacturing method.
  • the present invention includes an adsorbent containing the composite magnesium hydroxide.
  • the adsorbent preferably contains a granulated product obtained by granulating composite magnesium hydroxide in a particle diameter range of 0.05 to 20 mm.
  • the adsorbent is preferably for acid gas adsorption.
  • the adsorbent is preferably for adsorbing acidic substances in organic solvents.
  • the adsorbent is preferably used for deodorization.
  • the present invention includes a chemical filter containing the composite magnesium hydroxide. In order to adsorb hydrogen sulfide gas or methyl mercaptan, X in the formula (1) in the composite magnesium hydroxide is preferably 0.001 or more, more preferably 0.01 or more.
  • the dried product was pulverized with a mortar, and 1040 g of white powder represented by the following formula having a BET specific surface area of 260 m 2 / g was obtained through a wire mesh having an opening of 150 ⁇ m.
  • the obtained reaction slurry was filtered, washed with water through 1 L, dehydrated, and dried at 105 ° C. for 18 hours with a shelf dryer.
  • the dried product was pulverized with a mortar, and 48.9 g of a white powder represented by the following formula having a BET method specific surface area of 206 m 2 / g was obtained through a wire mesh having an opening of 150 ⁇ m.
  • the continuous pouring reaction was carried out with a residence time of 10 minutes.
  • About 23.4 L of the obtained reaction slurry was filtered, washed with water of 21 L, dehydrated, and dried at 105 ° C. for 18 hours with a shelf dryer.
  • the dried product was pulverized with a mortar, and 1040 g of white powder represented by the following formula having a BET specific surface area of 260 m 2 / g was obtained through a wire mesh having an opening of 150 ⁇ m.
  • the dried product was pulverized in a mortar, and 49.3 g of a light blue powder represented by the following formula having a BET method specific surface area of 214 m 2 / g was obtained through a wire mesh having an opening of 150 ⁇ m.
  • the continuous pouring reaction was carried out with a residence time of 10 minutes.
  • About 23.4 L of the obtained reaction slurry was filtered, washed with water of 21 L, dehydrated, and dried at 105 ° C. for 18 hours with a shelf dryer.
  • the dried product was pulverized with a mortar, and 1040 g of white powder represented by the following formula having a BET specific surface area of 260 m 2 / g was obtained through a wire mesh having an opening of 150 ⁇ m.
  • the dried product was passed through a wire mesh having an opening of 500 ⁇ m to obtain 48.0 g of a white powder represented by the following formula having a BET specific surface area of 180 m 2 / g. Mg 0.94 Zn 0.06 (OH) 1.78 (CO 3 ) 0.11 ⁇ 0.12H 2 O
  • the obtained reaction slurry was filtered, washed with water through 1 L, dehydrated, and dried at 105 ° C. for 18 hours with a shelf dryer.
  • the dried product was passed through a wire net having an opening of 500 ⁇ m to obtain 48.5 g of a light blue powder represented by the following formula having a BET specific surface area of 209 m 2 / g. Mg 0.94 Cu 0.06 (OH) 1.82 (CO 3 ) 0.09 ⁇ 0.12H 2 O
  • Comparative Example 1 Reagent special grade calcium hydroxide was used.
  • the BET specific surface area was 13.2 m 2 / g.
  • Comparative Example 2 Magnesium hydroxide “KISUMA 5” manufactured by Kyowa Chemical Industry Co., Ltd. was used.
  • Example 1 shows X-ray diffraction images of the composite magnesium hydroxide compounds obtained in Examples 1 to 5. All X-ray diffraction patterns indicate that the particles obtained in Examples 1 to 5 are magnesium hydroxide.
  • An SEM photograph of the spray granulated product of Example 5 is shown in FIG. According to FIG. 2, it can be seen that the carbonate group-containing composite magnesium hydroxide of the present invention is excellent in granulation properties and easily becomes a granulated product having a desired size by a spray dryer or an extrusion granulator.
  • an acidic gas adsorption test was conducted by the following method for Examples 1 to 5 and Comparative Examples 1 to 5. The results of the acid gas adsorption test are shown in Tables 2-4.
  • Hydrogen chloride gas adsorption breakthrough test A glass column having an inner diameter of 14 mm was filled with 0.5 g of a powder sample together with glass wool. 94.1 ppm of hydrogen chloride gas was passed through this column at a flow rate of 0.44 L / min, and the column outlet concentration was measured with a detector tube. The breakthrough time was defined as the time when the column outlet concentration exceeded 0.5% (0.5 ppm) of the supply concentration.
  • SOx gas adsorption breakthrough test A glass column having an inner diameter of 14 mm was filled with 0.5 g of a powder sample together with glass wool. 136 ppm of SO 2 gas was passed through this column at a flow rate of 0.44 L / min, and the concentration at the outlet of the column was measured with a detector tube.
  • the breakthrough time was defined as the time when the column outlet concentration exceeded 0.5% (0.7 ppm) of the supply concentration.
  • Hydrogen sulfide gas adsorption test A powder sample of 30 mg was put into a 1 L Tedlar bag, and after degassing, 99.1 ppm of hydrogen sulfide standard gas was charged. The hydrogen sulfide gas concentration in the Tedlar bag was measured using Shimadzu gas chromatography GC-14B (FPD Measured with time using a detector. As the column, a packed column “ ⁇ , ⁇ ′-oxydipropionitrile 25%” was used.
  • Hydrogen sulfide removal rate (%) (gas concentration before adsorption ⁇ gas concentration after adsorption) / gas concentration before adsorption ⁇ 100
  • the composite magnesium hydroxide having a large BET specific surface area of Examples 1 to 5 had a higher adsorption rate in all acid gases used in the test than the normal calcium hydroxide and magnesium hydroxide of Comparative Examples 1 to 3. .
  • the carbonate group-containing magnesium hydroxide having a large BET specific surface area of Comparative Examples 4 to 5 shows an excellent adsorption capability for hydrogen chloride gas and SOx gas, but has a low adsorption capability for hydrogen sulfide gas, and Zn, Cu, Ni It did not reach at all in Examples 1 to 5 in which was combined.
  • EFFECT OF THE INVENTION The composite magnesium hydroxide of the present invention has a very high BET specific surface area.
  • the composite magnesium hydroxide of the present invention has excellent adsorption performance not only for hydrogen chloride gas, SOx gas, and acetic acid-based gas, but also for hydrogen sulfide gas and methyl mercaptan.
  • the composite magnesium hydroxide of the present invention since divalent metals such as zinc and copper are unevenly distributed on the surface of magnesium hydroxide, the composite effect can be exhibited by supporting a small amount of the divalent metal.
  • a carbonate group-containing magnesium hydroxide having a large BET method specific surface area is first synthesized, and an aqueous metal salt solution of a metal to be combined is added thereto. Large composite magnesium hydroxide can be obtained.
  • the composite magnesium hydroxide of the present invention can also be synthesized by reacting a mixed metal salt aqueous solution of a magnesium salt with another metal salt such as Zn or Cu and an alkaline substance in the presence of CO 3 ions.
  • the adsorbent of the present invention has excellent adsorption performance not only for hydrogen chloride gas, SOx gas, and acetic acid-based gas, but also for hydrogen sulfide gas and methyl mercaptan.
  • the composite magnesium hydroxide of the present invention is useful as a fast-acting acidic substance adsorbent / neutralizer because of its rapid reaction with acidic substances.
  • Various uses such as various fillers, ceramic materials, food additives and antacids can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明の目的は、炭酸基を含有し高いBET法比表面積を有する複合水酸化マグネシウム、その製造方法および吸着剤を提供することにある。 本発明は、下記式(1)で表され、BET法による比表面積が100~400m/gである複合水酸化マグネシウム、その製造方法および吸着剤である。 Mg (OH)2-y(CO0.5y・mH0(1)(但し式中Mは、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+、およびBa2+からなる群より選ばれる少なくとも一種の2価金属イオンを示す。x、yおよびmは下記の条件 0<x≦0.5 0.02≦y≦0.7 0≦m≦1 を満足する。)

