WO2011153715A1 - 氧化钇荧光粉及其制备方法 - Google Patents

氧化钇荧光粉及其制备方法 Download PDF

Info

Publication number
WO2011153715A1
WO2011153715A1 PCT/CN2010/073891 CN2010073891W WO2011153715A1 WO 2011153715 A1 WO2011153715 A1 WO 2011153715A1 CN 2010073891 W CN2010073891 W CN 2010073891W WO 2011153715 A1 WO2011153715 A1 WO 2011153715A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloid
solution
raw material
cerium oxide
oven
Prior art date
Application number
PCT/CN2010/073891
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
吕婷
王烨文
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45097473&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011153715(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to US13/702,345 priority Critical patent/US8894883B2/en
Priority to PCT/CN2010/073891 priority patent/WO2011153715A1/zh
Priority to EP10852708.6A priority patent/EP2581433B1/en
Priority to CN201080066876.6A priority patent/CN102906217B/zh
Priority to JP2013513515A priority patent/JP5599942B2/ja
Publication of WO2011153715A1 publication Critical patent/WO2011153715A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Definitions

  • the present invention relates to the field of optoelectronics and illumination technology, and in particular to a cerium oxide phosphor and a preparation method thereof.
  • Re is one or two selected from the group consisting of ruthenium and osmium
  • M is one or more selected from the group consisting of silver, gold, platinum and palladium nanoparticles, 0 ⁇ x 0.05.
  • Re is doped in Y 2 O 3 with a doping concentration of 0.1% to 10%; the ratio of the molar ratio of hydrazine to the sum of Re and Y moles is 0.00002: 1-0.01: 1 ; ⁇ 1- The ratio of the molar ratio of ⁇ ⁇ 1 ⁇ ⁇ to the sum of Re and Y moles is 0.01 : 1 ⁇ 2: 1.
  • a method for preparing a cerium oxide phosphor comprises the following steps:
  • Re is one or two selected from the group consisting of rare earth elements lanthanum and cerium, and M is selected from the group consisting of silver, gold, platinum, and palladium nanoparticles. One or several of them;
  • the ⁇ ⁇ ⁇ 1 ⁇ ⁇ Colloid and Y M are added, after mixing Re colloid, a water bath and stirred to obtain a mixed colloid, the resulting mixture colloid after aging heat treatment, to obtain a yttrium oxide phosphor.
  • the step S1 comprises the following steps: respectively, the zinc salt and the aluminum salt raw material are weighed, and the solvent is dissolved and then added.
  • the stabilizer is formulated into a mixed solution of zinc ions and aluminum ions with a total molar concentration of 0.05 to 0.70 mol/L, and the mixed solution is stirred at 40 to 70 ° C for 4 to 8 hours to obtain a ⁇ ⁇ ⁇ 1 ⁇ ⁇ precursor solution, which is ⁇ ