WO2014201742A1 - 一种泥石流排导槽规划设计方法及其应用 - Google Patents

一种泥石流排导槽规划设计方法及其应用 Download PDF

Info

Publication number
WO2014201742A1
WO2014201742A1 PCT/CN2013/079443 CN2013079443W WO2014201742A1 WO 2014201742 A1 WO2014201742 A1 WO 2014201742A1 CN 2013079443 W CN2013079443 W CN 2013079443W WO 2014201742 A1 WO2014201742 A1 WO 2014201742A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
debris flow
groove
type
length
Prior art date
Application number
PCT/CN2013/079443
Other languages
English (en)
French (fr)
Inventor
陈晓清
游勇
崔鹏
陈建刚
邹玉华
王涛
Original Assignee
中国科学院、水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院、水利部成都山地灾害与环境研究所 filed Critical 中国科学院、水利部成都山地灾害与环境研究所
Priority to US14/773,935 priority Critical patent/US10202731B2/en
Publication of WO2014201742A1 publication Critical patent/WO2014201742A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/02Hydraulic models
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers

Definitions

  • the present invention relates to a debris flow prevention and control technology, and more particularly to a planning and design method for a debris flow drainage channel, and a debris flow stacking fan and 300, respectively, at 300 meters or less.
  • the debris flow has a much higher bulk density than the water flow.
  • the fluid binary structure containing the clastic soil has special characteristics, showing high inertia, strong transmission force and huge impact force.
  • the strong erosion caused by the movement of the debris flow caused a drastic change in the ditch bed, causing the bottom of the ditch bed to collapse and the collapse of the ditch, increasing the source of solid matter for replenishing the debris flow and increasing the hazard of the debris flow.
  • the drainage channel is one of the main engineering measures to prevent debris flow. Rational planning of debris flow drainage channels has significant socio-economic and ecological significance for reducing the destructive power of debris flow and improving the safety of downstream protection objects.
  • the debris flow stacking fan that constructs the drainage channel may be 4 inches long, up to 1000 meters, or 4 inches short, only about 100 meters.
  • the debris flow stacking fans of different lengths how to properly plan the debris flow drainage channels is the key to effectively prevent debris flow and protect the objects on the stacked fans.
  • the plane of the debris flow channel generally includes an inlet section, a main slot section and an outlet section, and the three sections all adopt the same slot type, and mainly adopt a full lining type and a lateral through-tooth type; the overall single slot type structure is extremely easy
  • the flow rate of the debris flow at the upper end of the main tank is too slow, and the flow velocity at the lower end is too high, which causes the problem of siltation at the upper end of the discharge trough and downstream flushing.
  • stacked fans more than 300 meters
  • the same row of guide channels discharges the debris flow, which makes it difficult to adapt to the large variation of the longitudinal ratio drop of the long stacked fan groove bed, and there are defects of the upper end flushing and the lower end siltation, and the excessively long drainage channel is not conducive to the stability of the entire drainage system.
  • the 750-meter-long fully lining-type drainage channel of the Shiwei River in Yunlong County, Yunnan province resulted in a chain-uncovering and full-groove failure after the upper end of the drainage channel was uncovered.
  • the object of the present invention is to provide a planning and design method for a debris flow channel guide groove in view of the lack of reasonable planning and design of the current drainage channel, scientifically planning the composition of the debris flow channel guide groove, and rationally selecting the groove type of the main groove, especially for
  • the inter-groove transition zone is used to regulate the flow velocity of the debris flow, and the debris flow is efficiently drained downstream through the drainage channel to prevent the debris flow from rushing into the drainage channel. , to protect the protected objects on the stacked fans to the utmost.
  • the invention provides a planning and design method for a debris flow guiding channel, which is divided into an inlet section, an acceleration section, a balanced flow main slot section and a small upper and lower section which are arranged in a large and small bell mouth along the flow direction of the debris flow.
  • a bell mouth-shaped outlet section the steps of the row guiding channel planning and design method are as follows:
  • (1) According to the topographic condition of the debris flow fan, plan the position of the drainage trough and determine the total length L of the proposed drainage trough; according to the terrain of the proposed drainage trough, and determine the drainage according to the principle of basic balance of excavation and filling
  • the longitudinal ratio of the groove bed is reduced.
  • the total length L of the row guide groove is less than or equal to 300 m.
  • the inlet section adopts a fully lined trough type; according to the nature of the excretion debris flow and the longitudinal ratio drop of the drainage trough bed determined in step (1), the length of the inlet section and the angle ⁇ between the side wall of the inlet section and the main trough are determined.
  • the length of the inlet section is generally 1.5-5.0 times the width of the bottom of the drainage channel, and the angle ⁇ between the side wall of the inlet section and the main groove is generally 10-30 degrees; the specific value refers to the nature of the debris flow, and the viscous debris flow takes a large value, ⁇ Small value, the transitional debris flow 1 ⁇ and 01 take the median value, the thin debris flow takes a small value, and ⁇ takes a large value.
  • the exit section adopts a fully lined trough type; according to the nature of the excretion debris flow and the longitudinal ratio drop of the row guide trough bed determined in step (1), the length of the exit section L 4 and the angle between the side wall of the exit section and the main trough are determined. ⁇ .
  • the length L 4 of the outlet section is generally 1.0-3.0 times of the width of the bottom of the drainage channel, and the angle ⁇ between the side wall of the outlet section and the main groove is 5-15 degrees.
  • the specific value refers to the nature of the debris flow, and the viscous debris flow L 4 is large.
  • the value, ⁇ takes a small value
  • the transitional debris flow L 4 and ⁇ take the median value