Description

複合水酸化マグネシウム、その製造方法および吸着剤
 本発明は、炭酸イオンを含有しBET法比表面積が大きい複合水酸化マグネシウム、その製造方法、およびそれを用いた吸着剤に関する。
 水酸化マグネシウムは古くから知られており、固体塩基であることから酸性物質の吸着(中和)に広い分野で使用されている。例えば、医薬用としては制酸剤があり、工業用としては排煙脱硫剤や排水中和剤、農業用では酸性土壌の中和剤として利用されている。このような酸性物質の吸着(中和)には、酸性物質との接触面積が大きいこと、つまりBET法比表面積が大きいことが望ましい。水酸化マグネシウムの製造方法としては、海水と消石灰とを反応させる海水法や酸化マグネシウムを脱炭酸水で水和させる水和法等が知られている。しかし、これらの方法で合成した水酸化マグネシウム粒子のBET法比表面積は80m/gを超えることはない。
 BET法比表面積が大きい水酸化マグネシウム粒子を得る方法として、水酸化マグネシウムが生成する過程において、水酸化マグネシウムの結晶成長を阻害する二価アニオンを添加することが知られている。即ち、マグネシウム塩溶液とアルカリ金属の水酸化物もしくはアンモニア水とを炭酸イオンの存在下で反応させると、炭酸基を含有しBET法比表面積が80m/g以上の炭酸基含有水酸化マグネシウムが得られる(特許文献1)。この炭酸基含有水酸化マグネシウムは、塩化水素ガスやSOxガス、酢酸系ガスとは瞬時に反応し、極めて有効な酸性ガス吸着剤である。しかし、硫化水素ガスやメチルメルカプタンに関しては効果が不十分であった。
WO2008/123566号公報
 そこで本発明の目的は、塩化水素ガス、SOxガス、酢酸系ガスのみならず、硫化水素ガスやメチルメルカプタンに対して優れた吸着性能を有するBET法比表面積が大きい複合水酸化マグネシウムおよびその製造方法を提供することにある。また本発明の目的は、この複合水酸化マグネシウム含む吸着剤を提供することにある。
 本発明者は上述の問題点を改善するために鋭意検討した結果、炭酸基を含有するBET法比表面積が大きい水酸化マグネシウム粒子表面に、CuやZnなどの他の金属水酸化物を担持させると、硫化水素やメチルメルカプタンの吸着能に優れた複合水酸化マグネシウムが得られることを見出し、本発明を完成した。
 図1は、本発明の複合水酸化マグネシウム化合物のX線回折像である。
 図2は、スプレー乾燥により造粒された本発明の複合水酸化マグネシウム化合物のSEM写真である。
<複合水酸化マグネシウム>
 本発明の複合水酸化マグネシウムは、下記式(1)で表される。
 Mg1−x(OH)2−y(CO0.5y・mHO   (1)
 式中Mは、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+、およびBa2+からなる群より選ばれる少なくとも一種の2価金属イオンを示す。
 吸着する物質によって金属イオンを選択することができる。例えば、硫化水素ガスの吸着能を持たせたい場合には、Cu2+、Ni2+、Zn2+などを複合化させることが好ましい。特にCu2+やNi2+は硫化水素ガスの吸着速度が速く、持続性にも優れている。
 式中xは、0<x≦0.5、好ましくは0<x≦0.2、より好ましくは0<x≦0.1を満足する。
 式中yは、0.02≦y≦0.7、好ましくは0.04≦y≦0.6、より好ましくは0.1≦y≦0.4を満足する。
 式中mは、0≦m≦1、好ましくは0≦m≦0.6、より好ましくは0≦m≦0.4を満足する。
 本発明の複合水酸化マグネシウムは、BET法による比表面積が100~400m/g、好ましくは120~350m/g、より好ましくは150~300m/gである。
<焼成物>
 本発明は、前記の複合水酸化マグネシウムを350℃以上で焼成して得られる焼成物を包含する。
<製造方法(1)>
 本発明の複合水酸化マグネシウムは、BET法比表面積が100m/g以上の炭酸基含有水酸化マグネシウムのスラリーに、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+およびBa2+からなる群より選ばれる少なくとも一種の2価金属の塩の水溶液を添加し混合して、炭酸基含有水酸化マグネシウムの表面に2価金属の水酸化物を担持させ製造することができる。
(炭酸基含有水酸化マグネシウム)
 本発明の複合水酸化マグネシウムは、BET法比表面積が100m/g以上の炭酸基含有水酸化マグネシウムスラリーを原料とする(以下、原料スラリーということがある)。
 原料スラリーは、水溶性マグネシウム塩とアルカリ金属水酸化物もしくはアンモニア水とを、炭酸塩の存在下で、水中で反応させ製造することができる。
 水溶性マグネシウム塩として、硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、酢酸マグネシウムなどが挙げられる。
 アルカリ金属水酸化物として、水酸化ナトリウム、水酸化カリウムなどが挙げられる。アルカリ金属水酸化物のかわりにアンモニア水を用いてもよい。
 炭酸塩として、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウムなどが挙げられる。
 反応温度は、好ましくは5~60℃である。反応時間は、好ましくは3~180分である。洗浄は、固形分の5~50倍重量の水で通水洗浄もしくは乳化洗浄により行うことが好ましい。乾燥温度は、好ましくは90~350℃である。
 炭酸塩の存在下で水溶性マグネシウム塩とアルカリ金属水酸化物もしくはアンモニア水とを反応させることにより水酸化マグネシウムの結晶成長が阻害され、BET法比表面積が大きい炭酸基含有水酸化マグネシウムを得ることができる。
(2価金属塩)
 2価金属は、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+およびBa2+からなる群より選ばれる少なくとも一種である。これらの塩として、塩化物、硫酸塩、硝酸塩、酢酸塩などが挙げられる。具体的には、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛、塩化銅、硫酸銅、硝酸銅、酢酸銅、塩化ニッケルなどが挙げられる。
 2価金属は、炭酸基含有水酸化マグネシウムスラリーに2価金属の塩の水溶液を添加し、混合して担持させることができる。
 担持温度は、好ましくは5~60℃である。また担持時間は、好ましくは5~120分である。
 このようにあらかじめBET法比表面積が大きい炭酸基含有水酸化マグネシウムを作っておき、そのスラリーにZnやCu等の2価金属塩水溶液を後から添加する方法で合成すれば、用途に合わせて多種類の複合水酸化マグネシウムを容易に合成できるとともに、複合化させる2価金属イオンが粒子表面に偏在するために、少量の添加量で2価金属イオンの効果が得られやすい。
<製造方法(2)>
 本発明の複合水酸化マグネシウムは、COイオンの存在下で、Mgイオン、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+およびBa2+からなる群より選ばれる少なくとも一種の2価金属イオン、並びにOHイオンを水中で接触させることにより製造することができる。
 本発明の複合水酸化マグネシウムは、マグネシウム塩とZnやCu等の他の金属塩との混合金属塩水溶液とアルカリ物質とをCOイオンの存在下で反応しても合成できる。しかし、水酸化マグネシウムを吸着剤として利用する場合、水酸化マグネシウム粒子表面にCuやZnなどの他の金属水酸化物を析出させて合成した方が少量の他金属量でCuやZnなどの効果を得ることができるため好ましい。しかし、CuやZnの水溶液が弱酸性であるため、製造方法(1)の方法で合成すると、担持前より若干BET法比表面積が低下する。製造方法(2)であれば、この心配はない。
 反応方法は、水溶性マグネシウム塩の水溶液の部分を水溶性マグネシウム塩とZnやCu等の水溶性2価金属塩水溶液とを混合した水溶液に変更するだけで、あとは製造方法(1)に記載されている原料スラリーの製造方法と全く同じである。
<吸着剤>
 本発明は、前記複合水酸化マグネシウムを含む吸着剤を包含する。吸着剤は、複合水酸化マグネシウムを粒子径0.05~20mmの範囲に造粒した造粒物を含有することが好ましい。また吸着剤をカラム等に充填して酸性ガスを流通させ使用する場合には、スプレー造粒品または押出造粒品が通気性・ガス接触性の観点から優れている。
 吸着剤は、酸性ガス吸着用であることが好ましい。吸着剤は、有機溶剤中の酸性物質吸着用であることが好ましい。吸着剤は脱臭用であることが好ましい。
 本発明は、前記複合水酸化マグネシウムを含むケミカルフィルタを包含する。
 硫化水素ガスやメチルメルカプタンを吸着するためには、複合水酸化マグネシウムにおける式(1)中のXは好ましくは0.001以上、より好ましくは0.01以上である。
 以下、実施例により本発明を説明する。
実施例1
(原料スラリー)
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積260m/gの下記式で表される白色粉末1040gを得た。
 Mg(OH)1.80(CO0.10・0.10H
(2価金属の担持)
 この白色粉末50gに500mlの水を加え、撹拌下、1.0mol/Lの塩化亜鉛水溶液43.2mlを添加後、室温で30分撹拌保持した。得られた反応スラリーを濾過し、1Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積206m/gの下記式で表される白色粉末48.9gを得た。
