WO2011153956A1 - 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用 - Google Patents

一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用 Download PDF

Info

Publication number
WO2011153956A1
WO2011153956A1 PCT/CN2011/075567 CN2011075567W WO2011153956A1 WO 2011153956 A1 WO2011153956 A1 WO 2011153956A1 CN 2011075567 W CN2011075567 W CN 2011075567W WO 2011153956 A1 WO2011153956 A1 WO 2011153956A1
Authority
WO
WIPO (PCT)
Prior art keywords
scour
debris flow
gingival
side wall
beam side
Prior art date
Application number
PCT/CN2011/075567
Other languages
English (en)
French (fr)
Inventor
陈晓清
崔鹏
游勇
李德基
Original Assignee
中国科学院水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院水利部成都山地灾害与环境研究所 filed Critical 中国科学院水利部成都山地灾害与环境研究所
Priority to US13/702,466 priority Critical patent/US20130078037A1/en
Publication of WO2011153956A1 publication Critical patent/WO2011153956A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • E02B5/08Details, e.g. gates, screens
    • E02B5/085Arresting devices for waterborne materials, e.g. gratings
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/04Pipes or fittings specially adapted to sewers
    • E03F3/046Open sewage channels

Definitions

  • the present invention relates to a debris flow drainage technique, and more particularly to a soft foundation energy dissipation based on a debris flow, which is suitable for a dilute debris flow or a water flow. , or debris flow drainage channels based on cascade anti-scour gums and their applications.
  • BACKGROUND OF THE INVENTION Debris flow has a much higher bulk density than water flow, and its fluid binary structure containing detrital soil has special characteristics, exhibiting high inertia, strong transmission force, and great impact force.
  • the traditional mudslide anti-scouring uses the whole village building mode of the water supply channel, but due to the extremely strong abrasive ability of the debris flow, the project is damaged quickly and the maintenance cost is high.
  • the transverse penetrating gingival used for anti-scouring of debris flow is generally suitable for the case where the ratio of the groove bed is large, and the effect is poor when the specific drop is less than 5%, and siltation occurs.
  • the previous village-level drainage channel and lateral penetrating gingival block the upper and lower connection of aquatic organisms in the gully bed, which is not conducive to the ecological restoration of the gully bed.
  • the invention patent application with the application number of 200910058217.7 is the preliminary research result of the applicant, and discloses a staggered dentate type mud flow drainage channel.
  • the drainage channel can meet the discharge of a wide fluid, maintain the upstream and downstream hydraulic connections of the channel, and facilitate the ecological restoration of the channel.
  • the staggered gingivals cause the debris fluid to generate energy around the tank.
  • the existence of the flow will bring some potential hidden dangers to the safety of the side wall of the drainage channel; in the case of a smaller vertical ratio of the groove bed, Excessive flow dissipation can easily cause the debris flow to accumulate in the drainage channel, and the ratio of the groove to the bed is reduced.
  • the invention has adopted a method for reducing the length of the gingival to reduce the energy dissipation around the flow, but because the gingival is at the beam side wall
  • the staggered distribution so as the length of the gingival is reduced, the shorter the gingival can not provide sufficient guarantee for the stability of the beam side wall, so it is necessary to increase the lateral depth of the side wall to solve the problem, but this will lead to the construction.
  • the cost increase is too great.
  • the object of the present invention is to provide a debris flow guiding channel based on the step-level anti-scour gum group, which can not only realize the dynamic balance of the erosion and deposition of the debris flow under the low cost, and fully realize the safety.
  • the purpose of smoothly discharging mudslides is to meet the wide-ranging fluid discharge demand of the river basin from the thin mudslide to the mountain flood, and to fully maintain the up-and-down relationship of aquatic organisms in the ditch bed, which is beneficial to the ecological restoration of the channel and can utilize the centripetal force.
  • the beam action fully guarantees the stability of the beam side wall, and it is not easy to cause mudslide deposition when the ratio of the groove bed is small, which is beneficial to long-term operation.
  • the debris flow guiding channel based on the step-level anti-scour tooth group of the present invention comprises a beam side wall on both sides and a step-type anti-scour group which is connected with the same, and the step anti-washing gums Each two steps of the group are distributed at a certain interval, and the plurality of step anti-scour groups have one The depth of the anti-scour gingival composition.
  • the two anti-scour tooth ridges are symmetrically distributed between the beam side walls and the center line of the debris flow channel guide groove to form a step of the step anti-scour tooth group;
  • the debris flow channel guide groove width D ie the distance between the side walls of the beam on both sides
  • D is greater than 2 times the lateral length B of the anti-scour tooth in the vertical direction of the beam side wall (ie the projection length of the anti-scour tooth in the vertical direction of the beam side wall)
  • D >2B that is, any one of the anti-scour gums has only one end connected to the beam side wall, and is not penetrated between the beam side walls, and the anti-washing teeth constituting the step anti-scour group
  • the ⁇ is symmetrically distributed between the side walls of the beam and the center line of the opposite row of guide grooves, forming a symmetrical step-level anti-scour group.
  • the symmetrical structure can fully maintain the upper and lower connection of aquatic organisms in the groove bed, which is beneficial to the ecological restoration of the channel; the stability of the beam side wall can be fully guaranteed, and the debris flow deposition is less likely to occur in the case of a smaller groove bed drop. Conducive to long-term operation.
  • the lateral length B of the anti-scour tooth ridge in the vertical direction of the beam side wall is 1/10-1/2 of the width D of the debris flow channel guide groove, which satisfies 1/10D ⁇ B ⁇ 1/2 D;