  • the thin debris flow L 4 takes a small value and ⁇ takes a large value.
  • 2g 2g i is the longitudinal ratio of the drainage channel; J is the average hydraulic gradient of the top of the debris flow in the acceleration section; the depth of the debris flow in the upstream section of the acceleration section; V is the flow velocity of the debris flow in the upstream section of the acceleration section; h 2 is the acceleration The depth of the debris flow in the downstream section of the section; v 2 is the flow velocity of the debris flow in the downstream section of the acceleration section.
  • the groove type of the main groove section may be a full lining type (also referred to as a V-shaped groove), or a symmetrical tooth type (see the patent ZL 2010 2 0223262.1 for a specific structure), or a staggered gingival type (see the patent ZL 2009 1 0058217.7 for the specific structure). Or transversely through the gum type (also known as Dongchuan trough), or box lining type (see patent application 201110380681.5 for specific structure).
  • the optimum ratio of longitudinal groove drop for different grooved groove type is: 0.01-0.03 for full lining, 0.03-0.08 for symmetrical gingival type, 0.08-0.12 for staggered gingival type, and 0.12 for transverse penetrating ridge type. -0.20, the box lining type is 0.20-0.40.
  • the main technical idea of the above-mentioned debris flow guiding channel planning and design method is: from the upstream to the downstream to regulate the flow velocity of the debris flow as the main line, to prevent the strong erosion and massive sedimentation of the debris flow during the movement; to maximize the flow velocity of the debris flow but not exceed the tank material
  • the bearing range is the target, dividing the drainage channel into the inlet section (letting the debris flow smoothly enter the drainage channel), the acceleration section (rapidly increasing the flow velocity of the debris flow), and the main channel section (mudstone)
  • the flow is balanced with the flow rate as fast as possible but not exceeding the material's tolerance range) and the outlet section.
  • the inlet section, the acceleration section and the outlet section are all built in the village; because the movement characteristics of the debris flow in different troughs are different, the energy consumption is different, and the characteristics of erosion and siltation are different.
  • the ratio of the main trough section is the whole village masonry type, or the symmetric gingival type, or the staggered gingival type, or the transverse through gingival type, or the box type masonry type, wherein the whole village masonry and transverse through teeth
  • the reasonable ratio of the ⁇ type is obtained based on a large number of actual drainage channel engineering statistics.
  • the reasonable ratio of the symmetrical gingival type, the staggered gingival type and the box building type is determined according to the roughness of the groove type.
  • the flow rate of the regulation debris flow is determined according to the material structure of the drainage channel, and the flow rate of the drainage channel is determined; for the masonry structure, the flow rate is limited to 6 m/s; for the concrete structure or the reinforced concrete structure, the flow rate is limited to 8 m/s; Steel fiber reinforced concrete structure, limiting flow rate 10 m / s.
  • the design flow rate v 2 of the downstream section of the acceleration section and the design flow rate of the main section are designed to be 0.8-1.0 times the flow rate of the restriction.
  • the planning and design method is suitable for constructing a debris flow guiding channel with a total length L of less than or equal to 300 m, and a sand blocking dam for regulating the movement of the debris flow is arranged upstream of the inlet section, and is used together with the constructed drainage channel.
  • At least two relatively independent debris flow drainage channels constructed according to the planned design method are connected from the upstream to the downstream, and a sand blocking dam is arranged upstream of the inlet section of the most upstream drainage channel.
  • a transition zone is provided between the upstream and downstream rows of channels for receiving the debris flow of the fan-ditch or the import of mountain torrents, or for deriving part of the debris flow for siltation.
  • the segmented relatively independent short groove is used on the long stacking fan, and each short groove includes an inlet section, an acceleration section, and a main
  • the groove section and the outlet section, and the longitudinal ratio drop of the groove bed of each independent short groove and the groove type of the main groove section are separately determined;
  • the joint between the two short grooves is provided with a transition zone, which can receive the debris flow or flood of other branch grooves of the fan face Remittance;
  • due to the change of the longitudinal ratio of the groove bed for the case of the lower end discharge capacity, some debris flow can be derived for siltation (passed
  • the overflow belt is provided with an overflow port to connect to the silt field, to eliminate local siltation and maintain the safe operation of the drainage channel;
  • the long stacking fan is divided into several short slots, each of which is relatively independent, avoiding a break and full groove damage. happening.
  • the beneficial effects of the present invention are: Fully utilizing the movement characteristics of the debris flow in the drainage channel, adjusting the flow velocity of the debris flow as the main line, and rationally selecting the main groove type of the drainage channel, for the length greater than 300 meters
  • the long debris flow stacking fan is used to construct the drainage channel, and the long drainage channel is decomposed into several short row guiding channels, and a transition zone is arranged between the grooves to regulate the flow velocity of the debris flow, and the debris flow is efficiently drained downstream, avoiding the debris flow in the drainage channel.
  • the inside of the large rushing and silting providing maximum protection for the protective objects on both sides of the drainage channel, and reducing the operation and maintenance costs of the project.
  • Fig. 1 is a plan view showing the layout of a debris flow guide groove constructed in accordance with the planning and design method of a debris flow guide groove according to the present invention.
