WO2011155340A1 - フレキシブルプリント配線板 - Google Patents

フレキシブルプリント配線板 Download PDF

Info

Publication number
WO2011155340A1
WO2011155340A1 PCT/JP2011/062104 JP2011062104W WO2011155340A1 WO 2011155340 A1 WO2011155340 A1 WO 2011155340A1 JP 2011062104 W JP2011062104 W JP 2011062104W WO 2011155340 A1 WO2011155340 A1 WO 2011155340A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed wiring
flexible printed
wiring board
layer
heat dissipation
Prior art date
Application number
PCT/JP2011/062104
Other languages
English (en)
French (fr)
Inventor
裕久 齊藤
良啓 赤羽
秀樹 松原
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180028499.1A priority Critical patent/CN102934529A/zh
Publication of WO2011155340A1 publication Critical patent/WO2011155340A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/0999Circuit printed on or in housing, e.g. housing as PCB; Circuit printed on the case of a component; PCB affixed to housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates

Definitions

  • the present invention relates to a flexible printed wiring board. Specifically, the present invention relates to a flexible printed wiring board that can simultaneously realize high heat dissipation and good flexibility in a flexible printed wiring board in which a light emitting element is mounted via solder.
  • LEDs light emitting diodes
  • the LED itself has a size of about 0.3 to 1 mm, and may be mounted on a circuit board after being mounted on a ceramic substrate, or may be directly mounted on a circuit board.
  • a circuit board what uses a flexible printed wiring board is common.
  • a flexible printed wiring board on which such an LED is mounted there is, for example, Patent Document 1 below.
  • Patent Document 1 is an invention related to a lighting device. It improves the production efficiency by automating the three-dimensional arrangement of the light emitting diodes in the manufacturing process, and suppresses the light emitting efficiency from decreasing as the temperature of the light emitting diodes rises, thereby obtaining a higher light output. There is a merit that can be.
  • a flexible printed wiring board on which LEDs are mounted as shown in Patent Document 1, it is common to mount a plurality of LEDs. Therefore, it is important to improve heat dissipation characteristics. . Therefore, conventionally, in order to improve the heat dissipation characteristics, some flexible printed wiring boards are provided with a heat dissipation layer made of a metal foil layer. However, in the flexible printed wiring board provided with such a heat dissipation layer, there is a problem that the flexibility is lowered when the heat dissipation layer is thick in order to improve the heat dissipation characteristics.
  • the present invention provides a flexible printed wiring board that solves the above-described problems in the prior art and can simultaneously realize high heat dissipation and good flexibility in a flexible printed wiring board in which a light emitting element is mounted via solder. Is an issue.
  • a conductive layer having a circuit portion is laminated on the upper surface side of the substrate layer, and a heat dissipation layer made of a metal material having high thermal conductivity is laminated on the lower surface side of the substrate layer.
  • a heat dissipation layer made of a metal material having high thermal conductivity is laminated on the lower surface side of the substrate layer.
  • the conductive layer including the circuit portion is laminated on the upper surface side of the substrate layer, and the heat dissipation made of the metal material having high thermal conductivity is formed on the lower surface side of the substrate layer. It is the flexible printed wiring board which laminated
  • the flexible printed wiring board of the present invention in addition to the first feature of the present invention described above, is provided with a bent portion scheduled to be bent and a non-bent portion not scheduled to be bent. .
  • the light emitting element is mounted only on the non-bent portion, and the number of heat dissipation layers stacked on the bend portion is smaller than the number of heat dissipation layers stacked on the non-bend portion. This is the second feature.
  • the flexible printed wiring board includes a bent portion scheduled to be bent and a non-bent portion not scheduled to be bent. And are provided.
  • the light emitting element is mounted only on the non-bent portion, and the number of heat dissipation layers stacked on the bend portion is smaller than the number of heat dissipation layers stacked on the non-bend portion. Therefore, high heat dissipation and good flexibility can be realized at the same time.
  • the flexible printed wiring board of the present invention in addition to the first feature of the present invention described above, is provided with a bent portion scheduled to be bent and a non-bent portion not scheduled to be bent. .
  • the third feature is that the light emitting element is mounted only on the non-bent portion, and the resin layer between adjacent heat dissipation layers is separated into two layers in the bent portion.
  • the flexible printed wiring board includes a bent portion scheduled to be bent and a non-bent portion not scheduled to be bent. And are provided.
  • the light-emitting element is mounted only on the non-bent portion, and in the bent portion, the resin layer between adjacent heat-dissipating layers is separated into two layers, so that high heat dissipation and good flexibility are obtained. It can be realized at the same time.
  • the flexible printed wiring board of the present invention high heat dissipation and good flexibility can be realized at the same time in the flexible printed wiring board in which the light emitting element is mounted via the solder.
  • FIG. 1 is a cross-sectional view showing a main part of a flexible printed wiring board on which a light emitting element is mounted via solder.
  • FIG. 1A is a view showing a flexible printed wiring board according to an embodiment of the present invention.
  • FIG. 1B shows a conventional flexible printed wiring board.
  • FIG. 2 is a simplified cross-sectional view of a flexible printed wiring board according to an embodiment of the present invention.
  • FIG. 2A shows a state before the flexible printed wiring board is disposed in the electronic device.
  • FIG. 2B shows a state in which the flexible printed wiring board is disposed in the electronic device. It is sectional drawing which simplifies and shows the modification of the flexible printed wiring board which concerns on embodiment of this invention.
  • the flexible printed wiring board 1 according to the embodiment of the present invention is a flexible printed wiring board disposed inside an electronic device (not shown) in a state where the light emitting element portion 40 is mounted via the solder portion 30. As shown in FIG. 1A, the flexible printed wiring board 1 is composed of two flexible printed wiring boards, a flexible printed wiring board 10 and a flexible printed wiring board 20.