  • the anti-scour tooth ridge is inclined at an angle ⁇ to the side wall of the beam, and is inclined to the downstream side, that is, the connection end between the anti-scour tooth and the beam side wall is located upstream from the other end; the inclination angle ⁇ is 45. °-75°; The larger the groove bed ratio is, the larger the value of the inclination angle ⁇ is.
  • This inclined structure facilitates the beam flow of the debris flow.
  • the anti-scour tooth ridge is lower in the vertical direction along the beam side wall, and is higher in the middle of the beam side wall; the ratio of the height difference h to the lateral length ⁇ of the anti-scour tooth ridge in the vertical direction of the beam side wall
  • This low-rise, high-sided structure is beneficial to the debris flow, and is beneficial to generate bottom turbulence and sufficient energy dissipation.
  • the anti-erosion tooth top sill wide bi ⁇ the bottom width b 2, the downstream side of the vertical, the upstream side inclination; ⁇ top width of 0.6-1.5m, a bottom width b 2 to 1.0 2.0m, high upstream slope
  • This structure has an upper narrow width and a lower width. It is good for anti-scour gums to remain stable under the impact of debris flow.
  • the debris flow drainage channel may be in the form of masonry, concrete, or reinforced concrete, or wire cage.
  • the spacing L between each two steps of the step anti-scour group is 8.0-25.0 m, and the anti-scouring tooth depth H is 1.5-2.5 m; maintaining reasonable buried depth and spacing, ensuring prevention Wash the gums and beam side walls safely.
  • the debris flow drainage channel has both a longitudinal soft foundation energy dissipation effect and a centripetal beam action of a symmetric tooth ridge, and is particularly suitable for a ditch bed ratio of 3% - 12%, for a thin mudslide, or a water stone flow, Or the prevention and control of flood discharge in mountain areas. Because of the centripetal beam action of the symmetrical tooth ridge, the stability of the beam side wall can be fully ensured, and the scouring is more scouring in the case of a smaller groove bed drop, which is less prone to mudslide deposition and is beneficial to long-term operation.
  • the present invention is based on the alternating action of fluid erosion undercut erosion and siltation, and the invention is based on the energy dissipation effect of the symmetrical anti-scour soft base between the squeegee, and the beam current of the beam side wall and the anti-scour tooth ridge, so that the debris flow channel guide groove It can be applied to the prevention and control of dilute debris flow, or water and stone flow, or mountain flood discharge.
  • the present invention fully utilizes the material exchange between the lower turbulent flow of the debris flow (or flood) and the surface downflow to dissipate the internal kinetic energy of the fluid to prevent undercut erosion; when the flow rate is small, fully utilize the scouring action of the beam flow.
  • the symmetrical structure proposed by the invention can effectively adjust the scouring-sludge balance of the valley, reduce the erosion damage capability of the debris flow, effectively prevent the siltation of the trench bed, reduce the operation and maintenance cost of the protection project, and ensure the safety of the downstream protection object.
  • the debris flow drainage channel is mainly built on the debris flow accumulation fan, and the debris flow is guided to the design area according to the design flow rate and flow path.
  • the beneficial effects of the invention are: Compared with the full lining drainage channel structure, the cost is saved by more than 15%, and is beneficial to the operation management in the later stage of the engineering; compared with the transverse through-type gingival, in the groove bed Than In the case of a smaller drop, the anti-sludge effect is better, the investment is more economical, and it can meet the wide-ranging fluid discharge demand of the river basin from the thin mudslide to the mountain flood; and the invention patent application with the application number 200910058217.7 (interlaced gingival Compared with the effect of the ecological protection of the type of debris flow drainage channel, due to the centripetal beam action of the symmetrical tooth ridge, there is no case of bypassing the beam side wall foundation, which can more fully guarantee the beam.
  • FIG. 1 is a longitudinal cross-sectional view of a step anti-scour gingival group.
  • Figure 2 is a plan view of the present invention.
  • Figure 3 is a transverse cross-sectional view of the present invention.
  • a debris flow guiding channel based on the symmetrical step-level anti-scour gingival group is constructed, including the beam side wall 2 and the step anti-scour gingival group disposed between and connected with the step, the step anti-scour
  • Each step of the gingival group is distributed at a certain interval, and the step anti-scour gingival group is composed of a plurality of anti-scour gingivals 1 having a certain depth.
  • the distance L between each two steps of the step anti-scour group is 8.0 m, and the anti-washing tooth 1 has a depth H of 2.5 m.
  • the two anti-scour gingivals 1 are symmetrically distributed between the beam side wall 2 and the center line of the debris flow channel guide groove to form a step of the step anti-scour group; the debris flow row guide
  • the groove width D is greater than 2 times the lateral length of the anti-scour tooth 1 in the vertical direction of the beam side wall (2).
  • the debris flow rate of the drainage channel is 28.0 m 3 /s
  • D is 3.0. m
  • B take 1.2m.
  • the anti-scour gum 1 is inclined at an angle ⁇ to the side wall 2 of the beam, and is inclined toward the downstream side, and ⁇ is 75. .
  • the anti-scour tooth ridge 1 is in the vertical direction along the beam side wall 2, is low in the middle, and is high at the end of the beam side wall 2; the height difference h of the anti-scour tooth ⁇ 1 and the anti-scour tooth ⁇ 1 in the beam side wall 2
  • the transverse slope ratio of the ratio of the lateral length B in the vertical direction is decreased by 1: n is 1:4.
  • the top width of the anti-scour tooth ridge 1 is 0.6111
  • the bottom width b 2 is 1.0 m
  • the downstream side is vertical, and the upstream side is inclined
  • the upstream side slope height is the bottom width b 2
  • the upstream side ratio of the width difference ratio is 1:4. Take 1.0m.
  • the debris flow rate of the drainage channel is 100.0 m 3 /s, D is 16.0 m, and B is 1.6 m;
  • the inclination angle ⁇ is taken as 45.
  • the ratio of the cross slope is 1: ⁇ is 1:20; the top width is 1.5m, the bottom width b 2 is 2.0m, and the upstream side is 1:1. Take 0.5m.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Road Paving Structures (AREA)
  • Revetment (AREA)