 Mg0.95Zn0.05(OH)1.76(CO0.12・0.11H
実施例2
(原料スラリー)
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積260m/gの下記式で表される白色粉末1040gを得た。
 Mg(OH)1.80(CO0.10・0.10H
(2価金属の担持)
 この白色粉末50gに500mlの水を加え、撹拌下、1.0mol/Lの硫酸銅水溶液43.2mlを添加後、室温で30分撹拌保持した。得られた反応スラリーを濾過し、1Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積214m/gの下記式で表される水色粉末49.3gを得た。
 Mg0.95Cu0.05(OH)1.80(CO0.10・0.14H
実施例3
(原料スラリー)
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積260m/gの下記式で表される白色粉末1040gを得た。
 Mg(OH)1.80(CO0.10・0.10H
(2価金属の担持)
 この白色粉末50gに500mlの水を加え、撹拌下、1.0mol/Lの塩化ニッケル水溶液43.2mlを添加後、室温で30分撹拌保持した。得られた反応スラリーを濾過し、1Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積225m/gの下記式で表される淡緑色粉末48.5gを得た。
 Mg0.94Ni0.06(OH)1.80(CO0.10・0.16H
実施例4
(原料スラリー)
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、水に乳化して10Lにした。これをスプレードライヤーで乾燥し、BET法比表面積263m/gの下記式で表される白色スプレー造粒粉末950gを得た。
 Mg(OH)1.80(CO0.10・0.18H
(2価金属の担持)
 この白色スプレー造粒粉末50gに500mlの水を加え、撹拌下、1.0mol/Lの塩化亜鉛水溶液43.2mlを添加後、室温で30分撹拌保持した。得られた反応スラリーを濾過し、1Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を目開き500μmの金網を通して、BET法比表面積180m/gの下記式で表される白色粉末48.0gを得た。
 Mg0.94Zn0.06(OH)1.78(CO0.11・0.12H
実施例5
(原料スラリー)
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、水に乳化して10Lにした。これをスプレードライヤーで乾燥し、BET法比表面積263m/gの下記式で表される白色スプレー造粒粉末950gを得た。
 Mg(OH)1.80(CO0.10・0.18H
(2価金属の担持)
 この白色スプレー造粒粉末50gに500mlの水を加え、撹拌下、1.0mol/Lの硫酸銅水溶液43.2mlを添加後、室温で30分撹拌保持した。得られた反応スラリーを濾過し、1Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を目開き500μmの金網を通して、BET法比表面積209m/gの下記式で表される水色粉末48.5gを得た。
 Mg0.94Cu0.06(OH)1.82(CO0.09・0.12H
比較例1
 試薬特級水酸化カルシウムを用いた。BET法比表面積は13.2m/gであった。
比較例2
 協和化学工業(株)製水酸化マグネシウム「KISUMA 5」を用いた。BET法比表面積は5.9m/gであった。
比較例3
 協和化学工業(株)製水酸化マグネシウム「キョーワスイマグF」を用いた。BET法比表面積は57.6m/gであった。
比較例4
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、脱水し、棚式乾燥機にて105℃で18時間乾燥した。乾燥物を乳鉢で粉砕し、目開き150μmの金網を通して、BET法比表面積260m/gの下記式で表される白色粉末1040gを得た。
 Mg(OH)1.80(CO0.10・0.10H
比較例5
 1.5mol/Lの硫酸マグネシウム水溶液12Lと、総アルカリ濃度を3.0Nに調製した苛性ソーダと炭酸ソーダとのアルカリ混液(2NaOH:NaCO=90:10)11.4Lを室温撹拌条件下で、滞留時間10分で連続注加反応を行った。得られた反応スラリー約23.4Lを濾過し、21Lの水にて通水洗浄後、水に乳化して10Lにした。これをスプレードライヤーで乾燥し、BET法比表面積263m/gの下記式で表される白色スプレー造粒粉末950gを得た。
 Mg(OH)1.80(CO0.10・0.18H