  • the flexible printed wiring board 10 is a so-called double-sided flexible printed wiring board, and includes a substrate layer 11, a conductive layer 12, a heat dissipation layer 13, and a coverlay layer 14, as shown in FIG. .
  • the substrate layer 11 serves as a base of the flexible printed wiring board 10 and is formed of an insulating resin film.
  • a resin film what consists of a resin material excellent in the softness
  • any resin film may be used as long as it is normally used as a resin film for forming a flexible printed wiring board such as a polyimide film or a polyester film.
  • those having high heat resistance in addition to flexibility are desirable.
  • polyamide resin films, polyimide resin films such as polyimide and polyamideimide, and polyethylene naphthalate can be preferably used.
  • the heat-resistant resin may be any resin as long as it is normally used as a heat-resistant resin for forming a flexible printed wiring board, such as a polyimide resin or an epoxy resin.
  • the substrate layer 11 may be a so-called metal-clad laminate in which a conductive layer made of a conductive metal is laminated on the surface of a resin film with a heat-resistant adhesive resin or the like.
  • the conductive layer 12 is a metal foil layer laminated on the upper surface side of the substrate layer 11, and is for forming the circuit portion 12 a of the flexible printed wiring board 10.
  • the light emitting element unit 40 including the light emitting element 41 is mounted on a part of the circuit units 12a via the solder unit 30. Yes. More specifically, as shown in FIG. 1, the upper surface of a part of the circuit portion 12 a is disposed in an exposed state without being covered with the coverlay layer 14, and the light emitting element portion is disposed on the upper surface via a solder portion 30. 40 is implemented.
  • the circuit portion 12a is formed using a known forming method such as etching the conductive layer 12.
  • the conductive layer 12 is made of copper. Of course, it is not limited to copper, and any metal may be used as long as it is normally used as a conductive metal for forming a circuit of a flexible printed wiring board.
  • the thickness of the conductive layer 12 is preferably about 35 ⁇ m.
  • the heat dissipation layer 13 is a metal foil layer laminated on the lower surface side of the substrate layer 11, and is mainly used when the light emitting element portion 40 is mounted or when the light emitting element 41 is turned on and off. This is a first heat dissipation layer for radiating heat applied to the solder part 30.
  • the heat dissipation layer 13 is made of copper. Of course, it is not limited to copper, and any metal material having a high thermal conductivity may be used.
  • the coverlay layer 14 is a resin layer that is an insulating layer of the flexible printed wiring board 10.
  • a polyimide film with an adhesive, a photosensitive resist, a liquid resist, or the like can be used.
  • the thickness of the coverlay layer 14 is preferably about 25 ⁇ m.
  • the flexible printed wiring board 20 is a so-called single-sided flexible printed wiring board, and includes a substrate layer 21 and a heat dissipation layer 23 as shown in FIG. 1A.
  • the substrate layer 21 and the heat dissipation layer 23 perform the same members and functions as the substrate layer 11 and the heat dissipation layer 13 in the flexible printed wiring board 10 described above. Therefore, the following detailed description is omitted.
  • the heat radiation layer 23 in the flexible printed wiring board 20 is bonded to the cover lay layer 14 covering the heat radiation layer 13 in the flexible printed wiring board 10 with a thermosetting adhesive (not shown).
  • the flexible printed wiring board 1 is formed by pasting via an agent.
  • the flexible printed wiring board 1 By setting it as such a structure, it can be set as the flexible printed wiring board 1 provided with a some thermal radiation layer. More specifically, the flexible printed wiring board 1 can be provided with two heat dissipation layers in which the heat dissipation layer 13 is the first heat dissipation layer and the heat dissipation layer 23 is the second heat dissipation layer. Therefore, it can be set as the flexible printed wiring board 1 which can implement
  • the thickness of the heat dissipation layer 13 as the first heat dissipation layer is preferably about 35 ⁇ m
  • the thickness of the heat dissipation layer 23 as the second heat dissipation layer is preferably about 35 to 150 ⁇ m.
  • the flexible printed wiring board 1 is mounted on the housing
  • the heat transferred to the wiring board 60 cannot be transferred in a state of being diffused toward the contact surface area that contacts the housing 50. Therefore, the heat transferred from the solder part 30 to the flexible printed wiring board 60 can be transferred only locally to the housing 50, and quick and efficient heat dissipation cannot be performed. Therefore, the heat transferred from the solder part 30 to the flexible printed wiring board 60 cannot be sufficiently dissipated.
  • the flexible printed wiring board 1 capable of realizing high heat dissipation can be obtained by adopting a configuration including a plurality of heat dissipation layers as in the present embodiment. Therefore, it is possible to prevent the solder part 30 from being cracked and the like, and to obtain the flexible printed wiring board 1 that can realize high electrical and mechanical connection reliability. Moreover, it can be set as the flexible printed wiring board 1 which can prevent the shortening of the product lifetime of the light emitting element 41.
  • the flexible printed wiring board 1 is provided with a bent portion K that is expected to be bent and a non-bent portion F that is not expected to be bent, and the light emitting element 41 is provided only in the non-bent portion F.
  • the light emitting element part 40 is mounted.
  • the number of layers of the heat dissipation layer stacked on the bent portion K is set to be smaller than the number of layers of the heat dissipation layer stacked on the non-bent portion F. More specifically, as shown in FIG. 2, only one heat radiation layer 13 is laminated on the bent portion K, and two layers of heat radiation layers 13 and 23 are laminated on the non-bent portion F. By setting it as such a structure, it can be set as the flexible printed wiring board 1 which can implement
  • the present embodiment in the flexible printed wiring board 20, by removing the portion of the heat dissipation layer 23 corresponding to the bent portion K by etching, the number of layers of the heat dissipating layer laminated on the bent portion K is changed to the non-bent portion.
  • the number of layers is smaller than the number of heat dissipation layers laminated on F.
  • the present invention is not limited to such a forming method, and the number of layers of the heat dissipation layer laminated on the bent portion K can be made smaller than the number of layers of the heat dissipation layer laminated on the non-bent portion F. As long as it is formed, any method may be used.
  • the number of heat dissipation layers stacked on the bent portion K is stacked on the non-bent portion F.
  • the number of layers is smaller than the number of heat dissipation layers.
  • it is not necessarily limited to such a configuration.
  • the number of layers of the heat dissipating layer laminated on the bent portion K is the heat dissipated on the non-bent portion F.
  • the number of layers may be smaller than the number of layers.
  • the number of heat radiation layers laminated on the bent portion K and the non-bent portion F is not limited to the number of layers in the present embodiment. If the number of layers of the heat radiation layer laminated on the bent portion K is smaller than the number of the heat radiation layers laminated on the non-bent portion F, it can be changed as appropriate.
  • the light emitting element portion 40 is mounted on the circuit portion 12a formed only on the non-bent portion F. However, the present invention is not necessarily limited to such a configuration. It is good also as a structure which mounts the light emitting element part 40 in the circuit part 12a formed ranging over the non-bending part F and the bending part K. FIG.
  • the light emitting element portion 40 needs to be mounted only on the non-bent portion F.
  • the range indicating the bent portion K and the non-bent portion F is illustrated with reference to the lower surface of the coverlay layer 14 that covers the heat dissipation layer 13.
  • the solder part 30 is for fixing the light emitting element part 40 to the flexible printed wiring board 1 and electrically connecting the circuit part 12 a and the light emitting element part 40.
  • the thickness of the solder forming the solder part 30 is preferably about 10 to 300 ⁇ m.
  • the light emitting element unit 40 is a so-called light emitting element unit on which a light emitting element is mounted, and includes a light emitting element 41, a ceramic package 42, and a resin mold 43.
  • the light emitting element 41 is an integrated circuit including a light emitting unit (not shown) that emits light by changing a digital signal from the circuit unit 12a of the flexible printed wiring board 1 into an optical signal.
  • a light emitting diode (LED) made of gallium nitride is used as the light emitting element 41.
  • the material for forming the LED is not limited to gallium nitride, and can be appropriately changed depending on the color to be developed.
  • the light emitting element 41 includes an electrode and a metal wire that electrically connects the electrode and the solder part 30.
  • the ceramic package 42 is a ceramic substrate serving as a base for mounting the light emitting element 41.
  • the ceramic package 42 is made of aluminum nitride.
  • the material is not limited to aluminum nitride, and any material can be used as long as it is normally used as a material for forming a ceramic substrate on which a light emitting element is mounted.
  • the resin mold 43 is an insulating resin for preventing a metal wire (not shown) included in the light emitting element 41 from causing problems such as disconnection or corrosion.
  • the insulating resin may be any resin as long as it is normally used as a resin mold for forming a so-called light emitting element unit, such as an epoxy resin or a silicone resin.
  • a circuit portion 12 a is provided on the upper surface of the substrate layer 11 except for a connection portion with the solder portion 30 and covered with the coverlay layer 14.
  • a flexible printed wiring board 10 including a heat dissipation layer 13 covered with a layer 14 is prepared.
  • substrate layer 21 is prepared.
  • the heat radiation layer 23 side of the flexible printed wiring board 20 is affixed on the lower surface of the coverlay layer 14 which coat
  • the flexible printed wiring board 1 is formed.
  • the light emitting element part 40 is mounted via the solder part 30 on the surface which is not coat
  • the formation method of the flexible printed wiring board 1 which mounts the light emitting element part 40 via the solder part 30 is not restricted to such a structure, It can change suitably.
  • the size of the solder portion 30 and the light emitting element portion 40 is illustrated as being smaller than the size of the flexible printed wiring board 10.
  • the light emitting element portion 40 is mounted only on the non-bent portion F, and at the bent portion K, the resin layer between adjacent heat dissipation layers is separated into two layers. is there. More specifically, the cover lay layer 24 is laminated only on the portion corresponding to the bent portion K in the heat dissipation layer 23 of the flexible printed wiring board 20, and only the portion of the cover lay layer 24 is removed. 10 and the flexible printed wiring board 20 are bonded together with an adhesive such as a thermosetting adhesive (not shown).
  • the flexible printed wiring board 1 when the flexible printed wiring board 1 is disposed inside an electronic device (not shown) in a bent state, in the bent portion K, the adjacent heat radiation layer 13, The resin layer between 23 can be separated into two layers through the gap S. Therefore, even if it is a case where it is the case where it is a case where it is a structure provided with the heat dissipation layer in the bending part K, it can be set as the flexible printed wiring board 1 which can implement
  • the range indicating the bent portion K and the non-bent portion F is illustrated with reference to the lower surface of the coverlay layer 14 that covers the heat dissipation layer 13.
  • the flexible printed wiring board 1 is formed by two flexible printed wiring boards, a so-called double-sided flexible printed wiring board 10 and a so-called single-sided flexible printed wiring board 20, It is not restricted to such a structure, The number of flexible printed wiring boards which form the flexible printed wiring board 1, and a structure (what is called a double-sided or single-sided flexible printed wiring board) can be changed suitably. Further, the number of the circuit portions 12a and the light emitting element portions 40, the arrangement positions of the light emitting element portions 40 in the non-bending portions F, the sizes of the non-bending portions F and the bending portions K, and the like are not limited to those of the present embodiment. It can be changed as appropriate.
  • a flexible printed wiring board on which a light emitting element is mounted via solder in a flexible printed wiring board on which a light emitting element is mounted via solder, high heat dissipation and good flexibility can be realized at the same time. Therefore, a flexible printed wiring board on which a light emitting element is mounted via solder is provided. Industrial applicability is high in the field of electronic devices.