Description

一种基于梯级防沖刷齿槛群的泥石流排导槽及其应用 技术领域 本发明涉及一种泥石流排导技术, 特别是涉及一种基于泥石流软基消能, 适用于稀性泥石流、 或水石流、 或山区洪水排泄的基于梯级防沖刷齿槛群的泥 石流排导槽及其应用。 背景技术 泥石流具有比水流高得多的容重, 其包含碎屑土的流体二元结构具有特殊 性, 表现出惯性高、 输移力强、 沖击力巨大等特点。 泥石流运动产生的强烈沖 刷, 导致沟床发生剧烈改变, 引起沟床揭底和沟岸崩塌, 增加了补给泥石流的 固体物质来源, 增大了泥石流的危害, 对两岸危险区内的城镇、 村庄、 道路、 水渠、 电力、 通讯线路等基础设施, 以及农田、 森林等造成严重危害。 因此, 开发能有效控制泥石流沖刷的新型结构, 对于减小泥石流的破坏力, 提高下游 防护对象的安全性, 具有重大的社会经济意义和生态环境意义。
近年来, 随着我国西部大开发的持续开展, 众多大型基建工程开工建设, 开发利用泥石流堆积扇的力度加大, 控制泥石流沖刷和淤积的问题日益突出。 在众多泥石流流域中, 爆发稀性泥石流、 过渡型泥石流和山区洪水的概率非常 大, 因此开发满足这类泥石流的排导需求的新型排导槽显得非常迫切。
传统的泥石流防沖刷沿用输水渠道的全村砌模式, 但由于泥石流极强的磨 蚀能力, 导致工程损毁快、 维护费用高。 目前用于泥石流防沖刷的横向贯穿型 齿槛一般适用于沟床比降较大的情况, 比降小于 5%时效果很差, 出现淤积。 在 常流水状态下, 以往的全村砌排导槽和横向贯穿型齿槛阻断了沟床内水生生物 的上下联系, 不利于沟床生态修复。
申请号为 200910058217.7的发明专利申请, 是本申请人的前期研究成果, 公开了一种交错齿槛型泥石流排导槽。 该排导槽能够满足排泄应宽流体, 保持 沟道上下游水力联系, 有利于沟道生态恢复。 但同时, 交错齿槛使泥石流体在 槽内产生绕流消能, 绕流的存在会给排导槽侧墙的安全带来一定潜在隐患; 在 沟床纵比降较小的情况下, 绕流消能过度易导致泥石流淤积在排导槽中, 针对 沟床比降减小, 该发明申请采取了减小齿槛长度的方法来减少绕流消能, 但由 于齿槛在束流侧墙间呈交错分布, 因此随着齿槛长度的减小, 齿槛越短越不能 给束流侧墙的稳定性提供充分保障, 从而需要采取增加侧墙基础埋深来解决, 但这样会导致建筑成本增加太大。 发明内容 本发明的目的就是针对现有技术的不足,提供一种基于梯级防沖刷齿槛群的 泥石流排导槽, 不仅能在低成本下实现泥石流沖刷下切侵蚀与淤积的动态平衡, 充分实现安全、 顺畅排泄泥石流的目的, 满足流域爆发从稀性泥石流到山区洪 水的较宽变化流体排泄需求, 而且能够充分保持沟床内水生生物的上下联系, 有利于沟道生态修复, 同时能够利用向心束流作用充分保障束流侧墙的稳定性, 在沟床比降较小的情况下不易出现泥石流淤积, 有利于长期运行。
为实现上述目的, 本发明的技术方案是:
本发明提出的基于梯级防沖刷齿槛群的泥石流排导槽, 包括两侧的束流侧 墙和置于其间、 与其相连、 配合使用的梯级防沖刷齿槛群, 所述梯级防沖刷齿 槛群的每两个梯级之间按一定间距分布, 所述梯级防沖刷齿槛群由若干具有一 定埋深的防沖刷齿槛组成。 两个防沖刷齿槛在束流侧墙之间、 相对所述泥石流 排导槽的中心线呈左右对称分布, 共同构成所述梯级防沖刷齿槛群的一个梯级; 所述泥石流排导槽宽度 D (即两侧束流侧墙之间的间距) 大于 2倍防沖刷齿槛 在束流侧墙垂直方向上的横向长度 B(即防沖刷齿槛在束流侧墙垂直方向上的投 影长度), 满足 D > 2B; 即任一所述防沖刷齿槛均只有一端与束流侧墙相连、 没 有在束流侧墙之间贯穿, 且组成所述梯级防沖刷齿槛群的防沖刷齿槛在束流侧 墙之间、 相对排导槽中心线呈左右对称分布, 构成对称型梯级防沖刷齿槛群。 这种对称型结构能充分保持沟床内水生生物的上下联系, 有利于沟道生态修复; 能够充分保障束流侧墙的稳定性, 在沟床比降较小的情况下不易出现泥石流淤 积, 有利于长期运行。
