WO2011153873A1 - 泵送装置的分配机构、泵送装置、混凝土泵车及混凝土泵车的控制方法 - Google Patents

泵送装置的分配机构、泵送装置、混凝土泵车及混凝土泵车的控制方法 Download PDF

Info

Publication number
WO2011153873A1
WO2011153873A1 PCT/CN2011/073114 CN2011073114W WO2011153873A1 WO 2011153873 A1 WO2011153873 A1 WO 2011153873A1 CN 2011073114 W CN2011073114 W CN 2011073114W WO 2011153873 A1 WO2011153873 A1 WO 2011153873A1
Authority
WO
WIPO (PCT)
Prior art keywords
pumping device
port
wear plate
concrete
feed
Prior art date
Application number
PCT/CN2011/073114
Other languages
English (en)
French (fr)
Inventor
易小刚
朱红
刘石坚
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2011153873A1 publication Critical patent/WO2011153873A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves

Definitions

  • the present invention claims to be submitted to the State Intellectual Property Office of China on June 11, 2010, with the application number of 201010203362.2, and the invention titled "mixed soil pump truck and its control method, pumping device and its distribution mechanism" Priority of patent application.
  • BACKGROUND OF THE INVENTION 1.
  • the present invention relates to a pumping concrete or other viscous material technique, and more particularly to a dispensing mechanism of a pumping device, a pumping device including the same, a concrete pump truck including the pumping device; A method of controlling a concrete pump truck.
  • a mixed soil pump truck is one of the currently widely used hybrid earthmoving machines.
  • the mixed soil pump truck generally includes a pumping device and a boom system.
  • the pumping device generally further comprises a hopper, a conveying cylinder and a distribution valve;
  • the boom system comprises a boom and a conveying pipe, and the boom comprises a plurality of section arms hingedly connected by a transverse hinge shaft, and the conveying pipe comprises a plurality of sections connected in series.
  • the pipes are fixed to the pitch arms respectively.
  • the hopper is used for storing concrete;
  • the distribution valve is capable of performing state transition under the driving of the oscillating cylinder, and the conveying cylinder is connected with the hopper in a predetermined time, and the conveying rainbow is connected to the conveying pipe of the boom system for a predetermined second time. through.
  • the piston of the conveying cylinder can be telescopically driven by the hydraulic cylinder; when the conveying cylinder is connected with the hopper, the piston of the conveying cylinder is retracted, and an appropriate amount of concrete is sucked to complete the suction; the conveying pipe in the conveying cylinder and the boom system When connected, the piston of the conveying cylinder is extended, the sucked concrete mud is pressed into the conveying pipe, the pumping material is applied, and a predetermined pressure is applied to the concrete to flow the concrete along the conveying pipe; the suction and pumping materials are repeated, The concrete is brought to the end of the duct and flows out from the end of the duct to a predetermined concrete working position.
  • the dispensing valve of the pumping device can be a skirt valve, a C-shaped valve, a gate valve or an S-valve.
  • the working principle is basically the same, that is, its basic function is to enable the pumping device to repeatedly perform the suction and pumping in a predetermined manner by state switching, thereby enabling intermittent pumping. Concrete, which causes the concrete to flow intermittently inside the duct. Please refer to FIG.
  • FIG. 1 which is a schematic diagram of the principle of intermittent flow of concrete in a conveying pipe in the prior art.
  • the flow velocity V of the concrete changes periodically with time T as a variable, in the T1 phase.
  • the concrete flows in the conveying pipe at the speed V; during the ⁇ 2, the distribution valve performs the state transition, the conveying cylinder performs the reversing, and at the same time, the suction is provided, which provides the premise for the pumping of the next process.
  • the pumping device stops pumping outward, and the concrete in the conveying pipe stops flowing to form a pumping interval; after the suction is completed, it enters the pumping process of the next cycle.
  • the pumping device is usually provided with two conveying cylinders, and the two conveying cylinders also suck and pump the material through a dispensing valve; During the feeding, the other conveys the red pump material, and the two conveying red turns take the suction and pumping materials, thereby shortening the pumping interruption time.
  • the transfer cylinder is in the state transition, the commutation is also performed, and the distribution valve is also subjected to state transition, so that the pumping interval cannot be completely eliminated.
  • the boom system is a long rod-like structure as a whole; the long rod-shaped boom system also amplifies the vibration generated by the boom system, so that the end of the boom Produces a very large vibration.
  • the frequency of the pulsed shock generated by the pumping of the pumping device is close to or equal to the natural vibration frequency of the boom system, the boom system will generate strong resonance.
  • the vibration amplitude at the end of the boom may be More than lm;
  • the vibration of the boom system with excessive amplitude and intensity not only makes it difficult for concrete to reach the predetermined position, but also affects the quality and smooth operation of the concrete work, and also causes fatigue damage of the pumping device and the boom system, which in turn affects the concrete pump.
  • the service life of the car In order to reduce the vibration amplitude at the end of the boom, the vibration of the boom system is suppressed, such as JP3040592B2.
  • CN1486384A and CN1932215A respectively disclose technical solutions for suppressing vibration of the boom system.
  • the technical solutions disclosed in these patent documents only start from the angle of controlling the attitude of the boom to suppress the amplitude generated by the vibration of the end of the boom, and can not reduce the vibration source of the vibration of the boom system; since the intermittent pumping is caused by the vibration of the boom system.
  • One of the most important factors, and the technical solution disclosed in the above patent document cannot reduce the mixing caused by the intermittent pumping; the intermittent flow and vibration of the suspected soil, and the problem of the vibration of the boom system cannot be solved from the problem due to jtb. .
  • the currently disclosed technology has a passive damping technology for suppressing the vibration of the boom, a pendulum cylinder shock of the distribution valve, a shortening of the commutation time of the swing cylinder, and a technique of buffering the conveying reversal impact;
  • the above technique has achieved certain effects in reducing the vibration of the boom, it does not solve the problem of impact vibration caused by discontinuous concrete flow due to intermittent pumping. Therefore, how to eliminate the intermittent pumping and continuous flow of the mixed soil, reducing or eliminating the impact caused by the discontinuous flow of the mixed soil is a technical problem faced by those skilled in the art.
  • a first object of the present invention is to provide a dispensing mechanism for a pumping device that eliminates pumping intervals during pumping.
  • a second object of the present invention is to provide a pumping device for eliminating vibrations caused by intermittent pumping.
  • a third object of the present invention is to provide a concrete pump truck that eliminates vibrations generated by the boom system due to intermittent pumping.
  • a fourth object of the present invention is to provide a control method for a concrete pump truck to eliminate vibration generated by the boom system due to intermittent pumping.
  • the dispensing mechanism of the pumping device comprises a first wear plate and a second wear plate, the working surface of the first wear plate and the working surface of the second wear plate are rotatably matched; the first wear plate also has At least one discharge port and at least one suction port, the second wear plate has at least three feed ports; during the rotation, the feed ports are connected to the discharge port and the suction port in a predetermined order; Upper, the arc occupied by the discharge port is larger than the arc occupied by the blind plate portion between any two adjacent feed ports.
  • the suction port occupies an arc greater than the arc occupied by the blind plate portion between any two adjacent feed ports.
  • the discharge port occupies at least 120 degrees of curvature.
  • the blind portion between the suction opening and the discharge opening occupies more than the arc occupied by any of the delivery holes.
  • the discharge opening or/and the suction opening are waist-shaped structures extending in the direction of rotation.
  • the waist structure is a ring segment with a semicircular transition at both ends; the radius of the feed port is equal to the radius of the semicircles at both ends of the waist structure.
  • the waist structure is a ring segment having straight sides at both ends; the feed port is a ring segment having straight sides at both ends.
  • the pumping device provided by the present invention comprises a discharge pipe and at least three conveying cylinders, and further comprises any one of the above-mentioned distribution mechanisms, the suction port is connected with the hopper, the discharge port and the discharge pipe One end is connected, and the conveying cylinders are respectively connected with one feeding port.
  • the feed tube is further included, the one end of the feed tube is in communication with the bottom of the hopper, and the other end is in communication with the suction port.
  • the concrete pump truck provided by the present invention comprises a boom system and a pumping device, wherein the pumping device is any one of the above pumping devices, and the other end of the discharge pipe is connected to the conveying pipe of the boom system. through.
  • the present invention also provides a control method for a concrete pump truck, which comprises any of the above pumping devices, which differs from the prior art in that the second wear plate is opposed to The first wear plate rotates, and when the predetermined feed port is in communication with the discharge port, the conveying pump pump that communicates with the feed port is connected to the suction port when the predetermined feed port is connected A red suction material that communicates with the feed port.
  • the dispensing mechanism of the pumping device provided by the present invention, because the arc of the discharge port occupies more than the arc occupied by the blind plate portion between any two adjacent feed ports.
  • the discharge port can communicate with at least one feed port, and then the feed port can be used to pump the pump at any time, so that the pumping device can continuously pump concrete outward;
  • the distribution mechanism the pumping interruption time caused by the prior art distribution valve can be eliminated, the vibration generated by the intermittent pumping can be eliminated, and the pulse flow of the concrete in the conveying pipe can be greatly reduced or even eliminated.
  • the suction port occupies an arc greater than the arc occupied by the blind plate portion between any two of the feed ports.