  • Fig. 2 is a plan view showing the layout of the debris flow channel guide groove constructed according to the planning method of the debris flow channel guide according to the present invention when the debris flow accumulation fan length is greater than 300 m and the transition is carried out with the debris flow.
  • Fig. 3 is a plan view showing the layout of the debris flow guiding channel constructed according to the planning and design method of the debris flow guiding channel according to the present invention when the debris flow stacking fan length is greater than 300 m and the transition zone deriving part of the debris flow is stopped.
  • a mudslide is a viscous debris flow with a drainage area of 5.4km 2 and a stacking fan length of 260m.
  • the drainage channel is divided into an inlet section 1 having an upper and a lower small bell mouth, an acceleration section 2, a main flow section 3 having a balanced flow, and an outlet section 4 having a large bell mouth shape along the flow direction of the debris flow;
  • the groove is made of concrete material, so the limiting flow rate of the discharge channel is determined to be 8.0 m/s.
  • the steps of the layout design method of the drainage channel are as follows:
  • the drainage channel is planned in the middle of the stacking fan, and a sand regulation for regulating the movement of the debris flow is arranged upstream of the inlet section 1 of the drainage channel.
  • Dam according to the length of the stacked fan, determine the total length L of the proposed drainage channel is 250m, and determine the longitudinal ratio of the drainage groove to 0.15 according to the principle of basic balance of the excavation and filling; the drainage flow is designed according to the drainage channel is 40.0 m 3 /s, determine the bottom width of the channel is 4.0m.
  • the inlet section 1 adopts a fully lined trough type; according to the excretion design standard, the debris flow is a viscous debris flow, and the longitudinal ratio of the drainage trough bed determined in the first step is reduced to 0.15, and the length of the inlet section 1 is determined to be the bottom of the drainage trough.
  • the outlet section 4 adopts a fully lined trough type; according to the excretion design standard, the debris flow is a viscous debris flow, and the longitudinal ratio of the drainage trough bed determined in the first step is reduced to 0.15, and the length L 4 of the outlet section 4 is determined to be the drainage guide.
  • a debris flow ditch is a dilute debris flow with a drainage area of 8.6km 2 and a stacking fan length of 500m.
  • the proposed drainage channel includes two relatively independent debris flow drainage channels (ie, an upper row of guide channels and a lower row of guide channels) connected from the upstream to the downstream.
  • a transition zone 5 is provided between the upper and lower rows of guide grooves, and has a length of 20 m along the flow direction for receiving the inflow of the fan-ditch.
  • the upper row of guide channels are divided into an inlet section 1 having an upper and a lower small bell mouth, an acceleration section 2, a main flow section 3 having a balanced flow, and an outlet section 4 having a large small bell mouth shape along the flow direction of the debris flow;
  • the groove is made of reinforced concrete material, so the limiting flow rate of the discharge channel is determined to be 8 m/s.
  • the steps of the upper row guiding groove design method are as follows: 3 ⁇ 4 mouth:
  • the upper guide groove is planned at the upper position of the stacked fan.
  • a sand dam for regulating the movement of debris flow is arranged upstream of the inlet section 1 of the upper row of guide channels.
  • the total length L of the proposed upper row of guide channels is 300m, and the upper row of guide groove groove beds is determined according to the principle of basic balance of the excavation and filling.
  • the longitudinal ratio is reduced to 0.22; according to the design of the drainage channel, the discharge flow rate is 64.0 m 3 /s, and the bottom width of the upper row of guide grooves is determined to be 5.0 m.
  • the inlet section 1 adopts a fully lined trough type; according to the excretion design standard, the debris flow is a dilute debris flow, and the longitudinal ratio of the upper row of guide trough beds determined in the first step is reduced to 0.22, and the length of the inlet section 1 is determined to be the row guide.
  • a third step the outlet section 4 with full lining groove; landslides according to the design criteria of excretion lean debris flow, the first step in determining the discharge guide groove bed aspect ratio dropped to 0.22, the outlet section 4 determines the length L 4 is
  • the groove type of the main groove section is determined as a box.
  • the lower row of guide channels is divided into an inlet section 1 having an upper and a lower small bell mouth, an acceleration section 2, a main flow section 3 having a balanced flow, and an outlet section 4 having a large lower bell mouth shape along the flow direction of the debris flow;
  • the groove is made of masonry material, so the limiting flow rate of the discharge channel is determined to be 6 m/s.
  • the steps of the lower row guide groove design and design method are as follows: First, according to the topographic condition of the debris flow stacked fan, the lower row guide groove is planned at the lower position of the stacking fan, and the total length L of the proposed lower row guide groove is 180 m, and according to The principle of basic balance of cut and fill determines that the longitudinal ratio of the lower row of guide groove is reduced to 0.07; due to the inlet of the debris flow of the fan branch and the flow of 13.0 m 3 /s, the discharge flow of the lower row of guides is 77.0 m 3 /s, The bottom of the lower row of guide grooves is 6.0m wide.
  • the inlet section 1 adopts a fully lined trough type; according to the excretion design standard, the debris flow is a dilute debris flow, and the longitudinal ratio of the lower row of guide trough beds determined in the first step is reduced to 0.07, and the length of the inlet section 1 is determined to be the discharge guide.
  • a third step the outlet section 4 with full lining groove; landslides according to the design criteria of excretion lean debris flow, identified in step lower row guiding groove bed aspect ratio dropped to 0.07, the outlet section 4 determines the length L 4 is
  • transition zone 5 is used to derive part of the debris flow for siltation, and a stoppage field is arranged on the left side of the lower guide channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Revetment (AREA)
  • Sewage (AREA)

Abstract

一种泥石流排导槽规划设计方法,包括如下步骤:确定拟建排导槽的总长度L和排导槽沟床纵比降;确定进口段(1)采用全衬砌槽型,及进口段(1)长度L1和进口段(1)侧墙与主槽的夹角α;确定出口段(4)采用全衬砌槽型,及出口段(4)长度L4和出口段(4)侧墙与主槽的夹角β;确定加速段(2)采用全衬砌槽型,及加速段(2)长度L2;最后确定主槽段(3)槽型,及主槽段(3)长度L3。本方法排泄高效,避免淤积,保护得力,费用低廉。还公开了该设计方法的应用。

Description

一种泥石流排导槽规划设计方法及其应用 技术领域 本发明涉及一种泥石流防治技术, 特别是涉及一种泥石流排导槽的规划设 计方法, 及其分别在 300米及以下泥石流堆积扇和 300米以上泥石流堆积扇上 的应用。 背景技术
泥石流具有比水流高得多的容重, 其包含碎屑土的流体二元结构具有特殊 性, 表现出惯性高、 输移力强、 沖击力巨大等特点。 泥石流运动产生的强烈沖 刷, 导致沟床发生剧烈改变, 引起沟床揭底和沟岸崩塌, 增加了补给泥石流的 固体物质来源, 增大了泥石流的危害。 排导槽是防治泥石流的主要工程措施之 一, 合理规划泥石流排导槽, 对于减小泥石流的破坏力, 提高下游防护对象的 安全性, 具有重大的社会经济意义和生态环境意义。
受山区地形、 泥石流沟与主河的交互作用等因素的影响, 修建排导槽的泥 石流堆积扇可能 4艮长, 达 1000米以上, 也可能 4艮短, 只有 100米左右。 针对不 同长度的泥石流堆积扇, 如何合理规划泥石流排导槽是有效防治泥石流、 保护 堆积扇上保护对象的关键。
目前, 泥石流排导槽平面上一般包括进口段、 主槽段和出口段, 三段均采 用同一槽型, 主要采用全衬砌型和横向贯穿齿槛型; 这种整体单一槽型的结构 极易出现泥石流在主槽上端流速提升太慢、 下端流速太高, 而导致排导槽上端 淤积和下游沖刷的问题。 另一方面, 对于长堆积扇 (300米以上) 目前一般采用 同一排导槽对泥石流进行排导, 导致难以适应长堆积扇沟床纵比降的巨大变化, 而存在上端沖刷、 下端淤积的缺陷, 且过长的排导槽不利于整个排导系统的稳 定性; 例如, 云南云龙县狮尾河 750米长全衬砌型排导槽出现排导槽上端揭底 后发生连锁揭底而全槽破坏的结果。 发明内容 本发明的目的就是针对目前修建排导槽缺乏合理规划设计的情况,提供一种 泥石流排导槽的规划设计方法, 科学规划泥石流排导槽组成, 合理选用主槽的 槽型, 特别针对在长度大于 300米的长泥石流堆积扇上修建排导槽的情况, 利 用槽间过渡带调控泥石流流速, 高效地将泥石流通过排导槽向下游排泄, 防止 泥石流在排导槽内大沖大淤, 最大限度保护堆积扇上的保护对象。
为实现上述目的, 本发明的技术方案是:
本发明提出一种泥石流排导槽规划设计方法,所述排导槽沿泥石流流向分为 呈上大下小喇叭口状的进口段、 加速段、 均衡流动的主槽段和呈上小下大喇叭 口状的出口段; 所述排导槽规划设计方法步骤如下:
(一) 根据泥石流堆积扇的地形条件, 规划排导槽位置, 确定拟建排导槽的 总长度 L; 根据拟建排导槽的地形, 并按照挖方和填方基本平衡的原则 确定排导槽沟床纵比降。 排导槽的总长度 L小于等于 300m。
(二) 进口段采用全衬砌槽型; 根据排泄泥石流的性质和步骤(一) 中确定 的排导槽沟床纵比降, 确定进口段长度 及进口段侧墙与主槽的夹角 α。 进口段长度 一般取排导槽底宽的 1.5-5.0倍, 进口段侧墙与主槽的夹角 α—般取 10-30度; 具体取值参照泥石流性质, 粘性泥石流 取大值、 α 取小值, 过渡性泥石流 1^和01均取中值, 稀性泥石流 取小值、 α取大值。 (三) 出口段采用全衬砌槽型; 根据排泄泥石流的性质和步骤(一) 中确定 的排导槽沟床纵比降, 确定出口段长度 L4及出口段侧墙与主槽的夹角 β 。 出口段长度 L4一般取排导槽底宽的 1.0-3.0倍, 出口段侧墙与主槽的夹角 β—般取 5-15 度; 具体取值参照泥石流性质, 粘性泥石流 L4取大值、 β 取小值, 过渡性泥石流 L4和 β均取中值, 稀性泥石流 L4取小值、 β取大值。
(四) 加速段采用全衬砌槽型; 根据明渠恒定非均匀渐变流计算模型, 确定 加速段长度 L2。 即, 加速段长度 L2 = (Ex-Es)/(i-J), 其中 Ex为加速段下游断 面的断面比能, Ex = h2+ ; 为加速段上游断面的断面比能, Es = hj+^-;
2g 2g i为排导槽沟床纵比降; J为加速段泥石流顶面的平均水力坡度; 为加速 段上游断面的泥石流泥位深度; V为加速段上游断面的泥石流流速; h2为 加速段下游断面的泥石流泥位深度; v2为加速段下游断面的泥石流流速。
(五) 根据步骤(一) 中确定的排导槽沟床纵比降、 及不同排导槽槽型适用 的最佳沟床纵比降区间, 确定主槽段槽型; 确定主槽段长度 L^L- Li- Ls- L4。 主槽段槽型可以是全衬砌型 (又称 V型槽), 或对称齿槛型 (具体结 构参见专利 ZL 2010 2 0223262.1 ), 或交错齿槛型 (具体结构参见专利 ZL 2009 1 0058217.7 ),或横向贯穿齿槛型(又称东川槽),或箱体衬砌型(具 体结构参见专利申请 201110380681.5 )。 不同排导槽槽型适用的最佳沟床 纵比降区间为: 全衬砌型为 0.01-0.03 , 对称齿槛型为 0.03-0.08 , 交错齿 槛型为 0.08-0.12 , 横向贯穿齿槛型 0.12-0.20, 箱体衬砌型为 0.20-0.40。 上述泥石流排导槽规划设计方法的主要技术思想是:从上游到下游以调控泥 石流流速为主线, 防止泥石流在运动中出现强烈的沖刷和大量淤积; 以尽量提 升泥石流流动速度但不超出槽体材料的承受范围为目标, 将排导槽分为进口段 (让泥石流顺利进入排导槽)、 加速段(快速提升泥石流流速)、 主槽段(泥石 流以尽量快但不超过材料承受范围的流速均衡排泄)和出口段。 为了顺利入流 和出流, 进口段、 加速段和出口段均采用全村砌槽型; 由于泥石流在不同槽型 中的运动特征不同, 耗能量不同, 沖淤特征也就不同, 根据沟床纵比降, 对主 槽段槽型选用全村砌型、 或对称齿槛型、 或交错齿槛型、 或横向贯穿齿槛型、 或箱体村砌型, 其中全村砌型和横向贯穿齿槛型的合理比降范围是依据大量实 际排导槽工程统计得到, 对称齿槛型、 交错齿槛型和箱体村砌型的合理比降是 根据槽型的糙率依据经验确定。
所述调控泥石流流速, 根据排导槽材质结构, 确定排导槽的限制流速; 对于 浆砌石结构, 限制流速 6米 /秒; 对于混凝土结构或钢筋混凝土结构, 限制流速 8米 /秒; 对于钢纤维混凝土结构, 限制流速 10米 /秒。 为了使排导槽的排泄效率 最大化 ,加速段下游断面的设计流速 v2和主槽段的设计流速按照所述限制流速的 0.8-1.0倍设计。
所述规划设计方法适用于修建总长度 L小于等于 300m的泥石流排导槽, 且 进口段上游设置一座调控泥石流运动的拦砂坝, 与修建的排导槽配合使用。
当泥石流堆积扇的长度大于 300m, 从上游至下游首尾相连至少 2个相对独 立的、 按照所述规划设计方法修建的泥石流排导槽, 且最上游排导槽的进口段 上游设置一座拦砂坝配合使用。 在上下游两个排导槽之间设有一过渡带, 用于 接纳扇面支沟泥石流或山洪的汇入, 或用于导出部分泥石流进行停淤。 针对长 堆积扇上修建排导槽的情况, 根据长堆积扇的沟床比降, 在长堆积扇上采用分 段相对独立的短槽, 每个短槽均包括有进口段、 加速段、 主槽段和出口段, 且 各独立短槽的沟床纵比降和主槽段槽型分别单独确定; 两短槽之间的衔接部位 设有过渡带, 可以接纳扇面其他支沟泥石流或洪水的汇入; 由于沟床纵比降的 变化, 对于下端排泄能力降低的情况, 可以导出部分泥石流进行停淤(通过过 渡带上设置溢流口, 连接停淤场), 消除局部淤积, 维持排导槽的安全运行; 长 堆积扇分成若干个短槽, 各个槽体相对独立, 避免一处溃决、 全槽破坏的情况。
与现有技术相比, 本发明的有益效果是: 充分利用泥石流在排导槽内的运动 特征, 以调控泥石流运动流速为主线, 合理选用排导槽主槽槽型, 针对在长度 大于 300米的长泥石流堆积扇上修建排导槽的情况, 将长排导槽分解为数个短 排导槽, 并在槽间设置过渡带调控泥石流流速, 将泥石流高效向下游排泄, 避 免泥石流在排导槽内大沖大淤, 为排导槽两侧的防护对象提供最大保障, 并减 小工程的运行维护费用。 附图说明 图 1 是按照本发明泥石流排导槽规划设计方法修建的泥石流排导槽的平面 布置示意图。
图 2是泥石流堆积扇长度大于 300m情况下、 过渡带有支沟泥石流汇入时, 按照本发明泥石流排导槽规划设计方法修建的泥石流排导槽的平面布置示意 图。
图 3是泥石流堆积扇长度大于 300m情况下、过渡带导出部分泥石流停淤时, 按照本发明泥石流排导槽规划设计方法修建的泥石流排导槽的平面布置示意 图。
图中标号如下:
1 进口段 2 加速段
3 主槽段 4 出口段
5 过渡带
α 进口段侧墙与主槽的夹角 β 出口段侧墙与主槽的夹角 L 总长度 1^ 进口段长度
L2 加速段长度 L3 主槽段长度
出口段长度 具体实施方式 下面结合附图, 对本发明的优选实施例作进一步的描述。
实施例一
如图 1所示。某泥石流沟为粘性泥石流,流域面积 5.4km2,堆积扇长 260m, 为了治理泥石流灾害, 拟采用流域内修建拦砂坝群、 堆积扇修建排导槽的防治 方案。所述排导槽沿泥石流流向分为呈上大下小喇叭口状的进口段 1、加速段 2、 均衡流动的主槽段 3和呈上小下大喇叭口状的出口段 4;排导槽为混凝土材质结 构, 因此确定排导槽的限制流速为 8.0m/s。 所述排导槽规划设计方法步骤如下: 第一步, 根据泥石流堆积扇的地形条件, 在堆积扇中部位置规划排导槽, 并在排导槽进口段 1 上游设置一座调控泥石流运动的拦砂坝, 根据堆积扇长度 确定拟建排导槽的总长度 L为 250m, 并按照挖方和填方基本平衡的原则确定排 导槽沟床纵比降为 0.15; 根据排导槽设计排泄流量为 40.0m3/s, 确定排导槽底宽 为 4.0m。
第二步, 进口段 1 采用全衬砌槽型; 根据排泄设计标准下泥石流为粘性泥 石流, 第一步中确定的排导槽沟床纵比降为 0.15 , 确定进口段 1 长度 为排导 槽底宽的 5.0倍, 即1^ = 5.0 x 4.0 = 20.0m, 同时确定进口段 1侧墙与主槽的夹角 α为 10度。
第三步, 出口段 4采用全衬砌槽型; 根据排泄设计标准下泥石流为粘性泥 石流, 第一步中确定的排导槽沟床纵比降为 0.15 , 确定出口段 4长度 L4为排导 槽底宽的 3.0倍, 即 L4 = 3.0 x 4.0 = 12.0m, 同时确定出口段 4侧墙与主槽的夹角 β为 5度。
第四步, 加速段 2采用全衬砌槽型; 根据现场调查, 确定加速段 2上游断 面的泥石流流速 v1为 2.3m/s, 加速段 2上游断面的泥石流泥位深度 =设计排泄 流量 /(排导槽底宽 X v =40.0/(4.0 2.3)=4.35m; 加速段 2下游断面的设计流速取 限制流速的 1.0倍, 即 v2 = 8.0m/s, 加速段 2下游断面的泥石流泥位深度 h2 =设 计排泄流量 /(排导槽底宽 X v2)=40.0/(4.0 8.0)=1.25m; 将上述参量带入明渠恒定 非均匀渐变流计算模型, 迭代计算得到加速段 2长度 L2=10.9m。
第五步, 根据第一步中确定的排导槽沟床纵比降为 0.15、 及不同排导槽槽 型适用的最佳沟床纵比降区间, 确定主槽段 3槽型为横向贯穿齿槛型; 确定主 槽段 3长度 L3=L- - L2- L4 = 250-20.0-10.9-12.0 = 207.1m。
实施例二
如图 1、 图 2所示。 某泥石流沟为稀性泥石流, 流域面积 8.6km2, 堆积扇长 500m, 为了治理泥石流灾害, 拟采用流域内修建拉砂坝群、 堆积扇修建排导槽 的防治方案。 由于泥石流堆积扇的长度大于 300m, 因此拟建排导槽包括从上游 至下游首尾相连 2个相对独立的泥石流排导槽(即包括上排导槽和下排导槽 )。 在上下两排导槽之间设有一过渡带 5 , 其沿流向长度为 20m, 用于接纳扇面支沟 泥石克的汇入。
上排导槽沿泥石流流向分为呈上大下小喇叭口状的进口段 1、 加速段 2、 均 衡流动的主槽段 3和呈上小下大喇叭口状的出口段 4;上排导槽为钢筋混凝土材 质结构, 因此确定排导槽的限制流速为 8m/s。 所述上排导槽规划设计方法步骤 :¾口下:
第一步, 根据泥石流堆积扇的地形条件, 在堆积扇上部位置规划上排导槽, 并在上排导槽进口段 1 上游设置一座调控泥石流运动的拦砂坝, 拟建上排导槽 的总长度 L为 300m, 并按照挖方和填方基本平衡的原则确定上排导槽沟床纵比 降为 0.22; 根据排导槽设计排泄流量为 64.0m3/s, 确定上排导槽底宽为 5.0m。
第二步, 进口段 1 采用全衬砌槽型; 根据排泄设计标准下泥石流为稀性泥 石流, 第一步中确定的上排导槽沟床纵比降为 0.22, 确定进口段 1 长度 为排 导槽底宽的 1.5倍, 即1^ = 1.5 x 5.0 = 7.5m, 同时确定进口段 1侧墙与主槽的夹 角 α为 30度。
第三步, 出口段 4采用全衬砌槽型; 根据排泄设计标准下泥石流为稀性泥 石流, 第一步中确定的上排导槽沟床纵比降为 0.22, 确定出口段 4长度 L4为排 导槽底宽的 1.0倍, 即 L4 = 1.0 x 5.0 = 5.0m, 同时确定出口段 4侧墙与主槽的夹 角 β为 15度。
第四步, 加速段 2采用全衬砌槽型; 根据明渠恒定非均匀渐变流计算模型, 迭代计算得到加速段 2长度 L2=6.1m。
第五步, 根据第一步中确定的上排导槽沟床纵比降为 0.22、 及不同排导槽 槽型适用的最佳沟床纵比降区间, 确定主槽段 3槽型为箱体衬砌型; 确定主槽 段 3长度 L3=L- - - = 300-7.5-6.1-5.0 = 281.4m。
下排导槽沿泥石流流向分为呈上大下小喇叭口状的进口段 1、 加速段 2、 均 衡流动的主槽段 3和呈上小下大喇叭口状的出口段 4;下排导槽为浆砌石材质结 构, 因此确定排导槽的限制流速为 6m/s。 所述下排导槽规划设计方法步骤如下: 第一步, 根据泥石流堆积扇的地形条件, 在堆积扇下部位置规划下排导槽, 拟建下排导槽的总长度 L为 180m, 并按照挖方和填方基本平衡的原则确定下排 导槽沟床纵比降为 0.07; 由于扇面支沟泥石流的汇入 13.0 m3/s, 下排导槽设计 排泄流量为 77.0m3/s, 确定下排导槽底宽为 6.0m。 第二步, 进口段 1 采用全衬砌槽型; 根据排泄设计标准下泥石流为稀性泥 石流, 第一步中确定的下排导槽沟床纵比降为 0.07, 确定进口段 1 长度 为排 导槽底宽的 2.0倍, 即1^ = 2.0 x 6.0 = 12.0m, 同时确定进口段 1侧墙与主槽的夹 角 α为 30度。
第三步, 出口段 4采用全衬砌槽型; 根据排泄设计标准下泥石流为稀性泥 石流, 第一步中确定的下排导槽沟床纵比降为 0.07, 确定出口段 4长度 L4为排 导槽底宽的 1.5倍, 即 L4 = 1.5 x 6.0 = 9.0m, 同时确定出口段 4侧墙与主槽的夹 角 β为 15度。
第四步, 加速段 2采用全衬砌槽型; 根据明渠恒定非均匀渐变流计算模型, 迭代计算得到加速段 2长度 L2=4.3m。
第五步, 根据第一步中确定的下排导槽沟床纵比降为 0.07、 及不同排导槽 槽型适用的最佳沟床纵比降区间, 确定主槽段 3槽型为对称齿槛型; 确定主槽 段 3长度 L3=L- - - = 180-12.0-4.3-9.0 = 154.7m。
实施例三
如图 1、 图 3所示。 与实施例二相同的地方不再重复赘述, 不同之处在于: 过渡带 5 用于导出部分泥石流进行停淤, 在面向下排导槽的左侧设置停淤场 1 座。

Claims

1. 一种泥石流排导槽规划设计方法, 其特征在于: 所述排导槽沿泥石流流向分 为呈上大下小喇叭口状的进口段(1)、 加速段(2)、 均衡流动的主槽段(3) 和呈上小下大喇叭口状的出口段(4); 所述排导槽规划设计方法步骤如下:
(一) 根据泥石流堆积扇的地形条件, 规划排导槽位置, 确定拟建排导槽的 总长度 L, 并按照挖方和填方基本平衡的原则确定排导槽沟床纵比降;
(二) 进口段(1 )采用全村砌槽型; 根据排泄泥石流的性质和步骤(一) 中确定的排导槽沟床纵比降, 确定进口段( 1 ) 长度 及进口段( 1 )侧 墙与主槽的夹角 α ;
(三) 出口段( 4 )采用全村砌槽型; 根据排泄泥石流的性质和步骤(一) 中确定的排导槽沟床纵比降, 确定出口段(4) 长度 L4及出口段(4)侧 墙与主槽的夹角 β ;
(四) 加速段( 2 )采用全村砌槽型; 根据明渠恒定非均匀渐变流计算模型, 确定加速段 (2)长度 L2;
(五) 根据步骤(一) 中确定的排导槽沟床纵比降、 及不同排导槽槽型适用 的最佳沟床纵比降区间, 确定主槽段(3)槽型; 确定主槽段(3) 长度
2. 根据权利要求 1所述的泥石流排导槽规划设计方法, 其特征在于: 根据排导 槽材质结构, 确定排导槽的限制流速; 加速段(2) 下游断面的设计流速和 主槽段(3) 的设计流速为所述限制流速的 0.8-1.0倍。
3. 根据权利要求 1或 2所述的泥石流排导槽规划设计方法, 其特征在于: 主槽 段(3)槽型为全村砌型, 或对称齿槛型, 或交错齿槛型, 或横向贯穿齿槛 型, 或箱体村砌型。
4. 根据权利要求 3所述的泥石流排导槽规划设计方法, 其特征在于: 不同排导 槽槽型适用的最佳沟床纵比降区间为: 全村砌型为 0.01-0.03 , 对称齿槛型为 0.03-0.08 , 交错齿槛型为 0.08-0.12, 横向贯穿齿槛型 0.12-0.20, 箱体村砌型 为 0.20-0.40。
5. 根据权利要求 1或 2所述的泥石流排导槽规划设计方法, 其特征在于: 进口 段( 1 )长度 为排导槽底宽的 1.5-5.0倍, 进口段( 1 )侧墙与主槽的夹角 α 为 10-30度。
6. 根据权利要求 1或 2所述的泥石流排导槽规划设计方法, 其特征在于: 出口 段(4 )长度 L4为排导槽底宽的 1.0-3.0倍, 出口段(4 )侧墙与主槽的夹角 β 为 5-15度。
7. 根据权利要求 1或 2所述的泥石流排导槽规划设计方法, 其特征在于: 排导 槽的总长度 L小于等于 300m。
8. 如权利要求 1所述的泥石流排导槽规划设计方法的应用, 其特征在于: 所述 规划设计方法适用于修建总长度 L小于等于 300m的泥石流排导槽, 且进口 段( 1 )上游设置一座拦砂坝, 与修建的排导槽配合使用。
9. 如权利要求 1所述的泥石流排导槽规划设计方法的应用, 其特征在于: 当泥 石流堆积扇的长度大于 300m,从上游至下游首尾相连至少 2个相对独立的、 按照所述规划设计方法修建的泥石流排导槽, 且最上游排导槽的进口段( 1 ) 上游设置一座拦砂坝配合使用。
10. 根据权利要求 9所述的泥石流排导槽规划设计方法的应用, 其特征在于: 在上下游两个排导槽之间设有一过渡带(5 ), 用于接纳扇面支沟泥石流或山 洪的汇入, 或用于导出部分泥石流进行停淤。
PCT/CN2013/079443 2013-06-20 2013-07-16 一种泥石流排导槽规划设计方法及其应用 WO2014201742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/773,935 US10202731B2 (en) 2013-06-20 2013-07-16 Method for planning and designing debris flow drainage channels and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310244992.8 2013-06-20
CN201310244992.8A CN103276700B (zh) 2013-06-20 2013-06-20 一种泥石流排导槽规划设计方法及其应用

Publications (1)

Publication Number Publication Date
WO2014201742A1 true WO2014201742A1 (zh) 2014-12-24

Family

ID=49059306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079443 WO2014201742A1 (zh) 2013-06-20 2013-07-16 一种泥石流排导槽规划设计方法及其应用

Country Status (3)

Country Link
US (1) US10202731B2 (zh)
CN (1) CN103276700B (zh)
WO (1) WO2014201742A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108487417A (zh) * 2018-04-17 2018-09-04 山西智德安全技术股份有限公司 一种应用于矸石山治理的半柔性快速排水系统
CN111335260A (zh) * 2020-05-06 2020-06-26 段刚强 一种泥石流防治用活动式分流拦挡系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150019262A1 (en) * 2013-07-11 2015-01-15 Corelogic Solutions, Llc Method and system for generating a flash flood risk score
CN105350444A (zh) * 2015-10-30 2016-02-24 中国电建集团成都勘测设计研究院有限公司 泥石流高发区的管桥防护结构
CN108154006A (zh) * 2018-01-11 2018-06-12 中南大学 泥石流流动路径的搜索方法
CN108335034B (zh) * 2018-01-31 2022-11-18 中国科学院、水利部成都山地灾害与环境研究所 格子坝拦挡粘性泥石流闭塞度评价方法
CN110004845A (zh) * 2019-04-29 2019-07-12 中铁第一勘察设计院集团有限公司 吊脚式拦石墙结构及其构建方法
CN110309600B (zh) * 2019-07-04 2022-09-16 安阳工学院 一种基于物质与能量调控目标的开口型拦砂坝群设计方法
CN110499719B (zh) * 2019-08-28 2024-07-02 四川建筑职业技术学院 一种泥石流防冲肋槛结构及系统
CN110952508B (zh) * 2019-12-16 2021-01-29 北京师范大学 一种用于山洪、泥石流灾害的防治方法
CN111460694B (zh) * 2020-04-30 2021-03-16 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流动力冲击系数的确定方法及装置
WO2022011567A1 (zh) * 2020-07-14 2022-01-20 嘉兴金喜莱科技有限公司 一种桥梁工程防冲击双腔对冲式消散结构及设计方法
CN114541337B (zh) * 2022-04-14 2024-03-29 重庆交通大学 一种泥石流排导槽磨蚀段破损修复方法
CN117350202B (zh) * 2023-12-04 2024-03-26 成都理工大学 泥石流过流结构磨蚀计算方法及系统、介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1224377A1 (ru) * 1984-06-29 1986-04-15 Dzhumabaev Kim S Селезащитное сооружение
RU2188277C2 (ru) * 2000-11-08 2002-08-27 Кабардино-Балкарская государственная сельскохозяйственная академия Селепроводящий канал
CN2734820Y (zh) * 2004-10-27 2005-10-19 陈洪凯 泥石流拦-汇-排综合治理结构
CN101886374A (zh) * 2010-07-07 2010-11-17 中国科学院水利部成都山地灾害与环境研究所 一种槽底加固的全衬砌泥石流排导槽及其施工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1247892B (it) * 1990-10-10 1995-01-05 Sicep Ind S R L Elementi prefabbricati, per la costruzione di briglie utilizzate nelle sistemazioni fluviali
US6196762B1 (en) * 1999-07-19 2001-03-06 Carl T. Stude Non-clogging debris and sediment removal facility
CN2654683Y (zh) * 2003-11-27 2004-11-10 陈洪凯 泥石流速排结构
CN101476305B (zh) 2009-01-21 2010-10-13 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
CN201695377U (zh) 2010-06-11 2011-01-05 中国科学院水利部成都山地灾害与环境研究所 一种基于梯级防冲刷齿槛群的泥石流排导槽
CN102002925B (zh) * 2010-11-17 2012-07-04 黄河水利委员会黄河水利科学研究院 多沙河流河工动床模型人工转折方法及人工转折导流槽
CN102373692B (zh) 2011-11-25 2013-11-13 中国科学院水利部成都山地灾害与环境研究所 一种箱体衬砌式泥石流排导槽及其应用和施工方法
CN103696403B (zh) * 2014-01-01 2015-10-21 中国科学院-水利部成都山地灾害与环境研究所 一种阶梯-深潭结构型泥石流排导槽及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1224377A1 (ru) * 1984-06-29 1986-04-15 Dzhumabaev Kim S Селезащитное сооружение
RU2188277C2 (ru) * 2000-11-08 2002-08-27 Кабардино-Балкарская государственная сельскохозяйственная академия Селепроводящий канал
CN2734820Y (zh) * 2004-10-27 2005-10-19 陈洪凯 泥石流拦-汇-排综合治理结构
CN101886374A (zh) * 2010-07-07 2010-11-17 中国科学院水利部成都山地灾害与环境研究所 一种槽底加固的全衬砌泥石流排导槽及其施工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108487417A (zh) * 2018-04-17 2018-09-04 山西智德安全技术股份有限公司 一种应用于矸石山治理的半柔性快速排水系统
CN111335260A (zh) * 2020-05-06 2020-06-26 段刚强 一种泥石流防治用活动式分流拦挡系统
CN111335260B (zh) * 2020-05-06 2023-12-29 盐城荣泰石油机械有限公司 一种泥石流防治用活动式分流拦挡系统

Also Published As

Publication number Publication date
US10202731B2 (en) 2019-02-12
US20160040381A1 (en) 2016-02-11
CN103276700A (zh) 2013-09-04
CN103276700B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2014201742A1 (zh) 一种泥石流排导槽规划设计方法及其应用
CN101476305B (zh) 一种基于梯级防冲刷齿槛群的泥石流排导槽及其应用
WO2015100816A1 (zh) 一种阶梯-深潭结构型泥石流排导槽及其应用
CN104863098B (zh) 一种消力池下游消能工除险改造方法
CN103510493A (zh) 过水低坝洞库式水电站
CN109778798B (zh) 多级孔管堰分流放淤方法
CN110904919B (zh) 一种治理小型河道断头浜的装置
CN104264639B (zh) 底流式梯级消力池消能系统
CN111350171A (zh) 用于泥沙含量高水头波动大的低水头坝鱼道
CN103938592A (zh) 在拦沙坎上开设分流孔进行截流分流的方法
CN106638504B (zh) 一种水利工程中底流消能的消能防冲结构
CN210395267U (zh) 一种非对称开敞式溢洪道
CN109356097B (zh) 用于沟水处理的排水隧洞进口结构
CN204728261U (zh) 用于沟水处理及泥石流防护的拦挡组合结构
CN204875721U (zh) 一种导流洞出口消能装置
CN106958235B (zh) 一种导流坎–消力墩–梁柱结构消力坎联合消能工的水力设计方法
CN106013007B (zh) 适用于直线型陡槽溢洪道的水沙分离建筑物
CN211646049U (zh) 用于高挡墙涵洞的出口结构
CN203144971U (zh) 一种明渠与箱涵相结合的泥石流排导结构
CN103614986A (zh) 一种适用于尾矿库排洪的无压流进水方法
CN203174568U (zh) 一种混凝土坝的生态流量管布置型式
CN105421288A (zh) 一种大库盘水库淤滩冲沙结构及其施工方法
CN206204891U (zh) 防止导流洞出口堵塞的泥石流排导结构
CN205134266U (zh) 一种大库盘水库淤滩冲沙结构
CN104452789A (zh) 一种均质粘土灰坝排渗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14773935

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887477

Country of ref document: EP

Kind code of ref document: A1