所述防沖刷齿槛在束流侧墙垂直方向上的横向长度 B为泥石流排导槽宽度 D的 1/10-1/2, 满足 1/10D≤B < 1/2 D; 排导槽沟床比降越大, 所述防沖刷齿槛在 束流侧墙垂直方向上的横向长度 B的取值就越大。 这有利于最大限度节省所述 防沖刷齿槛的工程量。
所述防沖刷齿槛与束流侧墙相连处呈倾斜角度 α, 且向下游侧倾斜, 即防沖 刷齿槛与束流侧墙相连端较另一端位于上游; 倾斜角度 α的取值为 45°-75°; 沟 床比降越大, 倾斜角度 α的取值就越大。 这种倾斜结构有利于泥石流的束流。
所述防沖刷齿槛在沿束流侧墙垂直方向上, 呈中间低、 靠束流侧墙端高; 高度差 h与防沖刷齿槛在束流侧墙垂直方向上的横向长度 Β之比的横坡比降 1:η 为 1 :4- 1 :20 , 即 1 :n=h: B。 这种中间低、 两侧高的结构有利于泥石流束流, 且有 利于产生底部湍流、 充分消能。
在沿束流侧墙纵向方向上, 所述防沖刷齿槛的顶部宽 bi<底部宽 b2, 下游侧 垂直, 上游侧倾斜; 顶部宽 ^为 0.6-1.5m, 底部宽 b2为 1.0-2.0m, 上游侧斜面高 度 与底部宽 b2、顶部宽 差之比的上游侧比降 l :m为 1 :0.4-1 : 1 , 即 1 :111= : (b2 -b „ 这种上窄下宽的结构有利于防沖刷齿槛在泥石流沖击下保持稳定。
所述泥石流排导槽可以采用浆砌石、 或混凝土、 或钢筋混凝土、 或铅丝笼 等结构形式。 所述梯级防沖刷齿槛群的每两个梯级之间的间距 L为 8.0-25.0m, 所述防沖刷齿槛埋深 H为 1.5-2.5m; 保持合理的埋深和间距, 能保证防沖刷齿 槛和束流侧墙的安全。
所述泥石流排导槽既有纵向软基消能效果, 又有对称齿槛的向心束流作用, 特别适用于沟床比降 3% - 12%, 用于稀性泥石流、 或水石流、 或山区洪水排泄 的防治。 正因为对称齿槛的向心束流作用, 因此能够充分保障束流侧墙的稳定 性, 在沟床比降较小的情况下具有更强沖刷, 不易出现泥石流淤积, 有利于长 期运行。
针对流体沖刷下切侵蚀和淤积的交替作用,本发明基于对称的防沖刷齿槛间 软基的消能作用, 和束流侧墙与防沖刷齿槛共同的束流作用, 使得所述泥石流 排导槽可以应用于稀性泥石流、 或水石流、 或山区洪水排泄的防治。 当流量较 大时, 本发明充分利用泥石流(或洪水) 的下层紊流与表层下降流之间的物质 交换来消散流体内部动能, 防止下切侵蚀; 当流量较小时, 充分利用束流的沖 刷作用防止泥沙淤积, 实现泥石流(或洪水)沖刷下切侵蚀与淤积的动态平衡, 达到安全、 顺畅排泄泥石流的目的。 本发明提出的对称型结构能有效调控沟谷 沖刷-淤积平衡, 减小泥石流的沖刷破坏能力, 又能有效防止沟床淤积, 降低 防护工程的运行维护费用, 保障下游防护对象的安全。 所述泥石流排导槽主要 建于泥石流堆积扇上, 将泥石流按照设计流速、 流路导向设计区域。