  • the technical solution can not only realize the continuity of the pump material, but also realize the continuity of the suction, thereby greatly improving the suction efficiency, providing a good premise for the pump material, improving the pumping efficiency of the pumping device, and at the same time, avoiding The impact of the intermittent suction on the pumping device and the boom system of the mixed soil pump truck, thereby eliminating the vibration caused by the intermittent pumping, greatly improving the service life of the concrete pump truck and the stability of the pouring operation.
  • the discharge opening and the suction opening are waist structures extending in the direction of rotation.
  • the flow cross section between the feed port and the suction port, or between the feed port and the discharge port will change in a gradual manner, and this gradual change can It is compatible with the gradual expansion and contraction speed of the conveying cylinder.
  • the suction of the conveying cylinder can be avoided or reduced, and the pressure shock of the high pressure to the distributing mechanism can be reduced when the material is pumped.
  • the pumping device provided with the above-mentioned wear-resistant fitting structure also has a corresponding technical effect, which can eliminate the pumping interval time and reduce the vibration generated during the pumping process.
  • FIG. 1 is a schematic view showing the principle of intermittent flow of concrete in a conveying pipe in the prior art
  • FIG. 2 is a cross-sectional structural view showing a concrete pumping device according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the AA
  • FIG. 4 is a schematic cross-sectional view of the BB in FIG. 2;
  • FIG. 1 is a schematic view showing the principle of intermittent flow of concrete in a conveying pipe in the prior art
  • FIG. 2 is a cross-sectional structural view showing a concrete pumping device according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the AA
  • FIG. 4 is a schematic cross-sectional view of the BB in FIG. 2
  • FIG. 5-1 is a schematic structural view of the dispensing mechanism in the first state of the concrete pumping device provided in the first embodiment
  • 1 is a schematic structural view of a distribution mechanism of a concrete pumping device in a second state
  • FIG. 5-3 is a schematic structural view of a dispensing mechanism in a third state of the concrete pumping device provided in the first embodiment
  • FIG. 5-4 is a first embodiment
  • FIG. 5-5 is a schematic structural view of a distribution mechanism in a fifth state of the concrete pumping device provided in the first embodiment
  • FIG. 5-6 is a schematic view of the distribution mechanism in the fifth state of the concrete pumping device provided in the first embodiment; Schematic diagram of the distribution mechanism of the concrete pumping device in the sixth state; 5-7 is a schematic structural view of a dispensing mechanism in a seventh state of the concrete pumping device according to the first embodiment; and FIG. 5-8 is a structural schematic view of the distributing mechanism in the eighth state of the concrete pumping device provided in the first embodiment;
  • FIG. 7 is a schematic structural view of a third dispensing mechanism provided by the present invention;
  • FIG. 8 is a schematic structural view of a concrete pumping device according to a second embodiment of the present invention;
  • FIG. 9 is a schematic structural view of a fourth dispensing mechanism provided by the present invention.
  • FIG. 2 is a cross-sectional structural view of the concrete pumping device according to the first embodiment of the present invention.
  • the concrete pumping device comprises a feed pipe 2, a discharge pipe 1, a first conveying rainbow 9, a second conveying cylinder 10, a third conveying rainbow 11, and a distributing mechanism 7.
  • the hopper 3 is also shown by a two-dot chain line in the drawing.
  • the dispensing mechanism 7 includes a first wear plate 71 and a second wear plate 72.
  • the first wear plate 71 and the second wear plate 72 are respectively plate-like structures and have predetermined wear resistance. Referring to FIG. 2, the right side of the first wear plate 71 is the working surface, the left side of the second wear plate 72 is the working surface, and the working surface of the first wear plate 71 and the second wear plate 72 work.
  • the surface is rotatably fitted to form a wear surface, so that the second wear plate 72 can be rotated relative to the first wear plate 71 by a suitable driving mechanism, and the rotation axis is XX; during the rotation, the working surfaces of the two parts Keep in contact and seal.
  • the working faces of the first wear plate 71 and the second wear plate 72 are respectively flat, and the wear surface formed is also flat and perpendicular to the rotation axis XX; for the convenience of positioning or driving, Wear surface is set to The tapered surface can also be set to other matching shapes or structures.
  • a sealing jaw 6 is also disposed between the first wear plate 71 and the second wear plate 72. Please refer to FIG. 3 and FIG. 4, FIG.
  • FIG. 3 is a schematic structural view of the AA cross-sectional view of FIG. 2, and FIG. 4 is a cross-sectional structural view of the BB of FIG.
  • the first wear plate 71 further has a discharge opening 5 and a suction opening 4.
  • the discharge opening 5 and the suction opening 4 are waist-shaped structures extending in the rotating direction, and the waist-shaped structure is semi-circular at both ends.
  • the transition ring segment; the ring segment is a portion of the annular face, and the portion between the discharge port 5 and the suction port 4 forms a blind plate portion.
  • the second wear plate 72 has three feed ports 8; the three feed ports 8 are circular, and the radius of the feed port 8 is substantially equal to the radius of the semicircles at both ends of the waist structure, and the gap between the feed ports 8 is formed. Board part.
  • the distance between the centerline of the two waist structures and the axis of rotation XX is equal, and the distance between the center of the feed port 8 and the axis of rotation XX is between the centerline of each waist structure and the axis of rotation XX. The distances are equal so that the annular portion formed by the feed port 8 sweeps completely covers the discharge port 5 and the suction port 4.
  • the arc of the discharge port 5 is set to b, the arc occupied by the suction port 4 is a, and the blind plate portion between the suction port 4 and the discharge port 5 is occupied.
  • the arc is c, the arc occupied by the feed port 8 is d, and the arc e occupied by the blind plate portion between the adjacent two feed ports 8 is.
  • the arc b occupied by the discharge port 5 is larger than the arc 6 occupied by the blind plate portion between any two adjacent feed ports 8.
  • the distribution port 8 is evenly distributed, the arc b occupied by the discharge port 5 is 120 degrees, and the arc a occupied by the suction port 4 is also 120 degrees; between the suction port 4 and the discharge port 5
  • the blind portion of the blind plate has an arc c of 60 degrees, so that the suction port 4 and the discharge port 5 are symmetrically arranged.
  • the feed tube 2 - end is connected to the hopper 3 and the other end is in communication with the suction port 4; preferably, the feed tube 2 is an elbow, one end extending upwardly and connected to the bottom of the hopper 3.
  • One end of the discharge pipe 1 is connected to a delivery pipe (not shown) of the boom system, and the other end is connected to the discharge port 5.
  • the first conveying red 9, the second conveying red 10, and the third conveying red 11 are relatively fixed to the second wear plate 72, and are respectively connected to one of the feeding ports 8.
  • the feed pipe 2 and the discharge pipe 1 are arranged in an arc shape.
  • FIG. 5-1 is a structural schematic diagram of the dispensing mechanism in the first state of the concrete pumping device provided in the first embodiment. Referring to the arrow of FIG. 2 at the same time, in this state, the pistons of the first conveying rainbow 9 and the third conveying red 11 move backward; at this time, the first conveying red 9 and the third conveying red 11 pass the corresponding conveying materials.
  • the mouth 8 is simultaneously connected with the suction port 4, and the mixed soil in the hopper 3 passes through the corresponding two
  • the feed port 8 enters the first transport red 9 and the third transport red 11, and the first transport red 9 and the third transfer cylinder 11 simultaneously suck.
  • the piston of the second conveying rainbow 10 moves forward, the second conveying cylinder 10 communicates with the discharging port 5 through the corresponding conveying port 8, and the mixed soil in the second conveying red 10 passes through the discharging port 5 Pump concrete outside and pump the material.
  • the second wear plate 72 of the dispensing mechanism 7 continues to rotate in the W direction of the drawing, the second transfer cylinder 10 maintains the outward pumping, and the first delivery cylinder 9 and the third delivery red 11 maintain the suction, and at the same time, the first delivery red
  • the flow cross section between the 9 and the suction port 4 is gradually reduced, and the flow cross section between the third transport red 11 and the suction port 4 is gradually increased; the flow between the first transport red 9 and the suction port 4 is passed.
  • the cross section is reduced to zero, and when the flow cross section between the third transport red 11 and the suction port 4 is increased to the maximum, the second state is entered. Please refer to FIG.
  • FIG. 5-2 which is a structural schematic diagram of the dispensing mechanism in the second state of the concrete pumping device provided in the first embodiment.
  • the second delivery cylinder 10 and the third delivery cylinder 11 respectively perform pumping and suction; according to a predetermined working requirement, the first delivery cylinder 9 stops sucking, and can perform reversing, so as to be in the next state.
  • the pump material # ⁇ prepared.
  • the second wear plate 72 continues to rotate in the W direction in the figure, and each of the transfer cylinders maintains the above state, and the first transfer rainbow 9 and the discharge port 5 start to communicate with each other, and the second transfer rainbow 10 and the discharge port 5 communicate with each other.
  • the flow section begins to decrease, it enters the third state. Please refer to FIG.
  • FIG. 5-3 is a structural schematic diagram of the dispensing mechanism in the third state of the concrete pumping device provided in the first embodiment.
  • the flow cross section between the third conveying rainbow 11 and the suction port 4 remains unchanged, and the suction is continuously performed; the flow cross section between the first conveying cylinder 9 and the discharge opening 5 is gradually increased.
  • the first delivery cylinder 9 presses the concrete sucked in outwardly to pump the material; the flow cross section between the second delivery cylinder 10 and the discharge port 5 is gradually reduced, and the pumping is kept outward.
  • the fourth ⁇ ! state When the flow cross section between the first conveying rainbow 9 and the discharge port 5 is increased to the maximum, and the flow cross section between the second conveying rainbow 10 and the discharging port 5 is reduced to zero, the fourth ⁇ ! state.
  • FIG. 5-4 is a structural schematic diagram of the dispensing mechanism in the fourth state of the concrete pumping device provided in the first embodiment.
  • the first delivery cylinder 9 and the third delivery cylinder 11 respectively perform pumping and suction; according to a predetermined working requirement, the second delivery cylinder 10 stops pumping, and can perform reversing, so as to be in the next state.