Abstract

 ハンダを介して発光素子を実装してあるフレキシブルプリント配線板において、高い放熱性と良好な屈曲性とを同時に実現できるフレキシブルプリント配線板の提供を課題とする。 基板層11の上面側に、回路部12aを備える導電層12を積層してあると共に、前記基板層11の下面側に、熱伝導率の高い金属材料からなる放熱層を積層してあるフレキシブルプリント配線板1であって、前記回路部12aの一部にハンダを介して発光素子部40を実装してあると共に、樹脂層を介して複数の放熱層13、23を積層してあるフレキシブルプリント配線板1である。

Description

フレキシブルプリント配線板
 本発明はフレキシブルプリント配線板に関する。詳しくは、本発明はハンダを介して発光素子を実装してあるフレキシブルプリント配線板において、高い放熱性と良好な屈曲性とを同時に実現できるフレキシブルプリント配線板に関する。
 近年、電力―光変換効率の向上に伴う省エネルギー化が可能で長寿命な発光素子として、発光ダイオード(Light Emitting Diode、以下LEDとする。)が照明用に利用され始めている。しかしながらLEDは効率が向上したと雖も、投入電力の半分近くは熱として消費されているのが事実である。そしてLEDはその熱により効率が低下してしまうため、いかにして熱を逃がしてやるかが課題となっている。
 LEDは、その素子自体は0.3~1mm程度の大きさであり、セラミック基板に搭載された後に回路基板に実装される場合や、回路基板に直接実装される場合等がある。また回路基板としては、フレキシブルプリント配線板を用いるものが一般的である。
 このようなLEDを実装してあるフレキシブルプリント配線板を示すものとして、例えば下記特許文献1がある。
特開2002-184209号公報
 上記特許文献1は、照明装置に関する発明である。それは製造工程において、発光ダイオードの3次元的配置作業の自動化を図って生産効率を向上させ、また発光ダイオードの温度上昇に伴ってその発光効率が低下するのを抑制し、より高い光出力を得ることができるメリットがある。
 このようなLEDを実装してあるフレキシブルプリント配線板においては、上記特許文献1に示すように、複数個のLEDを実装するものが一般的であるので、放熱特性を高めることが重要課題となる。
 よって従来、放熱特性を高めるために、フレキシブルプリント配線板に金属箔層からなる放熱層を設けるものがあった。
 しかし、このような放熱層を備えるフレキシブルプリント配線板においては、放熱特性を高めるために放熱層を厚肉なものとした場合、屈曲性が低下するという問題があった。
 そこで本発明は上記従来技術における問題点を解消し、ハンダを介して発光素子を実装してあるフレキシブルプリント配線板において、高い放熱性と良好な屈曲性とを同時に実現できるフレキシブルプリント配線板の提供を課題とする。
 本発明のフレキシブルプリント配線板は、基板層の上面側に、回路部を備える導電層を積層してあると共に、前記基板層の下面側に、熱伝導率の高い金属材料からなる放熱層を積層してあるフレキシブルプリント配線板である。そして前記回路部の一部にハンダを介して発光素子を実装してあると共に、前記放熱層を、樹脂層を介して複数層積層してあることを第1の特徴としている。
 上記本発明の第1の特徴によれば、基板層の上面側に、回路部を備える導電層を積層してあると共に、前記基板層の下面側に、熱伝導率の高い金属材料からなる放熱層を積層してあるフレキシブルプリント配線板である。そして前記回路部の一部にハンダを介して発光素子を実装してあると共に、前記放熱層を、樹脂層を介して複数層積層してあることから、発光素子を実装してあるフレキシブルプリント配線板において、高い放熱性を実現することができる。
 また本発明のフレキシブルプリント配線板は、上記本発明の第1の特徴に加えて、前記フレキシブルプリント配線板には、屈曲を予定する屈曲部と、屈曲を予定しない非屈曲部とを設けてある。そして該非屈曲部にのみ前記発光素子を実装してあると共に、前記屈曲部に積層してある放熱層の層数を、前記非屈曲部に積層してある放熱層の層数よりも少ない層数としてあることを第2の特徴としている。
 上記本発明の第2の特徴によれば、上記本発明の第1の特徴による作用効果に加えて、前記フレキシブルプリント配線板には、屈曲を予定する屈曲部と、屈曲を予定しない非屈曲部とを設けてある。そして該非屈曲部にのみ前記発光素子を実装してあると共に、前記屈曲部に積層してある放熱層の層数を、前記非屈曲部に積層してある放熱層の層数よりも少ない層数としてあることから、高い放熱性と良好な屈曲性とを同時に実現することができる。
 また本発明のフレキシブルプリント配線板は、上記本発明の第1の特徴に加えて、前記フレキシブルプリント配線板には、屈曲を予定する屈曲部と、屈曲を予定しない非屈曲部とを設けてある。そして該非屈曲部にのみ前記発光素子を実装してあると共に、前記屈曲部においては、隣接する放熱層間の樹脂層を2層に分離してあることを第3の特徴としている。
 上記本発明の第3の特徴によれば、上記本発明の第1の特徴による作用効果に加えて、前記フレキシブルプリント配線板には、屈曲を予定する屈曲部と、屈曲を予定しない非屈曲部とを設けてある。そして該非屈曲部にのみ前記発光素子を実装してあると共に、前記屈曲部においては、隣接する放熱層間の樹脂層を2層に分離してあることから、高い放熱性と良好な屈曲性とを同時に実現することができる。
 本発明のフレキシブルプリント配線板によれば、ハンダを介して発光素子を実装してあるフレキシブルプリント配線板において、高い放熱性と良好な屈曲性とを同時に実現することができる。
図1はハンダを介して発光素子を実装してあるフレキシブルプリント配線板の要部を示す断面図である。図1のAは本発明の実施形態に係るフレキシブルプリント配線板を示す図である。図1のBは従来のフレキシブルプリント配線板を示す図である。 図2は本発明の実施形態に係るフレキシブルプリント配線板を簡略化して示す断面図である。図2のAはフレキシブルプリント配線板が電子機器に配設される前の状態を示している。図2のBはフレキシブルプリント配線板が電子機器に配設された状態を示す。 本発明の実施形態に係るフレキシブルプリント配線板の変形例を簡略化して示す断面図である。
 1     フレキシブルプリント配線板
 10    フレキシブルプリント配線板
 11    基板層
 12    導電層
 12a   回路部
 13    放熱層
 14    カバーレイ層
 20    フレキシブルプリント配線板
 21    基板層
 23    放熱層
 24    カバーレイ層
 30    ハンダ部
 40    発光素子部
 41    発光素子
 42    セラミックパッケージ
 43    樹脂モールド
 50    筐体
 60    フレキシブルプリント配線板
 61    基板層
 62    導電層
 62a   回路部
 64    カバーレイ層
 F     非屈曲部
 K     屈曲部
 S     空隙部
 以下の図面を参照して、本発明に係るフレキシブルプリント配線板についての実施形態を説明し、本発明の理解に供する。しかし、以下の説明は本発明の実施形態であって、特許請求の範囲に記載の内容を限定するものではない。
 まず図1、図2を参照して、本発明の実施形態に係るフレキシブルプリント配線板を説明する。
 本発明の実施形態に係るフレキシブルプリント配線板1は、ハンダ部30を介して発光素子部40を実装した状態で図示しない電子機器内部に配設されるフレキシブルプリント配線板である。
 このフレキシブルプリント配線板1は、図1のAに示すように、フレキシブルプリント配線板10と、フレキシブルプリント配線板20との2枚のフレキシブルプリント配線板で構成される。
 前記フレキシブルプリント配線板10は、いわゆる両面フレキシブルプリント配線板であり、図1のAに示すように、基板層11と、導電層12と、放熱層13と、カバーレイ層14とから構成される。
 前記基板層11は、フレキシブルプリント配線板10の基台となるものであり、絶縁性の樹脂フィルムで形成されている。
 樹脂フィルムとしては、柔軟性に優れた樹脂材料からなるものが使用される。例えばポリイミドフィルムやポリエステルフィルム等のフレキシブルプリント配線板を形成する樹脂フィルムとして通常用いられるものであれば、如何なるものであってもよい。
 また特に、柔軟性に加えて高い耐熱性をも有しているものが望ましい。例えばポリアミド系の樹脂フィルムや、ポリイミド、ポリアミドイミドなどのポリイミド系の樹脂フィルムや、ポリエチレンナフタレートを好適に用いることができる。
 また耐熱性樹脂としては、ポリイミド樹脂、エポキシ樹脂等、フレキシブルプリント配線板を形成する耐熱性樹脂として通常用いられるものであれば、如何なるものであってもよい。
 なお基板層11としては、樹脂フィルムの表面に導電性金属からなる導電層を耐熱性接着樹脂等で積層した、いわゆる金属張積層板を用いる構成としてもよい。
 前記導電層12は、図1のAに示すように、基板層11の上面側に積層される金属箔層であり、フレキシブルプリント配線板10の回路部12aを形成するためのものである。
 本実施形態においては、図示していない回路部12aを含めた複数の回路部12aのうち、一部の回路部12aにハンダ部30を介して発光素子41を備える発光素子部40を実装している。より具体的には、図1に示すように、一部の回路部12aの上面をカバーレイ層14で被覆することなく露出状態で配設し、該上面にハンダ部30を介して発光素子部40を実装している。
 この回路部12aは、導電層12をエッチングする等の公知の形成方法を用いて形成される。
 なお本実施形態においては、導電層12は銅で形成されている。勿論、銅に限るものではなく、フレキシブルプリント配線板の回路を形成する導電性金属として通常用いられるものであれば如何なるものであってもよい。
 また導電層12の厚みは、35μm程度とすることが望ましい。
 前記放熱層13は、図1のAに示すように、基板層11の下面側に積層される金属箔層であり、主として発光素子部40の実装時や発光素子41のON-OFF時等におけるハンダ部30に加わる熱を放熱させるための第1放熱層となるものである。
 なお本実施形態においては、放熱層13は、銅で形成されている。勿論、銅に限るものではなく、熱伝導率の高い金属材料であれば如何なるものであってもよい。
 前記カバーレイ層14は、フレキシブルプリント配線板10の絶縁層たる樹脂層である。
 なおカバーレイ層14としては、接着剤付きポリイミドフィルム、感光性レジスト、液状レジスト等を用いることができる。
 またカバーレイ層14の厚みは、25μm程度とすることが望ましい。
 前記フレキシブルプリント配線板20は、いわゆる片面フレキシブルプリント配線板であり、図1Aに示すように、基板層21と、放熱層23とから構成される。
 これら基板層21及び放熱層23は、既述したフレキシブルプリント配線板10における基板層11及び放熱層13と同一部材、同一機能を果たすものである。よって以下の詳細な説明は省略するものとする。
 図1のAに示すように、このフレキシブルプリント配線板20における放熱層23を、フレキシブルプリント配線板10における、放熱層13を被覆するカバーレイ層14に、図示しない熱硬化性接着剤等の接着剤を介して貼り付けることで、フレキシブルプリント配線板1が形成されている。
 このような構成とすることで、複数の放熱層を備えるフレキシブルプリント配線板1とすることができる。より具体的には、放熱層13を第1放熱層とし、放熱層23を第2放熱層とする2層の放熱層を備えるフレキシブルプリント配線板1とすることができる。よって高い放熱性を実現できるフレキシブルプリント配線板1とすることができる。
 なお第1放熱層たる放熱層13の厚みは35μm程度、第2放熱層たる放熱層23の厚みは35~150μm程度とすることが望ましい。
 つまり図1のAに示すように、フレキシブルプリント配線板1は、電子機器の筐体50上に載置される。よって発光素子部40の実装時や発光素子41のON-OFF時等において、ハンダ部30からフレキシブルプリント配線板1に伝熱した熱は、最終的に筐体50から放熱されるところ、複数の放熱層を備える構成とできることで、ハンダ部30からフレキシブルプリント配線板1に伝熱した熱をより迅速且つ効率的に放熱させることができる。
 より具体的には、図1のAに破線の矢印及び破線の楕円で示すように、ハンダ部30からフレキシブルプリント配線板1に伝熱した熱を、筐体50と接面する接面面積に向けて段階的に拡散させた状態で伝熱させることができる。
 よってハンダ部30からフレキシブルプリント配線板1に伝熱した熱を迅速且つ効率的に筐体50から放熱させることができる。従って高い放熱性を実現できるフレキシブルプリント配線板1とすることができる。
 これに対して、図1のBに示す、放熱層を備えない従来のフレキシブルプリント配線板60においては、図1のBに破線の矢印及び破線の楕円で示すように、ハンダ部30からフレキシブルプリント配線板60に伝熱した熱を、筐体50と接面する接面面積に向けて拡散させた状態で伝熱させることができない。
 よってハンダ部30からフレキシブルプリント配線板60に伝熱した熱を、局所的にしか筐体50へと伝熱できず、迅速且つ効率的な放熱を行うことができない。従ってハンダ部30からフレキシブルプリント配線板60に伝熱した熱を十分に放熱させることができない。
 このような放熱の不足が生じる場合、ハンダ部30にクラック等が生じ、電気的及び機械的な接続信頼性の低下を招くこととなる。また発光素子41の製品寿命の短縮化を招くこととなる。またこのような放熱の不足は、放熱層を1層のみ備えるフレキシブルプリント配線板においても同様に生じ易い。
 なお従来のフレキシブルプリント配線板60において、本実施形態におけるフレキシブルプリント配線板10、20と同一部材、同一機能を果たすものには、図1のBにおいて下一桁の番号に同一番号を付し、以下の詳細な説明は省略するものとする。
 従って本実施形態のように、複数の放熱層を備える構成とすることで、高い放熱性を実現できるフレキシブルプリント配線板1とすることができる。よってハンダ部30にクラック等が生じることを防止することができ、電気的及び機械的な高接続信頼性を実現できるフレキシブルプリント配線板1とすることができる。また発光素子41の製品寿命の短縮化を防止できるフレキシブルプリント配線板1とすることができる。
 更に図2に示すように、フレキシブルプリント配線板1には、屈曲を予定する屈曲部Kと、屈曲を予定しない非屈曲部Fとを設けてあり、非屈曲部Fにのみ発光素子41を備える発光素子部40を実装してある。そして屈曲部Kに積層してある放熱層の層数を、非屈曲部Fに積層してある放熱層の層数よりも少ない層数とする構成としてある。
 より具体的には、図2に示すように、屈曲部Kには放熱層13のみを1層積層し、非屈曲部Fには放熱層13、23の2層を積層する構成としてある。
 このような構成とすることで、高い放熱性と良好な屈曲性とを同時に実現できるフレキシブルプリント配線板1とすることができる。
 なお本実施形態においては、フレキシブルプリント配線板20において、屈曲部Kに対応する部分の放熱層23をエッチング除去することで、屈曲部Kに積層してある放熱層の層数を、非屈曲部Fに積層してある放熱層の層数よりも少ない層数としてある。
 勿論、このような形成方法に限るものではなく、屈曲部Kに積層してある放熱層の層数を、非屈曲部Fに積層してある放熱層の層数よりも少ない層数とできるものであれば、その形成方法は如何なるものであってもよい。
 また本実施形態においては、屈曲部Kに対応するフレキシブルプリント配線板20の放熱層23を除去することで、屈曲部Kに積層してある放熱層の層数を、非屈曲部Fに積層してある放熱層の層数よりも少ない層数とする構成とした。しかし必ずしもこのような構成に限るものではない。屈曲部Kに対応するフレキシブルプリント配線板10の放熱層13のみを除去する構成とすることで、屈曲部Kに積層してある放熱層の層数を、非屈曲部Fに積層してある放熱層の層数よりも少ない層数とする構成としてもよい。
 また屈曲部K及び非屈曲部Fに積層する放熱層の層数も本実施形態の層数に限るものではない。屈曲部Kに積層する放熱層の層数が、非屈曲部Fに積層する放熱層の層数よりも少ないものとなる構成とするものであれば、適宜変更可能である。
 また本実施形態においては、非屈曲部Fにのみ形成される回路部12aに発光素子部40を実装する構成としたが、必ずしもこのような構成に限るものではない。非屈曲部F及び屈曲部Kに跨って形成される回路部12aに発光素子部40を実装する構成としてもよい。但しこの場合、発光素子部40は、非屈曲部Fにのみ実装することが必要である。
 なお図2において、屈曲部K及び非屈曲部Fを示す範囲は、放熱層13を被覆するカバーレイ層14の下面を基準として図示するものとする。
 前記ハンダ部30は、フレキシブルプリント配線板1に発光素子部40を固定すると共に、回路部12aと発光素子部40とを電気接続するためのものである。
 なおハンダ部30を形成するハンダの厚みは、10~300μm程度とすることが望ましい。
 前記発光素子部40は、発光素子を搭載するいわゆる発光素子ユニットであり、発光素子41と、セラミックパッケージ42と、樹脂モールド43とから構成される。
 前記発光素子41は、フレキシブルプリント配線板1の回路部12aからのデジタル信号を光信号に変化させて発光する図示しない発光部を備える集積回路である。
 なお本実施形態においては、発光素子41として、窒化ガリウムからなる発光ダイオード(LED)を用いている。
 勿論、LEDを形成する材料は窒化ガリウムに限るものではなく、発色させる色により、適宜変更可能である。
 また図示していないが、発光素子41は、電極及び該電極とハンダ部30とを電気接続する金属ワイヤを備えている。
 前記セラミックパッケージ42は、発光素子41を搭載するための基台となるセラミック基板である。
 なお本実施形態においては、セラミックパッケージ42は窒化アルミニウムで形成されている。勿論、窒化アルミニウムに限るものではなく、発光素子を搭載するセラミック基板を形成する材料として通常用いられるものであれば、如何なるものであってもよい。
 前記樹脂モールド43は、発光素子41に備える図示しない金属ワイヤが断線や腐食といった不具合を生じないようにするための絶縁性の樹脂である。
 絶縁性の樹脂としては、エポキシ樹脂やシリコーン樹脂等、いわゆる発光素子ユニットを形成する樹脂モールドとして通常用いられるものであれば、如何なるものであってもよい。
 次にハンダ部30を介して発光素子部40を実装するフレキシブルプリント配線板1の形成方法を説明する。
 図2のAを参照して、まず基板層11の上面に、ハンダ部30との接続部以外がカバーレイ層14で被覆される回路部12aを備えると共に、基板層11の下面に、カバーレイ層14で被覆される放熱層13を備えるフレキシブルプリント配線板10を用意する。
 そして基板層21の上面に、屈曲部Kに対応する部分がエッチング除去された放熱層23を備えるフレキシブルプリント配線板20を用意する。
 そして放熱層13を被覆するカバーレイ層14の下面に、図示しない熱硬化性接着剤を介して、フレキシブルプリント配線板20の放熱層23側を貼り付ける。
 以上でフレキシブルプリント配線板1が形成される。
 そして回路部12aにおいてカバーレイ層14で被覆されない表面に、発光素子部40をハンダ部30を介して実装する。
 以上の工程を経ることで、ハンダ部30を介して発光素子部40を実装するフレキシブルプリント配線板1が形成される。
 勿論、ハンダ部30を介して発光素子部40を実装するフレキシブルプリント配線板1の形成方法は、このような構成に限るものではなく、適宜変更可能である。
 なお図2においては、便宜上、ハンダ部30及び発光素子部40の大きさをフレキシブルプリント配線板10の大きさよりも小さいものとして図示するものとする。
 このようにして形成されるハンダ部30を介して発光素子部40を実装するフレキシブルプリント配線板1は、図2のBに簡略化して示すように、屈曲を予定する屈曲部Kのみが屈曲された状態で図示しない電子機器内部に配設される。
 次に図3を参照して本発明の実施形態に係るフレキシブルプリント配線板1の変形例を説明する。
 本変形例は、フレキシブルプリント配線板1における放熱層の構成を変化させたものである。その他の構成については、既述した本発明の実施形態と同一であることから、同一部材、同一機能を果たすものには、同一番号を付し、以下の詳細な説明は省略するものとする。
 図3に示すように、本変形例においては、非屈曲部Fにのみ発光素子部40を実装してあると共に、屈曲部Kにおいては、隣接する放熱層間の樹脂層を2層に分離してある。
 より具体的には、フレキシブルプリント配線板20の放熱層23における、屈曲部Kに対応する部分にのみカバーレイ層24を積層すると共に、カバーレイ層24の部分だけを除いて、フレキシブルプリント配線板10とフレキシブルプリント配線板20とを図示しない熱硬化性接着剤等の接着剤で貼り合わせる構成としてある。
 このような構成とすることで、図3に示すように、フレキシブルプリント配線板1を屈曲させた状態で図示しない電子機器内部に配設させる場合、屈曲部Kにおいては、隣接する放熱層13、23間の樹脂層を空隙部Sを介して2層に分離することができる。よって屈曲部Kに放熱層を複数層備える構成とする場合であっても良好な屈曲性を実現できるフレキシブルプリント配線板1とすることができる。
 従って高い放熱性と良好な屈曲性とを同時に実現することができるフレキシブルプリント配線板1とすることができる。
 なお図3において、屈曲部K及び非屈曲部Fを示す範囲は、放熱層13を被覆するカバーレイ層14の下面を基準として図示するものとする。
 なお本実施形態及び変形例においては、フレキシブルプリント配線板1を、いわゆる両面フレキシブルプリント配線板10といわゆる片面フレキシブルプリント配線板20との2枚のフレキシブルプリント配線板で形成する構成としたが、必ずしもこのような構成に限るものではなく、フレキシブルプリント配線板1を形成するフレキシブルプリント配線板の枚数、構成(いわゆる両面若しくは片面フレキシブルプリント配線板)は適宜変更可能である。
 また回路部12a及び発光素子部40の数、非屈曲部Fにおける発光素子部40の配置位置や、非屈曲部F及び屈曲部Kの大きさ等も本実施形態のものに限るものではなく、適宜変更可能である。
 本発明によれば、ハンダを介して発光素子を実装するフレキシブルプリント配線板において、高い放熱性と良好な屈曲性とを同時に実現できることから、ハンダを介して発光素子を実装するフレキシブルプリント配線板を備える電子機器の分野における産業上の利用性が高い。