与现有技术相比, 本发明的有益效果是: 与全衬砌排导槽结构相比, 节省造 价 15%以上, 且有利于工程后期运行管理; 与横向贯穿型齿槛相比, 在沟床比 降较小的情况下, 防淤积效果更佳、 投资更省, 且能够满足流域爆发从稀性泥 石流到山区洪水的较宽变化流体排泄需求; 与申请号为 200910058217.7的发明 专利申请(交错齿槛型泥石流排导槽)相比, 在有效延续其生态保护优点的基 础上, 由于对称齿槛的向心束流作用, 不会产生绕流沖刷束流侧墙基础的情况, 能够更加充分保障束流侧墙的稳定性, 在沟床比降较小的情况下可产生更强的 沖刷作用, 使泥石流不易产生淤积现象, 进而保证排导槽长期运行安全。 附图说明 图 1是梯级防沖刷齿槛群的纵向剖视图。
图 2是本发明的俯视图。
图 3是本发明的横向剖视图。
图中标号如下:
1 防沖刷齿槛 2 束流侧墙
B 防沖刷齿槛在束流侧墙垂直方向上的横向长度
D 泥石流排导槽宽度 α 倾斜角度
bj 防沖刷齿槛的顶部宽 b2 防沖刷齿槛的底部宽
H 防沖刷齿槛埋深
L 梯级防沖刷齿槛群的每两个梯级之间的间距
h 防沖刷齿槛的高度差 上游侧斜面高度
l :n 横坡比降 l :m 上游侧比降 具体实施方式 下面结合附图, 对本发明的优选实施例作进一步的描述。 如图 1、 图 2、 图 3所示。 针对流域面积为 2.0km2、 堆积扇面坡降(即沟床 比降) 为 12%。 在设计标准下主要考虑稀性泥石流、 水石流和山洪。 在泥石流 堆积扇上, 建基于对称梯级防沖刷齿槛群的泥石流排导槽, 包括束流侧墙 2和 置于其间、 与其相连、 配合使用的梯级防沖刷齿槛群, 所述梯级防沖刷齿槛群 的每两个梯级之间按一定间距分布, 所述梯级防沖刷齿槛群由若干具有一定埋 深的防沖刷齿槛 1 组成。 所述梯级防沖刷齿槛群的每两个梯级之间的间距 L为 8.0m, 防沖刷齿槛 1埋深 H为 2.5m。
两个防沖刷齿槛 1在束流侧墙 2之间、 相对所述泥石流排导槽的中心线呈 左右对称分布, 共同构成所述梯级防沖刷齿槛群的一个梯级; 所述泥石流排导 槽宽度 D大于 2倍防沖刷齿槛 1在束流侧墙(2 )垂直方向上的横向长度^ 在 P2%设计标准下, 排导槽的泥石流流量为 28.0m3/s, D取 3.0m, B取 1.2m。 防沖 刷齿槛 1与束流侧墙 2相连处呈倾斜角度 α, 且向下游侧倾斜, α取 75。。
防沖刷齿槛 1在沿束流侧墙 2垂直方向上, 呈中间低、 靠束流侧墙 2端高; 防沖刷齿槛 1的高度差 h与防沖刷齿槛 1在束流侧墙 2垂直方向上的横向长度 B 之比的横坡比降 l :n取 1 :4。 在沿束流侧墙 1纵向方向上, 防沖刷齿槛 1的顶部 宽 ^取0.6111、底部宽 b2取 1.0m, 下游侧垂直,上游侧倾斜; 上游侧斜面高度 与 底部宽 b2、 顶部宽 差之比的上游侧比降 l :m取 1 :0.4。 取 1.0m。
实施例二
如图 1、 图 2、 图 3所示。 针对流域面积为 20.0 km2、 堆积扇面坡降为 3%。 在设计标准下主要考虑水石流和山洪。 与实施例一相同之处不再重复赘述, 不 同之处在于: 所述梯级防沖刷齿槛群的每两个梯级之间的间距 L为 25.0m, 防沖 刷齿槛 1埋深 H为 1.5m。
在 P2%设计标准下,排导槽的泥石流流量为 100.0 m3/s, D取 16.0m, B取 1.6m; 倾斜角度 α取 45。; 横坡比降 1:η取 1:20; 顶部宽 ^取 1.5m、 底部宽 b2取 2.0m, 上游侧比降 1: m取 1:1。 取 0.5m。