  • the second wear plate 72 continues to rotate in the W direction in the figure, and each of the transfer cylinders maintains the above state, and the second transfer cylinder 10 and the suction port 4 start to communicate with each other, and the third transfer cylinder 11 and the suction port 4 communicate with each other.
  • the flow section begins to decrease, it enters the fifth state.
  • FIG. 5-5 is a structural schematic diagram of the dispensing mechanism in the fifth state of the concrete pumping device provided in the first embodiment.
  • the second transfer cylinder 10 and the third transfer cylinder 11 perform suction
  • the first transfer cylinder 9 performs pumping.
  • the second wear plate 72 of the dispensing mechanism 7 continues to rotate in the W direction in the figure, the flow cross section between the third transport red 11 and the suction port 4 is gradually reduced, and the second transport red 10 is The flow cross section between the suction ports 4 is gradually increased; the flow cross section between the third transfer red 11 and the suction port 4 is reduced to zero, and the flow cross section between the second transfer cylinder 10 and the suction port 4 When it is increased to the maximum, it enters the sixth state.
  • FIG. 5-6 is a structural schematic diagram of the dispensing mechanism in the sixth state of the concrete pumping device provided in the first embodiment.
  • the first conveying rainbow 9 and the second conveying rainbow 10 respectively perform pumping and sucking; according to predetermined work requirements, the third conveying cylinder 11 can perform a reversing process, so as to be the pumping material of the next state. ready.
  • the second wear plate 72 continues to rotate in the W direction in the figure, and the third transport red 11 and the discharge port 5 begin to communicate, and the flow cross section between the first transport red 9 and the discharge port 5 begins to decrease, and enters.
  • the seventh state Please refer to FIG.
  • FIG. 5-7 is a structural schematic diagram of the dispensing mechanism in the seventh state of the concrete pumping device provided in the first embodiment.
  • the flow cross section between the second transfer cylinder 10 and the suction port 4 remains unchanged, and the suction is continuously performed; the flow cross section between the third transfer cylinder 11 and the discharge port 5 gradually increases.
  • the pumping material is continuously operated; the flow cross section between the first conveying cylinder 9 and the discharge port 5 is gradually reduced, and the pumping is kept outward.
  • the flow cross section between the third conveying rainbow 11 and the discharge port 5 is increased to the maximum, and when the flow cross section between the first conveying red 9 and the discharging port 5 is reduced to zero, the eighth state is entered. Please refer to FIG.
  • FIG. 5-8 which is a structural schematic diagram of the dispensing mechanism in the eighth state of the concrete pumping device provided in the first embodiment.
  • the third delivery cylinder 11 and the second delivery cylinder 10 respectively perform pumping and suction; and in accordance with predetermined operational requirements, the first delivery cylinder 9 can be reversed to prepare for the next state of suction.
  • the second wear plate 72 continues to rotate in the W direction in the figure, and the first conveying rainbow 9 starts to communicate with the suction port 4, and when the flow cross section between the second conveying red 10 and the suction port 4 starts to decrease, the return The first state enters the next cycle.
  • the periodic cycle of the above state allows the mixed soil pumping device to continuously pump the mixed soil.
  • each of the conveying rainbow commutation processes is in a closed state, that is, one conveying rainbow starts from the switching direction to the end of the reversing direction, and the conveying port 8 corresponding to the conveying rainbow remains and the suction port 4 and the blind plate portion 4 between the discharge ports 5 are in the opposite direction.
  • the mixed soil pumping device provided in this embodiment can also be guaranteed In either state, at least one of the delivery cylinders performs the suction; the continuous suction provides good pumping on the one hand to further eliminate the vibration generated by the intermittent suction, and greatly improves the working stability.
  • the curvature a occupied by the suction port 4 can be made smaller than the curvature e occupied by the blind plate portion between the adjacent two delivery ports 8, and a plurality of the first wear plates 71 can be disposed.
  • the advantage of making the arc c of the blind plate portion between the suction port 4 and the discharge port 5 60 degrees is that each of the delivery cylinders has the same working state switching time, which facilitates the control of the switching of the working state of each of the delivery cylinders.
  • the curvature c occupied by the blind plate portion between the suction port 4 and the discharge port 5 is greater than the curvature d occupied by any of the delivery holes 8.
  • the delivery hole 8 corresponds to the blind plate portion
  • the delivery hole 8 is closed by the blind plate portion to ensure the sealing performance of the corresponding delivery cylinder; and between the suction port 4 and the discharge port 5
  • the arc c occupied by the blind plate portion is smaller than the arc e occupied by the blind plate portion between any two adjacent feed ports 8 to operate at least one of the transfer cylinders at any time for suction or pumping.
  • the delivery port 8 is not limited to being uniformly distributed on the second wear plate 72, while ensuring that each of the delivery ports 8 can communicate with the discharge port 5 and the suction port 4 in a predetermined order;
  • the arc b occupied by the discharge port 5 is larger than the arc e occupied by the blind plate portion between any two adjacent feed ports 8, so that at least one conveying rainbow and discharge port can be made in any state. 5 is connected to each other, and the conveying cylinder can be continuously pumped to achieve the object of the present invention.
  • the curvature b occupied by the discharge port 5 can be reduced. Please refer to FIG.
  • the second wear plate 72 includes six feed ports that are evenly arranged, and the discharge port 5 also occupies an arc b of 120 degrees.
  • this distribution mechanism it is possible to ensure that at least two conveying siphons are pumped in any state, and thus the stability of the pumping material can be further improved.
  • the above-described dispensing mechanism can also cause the concrete pumping device to suck at least two conveying cylinders in any state.
  • the suction opening 4 and the discharge opening 5 are waist-shaped structures extending in the rotational direction, and the structure has the following advantages: First, the first wear plate 71 of the dispensing mechanism 7 can be ensured to have sufficient strength. Secondly, before and after the state transition, the flow cross section changes gradually between the feed port 8 and the suction port 4 and the discharge port 5; the structure can make the gradient change and the conveyance rainbow change forward and backward The gradual change of the speed is adopted, and the suction of the suction time is avoided, and the pressure of the pumping material is high on the pressure of the first wear plate 71.
  • FIG. 7 is a schematic view showing the structure of a third dispensing mechanism provided by the present invention.
  • the suction port 4 and the discharge port 5 are respectively rectangular structures.
  • the feed pipe 2 - end in the concrete pumping device is connected to the bottom of the hopper 3, and the structure can separate the concrete pumping device and the distributing mechanism 7 from the hopper 3, avoiding the prior art, the dispensing valve
  • the space of the hopper 3 is occupied insufficiently; the effective volume of the hopper 3 is increased, and the hopper blade is more fully stirred; at the same time, the feeding tube 2 is connected with the bottom of the hopper 3, and the gravity of the concrete can be utilized to make the concrete to the suction opening. 4
  • Flow more conducive to suction, especially conducive to concrete suction of coarse aggregate, so that the concrete pumping device has higher suction efficiency, reduces the accumulation in the hopper 3, and can also facilitate the cleaning of the hopper 3.
  • FIG. 8 the figure is a schematic structural view of a concrete pumping device according to the second embodiment of the present invention. Compared with the concrete pumping device provided in the first embodiment, the difference is that the suction port 4 is directly connected to the hopper 3, and the first wear plate 71 may be part of the wall plate of the hopper 3, or may be combined with the hopper 3. The wall panel is fixed so that the concrete in the hopper 3 can directly reach the suction port 4.
  • FIG. 9 is a schematic structural view of a fourth dispensing mechanism provided by the present invention.
  • the distribution mechanism is different in that the three delivery ports 8 are respectively ring segments having straight sides at both ends, and the suction port 4 and the discharge port 5 are also waist structures.
  • the waist structure is a ring segment having straight sides at both ends.
  • the cross section of the transfer cylinder can also be set to the same structure as the feed port 8.
  • other shapes of the delivery port 8 can also be combined or matched with other shaped outlets 5 or/and feed ports 4.
  • the present invention also provides a concrete pump truck comprising a boom system and a concrete pumping device, wherein the concrete pumping device is any one of the above concrete pumps a delivery device, the discharge tube being in communication with a delivery tube of the boom system. Since the concrete pumping device has the above technical effects, the concrete pump truck including the concrete pumping device also has the corresponding technical effect, eliminating the vibration source vibrating due to the intermittent pumping, making the boom system work more stable and vibrating. Smaller, in turn, concrete can be more accurately transported to a predetermined working position, thereby greatly improving the quality of concrete work.
  • the above pumping device is not limited to use on a concrete pump truck, but can also be applied to a tow pump, a car pump or other pumping machine.
  • the same technical effect can be produced.
  • a control method capable of controlling the above concrete pump truck and a control method of the existing concrete pump truck are also provided.
  • the difference is that the second wear plate 72 is rotated at a predetermined speed or manner with respect to the first wear plate 71, so that the feed port 8 is in a predetermined order with the discharge port 5 and the suction port 4.
  • the concrete pump arm can be made at any time
  • the frame system continuously outputs concrete out of the end, eliminating the vibration caused by intermittent conveying, and greatly reducing the vibration amplitude of the end of the boom.
  • the manner of rotation of the second wear plate 72 relative to the first wear plate 71 is periodically rotated within a predetermined range, preferably circumferentially rotated, to reduce the impact of the reciprocating swing on the concrete pumping device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