Claims (3)

  1.  基板層の上面側に、回路部を備える導電層を積層してあると共に、前記基板層の下面側に、熱伝導率の高い金属材料からなる放熱層を積層してあるフレキシブルプリント配線板であって、前記回路部の一部にハンダを介して発光素子を実装してあると共に、前記放熱層を、樹脂層を介して複数層積層してあることを特徴とするフレキシブルプリント配線板。
  2.  前記フレキシブルプリント配線板には、屈曲を予定する屈曲部と、屈曲を予定しない非屈曲部とを設けてあり、該非屈曲部にのみ前記発光素子を実装してあると共に、前記屈曲部に積層してある放熱層の層数を、前記非屈曲部に積層してある放熱層の層数よりも少ない層数としてあることを特徴とする請求項1に記載のフレキシブルプリント配線板。
  3.  前記フレキシブルプリント配線板には、屈曲を予定する屈曲部と、屈曲を予定しない非屈曲部とを設けてあり、該非屈曲部にのみ前記発光素子を実装してあると共に、前記屈曲部においては、隣接する放熱層間の樹脂層を2層に分離してあることを特徴とする請求項1に記載のフレキシブルプリント配線板。
PCT/JP2011/062104 2010-06-10 2011-05-26 フレキシブルプリント配線板 WO2011155340A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180028499.1A CN102934529A (zh) 2010-06-10 2011-05-26 柔性印刷配线板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132617A JP5549393B2 (ja) 2010-06-10 2010-06-10 フレキシブルプリント配線板
JP2010-132617 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155340A1 true WO2011155340A1 (ja) 2011-12-15

Family

ID=45097948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062104 WO2011155340A1 (ja) 2010-06-10 2011-05-26 フレキシブルプリント配線板

Country Status (4)

Country Link
JP (1) JP5549393B2 (ja)
CN (1) CN102934529A (ja)
TW (1) TW201208501A (ja)
WO (1) WO2011155340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473698A (zh) * 2021-07-15 2021-10-01 重庆御光新材料股份有限公司 一种可剥离线路板及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163363A (ja) * 1996-11-27 1998-06-19 Yamaichi Electron Co Ltd 電子部品の実装用配線基板
JP2007294619A (ja) * 2006-04-24 2007-11-08 Nec Saitama Ltd 放熱構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140782U (ja) * 1986-02-27 1987-09-05
JP4737575B2 (ja) * 2001-01-30 2011-08-03 ハリソン東芝ライティング株式会社 発光ダイオードアレイ及び光源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163363A (ja) * 1996-11-27 1998-06-19 Yamaichi Electron Co Ltd 電子部品の実装用配線基板
JP2007294619A (ja) * 2006-04-24 2007-11-08 Nec Saitama Ltd 放熱構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473698A (zh) * 2021-07-15 2021-10-01 重庆御光新材料股份有限公司 一种可剥离线路板及其制造方法
CN113473698B (zh) * 2021-07-15 2022-10-28 重庆御光新材料股份有限公司 一种可剥离线路板及其制造方法

Also Published As

Publication number Publication date
JP2011258788A (ja) 2011-12-22
CN102934529A (zh) 2013-02-13
TW201208501A (en) 2012-02-16
JP5549393B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5283750B2 (ja) プリント回路基板をヒートシンクに取り付けるための熱伝導取り付け素子
JP4969332B2 (ja) 基板及び照明装置
JP4127220B2 (ja) Led実装用プリント基板及びその製造方法
JP2008130823A (ja) 照明装置およびそれを備えた電子機器
JP2016539508A (ja) 取付けアセンブリ及び発光デバイス
JP2004119515A (ja) 高い放熱性を有する発光ダイオード表示モジュール及びその基板
JP2008091432A (ja) 電子部品
JP2009302127A (ja) Led用基板、led実装モジュール、およびled用基板の製造方法
WO2011158697A1 (ja) フレキシブル基板モジュール
JP2009021384A (ja) 電子部品及び発光装置
JP5549393B2 (ja) フレキシブルプリント配線板
WO2012017725A1 (ja) 発熱源実装用基板モジュール、照明装置
JP5011441B1 (ja) 発光ユニットおよび照明装置
JP5011442B1 (ja) 発光ユニットおよび照明装置
JP5418406B2 (ja) フレキシブルプリント配線板
JP6511914B2 (ja) Led実装モジュール及びled表示装置
KR101098951B1 (ko) 발광 장치
KR101101776B1 (ko) 발광 장치 및 이의 제조방법
JP2012094637A (ja) フレキシブルプリント配線板、電子機器、フレキシブルプリント配線板の製造方法
JP2012119509A (ja) 回路モジュールおよびそれを備えた照明機器
KR101944756B1 (ko) 전자부품 방열 기판
JP2009021383A (ja) 電子部品
JP2014072331A (ja) 金属ベース回路基板および実装基板
JP2013012531A (ja) 電子部品搭載用部材および電子装置
JP2012209563A (ja) 発光ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028499.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792297

Country of ref document: EP

Kind code of ref document: A1