CN101463593B - 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用 - Google Patents

基于泥石流软基消能的横向齿槛基础埋深设计方法及应用 Download PDF

Info

Publication number
CN101463593B
CN101463593B CN2009100580665A CN200910058066A CN101463593B CN 101463593 B CN101463593 B CN 101463593B CN 2009100580665 A CN2009100580665 A CN 2009100580665A CN 200910058066 A CN200910058066 A CN 200910058066A CN 101463593 B CN101463593 B CN 101463593B
Authority
CN
China
Prior art keywords
mud
sill
flow
notched sill
rock flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100580665A
Other languages
English (en)
Other versions
CN101463593A (zh
Inventor
陈晓清
李德基
游勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mountain Hazards and Environment IMHE of CAS
Original Assignee
Institute of Mountain Hazards and Environment IMHE of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mountain Hazards and Environment IMHE of CAS filed Critical Institute of Mountain Hazards and Environment IMHE of CAS
Priority to CN2009100580665A priority Critical patent/CN101463593B/zh
Publication of CN101463593A publication Critical patent/CN101463593A/zh
Application granted granted Critical
Publication of CN101463593B publication Critical patent/CN101463593B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

本发明公开了一种基于泥石流软基消能的横向齿槛基础埋深设计方法及应用。该方法首先计算泥石流通过横向齿槛跌落的能耗hi;再计算泥石流起动和淤积的临界纵坡比降i0;然后计算泥石流通过横向齿槛的能耗系数和泥石流通过横向齿槛的槛下冲刷深度Δ;最后计算横向齿槛的基础埋深H。该方法适用于高含沙两相二元流的泥石流防治,且可与导流侧墙组成排导槽或与拦砂坝配合,用于泥石流的防治。与现有技术相比,本发明能在充分保证横向齿槛安全运行的基础上,合理确定横向齿槛基础埋深,最大限度节省工程造价,有利于工程后期运行管理,而且计算方法有效快速简便,适应实际工程需要。