 上記実施例1~5および比較例1~5について次の方法により分析を行った。
(1)マグネシウム(Mg)、亜鉛(Zn)、銅(Cu)、ニッケル(Ni);キレート滴定法
(2)炭酸(CO);JIS R9101 水酸化ナトリウム溶液−塩酸滴定法
(3)乾燥減量(HO);局外規 乾燥減量
(4)BET法比表面積;液体窒素吸着法装置(ユアサアイオニクス製NOVA2000)
(5)X線構造解析;自動X線回折装置(リガク製RINT2200V)
(6)造粒粒子外観;走査型電子顕微鏡(SEM)(日立製作所製S−3000N)
 組成分析およびBET法比表面積の測定結果を表1に示す。
 図1に実施例1~5で得られた複合水酸化マグネシウム化合物のX線回折像を示す。X線回折パターンはいずれも実施例1~5で得られた粒子が水酸化マグネシウムであること示している。
 実施例5のスプレー造粒品のSEM写真を図2に示す。図2によれば、本願発明の炭酸基含有複合水酸化マグネシウムは造粒性に優れ、スプレードライヤーや押出し造粒機等で容易に目的とする大きさの造粒品となることが分かる。
Figure JPOXMLDOC01-appb-T000001
 次に、上記実施例1~5および比較例1~5について酸性ガス吸着試験を下記の方法によりおこなった。各酸性ガスの吸着試験の結果を表2~4に示す。
(1)塩化水素ガス吸着破過試験
 内径14mmのガラス製カラムにガラスウールとともに粉末試料を0.5g充填した。このカラムに94.1ppmの塩化水素ガスを流量0.44L/分で流通させ、カラム出口濃度を検知管で測定した。破過時間はカラム出口濃度が供給濃度の0.5%(0.5ppm)を超えた時間とした。
(2)SOxガス吸着破過試験
 内径14mmのガラス製カラムにガラスウールとともに粉末試料を0.5g充填した。このカラムに136ppmのSOガスを流量0.44L/分で流通させ、カラム出口濃度を検知管で測定した。破過時間はカラム出口濃度が供給濃度の0.5%(0.7ppm)を超えた時間とした。
(3)硫化水素ガス吸着試験
 粉末試料30mgを1L容テドラーバッグに入れ、脱気後に99.1ppmの硫化水素標準ガスを充填し、テドラーバック内の硫化水素ガス濃度を島津ガスクロマトグラフィーGC−14B(FPD検出器付)を用いて経時的に測定した。カラムは充填カラム「β,β’−オキシジプロピオニトリル25%」を使用した。吸着時間180分以内に硫化水素除去率が100%になった試料については、テドラーバッグ内のガスを抜き、再度99.1ppmの硫化水素標準ガスを充填してもう一度測定をおこなった。
 硫化水素除去率(%)=(吸着前ガス濃度−吸着後ガス濃度)/吸着前ガス濃度×100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~5のBET法比表面積が大きい複合水酸化マグネシウムは比較例1~3の通常の水酸化カルシウムや水酸化マグネシウムと比べて、試験に用いた全ての酸性ガスにおいて吸着率が高かった。比較例4~5のBET法比表面積大きい炭酸基含有水酸化マグネシウムは、塩化水素ガスやSOxガスには優れた吸着能力を示すが、硫化水素ガスに関しては吸着能力が低く、ZnやCu、Niを複合化させた実施例1~5には全く及ばなかった。
発明の効果
 本発明の複合水酸化マグネシウムは、極めて高いBET法比表面積を有する。本発明の複合水酸化マグネシウムは、塩化水素ガス、SOxガス、酢酸系ガスのみならず、硫化水素ガスやメチルメルカプタンに対して優れた吸着性能を有する。本発明の複合水酸化マグネシウムは、亜鉛、銅などの2価金属が水酸化マグネシウム表面に偏在するので、少量の2価金属の担持させることにより複合化の効能を発揮することができる。
 本発明の製造方法によれば、先にBET法比表面積が大きい炭酸基含有水酸化マグネシウムを合成し、そこに複合化させたい金属の金属塩水溶液を添加するので、容易にBET法比表面積が大きい複合水酸化マグネシウムを得ることができる。
 また本発明の複合水酸化マグネシウムは、マグネシウム塩とZnやCu等の他の金属塩との混合金属塩水溶液とアルカリ物質とをCOイオンの存在下で反応しても合成できる。この方法であれば、亜鉛、銅などの2価金属が均一に分散したBET法比表面積が大きい複合水酸化マグネシウムが得ることができ、複合化によるBET法比表面積の低下を防ぐことができる。用途に応じて製造方法を変更すれば、複合化金属の分布を選択することができる。
 本発明の吸着剤は、塩化水素ガス、SOxガス、酢酸系ガスのみならず、硫化水素ガスやメチルメルカプタンに対して優れた吸着性能を有する。
 本発明の複合水酸化マグネシウムは、酸性物質との反応が速いため、速効性がある酸性物質吸着剤・中和剤として有用である。また各種フィラーやセラミック素材、食品添加物や制酸剤等多岐にわたる利用が期待できる。