泵送装置的分配机构、 泵送装置、 混凝土泵车及混凝土泵车的控
制方法 本申请要求于 2010年 6月 11 日提交至中国国家知识产权局、 申请号为 201010203362.2、 发明名称为 "混疑土泵车及其控制方法、 泵送装置及其分 配机构" 的中国发明专利申请的优先权。 技术领域 本发明涉及一种泵送混凝土或其他等粘稠物技术, 特别涉及一种泵送装 置的分配机构, 包括该分配机构的泵送装置, 包括该泵送装置的混凝土泵车; 还提供了一种混凝土泵车的控制方法。 背景技术 混疑土泵车是当前应用广泛的混疑土机 ^戈之一。 混疑土泵车一般包括泵 送装置和臂架系统。 泵送装置一般又包括料斗, 输送缸, 分配阀; 臂架系统 包括臂架和输送管, 臂架包括多节通过横向铰接轴顺序铰接相连的节臂, 输 送管包括多节顺序相连的管道, 管道分别固定在节臂上。 料斗用于存放混凝 土; 分配阀能够在摆动油缸驱动下进行状态转换, 在预定第一时间内使输送 缸与料斗相连通,在预定的第二时间内使输送虹与臂架系统的输送管相连通。 输送缸的活塞能够在液压缸驱动下进行伸缩运动;在输送缸与料斗相连通时, 使输送缸的活塞后缩, 吸入适量的混凝土, 完成吸料; 在输送缸与臂架系统 的输送管相连通时, 使输送缸的活塞外伸, 将吸入的混凝土泥浆压入输送管 中, 进行泵料, 并对混凝土施加预定压力, 使混凝土沿输送管流动; 多次吸 料和泵料, 可以使混凝土到达输送管末端, 并从输送管末端流出, 到达预定 的混凝土作业位置。 改变臂架中节臂之间的位置关系, 可以改变臂架末端的 位置, 从而使混凝土到达预定位置, 方便混凝土浇注作业的进行。 根据具体结构的不同, 泵送装置的分配阀可以是裙阀、 C形阀、 闸板阀 或 S阀。 虽然分配阀的具体结构形式存在不同, 但其工作原理基本相同, 即 其基本功能在于通过状态转换, 使泵送装置能够以预定的方式反复地进行吸 料与泵料, 进而能够间断地泵送混凝土, 使混凝土在输送管内间断式流动。 请参考图 1 , 该图是现有技术中, 混凝土在输送管内的间断式流动的原 理示意图。 混凝土的流动速度 V以时间 T为变量进行周期性变化, 在 T1期 间, 在输送虹产生的压力作用下, 混凝土以速度 V在输送管内流动; 在 Τ2 期间, 分配阀进行状态转换、 输送缸进行换向, 同时进行吸料, 为下一过程 的泵料提供前提; 在吸料过程中, 泵送装置停止向外泵料, 输送管内的混凝 土停止流动, 形成泵送间隔时间; 在吸料结束后, 进入下一周期的泵料过程。 如此地进行周期性变化,形成间断式泵送,使混凝土在输送管内间断式流动。 当前, 为了缩短泵送间隔时间, 提高泵送装置的混凝土输送量, 泵送装 置通常设置有两个输送缸 ,两个输送缸也是通过一个分配阀进行吸料和泵料; 在一个输送紅吸料时, 另一输送紅泵料, 并使两个输送紅轮流进行吸料和泵 料, 进而缩短泵送间断时间。 但输送缸进行状态转换时, 同样要进行换向, 分配阀也要进行状态转换, 从而并不能完全消除泵送间隔时间。 间断式泵送及间断式流动必然对泵送装置、 臂架系统产生脉冲式冲击, 使臂架系统产生相应的振动。 另外, 为了将混凝土输送到较远或较高的位置, 臂架系统在整体上为长杆状结构; 长杆状结构的臂架系统还会将臂架系统产 生的振动放大, 使臂架末端产生很大幅度的振动。 当泵送装置的间隔式泵送 产生的脉冲式冲击的频率与臂架系统的固有振动频率接近或相等时, 臂架系 统将产生强烈的共振, 在特定情况下, 臂架末端的振动幅度可能达到 lm 以 上; 臂架系统产生幅度、 强度过大的振动不仅使混凝土难以到达预定位置, 影响混凝土作业的质量和顺利进行, 还会造成泵送装置、 臂架系统的疲劳损 伤, 进而影响混凝土泵车的使用寿命。 为了减小臂架末端的振动幅度, 平抑臂架系统的振动, 如 JP3040592B2、
CN1486384A及 CN1932215A分别公开了平抑臂架系统振动的技术方案。 这 些专利文献公开的技术方案仅是从控制臂架姿态的角度入手来遏制臂架末端 振动产生的振幅, 并不能减少臂架系统振动的振源; 由于间断式泵送是引起 臂架系统振动的最重要因素之一, 而上述专利文献公开的技术方案无法减小 由于间断式泵送产生的混;疑土间断式流动和振动, 因 jtb, 无法从才艮本上解决 臂架系统振动的问题。 为了减小泵送装置的振动, 目前公开的技术有平抑臂 架振动的被动式减振技术、减氏分配阀摆缸冲击、缩短摆动油缸的换向时间、 緩冲输送虹换向冲击等技术; 上述技术虽然在减小臂架振动方面取得了一定 效果, 但是, 都不能解决由于间断式泵送使混凝土流动不连续而产生的冲击 振动问题。 因此, 如何消除间断式泵送并使混疑土连续地流动, 减小或消除混疑土 非连续流动产生的冲击是当前本领域技术人面对的技术难题。 发明内容 针对上述技术难题, 本发明的第一个目的在于提供一种泵送装置的分配 机构, 消除泵送过程中的泵送间隔时间。 在提供上述分配机构的基础上, 本发明的第二个目的在于提供一种泵送 装置, 以消除由于间断式泵送而产生的振动。 在提供上述泵送装置的基础上, 本发明的第三个目的在于提供一种混凝 土泵车, 以消除臂架系统由于间断式泵送而产生的振动。 在提供上述混凝土泵的基础上, 本发明的第四个目的在于提供一种混凝 土泵车的控制方法, 以消除臂架系统由于间断式泵送而产生的振动。 本发明提供的泵送装置的分配机构包括第一耐磨板和第二耐磨板, 第一 耐磨板的工作面与第二耐磨板工作面可旋转配合; 第一耐磨板还具有至少一 个出料口和至少一个吸料口, 第二耐磨板具有至少三个输料口; 在旋转过程 中, 输料口按预定顺序与出料口和吸料口相连通; 在旋转方向上, 出料口占 用的弧度大于相邻的任意两个输料口之间的盲板部分占用的弧度。 优选的, 在旋转方向上, 吸料口占用的弧度大于相邻的任意两个输料口 之间的盲板部分占用的弧度。 优选的, 在旋转方向上, 至少三个输料口均匀分布于第二耐磨板上。 优选的, 在旋转方向上, 出料口占用的弧度至少为 120度。 优选的, 在旋转方向上, 吸料口与出料口之间的盲板部分占用的弧度大 于任一输料孔占用的弧度。 优选的, 出料口或 /和吸料口为沿旋转方向延伸的腰形结构。 优选的, 腰形结构为两端通过半圓过渡的圓环段; 输料口的半径与腰形 结构的两端半圓的半径相等。 可选的, 腰形结构为两端具有直边的圓环段; 输料口为两端具有直边的 圓环段。 为了实现上述第二个目的, 本发明提供的泵送装置包括出料管和至少三 个输送缸, 还包括上述任一种分配机构, 吸料口与料斗相连通, 出料口与出 料管一端相连通, 输送缸分别与一个输料口相连通。 优选的, 还包括进料管, 进料管一端与料斗的底部相连通, 另一端与吸 料口相连通。 为了实现上述第三个目的, 本发明提供的混凝土泵车包括臂架系统和泵 送装置, 泵送装置为上述任一种泵送装置, 出料管的另一端与臂架系统的输 送管相连通。 为了实现上述第四个目的,本发明还提供了一种混凝土泵车的控制方法, 混凝土泵车包括上述任一种泵送装置, 与现有技术的区别在于, 使第二耐磨 板相对于第一耐磨板旋转, 在预定的输料口与出料口相连通时, 使与该输料 口相连通的输送虹泵料, 在预定的输料口与吸料口相连通时, 使与该输料口 相连通的输送紅吸料。 