Description

基于泥石流软基消能的横向齿槛基础埋深设计方法及应用
技术领域
本发明涉及一种泥石流防冲刷技术,特别是涉及一种基于泥石流软基消能的横向齿槛基础埋深设计方法及其应用。
背景技术
泥石流具有比水流高得多的容重,其包含碎屑土的流体二元结构具有特殊性,表现出惯性高、输移力强、冲击力巨大等特点。泥石流运动产生的强烈冲刷,导致沟床发生剧烈改变,引起沟床揭底和沟岸崩塌,增加了补给泥石流的固体物质来源,增大了泥石流的危害,对两岸危险区内的城镇、村庄、道路、水渠、电力、通讯线路等基础设施,以及农田、森林等造成严重危害。因此,开发能有效控制泥石流冲刷的技术与方法,对于减小泥石流的破坏力,提高下游防护对象的安全性,具有重大的社会经济意义和生态环境意义。
近年来,随着我国西部大开发的持续开展,众多大型基建工程开工建设,开发利用泥石流堆积扇的力度加大,控制泥石流冲刷的问题日益突出。以往泥石流防冲刷沿用输水渠道、溢洪道的全衬砌模式,但由于泥石流极强的磨蚀能力,导致工程损毁快、维护费用高。因此,急需针对泥石流防冲刷问题,开发出能有效控制泥石流冲刷的新技术,减小泥石流的冲刷破坏力,提高消能工的可靠性和耐久性,降低防护工程的运行维护费用,保障下游防护对象的安全。
基于软基消能的横向齿槛是泥石流防治中采用的一种工程措施,是一种嵌入沟床的、象门槛一样的控制泥石流冲刷和下切侵蚀的泥石流控制技术,具有设计、施工简单,便于推广使用的特点。而横向齿槛的基础埋深取值是该结构安全和经济性的重要指标,是工程设计成败的关键参数之一。现有横向齿槛的基础埋深均是根据经验来取值设计的,没有一套相对完善的具有理论依据的计算方法。
发明内容
本发明的目的就是针对现有技术的不足,提供一种基于泥石流软基消能的横向齿槛基础埋深设计方法,该方法不仅能在充分保证横向齿槛安全运行的基础上,合理确定横向齿槛基础埋深,最大限度节省工程造价,有利于工程后期运行管理,而且计算方法有效快速简便,适应实际工程需要。该方法设计的横向齿槛可针对过渡性泥石流、或稀性泥石流、或水石流等高含沙两相二元流的冲刷下切作用,与导流侧墙组成排导槽或与拦砂坝配合,用于泥石流的防治。
为实现上述目的,本发明的技术方案是:由计算泥石流通过横向齿槛跌落的能耗、计算泥石流起动和淤积的临界纵坡比降、计算泥石流通过横向齿槛的能耗系数、计算泥石流通过横向齿槛的槛下冲刷深度、计算横向齿槛的基础埋深五大部分组成。若干具有一定埋深的所述横向齿槛横向布设、按一定间距组成梯级防冲刷齿槛系。
本发明的设计思想是:当泥石流在自然沟床纵坡比降为ic的设有梯级防冲刷齿槛系的沟床内流动时,泥石流流动对软基沟床质产生冲刷并将其中的固相物质部分搬运;由于槛后跌落的流体与下方的沟床质契合、搅拌而消耗掉一部分动能,其量约相当于两种坡度差值区间的势能
Figure G2009100580665D00031
后续泥石流中不断补充的固相物质使沟床保持临界纵坡比降(i0)而不再被冲深,从而达到冲刷-淤积的动态平衡。因此,只需要将齿槛嵌入沟床足够深度(即基础安全超深h),即可保持沟床及齿槛自身稳定,实现长期安全运行。
无论从消能原理和工程应用上都需要界定
Figure G2009100580665D00032
各参数之间关系和取值范围。根据泥石流组成暨粘滞阻力特性,采用过坝溢流、陡坡泄流的下游消能估算模式,定义用n表示沟段坡率折减系数,为泥石流起动和淤积的临界纵坡比降与自然沟床纵坡比降的比值,定义
Figure G2009100580665D00033
表示泥石流通过横向齿槛的能耗系数,为泥石流通过横向齿槛消耗的势能与总势能之比,可以利用n和
Figure G2009100580665D00034
来进行计算。