Claims

1. 一种基于梯级防沖刷齿槛群的泥石流排导槽, 包括束流侧墙(2)和置于其 间、 与其相连、 配合使用的梯级防沖刷齿槛群, 所述梯级防沖刷齿槛群由若 干具有一定埋深的防沖刷齿槛(1 )组成, 所述梯级防沖刷齿槛群的每两个 梯级之间按一定间距分布, 其特征在于: 两个防沖刷齿槛( 1 )在束流侧墙
(2)之间、 相对所述泥石流排导槽的中心线呈左右对称分布, 共同构成所 述梯级防沖刷齿槛群的一个梯级;所述泥石流排导槽宽度 D大于 2倍防沖刷 齿槛(1 )在束流侧墙(2)垂直方向上的横向长度 B, 满足 D>2B。
2. 根据权利要求 1所述的基于梯级防沖刷齿槛群的泥石流排导槽,其特征在于: 防沖刷齿槛 ( 1 )在束流侧墙( 2 )垂直方向上的横向长度 B为泥石流排导槽 宽度 D的 1/10-1/2, 满足 1/10D<B < 1/2 D。
3. 根据权利要求 1所述的基于梯级防沖刷齿槛群的泥石流排导槽,其特征在于: 防沖刷齿槛(1 ) 与束流侧墙(2)相连处呈倾斜角度 α, 且向下游侧倾斜。
4. 根据权利要求 1-3任一所述的基于梯级防沖刷齿槛群的泥石流排导槽, 其特 征在于: 防沖刷齿槛(1 )在沿束流侧墙(2)垂直方向上, 呈中间低、 靠束 流侧墙(2)端高。
5. 根据权利要求 1-3任一所述的基于梯级防沖刷齿槛群的泥石流排导槽, 其特 征在于: 在沿束流侧墙(2)纵向方向上, 防沖刷齿槛(1 ) 的顶部宽 bi<底 部宽 b2, 下游侧垂直, 上游侧倾斜。
6. 根据权利要求 3所述的基于梯级防沖刷齿槛群的泥石流排导槽,其特征在于: 倾斜角度 α为 45°-75°。
7. 根据权利要求 4所述的基于梯级防沖刷齿槛群的泥石流排导槽,其特征在于: 在沿束流侧墙( 2 )垂直方向上, 防沖刷齿槛( 1 )的高度差 h与防沖刷齿槛
( 1 )在束流侧墙(2)垂直方向上的横向长度 B 之比的横坡比降 l:n 为 1 :4-1 :20。
8. 根据权利要求 5所述的基于梯级防沖刷齿槛群的泥石流排导槽,其特征在于: 顶部宽 ^为 0.6-1.5m, 底部宽 b2为 1.0-2.0m, 上游侧斜面高度 与底部宽 b2、 顶部宽 差之比的上游侧比降 l :m为 1 :0.4-1 : 1。
9. 根据权利要求 1-3任一所述的基于梯级防沖刷齿槛群的泥石流排导槽, 其特 征在于: 所述梯级防沖刷齿槛群的每两个梯级之间的间距 L为 8.0-25.0m, 防沖刷齿槛 ( 1 )埋深 H为 1.5-2.5m。
10. 如权利要求 1 所述的基于梯级防沖刷齿槛群的泥石流排导槽的应用, 其 特征在于: 所述泥石流排导槽适用于沟床比降 3% - 12%, 用于稀性泥石流、 或水石流、 或山区洪水■徘泄的防治。
PCT/CN2011/075567 2010-06-11 2011-06-10 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用 WO2011153956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/702,466 US20130078037A1 (en) 2010-06-11 2011-06-10 Debris flow drainage canal based on cascade antiscour notched sill group and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010198162A CN101851906A (zh) 2010-06-11 2010-06-11 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN201010198162.2 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011153956A1 true WO2011153956A1 (zh) 2011-12-15