与利用现有技术中的分配阀相比,本发明提供的泵送装置的分配机构中, 由于出料口占用的弧度大于相邻的任意两个输料口之间的盲板部分占用的弧 度, 这样, 在任意时刻出料口能够和至少一个输料口相连通, 再利用该输料 口,就可以在任意时刻进行泵料,使泵送装置能够连续性地向外泵送混凝土; 因此, 利用该分配机构, 就可以消除现有技术分配阀造成的泵送间断时间, 消除由于间断式泵送而产生的振动, 进而能够大幅度地减小、 甚至消除混凝 土在输送管内的脉冲式流动。 在进一步的技术方案中, 在旋转方向上, 吸料口占用的弧度大于任意两 个输料口之间的盲板部分占用的弧度。 该技术方案不仅能够实现泵料的连续 性, 还能够实现吸料连续性, 进而能够大大提高吸料效率, 为泵料提供良好 前提, 提高泵送装置的泵送效率; 同时, 还能够避免由于吸料间断对泵送装 置、 混疑土泵车的臂架系统造成的冲击, 进而消除由于间断式泵送而产生的 振动, 大幅度地提高混凝土泵车的使用寿命和浇注作业的稳定性。 在进一步的优选技术方案中, 出料口和吸料口为沿旋转方向延伸的腰形 结构。 利用该技术方案提供的分配机构, 在状态转换前后, 输料口与吸料口, 或输料口与出料口之间通流截面会以渐变的方式变化, 这种渐变式变化能够 与输送缸换向前后的伸缩速度渐变相适应, 在吸料过程中, 能够避免或减少 输送缸空吸, 在泵料时, 能够减小高压对分配机构的压力冲击。 由于分配机构具有上述技术效果, 提供的包括上述耐磨配合结构的泵送 装置也具有相应的技术效果, 能够消除泵送间隔时间, 减小泵送过程中产生 的振动。 同样, 提供的混凝土泵车也具有相对应的技术效果; 另外, 提供的 混凝土泵车的控制方法能够实现连续泵送混凝土, 消除臂架系统由于间断式 泵送而产生的振动。 附图说明 图 1是现有技术中, 混凝土在输送管内的间断式流动的原理示意图; 图 2是本发明实施例一提供的混凝土泵送装置主视方向的剖视结构示意 图; 图 3是图 2中 A-A剖视结构示意图; 图 4是图 2中 B-B剖视结构示意图; 图 5-1是实施例一提供的混凝土泵送装置第一状态时分配机构的结构示 意图; 图 5-2是实施例一提供的混凝土泵送装置第二状态时分配机构的结构示 意图; 图 5-3是实施例一提供的混凝土泵送装置第三状态时分配机构的结构示 意图; 图 5-4是实施例一提供的混凝土泵送装置第四状态时分配机构的结构示 意图; 图 5-5是实施例一提供的混凝土泵送装置第五状态时分配机构的结构示 意图; 图 5-6是实施例一提供的混凝土泵送装置第六状态时分配机构的结构示 意图; 图 5-7是实施例一提供的混凝土泵送装置第七状态时分配机构的结构示 意图; 图 5-8是实施例一提供的混凝土泵送装置第八状态时分配机构的结构示 意图; 图 6是本发明提供的第二种分配机构的结构示意图; 图 7是本发明提供的第三种分配机构的结构示意图; 图 8是本发明实施例二提供的一种混凝土泵送装置的结构示意图; 以及 图 9是本发明提供的第四种分配机构的结构示意图。 具体实施方式 下面结合附图对本发明进行详细描述, 本部分的描述仅是示范性和解释 性的, 不应对本发明的保护范围有任何的限制作用。 应当说明的是: 虽然以 下以泵送混凝土为例对本发明进行描述, 但本发明提供的技术方案也可以应 用于泵送与混凝土类似的其他粘稠物。 为了描述的方便, 在对混凝土泵送装置描述的同时, 对混凝土泵送装置 的分配机构的结构及工作原理进行描述, 不再单独对分配机构进行说明和描 述。 请参考图 2, 该图是本发明实施例一提供的混凝土泵送装置主视方向的 剖视结构示意图。该混凝土泵送装置包括进料管 2、 出料管 1、第一输送虹 9、 第二输送缸 10、 第三输送虹 11和分配机构 7。 为了描述的方便, 图中还用双 点划线示出了料斗 3。 分配机构 7包括第一耐磨板 71和第二耐磨板 72, 本例中, 第一耐磨板 71和第二耐磨板 72分别为板状结构, 并具有预定的耐磨性能。 以图 2为参 考, 第一耐磨板 71右侧面为工作面, 第二耐磨板 72的左侧面为工作面, 第 一耐磨板 71工作面和第二耐磨板 72的工作面可旋转配合, 形成耐磨面, 使 第二耐磨板 72能够在适当的驱动机构驱动下相对于第一耐磨板 71旋转, 旋 转轴线为 X-X; 在旋转过程中, 两部件的工作面保持接触和密封。 本例中, 第一耐磨板 71和第二耐磨板 72的工作面分别为平面, 形成的耐磨面也为平 面, 且与旋转轴线 X-X垂直; 为定位或驱动的方便, 也可以将耐磨面设置为 锥面, 还可以设置为其他相配合的形状或结构。 为了保持耐磨面之间的密封 性能, 在第一耐磨板 71和第二耐磨板 72之间还设置有密封圏 6。 请参考图 3和图 4, 图 3是图 2中 A-A剖视结构示意图, 图 4是图 2中 B-B剖视结构示意图。 第一耐磨板 71还具有出料口 5和吸料口 4, 本例中, 出料口 5和吸料口 4为沿旋转方向延伸的腰形结构, 且腰形结构为两端通过 半圓过渡的圓环段; 所述圓环段为环形面的一部分, 出料口 5和吸料口 4之 间的部分形成盲板部分。 第二耐磨板 72具有三个输料口 8; 三个输料口 8为 圓形, 输料口 8的半径与腰形结构两端半圓的半径基本相等, 输料口 8之间 形成盲板部分。 优选的, 两个腰形结构中心线与旋转轴线 X-X之间的距离相 等,并使输料口 8的中心与旋转轴线 X-X之间的距离与每个腰形结构中心线 与旋转轴线 X-X之间的距离相等, 以使输料口 8扫过形成的环状区域完全覆 盖出料口 5和吸料口 4。 如图所示, 在所述旋转方向上, 设出料口 5 占用的弧度为 b, 吸料口 4 占用的弧度为 a, 吸料口 4与出料口 5之间的盲板部分占用的弧度为 c, 输料 口 8占用的弧度为 d, 相邻的两个输料口 8之间的盲板部分占用的弧度 e。 出 料口 5 占用的弧度 b大于相邻的任意两个输料口 8之间的盲板部分占用的弧 度6。 优选的, 使输料口 8均匀分布, 出料口 5 占用的弧度 b为 120度, 并 使吸料口 4占用的弧度 a也为 120度; 使吸料口 4与出料口 5之间的盲板部 分占用弧度 c为 60度, 使吸料口 4和出料口 5对称布置。 再参考图 2, 进料管 2—端与料斗 3相连, 另一端与吸料口 4相连通; 优选的, 进料管 2为弯管, 一端向上伸出, 与料斗 3的底部相连。 出料管 1 的一端连通臂架系统的输送管 (图中未示出), 另一端与出料口 5 相连通。 第一输送紅 9、 第二输送紅 10、 第三输送紅 11与第二耐磨板 72相对固定, 并分别和一个输料口 8相连通。 为了便于混凝土的流动, 进料管 2与出料管 1设置为弧形结构。 以下以图 4所示的状态为起点, 对上述混凝土泵送装置的工作过程进行 描述。 请参考图 5-1 , 该图是实施例一提供的混凝土泵送装置第一状态时分配 机构的结构示意图。 同时参考图 2箭头所示, 在该状态下, 第一输送虹 9和 第三输送紅 11的活塞向后运动; 此时, 第一输送紅 9和第三输送紅 11通过 相对应的输料口 8同时与吸料口 4相连通, 料斗 3内的混疑土通过相应的两 个输料口 8进入到第一输送紅 9和第三输送紅 11内,第一输送紅 9和第三输 送缸 11同时进行吸料。 同时, 第二输送虹 10的活塞向前运动, 第二输送缸 10通过相对应的输料口 8与出料口 5相连通, 第二输送紅 10内的混疑土通 过出料口 5向外泵送混凝土, 进行泵料。 