过渡性泥石流、稀性泥石流、水石流可以看作是由水动力侵蚀起动并且挟带碎屑土体而形成的饱和、甚至过饱和的两相二元流体。其运动能量来自流动泥石流体,其在设有梯级防冲刷齿槛系的沟床内的恒定运动可用伯努里方程来计算。截取沟床内某一局部段(两座横向齿槛间、长度为L),并按有限长短槽列相关能量方程: Z 1 + p 1 γ + α V 1 2 2 g = Z 2 + p 2 γ + α V 2 2 2 g + Σ h f ; 式中,段内运动能量总损失∑hf=hi+hj,hi为泥石流通过横向齿槛跌落的能耗,hj为泥石流侧壁的能耗;Z1、Z2为泥石流过流断面上单位重量流体所具有的平均位能;p1、p2为泥石流体压强;V1、V2为泥石流体平均流速;r为泥石流体容重;α为动能修正系数。
根据上述设计思想,本发明所述基于泥石流软基消能的横向齿槛基础埋深设计方法具体步骤如下:
(1)计算泥石流通过横向齿槛跌落的能耗hi,计算式如下:
Figure G2009100580665D00041
式中:hi-泥石流通过横向齿槛跌落的能耗,单位m;
S-横向齿槛的槛上过流断面面积,单位m2,根据梯级防冲刷齿槛系的实际槽型特征和流深来取值计算;
S-横向齿槛的槛下过流断面面积,单位m2,根据梯级防冲刷齿槛系的实际槽型特征和流深来取值计算;S=S+ΔB,B为槽宽;
α-动能修正系数,根据泥石流流速取值;当流速分布均匀时取1.00,当为渐变流时取1.05~1.10;
V2-泥石流设计流速,单位m/s,通过野外调查确定;泥石流设计流速V2为3.0~6.0m/s;
rc-泥石流中浆体与水的比重,通过野外调查确定;
g-重力加速度,单位m/s2
(2)计算泥石流起动和淤积的临界纵坡比降i0
通过对中国西部地区泥石流流域的调查统计,针对过渡型泥石流、稀性泥石流和水石流,泥石流的起动和淤积临界纵坡比降i0与自然沟床纵坡比降ic之间可以通过沟段坡率折减系数n来换算,计算式如下:
i0=nic    ②
式中:i0-泥石流起动和淤积的临界纵坡比降;
ic-泥石流的自然沟床纵坡比降,根据实际具体地形情况确定;
n-沟段坡率折减系数,即泥石流起动和淤积的临界纵坡比降与自然沟床纵坡比降的比值,根据泥石流类型或所述横向齿槛在泥石流防治工程中的应用部位确定。针对稀性-过渡性泥石流,沟段坡率折减系数n为0.50;针对水石流-泥流,沟段坡率折减系数n为0.55;针对拦砂坝消力池的横向齿槛,沟段坡率折减系数n为0.40。
(3)计算泥石流通过横向齿槛的能耗系数
Figure G2009100580665D00051
泥石流在计算短槽内(沟床内某一局部段、两座横向齿槛间、长度为L)克服固体颗粒静止惯性(i0)和流动时横向齿槛阻力能耗(hi);hj为有效剩余能,用以克服沿程阻力、维持泥石流在沟床内的正常流动。能耗系数
Figure G2009100580665D00052
计算式如下:
Figure G2009100580665D00053
式中:
Figure G2009100580665D00054
-泥石流通过横向齿槛的能耗系数,即泥石流通过横向齿槛消耗的势能与总势能之比;
L-两座横向齿槛的间距,单位m;
其他符号同前面一致。
(4)计算泥石流通过横向齿槛的槛下冲刷深度Δ
由上述,综合推导出泥石流通过横向齿槛的槛下冲刷深度Δ,计算式如下:
Figure G2009100580665D00055
式中:Δ-泥石流通过横向齿槛的槛下冲刷深度,单位m;
其他符号同前面一致。
(5)计算横向齿槛的基础埋深H,计算式如下:
H=Δ+h    ⑤
式中:H-横向齿槛的基础埋深,单位m;
h-横向齿槛的基础安全超深,单位m,根据泥石流类型或所述横向齿槛在泥石流防治工程中的应用部位确定。针对稀性-过渡性泥石流,横向齿槛的基础安全超深h不小于1.0m,即等于1.0m或大于1.0m;针对水石流-泥流,横向齿槛的基础安全超深h不小于0.8m,即等于0.8m或大于0.8m;针对拦砂坝消力池的横向齿槛,横向齿槛的基础安全超深h不小于1.0m,即等于1.0m或大于1.0m;根据实际应用情况取最小值。
其他符号同前面一致。
所述基于泥石流软基消能的横向齿槛基础埋深设计方法,应用于高含沙两相二元流的泥石流防治。所述高含沙两相二元流可以是过渡性泥石流、或稀性泥石流、或水石流、或泥流等。根据所述横向齿槛基础埋深设计方法设计的横向齿槛,与导流侧墙组成排导槽或与拦砂坝配合,用于泥石流的防治。运用横向防冲刷齿槛,使泥石流拦砂坝下游消力池和泥石流排导槽勿需再做刚性(圬工或混凝土)护底衬砌,节省造价(比有护底的同类型排导槽节省15%以上的投资)。
与现有技术相比,本发明的有益效果是:能在充分保证横向齿槛安全运行的基础上,合理确定横向齿槛基础埋深,最大限度节省工程造价,有利于工程后期运行管理,而且计算方法有效快速简便,适应实际工程需要。
附图说明
图1是横向齿槛组成的梯级防冲刷齿槛系的纵向剖视图。
图2是横向齿槛组成的梯级防冲刷齿槛系的俯视图。
图3是与拦砂坝相配合的、横向齿槛组成的梯级防冲刷齿槛系的纵向剖视图。
图中标号如下:
i0    泥石流起动和淤积的临界纵坡比降
ic    泥石流的自然沟床纵坡比降
L     两座横向齿槛的间距
Δ    泥石流通过横向齿槛的槛下冲刷深度
h     横向齿槛的基础安全超深
H     横向齿槛的基础埋深
V2    泥石流设计流速
1     横向齿槛
2     拦砂坝
具体实施方式
下面结合附图,对本发明的优选实施例作进一步的描述。
实施例一
根据大量数据统计,针对稀性-过渡性泥石流,其容重一般为15.0-18.0kN/m3,相应泥石流中浆体与水的比重rc为1.3-1.4;泥石流的沟段坡率折减系数n一般取0.50,泥石流设计流速V2取3.0-6.0m/s,横向齿槛的基础安全超深h取值不小于1.0m。
如图1、图2所示。云南省昆明市东川区小江流域的泥石流为稀性-过渡性泥石流,为了减轻、消除泥石流灾害,拟在该流域沟口堆积扇上设置若干横向布设、具有一定埋深的横向齿槛1、按一定间距组成梯级防冲刷齿槛系,同时与导流侧墙组成排导槽,用于泥石流的防治。根据现场调查和对该泥石流堆积扇数据的统计分析,该泥石流区域的自然沟床纵坡比降ic在8.75%-15.84%(即5°-9°),泥石流设计流速V2为4.5m/s,泥石流中浆体与水的比重rc为1.3。根据实际条件,设计横向齿槛1,取横向齿槛的槛上过流断面面积S为15.63m2,横向齿槛的槛下过流断面面积S为19.63m2,沟段坡率折减系数n取0.50,动能修正系数α取1.10,横向齿槛的基础安全超深h取1.0m。
下面设计横向齿槛1的基础埋深H。首先将横向齿槛的槛上过流断面面积S=15.63m2、横向齿槛的槛下过流断面面积S=19.63m2、动能修正系数α=1.10、泥石流设计流速V2=4.5m/s、泥石流中浆体与水的比重rc=1.3代入①式中求得泥石流通过横向齿槛跌落的能耗hi;然后根据沟段坡率折减系数n=0.50,针对不同的自然沟床纵坡比降ic和两座横向齿槛的间距L,代入公式②、③、④,依次求得泥石流起动和淤积的临界纵坡比降i0、泥石流通过横向齿槛的能耗系数
Figure G2009100580665D00081
泥石流通过横向齿槛的槛下冲刷深度Δ;然后将横向齿槛的基础安全超深h=1.0m代入公式⑤,求得横向齿槛的基础埋深H。具体计算结果见表1。
表1不同的自然沟床纵坡比降ic和不同的两座横向齿槛间距L下的
Figure G2009100580665D00082
Δ和H
Figure G2009100580665D00083
Figure G2009100580665D00091
实施例二
根据大量数据统计,针对水石流-泥流,其容重一般为13.0-15.0kN/m3,相应泥石流中浆体与水的比重rc为1.1-1.3;泥石流的沟段坡率折减系数n一般取0.55,泥石流设计流速V2取3.0-6.0m/s,横向齿槛的基础安全超深h取值不小于0.8m。
如图1、图2所示。云南省大理地区的泥石流为水石流-泥流,为了减轻、消除泥石流灾害,拟在该流域沟口堆积扇上设置若干横向布设、具有一定埋深的横向齿槛1、按一定间距组成梯级防冲刷齿槛系,同时与导流侧墙组成排导槽,用于泥石流的防治。根据现场调查和对该泥石流堆积扇数据的统计分析,该泥石流区域的自然沟床纵坡比降ic在5.24%-12.28%(即3°-7°),泥石流设计流速V2为4.5m/s,泥石流中浆体与水的比重rc为1.2。根据实际条件,设计横向齿槛1,取横向齿槛的槛上过流断面面积S为15.63m2,横向齿槛的槛下过流断面面积S为19.63m2,沟段坡率折减系数n取0.55,动能修正系数α取1.10,横向齿槛的基础安全超深h取0.8m。
下面设计横向齿槛1的基础埋深H。首先将横向齿槛的槛上过流断面面积S=15.63m2、横向齿槛的槛下过流断面面积S=19.63m2、动能修正系数α=1.10、泥石流设计流速V2=4.5m/s、泥石流中浆体与水的比重rc=1.2代入①式中求得泥石流通过横向齿槛跌落的能耗hi;然后根据沟段坡率折减系数n=0.55,针对不同的自然沟床纵坡比降ic和两座横向齿槛的间距L,代入公式②、③、④,依次求得泥石流起动和淤积的临界纵坡比降i0、泥石流通过横向齿槛的能耗系数
Figure G2009100580665D00101
泥石流通过横向齿槛的槛下冲刷深度Δ;然后将横向齿槛的基础安全超深h=0.8m代入公式⑤,求得横向齿槛的基础埋深H。具体计算结果见表2。
表2不同的自然沟床纵坡比降ic和不同的两座横向齿槛间距L下的
Figure G2009100580665D00102
Δ和H
实施例三
根据大量泥石流沟谷数据统计,泥石流沟谷中部修筑拦砂坝段的自然沟床纵坡比降ic在14.05%-28.67%(即8°-16°),泥石流的沟段坡率折减系数n一般取0.40,泥石流设计流速V2取3.0-6.0m/s,横向齿槛的基础安全超深h取值不小于1.0m。
如图3所示。四川凉山州宁南县城后山泥石流沟,为了减轻泥石流灾害,拟在泥石流流域中部修筑拦砂坝2,并设置若干横向布设、具有一定埋深的横向齿槛1、按一定间距组成梯级防冲刷齿槛系,同时与拦砂坝2配合、作为拦砂坝2的消力池,用于泥石流的防治。根据现场调查统计分析,泥石流沟谷中部区域的自然沟床纵坡比降ic在14.05%-28.67%(即8°-16°),泥石流设计流速V2为4.5m/s,泥石流中浆体与水的比重rc为1.2。根据实际条件,设计横向齿槛1,取横向齿槛的槛上过流断面面积S为15.63m2,横向齿槛的槛下过流断面面积S为19.63m2,沟段坡率折减系数n取0.40,动能修正系数α取1.10,横向齿槛的基础安全超深h取1.0m。
下面设计横向齿槛1的基础埋深H。首先将横向齿槛的槛上过流断面面积S=15.63m2、横向齿槛的槛下过流断面面积S=19.63m2、动能修正系数α=1.10、泥石流设计流速V2=4.5m/s、泥石流中浆体与水的比重rc=1.2代入①式中求得泥石流通过横向齿槛跌落的能耗hi;然后根据沟段坡率折减系数n=0.40,针对不同的自然沟床纵坡比降ic和两座横向齿槛的间距L,代入公式②、③、④,依次求得泥石流起动和淤积的临界纵坡比降i0、泥石流通过横向齿槛的能耗系数
Figure G2009100580665D00111
泥石流通过横向齿槛的槛下冲刷深度Δ;然后将横向齿槛的基础安全超深h=1.0m代入公式⑤,求得横向齿槛的基础埋深H。具体计算结果见表3。
表3不同的自然沟床纵坡比降ic和不同的两座横向齿槛间距L下的Δ和H
Figure G2009100580665D00113

Claims (6)

1.一种基于泥石流软基消能的横向齿槛基础埋深设计方法,若干具有一定埋深的所述横向齿槛横向布设、按一定间距组成梯级防冲刷齿槛系,其特征在于:
所述横向齿槛基础埋深设计方法步骤如下:
(1)计算泥石流通过横向齿槛跌落的能耗hi,计算式如下:
Figure F2009100580665C00011
式中:hi-泥石流通过横向齿槛跌落的能耗,单位m;
S-横向齿槛的槛上过流断面面积,单位m2,根据梯级防冲刷齿槛系的实际槽型特征和流深取值;
S-横向齿槛的槛下过流断面面积,单位m2,根据梯级防冲刷齿槛系的实际槽型特征和流深取值;
α-动能修正系数,根据泥石流流速取值;
V2-泥石流设计流速,单位m/s,通过野外调查确定;
rc-泥石流中浆体与水的比重,通过野外调查确定;
g-重力加速度,单位m/s2
(2)计算泥石流起动和淤积的临界纵坡比降i0,计算式如下:
i0=nic
式中i0:-泥石流起动和淤积的临界纵坡比降;
ic-泥石流的自然沟床纵坡比降,根据实际具体地形情况确定;
n-沟段坡率折减系数,即泥石流起动和淤积的临界纵坡比降与自然沟床纵坡比降的比值,根据泥石流类型或所述横向齿槛在泥石流防治工程中的应用部位确定;
(3)计算泥石流通过横向齿槛的能耗系数计算式如下:
Figure F2009100580665C00022
式中:
Figure F2009100580665C00023
-泥石流通过横向齿槛的能耗系数,即泥石流通过横向齿槛消耗的势能与总势能之比;
L-两座横向齿槛的间距,单位m;
其他符号同前面一致;
(4)计算泥石流通过横向齿槛的槛下冲刷深度Δ,计算式如下:
Figure F2009100580665C00024
式中:Δ-泥石流通过横向齿槛的槛下冲刷深度,单位m;
其他符号同前面一致;
(5)计算横向齿槛的基础埋深H,计算式如下:
H=Δ+h
式中:H-横向齿槛的基础埋深,单位m;
h-横向齿槛的基础安全超深,单位m,根据泥石流类型或所述横向齿槛在泥石流防治工程中的应用部位确定;
其他符号同前面一致。
2.根据权利要求1所述的基于泥石流软基消能的横向齿槛基础埋深设计方法,其特征在于:针对稀性-过渡性泥石流,沟段坡率折减系数n为0.50;针对水石流-泥流,沟段坡率折减系数n为0.55;针对拦砂坝消力池的横向齿槛,沟段坡率折减系数n为0.40。
3.根据权利要求1或2所述的基于泥石流软基消能的横向齿槛基础埋深设计方法,其特征在于:针对稀性-过渡性泥石流,横向齿槛的基础安全超深h不小于1.0m;针对水石流-泥流,横向齿槛的基础安全超深h不小于0.8m;针对拦砂坝消力池的横向齿槛,横向齿槛的基础安全超深h不小于1.0m。
4.如权利要求1所述基于泥石流软基消能的横向齿槛基础埋深设计方法的应用,其特征在于:将所述基于泥石流软基消能的横向齿槛基础埋深设计方法应用于高含沙两相二元流的泥石流防治。
5.根据权利要求4所述基于泥石流软基消能的横向齿槛基础埋深设计方法的应用,其特征在于:根据所述横向齿槛基础埋深设计方法设计的横向齿槛,与导流侧墙组成排导槽或与拦砂坝配合,用于泥石流的防治。
6.根据权利要求4所述基于泥石流软基消能的横向齿槛基础埋深设计方法的应用,其特征在于:所述高含沙两相二元流为过渡性泥石流、或稀性泥石流、或水石流、或泥流。
CN2009100580665A 2009-01-08 2009-01-08 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用 Expired - Fee Related CN101463593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100580665A CN101463593B (zh) 2009-01-08 2009-01-08 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100580665A CN101463593B (zh) 2009-01-08 2009-01-08 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用

Publications (2)

Publication Number Publication Date
CN101463593A CN101463593A (zh) 2009-06-24
CN101463593B true CN101463593B (zh) 2010-08-18

Family

ID=40804367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100580665A Expired - Fee Related CN101463593B (zh) 2009-01-08 2009-01-08 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用

Country Status (1)

Country Link
CN (1) CN101463593B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851906A (zh) * 2010-06-11 2010-10-06 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN102162229A (zh) * 2011-02-21 2011-08-24 中国科学院水利部成都山地灾害与环境研究所 一种防御大规模低频率泥石流的拦砂坝
CN102943450B (zh) * 2012-11-05 2014-10-22 中国科学院水利部成都山地灾害与环境研究所 一种粘性泥石流沟沟床最大冲刷深度的测算方法及应用
CN103696402B (zh) * 2014-01-01 2015-11-11 中国科学院-水利部成都山地灾害与环境研究所 一种钢索网护底型泥石流排导槽及其应用和施工方法
CN103882835A (zh) * 2014-04-09 2014-06-25 中国水利水电第七工程局有限公司 一种开阔深厚软基河流上的截流建筑物
CN104848825B (zh) * 2015-05-15 2017-03-22 中国科学院水利部成都山地灾害与环境研究所 泥石流排导槽肋槛后沟床最大冲刷深度的测算方法及应用
CN104895013B (zh) * 2015-06-11 2016-08-24 中国科学院水利部成都山地灾害与环境研究所 阶梯-深潭型泥石流排导槽的设计纵比降测算方法及应用
CN108708353B (zh) * 2018-05-29 2020-03-17 中国科学院、水利部成都山地灾害与环境研究所 一种软基消能型泥石流排导槽的肋槛设计方法
CN110499719B (zh) * 2019-08-28 2024-07-02 四川建筑职业技术学院 一种泥石流防冲肋槛结构及系统
CN111639444B (zh) * 2020-06-19 2023-02-28 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦挡坝拦砂率测算方法、应用
CN112081071B (zh) * 2020-09-11 2022-04-05 中国科学院、水利部成都山地灾害与环境研究所 山洪泥石流沟道形成区的拦砂坝生态组合

Also Published As

Publication number Publication date
CN101463593A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
CN101463593B (zh) 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用
CN101476305B (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
Le et al. The combined impact on the flooding in Vietnam's Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment
CN101851906A (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN103510493B (zh) 过水低坝洞库式水电站
CN205171469U (zh) 泥石流拦挡坝防冲消能结构
CN203129107U (zh) 一种分流式挑流消能工
CN101435191B (zh) 粘性泥石流斜墙v型排导槽水力最佳断面设计方法及应用
CN112749475B (zh) 一种确定梯级水库群连续溃坝风险分析方法
CN104863101A (zh) 一种水电站减水河段鱼类栖息地保护系统
CN201695377U (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽
CN104727266B (zh) 适用于宽谷型泥石流沟谷的泥石流输沙控制方法
Albayrak et al. Efficiency evaluation of Swiss sediment bypass tunnels
Chen et al. Hydrodynamic characteristics and sediment transport of a tidal river under influence of wading engineering groups
CN106013009B (zh) 一种多反坡式消力池
Wang et al. Recent flood disasters in China
KR20180051351A (ko) 보 형식 소수력발전의 물의 낙차를 높이는 수로의 설치방법
CN204940223U (zh) 一种河道减水河段鱼类生存地保护结构
CN207405596U (zh) 适于狭窄河床的溢洪道联合消能结构
CN212477589U (zh) 虹吸式自调节清淤生态坝
CN206529737U (zh) 一种水电水利工程消能区防护结构
CN1238408A (zh) 戽流消能低坝及其建造方法
Ji et al. Branch Channel Evolution and Its Effects on Tail Channel in the Yellow River Estuary
CN203307783U (zh) 一种竖井溢洪道环型薄壁堰首结构
Ping et al. Preliminary Analysis of Effects of Comprehensive Development of Cascade Hydropower Project on River Course

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100818

Termination date: 20140108