Claims (12)

  1.  下記式(1)で表され、BET法による比表面積が100~400m/gである複合水酸化マグネシウム。
     Mg1−x(OH)2−y(CO0.5y・mHO   (1)
    (但し式中Mは、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+、およびBa2+からなる群より選ばれる少なくとも一種の2価金属イオンを示す。x、yおよびmは下記の条件
        0<x≦0.5
     0.02≦y≦0.7
        0≦m≦1
    を満足する。)
  2.  式(1)において、MがZn2+、Cu2+およびNi2+からなる群より選ばれる少なくとも一種の2価金属イオンである請求項1に記載の複合水酸化マグネシウム。
  3.  BET法による比表面積が120~350m/gである請求項1に記載の複合水酸化マグネシウム。
  4.  xが0<x≦0.2を満足する請求項1に記載の複合水酸化マグネシウム。
  5.  yが0.04≦y≦0.6を満足する請求項1に記載の複合水酸化マグネシウム。
  6.  請求項1に記載の複合水酸化マグネシウムを350℃以上で焼成して得られる焼成物。
  7.  BET法比表面積が100m/g以上の炭酸基含有水酸化マグネシウムスラリーに、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+およびBa2+からなる群より選ばれる少なくとも一種の2価金属の塩の水溶液を添加し混合して、水酸化マグネシウムの表面に2価金属の水酸化物を担持させることを特徴とする請求項1に記載の複合水酸化マグネシウムの製造方法。
  8.  COイオンの存在下で、Mgイオン、Zn2+、Cu2+、Ni2+、Co2+、Ca2+、Mn2+、Fe2+およびBa2+からなる群より選ばれる少なくとも一種の2価金属イオンおよびOHイオンを水中で接触させることからなる請求項1に記載の複合水酸化マグネシウムの製造方法。
  9.  請求項1~5のいずれか一項に記載の複合水酸化マグネシウムを含む吸着剤。
  10.  複合水酸化マグネシウムを粒子径0.05~20mmの範囲に造粒した請求項9記載の吸着剤。
  11.  請求項9~10に記載の吸着剤を用いてなるケミカルフィルタ。
  12.  酸性ガスまたは有機溶剤中の酸性物質の吸着用または脱臭用である請求項9~10に記載の吸着剤。
PCT/JP2011/062874 2010-06-15 2011-05-31 複合水酸化マグネシウム、その製造方法および吸着剤 WO2011158675A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180024621.8A CN102892710B (zh) 2010-06-15 2011-05-31 复合氢氧化镁、其制造方法及吸附剂
JP2012520372A JP5656298B2 (ja) 2010-06-15 2011-05-31 複合水酸化マグネシウム、その製造方法および吸着剤
EP11795583.1A EP2583944A4 (en) 2010-06-15 2011-05-31 COMPOUND MAGNESIUM HYDROXIDE, METHOD FOR ITS PRODUCTION AND ADSORPTION AGENTS
KR1020127032265A KR20130085951A (ko) 2010-06-15 2011-05-31 복합 수산화마그네슘, 그 제조 방법 및 흡착제
US13/703,772 US20130092625A1 (en) 2010-06-15 2011-05-31 Composite magnesium hydroxide, method for producing the same and adsorbent comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-136148 2010-06-15
JP2010136148 2010-06-15
JP2010247245 2010-11-04
JP2010-247245 2010-11-04