分配机构 7的第二耐磨板 72以图 中 W方向继续旋转, 第二输送缸 10保持向外泵料, 第一输送缸 9和第三输 送紅 11保持吸料,同时,第一输送紅 9与吸料口 4之间的通流截面逐渐减小, 第三输送紅 11与吸料口 4之间的通流截面逐渐增加;在第一输送紅 9与吸料 口 4之间通流截面减小为零,第三输送紅 11与吸料口 4之间的通流截面增加 到最大时, 进入第二状态。 请参考图 5-2, 该图是实施例一提供的混凝土泵送装置第二状态时分配 机构的结构示意图。 在第二状态下, 第二输送缸 10和第三输送缸 11分别进 行泵料和吸料; 居预定的工作要求, 第一输送缸 9停止吸料, 并可以进行 换向, 以为下一状态的泵料 #丈准备。 第二耐磨板 72以图中 W方向继续旋转, 各输送缸保持上述状态, 在第一输送虹 9与出料口 5开始相连通, 第二输送 虹 10与出料口 5之间的通流截面开始减小时, 进入第三状态。 请参考图 5-3 , 该图是实施例一提供的混凝土泵送装置第三状态时分配 机构的结构示意图。在第三状态时, 第三输送虹 11与吸料口 4之间的通流截 面保持不变, 持续地进行吸料; 第一输送缸 9与出料口 5之间的通流截面逐 渐增加, 第一输送缸 9将其吸入的混凝土向外压出, 进行泵料; 第二输送缸 10与出料口 5之间通流截面逐渐减小, 并保持向外泵料。 在第一输送虹 9与 出料口 5之间的通流截面增加到最大, 第二输送虹 10与出料口 5之间的通 流截面减小为零时, 进入第四^! 态。 请参考图 5-4, 该图是实施例一提供的混凝土泵送装置第四状态时分配 机构的结构示意图。在第四状态下, 第一输送缸 9和第三输送缸 11分别进行 泵料和吸料; 居预定的工作要求, 第二输送缸 10 停止泵料, 并可以进行 换向, 以为下一状态的吸料做准备。 第二耐磨板 72以图中 W方向继续旋转, 各输送缸保持上述状态, 在第二输送缸 10与吸料口 4开始相连通, 第三输 送缸 11与吸料口 4之间的通流截面开始减小时, 进入第五状态。 请参考图 5-5 , 该图是实施例一提供的混凝土泵送装置第五状态时分配 机构的结构示意图。在该状态下, 第二输送缸 10和第三输送缸 11进行吸料 , 第一输送缸 9进行泵料。 分配机构 7的第二耐磨板 72以图中 W方向继续旋 转, 第三输送紅 11与吸料口 4之间的通流截面逐渐减小, 第二输送紅 10与 吸料口 4之间的通流截面逐渐增加;在第三输送紅 11与吸料口 4之间通流截 面减小为零, 第二输送缸 10与吸料口 4之间的通流截面增加到最大时, 进 入第六状态。 请参考图 5-6, 该图是实施例一提供的混凝土泵送装置第六状态时分配 机构的结构示意图。 在该状态下, 第一输送虹 9和第二输送虹 10分别进行 泵料和吸料; 居预定的工作要求, 第三输送缸 11可以进行换向过程, 以为 下一状态的泵料 #丈准备。 第二耐磨板 72以图中 W方向继续旋转, 在第三输 送紅 11与出料口 5开始相连通,第一输送紅 9与出料口 5之间的通流截面开 始减小时, 进入第七状态。 请参考图 5-7, 该图是实施例一提供的混凝土泵送装置第七状态时分配 机构的结构示意图。 在该状态时, 第二输送缸 10与吸料口 4之间的通流截 面保持不变,持续地进行吸料; 第三输送缸 11与出料口 5之间的通流截面逐 渐增加,持续地进行泵料; 第一输送缸 9与出料口 5之间通流截面逐渐减小, 并保持向外泵料。 在第三输送虹 11与出料口 5之间的通流截面增加到最大, 第一输送紅 9与出料口 5之间的通流截面减小为零时, 进入第八状态。 请参考图 5-8, 该图是实施例一提供的混凝土泵送装置第八状态时分配 机构的结构示意图。 在该状态下, 第三输送缸 11和第二输送缸 10分别进行 泵料和吸料; 居预定的工作要求, 第一输送缸 9可以进行换向, 以为下一 状态的吸料故准备。 第二耐磨板 72以图中 W方向继续旋转, 在第一输送虹 9与吸料口 4开始相连通, 第二输送紅 10与吸料口 4之间的通流截面开始减 小时, 返回第一状态, 进入下一循环周期。 上述状态的周期性循环, 可以使 混疑土泵送装置连续地外泵送混疑土。 在上述周期性循环中, 每个输送虹换向过程中, 均处于封闭状态, 即一 个输送虹从换向开始到换向结束, 与该输送虹相对应的输料口 8保持与吸料 口 4和出料口 5之间的盲板部分 4目对。 根据上述描述,可以看出,在混凝土泵送装置工作过程中的任一个状态, 混凝土泵送装置的至少一个输送虹进行泵料, 进而该混凝土泵送装置能够在 任一状态、任一时刻向外泵送混凝土,使混凝土连续性地从出料口 5中流出, 进而从 -本上消除了泵送过程中存在的泵送间断时间, 使混凝土能够连续地 在输送管中流动, 避免由于泵送间断造成的混凝土流动间断, 消除由于间断 式泵送而产生的振动。 同样, 本实施例提供的混疑土泵送装置也可以保证在 任一状态下, 至少一个输送缸进行吸料; 连续性吸料一方面为泵料提供良好 能够进一步地消除由于间断式吸料而产生的振动, 大幅度地提高其工作稳定 性。 在特定情况下, 也可以使吸料口 4 占用的弧度 a小于相邻两个输料口 8 之间的盲板部分占用的弧度 e, 还可以在第一耐磨板 71上设置多个能够与输 料口 8相连通的多个吸料口 4。 使吸料口 4与出料口 5之间的盲板部分的弧度 c为 60度的益处在于:使 各输送缸具有相同的工作状态转换时间, 方便对各输送缸工作状态转换的控 制。 优选的, 使吸料口 4与出料口 5之间的盲板部分占用的弧度 c大于任一 输料孔 8 占用的弧度 d。 这样, 可以使输料孔 8与盲板部分相对应时, 通过 盲板部分将输料孔 8封闭, 保证相应输送缸的密封性能; 还可以使吸料口 4 与出料口 5之间的盲板部分占用的弧度 c小于任意两个相邻的输料口 8之间 的盲板部分占用的弧度 e, 以在任意时刻, 使至少一个输送缸进行工作, 进 行吸料或泵料。 可以理解, 输料口 8不限于均匀分布在第二耐磨板 72上, 在保证每个 输料口 8能够按照预定顺序与出料口 5和吸料口 4相连通的前提下; 只要在 旋转方向上, 出料口 5 占用的弧度 b大于相邻的任意两个输料口 8之间的盲 板部分占用的弧度 e, 就可以在任何状态下, 使至少一个输送虹与出料口 5 相连通, 可以使该输送缸进行连续泵料, 实现本发明的目的。 同样, 在第二 耐磨板 72具有更多个输料口 8时, 可以减小出料口 5 占用的弧度 b。 请参考图 6 , 该图是本发明提供的第二种分配机构的结构示意图。 该分 配机构中, 第二耐磨板 72 包括均匀布置的 6个输料口, 出料口 5 同样占用 的弧度 b为 120度。 利用该分配机构, 可以在任一状态下, 保证至少两个输 送虹进行泵料,进而这样能够进一步地提高泵料的稳定性。基于相同的原理, 上述分配机构还可以使混凝土泵送装置在任何状态下, 至少有两个输送缸进 行吸料。 本实施例中, 吸料口 4和出料口 5为沿旋转方向延伸的腰形结构, 该结 构的益处在于: 第一, 这样能够保证分配机构 7的第一耐磨板 71具有足够 的强度; 第二, 在状态转换前后, 由于输料口 8与吸料口 4和与出料口 5之 间通流截面渐变式变化; 该结构能够使这种渐变式变化与输送虹换向前后伸 缩速度的渐变相适应, 避免吸料时空吸, 泵料时泵料高压对第一耐磨板 71 的压力冲击。 在满足强度需要、 满足与输料口 8相连通的情况下, 也可以将 吸料口 4和出料口 5设置为其他腰形结构或者非腰形结构。 如图 7所示的本 发明提供的第三种分配机构的结构示意图, 该分配机构中, 吸料口 4和出料 口 5就分别为矩形结构。 实施例一中, 混凝土泵送装置中的进料管 2—端与料斗 3的底部相连, 该结构能够将混凝土泵送装置及分配机构 7与料斗 3分开设置, 避免现有技 术中, 分配阀占用料斗 3空间的不足; 进而使料斗 3的有效容积增大, 料斗 叶片搅动更充分; 同时, 使进料管 2与料斗 3的底部相连, 可以利用混凝土 的重力作用, 使混凝土向吸料口 4流动, 更有利于吸料, 特别有利于对粗骨 料的混凝土吸料 ,使混凝土泵送装置的吸料效率更高, 减少料斗 3内的积料 , 还能够方便料斗 3的清洗。 另外, 还可以使吸料口 4直接与料斗 3相连, 请参考图 8 , 该图是本发 明实施例二提供的一种混凝土泵送装置的结构示意图。 与实施例一提供的混 凝土泵送装置相比, 其区别在于, 吸料口 4直接与料斗 3相连通, 第一耐磨 板 71可以是料斗 3的墙板的一部分, 也可以与料斗 3的墙板固定, 使料斗 3 内混凝土能够直接到达吸料口 4。 请参考图 9, 该图是本发明提供的第四种分配机构的结构示意图。 与实 施例一中的分配机构相比, 该分配机构的区别在于, 三个输料口 8分别为两 端具有直边的圓环段, 吸料口 4和出料口 5也为腰形结构, 此时腰形结构是 两端具有直边的圓环段。 为了保证输料口与输送缸截面匹配, 还可以将输送 缸截面设置为与输料口 8相同的结构。 当然, 也可以将其他形状的输料口 8 与其他形状的出料口 5或 /和进料口 4进行组合或匹配。 在提供上述混凝土泵送装置的基础上,本发明还提供了一种混凝土泵车 , 该混凝土泵车包括臂架系统和混凝土泵送装置, 所述混凝土泵送装置为上述 任一种的混凝土泵送装置, 所述出料管与臂架系统的输送管相连通。 由于混 凝土泵送装置具有上述技术效果, 包括该混凝土泵送装置的混凝土泵车也具 有相应的技术效果, 消除由于间断式泵送而产生振动的振源, 使其臂架系统 工作更稳定, 振动更小, 进而可以将混凝土更准确地输送到预定作业位置, 进而大大提高混凝土作业的质量。 当然, 上述泵送装置不限于用于混凝土泵 车上, 还可以应用在拖泵、 车载泵或其他泵送机戈上。 同样能够产生相应的 技术效果。 在提供上述混凝土泵车的基础上, 为了更好地发挥上述混凝土泵车的连 续泵料的性能, 还提供了一种能够控制上述混凝土泵车的控制方法, 与现有 混凝土泵车的控制方法相比, 其区别在于, 使第二耐磨板 72 相对于所述第 一耐磨板 71 以预定的速度或方式旋转, 使输料口 8按预定顺序与出料口 5 和吸料口 4相连通, 在预定的输料口 8与出料口 5相连通时, 使该输料口为 泵料口, 并使与该输料口相连通的输送虹泵料, 在预定的输料口 8与吸料口 相连通时, 使该输料口为进料口, 并使与该输料口相连通的输送缸吸料; 釆 用上述控制方法, 可以在任意时刻, 使混凝土泵车臂架系统未端向外连续输 出混凝土, 消除间断式输送造成的振动, 大幅度地减小臂架未端的振动幅度。 第二耐磨板 72的相对于第一耐磨板 71的旋转方式在预定的范围内周期性转 动, 优选圓周式旋转, 以减 'j、往复摆动对混凝土泵送装置的冲击。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若千改进和润 饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种泵送装置的分配机构, 其特征在于, 包括第一耐磨板 (71 ) 和第 二耐磨板(72), 所述第一耐磨板 (71 ) 的工作面与第二耐磨板 (72) 工作面可旋转配合; 所述第一耐磨板(71 )还具有至少一个出料口 (5) 和至少一个吸料口 (4), 所述第二耐磨板 (72) 具有至少三个输料口
(8); 在旋转过程中, 所述输料口 (8) 按预定顺序与出料口 (5 ) 和 吸料口 (4) 相连通; 在所述旋转方向上, 所述出料口 (5 ) 占用的弧 度 (b) 大于相邻的任意两个所述输料口 (8) 之间的盲板部分占用的 弧度 (e)。
2. 居权利要求 1所述的泵送装置的分配机构, 其特征在于, 在所述旋 转方向上, 所述吸料口 (4) 占用的弧度 (a) 大于相邻的任意两个所 述输料口 ( 8 )之间的盲板部分占用的弧度 ( e )。
3. 根据权利要求 1或 2所述的泵送装置的分配机构, 其特征在于, 在所 述旋转方向上, 所述至少三个输料口 ( 8)均匀分布于所述第二耐磨板
(72) 上。
4. 根据权利要求 3所述的泵送装置的分配机构, 其特征在于, 在所述旋 转方向上, 所述出料口 (5 ) 占用的弧度 (b) 至少为 120度。
5. 根据权利要求 3所述的泵送装置的分配机构, 其特征在于, 在所述旋 转方向上, 所述吸料口 (4) 与出料口 ( 5 ) 之间的盲板部分占用的弧 度 (c) 大于任一输料孔 (8) 占用的弧度 (d)。
6. 根据权利要求 3所述的泵送装置的分配机构, 其特征在于, 所述出料 口 (5 ) 或 /和吸料口 (4) 为沿旋转方向延伸的腰形结构。
7. 根据权利要求 6所述的泵送装置的分配机构, 其特征在于, 所述腰形 结构为两端通过半圓过渡的圓环段; 所述输料口 ( 8 )的半径与所述腰 形结构的两端半圓的半径相等。
8. 根据权利要求 6所述的泵送装置的分配机构, 其特征在于, 所述腰形 结构为两端具有直边的圓环段; 所述输料口 (8)为两端具有直边的圓 环段。
. 一种泵送装置, 包括出料管和至少三个输送缸, 其特征在于, 还包括 权利要求 1-8中任一项所述的分配机构, 所述吸料口 (4) 与料斗 (3) 相连通, 所述出料口 (5) 与出料管 ( 1) 一端相连通, 所述输送缸分 别与一个所述输料口 (8) 相连通。
10. 根据权利要求 9所述的泵送装置, 其特征在于, 还包括进料管 (2), 所述进料管( 2 )一端与料斗( 3 )的底部相连通, 另一端与吸料口 ( 4 ) 相连通。
11. 一种混凝土泵车, 包括臂架系统和泵送装置, 其特征在于, 所述泵送 装置为权利要求 9或 10所述的泵送装置, 所述出料管 ( 1 ) 的另一端 与所述臂架系统的输送管相连通。
12. 一种混凝土泵车的控制方法,所述混凝土泵车包括权利要求 9或 10所 述的泵送装置, 其特征在于, 使所述第二耐磨板 (72) 相对于所述第 一耐磨板 (71) 旋转, 在预定的所述输料口 (8) 与出料口 (5) 相连 通时, 使与该输料口 (8)相连通的输送缸泵料, 在预定的所述输料口
( 8 ) 与吸料口 ( 4 )相连通时, 使与该输料口 ( 8 )相连通的输送缸吸 料。
PCT/CN2011/073114 2010-06-11 2011-04-21 泵送装置的分配机构、泵送装置、混凝土泵车及混凝土泵车的控制方法 WO2011153873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010203362.2 2010-06-11
CN2010102033622A CN101845891B (zh) 2010-06-11 2010-06-11 混凝土泵车及其控制方法、泵送装置及其分配机构

Publications (1)

Publication Number Publication Date
WO2011153873A1 true WO2011153873A1 (zh) 2011-12-15

Family

ID=42770685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073114 WO2011153873A1 (zh) 2010-06-11 2011-04-21 泵送装置的分配机构、泵送装置、混凝土泵车及混凝土泵车的控制方法

Country Status (2)

Country Link
CN (1) CN101845891B (zh)
WO (1) WO2011153873A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845891B (zh) * 2010-06-11 2012-02-08 三一重工股份有限公司 混凝土泵车及其控制方法、泵送装置及其分配机构
CN102032173B (zh) * 2010-12-10 2012-05-23 三一重工股份有限公司 一种混凝土机械及其泵送装置和泵送装置的分配阀
CN201953647U (zh) * 2011-03-01 2011-08-31 三一重工股份有限公司 泵送系统及其分配阀、混凝土输送机械
CN103161314B (zh) * 2011-12-12 2015-10-07 三一汽车制造有限公司 一种摇摆机构及泵送系统、混凝土设备
CN102619717B (zh) * 2012-04-25 2014-09-17 中联重科股份有限公司 泵送分配机构、泵送装置及其控制方法、混凝土泵车
CN102619718B (zh) * 2012-04-25 2014-08-27 中联重科股份有限公司 泵送分配机构、泵送装置及其控制方法、混凝土泵车
CN112554567B (zh) * 2020-11-26 2021-11-30 湖南工业职业技术学院 一种混凝土泵车底盘结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240179A (ja) * 1995-03-03 1996-09-17 Ishikawajima Constr Mach Co コンクリートポンプ
CN2474667Y (zh) * 2001-05-15 2002-01-30 河南省长葛市科明特种橡胶制品有限公司 转子式湿式混凝土喷射机用上、下橡胶密封板
CN2797690Y (zh) * 2005-06-18 2006-07-19 尹人奇 一种新型混凝土泵送装置
CN101245866A (zh) * 2008-03-24 2008-08-20 三一重工股份有限公司 一种混凝土分配阀及混凝土泵送机构
WO2009059376A1 (en) * 2007-11-08 2009-05-14 Drago Jambrecina Improved concrete pump
CN101845891A (zh) * 2010-06-11 2010-09-29 三一重工股份有限公司 混凝土泵车及其控制方法、泵送装置及其分配机构
CN201671345U (zh) * 2010-06-11 2010-12-15 三一重工股份有限公司 泵送装置及其分配机构和混凝土泵车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1302108B1 (it) * 1997-10-13 2000-07-26 Corob Spa Gruppo di erogazione per una macchina dispensatrice di prodotti fluidi comprendente una camera pompante a volume variabile, e macchina
US6045008A (en) * 1998-04-30 2000-04-04 Calmar-Monturas, S.A. Fluid pump dispenser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240179A (ja) * 1995-03-03 1996-09-17 Ishikawajima Constr Mach Co コンクリートポンプ
CN2474667Y (zh) * 2001-05-15 2002-01-30 河南省长葛市科明特种橡胶制品有限公司 转子式湿式混凝土喷射机用上、下橡胶密封板
CN2797690Y (zh) * 2005-06-18 2006-07-19 尹人奇 一种新型混凝土泵送装置
WO2009059376A1 (en) * 2007-11-08 2009-05-14 Drago Jambrecina Improved concrete pump
CN101245866A (zh) * 2008-03-24 2008-08-20 三一重工股份有限公司 一种混凝土分配阀及混凝土泵送机构
CN101845891A (zh) * 2010-06-11 2010-09-29 三一重工股份有限公司 混凝土泵车及其控制方法、泵送装置及其分配机构
CN201671345U (zh) * 2010-06-11 2010-12-15 三一重工股份有限公司 泵送装置及其分配机构和混凝土泵车

Also Published As

Publication number Publication date
CN101845891A (zh) 2010-09-29
CN101845891B (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2011153873A1 (zh) 泵送装置的分配机构、泵送装置、混凝土泵车及混凝土泵车的控制方法
WO2012024964A1 (zh) 混凝土泵车及其控制方法、泵送系统及其分配机构
WO2013104158A1 (zh) 一种泵送机构及包括该泵送机构的物料泵送设备
CN102146913B (zh) 泵送系统及其分配阀、混凝土输送机械
CN102926542A (zh) 可旋转伸缩式泵送混凝土浇筑装置
CN105275792B (zh) 一种混凝土泵送装置的分配装置及混凝土泵送装置
CN102588268B (zh) 混凝土输送泵分配阀
WO2015106718A1 (zh) 一种泵送机构、泵送控制方法及混凝土泵送设备
CN201671345U (zh) 泵送装置及其分配机构和混凝土泵车
WO2011127842A1 (zh) 混凝土泵用分配阀及混凝土泵
WO2012075798A1 (zh) 一种物料泵送设备及其泵送系统
CN205259615U (zh) 一种输送管切换装置及物料输送系统
CN208604942U (zh) 一种水泥泵车臂减震装置
CN210061543U (zh) 一种流水线模台预制构件生产的混凝土输送和布料设备
WO2012088827A1 (zh) 混凝土泵及调节该泵中对摆动执行器的驱动压力值的方法
CN101782054A (zh) 一种膏体输送泵
CN106968908B (zh) 一种平稳输送混凝土泵以及控制方法
CN205526685U (zh) 一种混凝土输送转向装置
CN103410325B (zh) 泵送机构和混凝土泵车
CN102588243A (zh) 一种工程机械、物料泵送系统及其泵送方法
CN212079611U (zh) 一种分配阀及泵送机械
CN104746877B (zh) 气动式振捣器
CN203023035U (zh) S管阀
CN207714768U (zh) 一种用双动力驱动的车载式湿喷机
CN215762079U (zh) 转管阀输送泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791864

Country of ref document: EP

Kind code of ref document: A1