Family

ID=42803576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075567 WO2011153956A1 (zh) 2010-06-11 2011-06-10 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用

Country Status (3)

Country Link
US (1) US20130078037A1 (zh)
CN (1) CN101851906A (zh)
WO (1) WO2011153956A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015369A (zh) * 2012-12-31 2013-04-03 张康德 预防河岸被河水冲刷的装置
ITTO20130200A1 (it) * 2013-03-15 2014-09-16 Aronne Armanini Struttura di ritenuta dei sedimenti in corsi d'acqua
CN108330919A (zh) * 2018-02-05 2018-07-27 中国科学院、水利部成都山地灾害与环境研究所 阶梯-深潭型泥石流排导槽的深潭段深度测算方法
CN111639444A (zh) * 2020-06-19 2020-09-08 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦挡坝拦砂率测算方法、应用
CN111945654A (zh) * 2020-07-30 2020-11-17 四川大学 一种堰塞湖早期处置的预设结构
CN114718029A (zh) * 2022-01-14 2022-07-08 中铁十四局集团第二工程有限公司 一种用于水流消能的内凹槽消力池结构
CN115928662A (zh) * 2022-12-22 2023-04-07 福建永福电力设计股份有限公司 一种折线式输电线路用消能排水渠
CN117905155A (zh) * 2024-03-18 2024-04-19 四川省交通勘察设计研究院有限公司 一种抗变形的纵坡导流槽组件

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851906A (zh) * 2010-06-11 2010-10-06 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN102174803B (zh) * 2011-04-01 2012-10-03 中国科学院水利部成都山地灾害与环境研究所 一种组装式泥石流排导槽及其施工方法
CN103882835A (zh) * 2014-04-09 2014-06-25 中国水利水电第七工程局有限公司 一种开阔深厚软基河流上的截流建筑物
CN104831687B (zh) * 2015-05-19 2017-01-04 中国科学院、水利部成都山地灾害与环境研究所 桁架式消能肋槛泥石流排导槽
CN105178255B (zh) * 2015-08-22 2016-10-26 中国科学院水利部成都山地灾害与环境研究所 阶梯-深潭型泥石流排导槽的深潭段长度测算方法
CN106223273B (zh) * 2016-08-15 2019-04-30 四川大学 一种用于减轻高坝泄洪雾化的装置和方法
CN107806065B (zh) * 2017-09-28 2023-02-28 中国科学院、水利部成都山地灾害与环境研究所 一种阶段束流型泥石流排导槽及其应用
CN110147609B (zh) * 2019-05-20 2022-11-15 成都理工大学 一种基于流深的泥石流沟道物源侵蚀深度的计算方法
CN110499719B (zh) * 2019-08-28 2024-07-02 四川建筑职业技术学院 一种泥石流防冲肋槛结构及系统
CN110656628A (zh) * 2019-11-06 2020-01-07 四川省交通勘察设计研究院有限公司 水石分流型泥石流减速坝及其清方方法
CN113944140B (zh) * 2021-10-27 2022-12-13 浙江华东工程建设管理有限公司 一种适用于高发泥石流灾害地区岸坡式码头的防冲撞引流装置
CN114382046B (zh) * 2022-01-18 2022-12-27 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流灾害防治的生态-岩土协同构筑体
CN114960536B (zh) * 2022-06-08 2023-05-26 四川大学 一种堰塞坝早期预设处理装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2232225C1 (ru) * 2003-01-04 2004-07-10 Высокогорный геофизический институт Противоселевой гидроузел
US20080219772A1 (en) * 2007-03-07 2008-09-11 Mcdonald James Berm System
CN101476305A (zh) * 2009-01-21 2009-07-08 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN101851906A (zh) * 2010-06-11 2010-10-06 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN201695377U (zh) * 2010-06-11 2011-01-05 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US325127A (en) * 1885-08-25 Submarine wall
US3333420A (en) * 1964-10-05 1967-08-01 Kenneth W Henson Method and system for controlling the course of a river
US4561801A (en) * 1984-01-31 1985-12-31 Nantz Milton J Method and apparatus for inhibiting erosion
CN2654683Y (zh) * 2003-11-27 2004-11-10 陈洪凯 泥石流速排结构
JP2006104662A (ja) * 2004-09-30 2006-04-20 Npf:Kk 床止め工作物や横断工作物などの河川,湖沼,海などに配設されるコンクリート構造物及びその改修方法並びにレジンコンクリート製パネル
CN2734820Y (zh) * 2004-10-27 2005-10-19 陈洪凯 泥石流拦-汇-排综合治理结构
US20060104719A1 (en) * 2004-11-17 2006-05-18 Israel Fainman Wave-absorbing breakwater
CN2832899Y (zh) * 2005-11-09 2006-11-01 陈洪凯 泥石流消能结构
CN101463593B (zh) * 2009-01-08 2010-08-18 中国科学院水利部成都山地灾害与环境研究所 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2232225C1 (ru) * 2003-01-04 2004-07-10 Высокогорный геофизический институт Противоселевой гидроузел
US20080219772A1 (en) * 2007-03-07 2008-09-11 Mcdonald James Berm System
CN101476305A (zh) * 2009-01-21 2009-07-08 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN101851906A (zh) * 2010-06-11 2010-10-06 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN201695377U (zh) * 2010-06-11 2011-01-05 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015369A (zh) * 2012-12-31 2013-04-03 张康德 预防河岸被河水冲刷的装置
US10767330B2 (en) 2013-03-15 2020-09-08 Officine Maccaferri S.P.A. Stream debris restraining structure
WO2014141096A1 (en) * 2013-03-15 2014-09-18 Armanini Aronne Stream debris restraining structure
JP2016510095A (ja) * 2013-03-15 2016-04-04 オフィシネ マッカフェリイ ソシエタ ペル アチオニ 流体土砂堰き止め装置
AU2014229305B2 (en) * 2013-03-15 2017-12-21 Officine Maccaferri S.P.A. Stream debris restraining structure
ITTO20130200A1 (it) * 2013-03-15 2014-09-16 Aronne Armanini Struttura di ritenuta dei sedimenti in corsi d'acqua
CN108330919A (zh) * 2018-02-05 2018-07-27 中国科学院、水利部成都山地灾害与环境研究所 阶梯-深潭型泥石流排导槽的深潭段深度测算方法
CN111639444A (zh) * 2020-06-19 2020-09-08 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦挡坝拦砂率测算方法、应用
CN111639444B (zh) * 2020-06-19 2023-02-28 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦挡坝拦砂率测算方法、应用
CN111945654A (zh) * 2020-07-30 2020-11-17 四川大学 一种堰塞湖早期处置的预设结构
CN111945654B (zh) * 2020-07-30 2022-04-12 四川大学 一种堰塞湖早期处置的预设结构
CN114718029A (zh) * 2022-01-14 2022-07-08 中铁十四局集团第二工程有限公司 一种用于水流消能的内凹槽消力池结构
CN115928662A (zh) * 2022-12-22 2023-04-07 福建永福电力设计股份有限公司 一种折线式输电线路用消能排水渠
CN117905155A (zh) * 2024-03-18 2024-04-19 四川省交通勘察设计研究院有限公司 一种抗变形的纵坡导流槽组件

Also Published As

Publication number Publication date
CN101851906A (zh) 2010-10-06
US20130078037A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
WO2011153956A1 (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN101476305B (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN101349048B (zh) 全断面阶梯消能工
CN101463593B (zh) 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用
WO2015100816A1 (zh) 一种阶梯-深潭结构型泥石流排导槽及其应用
WO2014201742A1 (zh) 一种泥石流排导槽规划设计方法及其应用
CN107190712B (zh) 一种趾坎跌坎消力池式底流消能工和设计方法
CN206591500U (zh) 一种用于转弯河道的横向阶梯整流式消力池
CN103410130B (zh) 一种多用途隧洞布置结构
CN102900054A (zh) 一种河岸式溢洪道
CN103498451B (zh) 碰撞式组合底流消能工结构
CN201695377U (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽
CN203878547U (zh) 一种消力池的新型结构
SI21104B (sl) Pretočno polje hidroelektrarne, jezu ali podobnega vodnogospodarskega objekta z izboljšanim disipacijskim učinkom
CN210797465U (zh) 一种适用于不同流量下的阶梯溢流坝、联合掺气设施
WO2014166145A1 (zh) 自动分配排导量和停淤量的泥石流分流坝及其设计方法
CN220789664U (zh) 一种重力坝溢洪道
CN111424620A (zh) 一种水工消能结构以及方法
CN107806065B (zh) 一种阶段束流型泥石流排导槽及其应用
CN214738637U (zh) 一种发电厂排水口结构
CN106013008B (zh) 用于山区河道导流明渠的消能结构
CN203144971U (zh) 一种明渠与箱涵相结合的泥石流排导结构
CN212052625U (zh) 一种水利水电工程的淤地坝结构
CN203514274U (zh) 碰撞式组合底流消能工结构
CN211228408U (zh) 一种景观式溢洪道结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13702466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791946

Country of ref document: EP

Kind code of ref document: A1