Publications (1)

Publication Number Publication Date
WO2011158675A1 true WO2011158675A1 (ja) 2011-12-22

Family

ID=45348081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062874 WO2011158675A1 (ja) 2010-06-15 2011-05-31 複合水酸化マグネシウム、その製造方法および吸着剤

Country Status (7)

Country Link
US (1) US20130092625A1 (ja)
EP (1) EP2583944A4 (ja)
JP (1) JP5656298B2 (ja)
KR (1) KR20130085951A (ja)
CN (1) CN102892710B (ja)
TW (1) TWI455757B (ja)
WO (1) WO2011158675A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124318A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 クロロスルホン化ポリオレフィン組成物
WO2017033895A1 (ja) * 2015-08-24 2017-03-02 住友金属鉱山株式会社 マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
JP7352555B2 (ja) 2018-08-31 2023-09-28 株式会社カネカ 抗体または抗体様分子の精製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885843B1 (ko) * 2016-09-12 2018-08-06 주식회사 단석산업 합성 하이드로마그네사이트 입자 및 그의 제조방법
WO2021011235A1 (en) * 2019-07-15 2021-01-21 Aqua Resources Corporation Hydroxides monolayer nanoplatelet and methods of preparing same
CN114870812B (zh) * 2022-06-26 2024-02-06 苏州北美国际高级中学 一种细菌纤维素活性氢氧化镁复合膜及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180808A (ja) * 1997-12-18 1999-07-06 Kyowa Chem Ind Co Ltd 藻発生または微小生物の繁殖抑制剤およびその使用
JP2004528965A (ja) * 2001-02-06 2004-09-24 ウォーターヴィジョンズ インターナショナル, インコーポレイティッド 液体の濾過に使用する不溶性マグネシウム含有無機組成物
WO2008123566A1 (ja) * 2007-04-02 2008-10-16 Kyowa Chemical Industry Co., Ltd. 炭酸基含有水酸化マグネシウム粒子およびその製造方法
WO2009057796A1 (ja) * 2007-10-29 2009-05-07 Kyowa Chemical Industry Co., Ltd. 緩下剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011223A (ja) * 1983-06-27 1985-01-21 Kyowa Chem Ind Co Ltd 繊維状酸化マグネシウム及びその製法
US5401442A (en) * 1991-02-06 1995-03-28 Kabushiki Kaisha Kaisui Kagau Kenkyujo Composite metal hydroxide and its use
US20050061147A1 (en) * 2003-09-18 2005-03-24 Marganski Paul J. Chemisorbent system for abatement of effluent species
EP2188039A1 (en) * 2007-09-04 2010-05-26 MEMC Electronic Materials, Inc. Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180808A (ja) * 1997-12-18 1999-07-06 Kyowa Chem Ind Co Ltd 藻発生または微小生物の繁殖抑制剤およびその使用
JP2004528965A (ja) * 2001-02-06 2004-09-24 ウォーターヴィジョンズ インターナショナル, インコーポレイティッド 液体の濾過に使用する不溶性マグネシウム含有無機組成物
WO2008123566A1 (ja) * 2007-04-02 2008-10-16 Kyowa Chemical Industry Co., Ltd. 炭酸基含有水酸化マグネシウム粒子およびその製造方法
WO2009057796A1 (ja) * 2007-10-29 2009-05-07 Kyowa Chemical Industry Co., Ltd. 緩下剤

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124318A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 クロロスルホン化ポリオレフィン組成物
WO2017033895A1 (ja) * 2015-08-24 2017-03-02 住友金属鉱山株式会社 マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
JPWO2017033895A1 (ja) * 2015-08-24 2018-06-14 住友金属鉱山株式会社 マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
US10559823B2 (en) 2015-08-24 2020-02-11 Sumitomo Metal Mining Co., Ltd. Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
JP7352555B2 (ja) 2018-08-31 2023-09-28 株式会社カネカ 抗体または抗体様分子の精製方法

Also Published As

Publication number Publication date
KR20130085951A (ko) 2013-07-30
JP5656298B2 (ja) 2015-01-21
EP2583944A4 (en) 2013-12-04
JPWO2011158675A1 (ja) 2013-08-19
CN102892710A (zh) 2013-01-23
CN102892710B (zh) 2015-04-29
TW201210686A (en) 2012-03-16
EP2583944A1 (en) 2013-04-24
US20130092625A1 (en) 2013-04-18
TWI455757B (zh) 2014-10-11

Similar Documents

Publication Publication Date Title
JP5656298B2 (ja) 複合水酸化マグネシウム、その製造方法および吸着剤
KR100384256B1 (ko) 고온용으로 적합한 산화마그네슘 함유 이산화탄소 흡착제
CN109414676B (zh) 制备吸附材料的方法和用该材料从盐溶液中提取锂的方法
Koilraj et al. Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation
Jo et al. Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions
CN108472645B (zh) 包括碱性混合步骤的制备吸附性材料的方法以及利用该材料从盐溶液中提取锂的方法
AU2015213979B2 (en) Reactive composition based on sodium bicarbonate and process for its production
JP5202514B2 (ja) 炭酸基含有水酸化マグネシウム粒子およびその製造方法
JP2003306325A (ja) 塩基性炭酸マグネシウム及びその製造方法、並びに該塩基性炭酸マグネシウムを含有する組成物又は構造体
WO2016185033A1 (en) Lime-based sorbent composition for mercury removal and its manufacturing process
JPWO2008015784A1 (ja) ハイドロタルサイト様粒状体およびその製造方法
JP4338470B2 (ja) ハイドロタルサイト粒子及びその製造方法
JP4944466B2 (ja) 無水炭酸マグネシウム粉末及びその製造方法
WO2017141931A1 (ja) セシウム又は/及びストロンチウム吸着剤
Maina Improvement of lime reactivity towards desulfurization by hydration agents
CA2991680A1 (en) Chemical absorbent composition
JP2011504160A (ja) 石膏焼成時における水銀放出抑制材としての活性炭
RU2527091C2 (ru) Адсорбент для очистки газов от хлора и хлористого водорода и способ его приготовления
RU2411984C2 (ru) Способ получения материала для разложения озона и материал
JP2004345912A (ja) 重金属フリーの酸化マグネシウム及びその原料の調整方法
JP3756770B2 (ja) 芳香族ヒドロキシ化合物の吸着剤およびその利用
JP4718155B2 (ja) 脱臭性複合組成物の製造方法
KR100564359B1 (ko) 산성기체 제거용 흡착제의 제조방법 및 산성기체의 제거방법
JPS61293545A (ja) 排ガスの浄化剤
JP6526511B2 (ja) 吸着剤及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024621.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520372

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127032265

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10343/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011795583

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13703772

Country of ref document: US

Ref document number: 2011795583

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201006488

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE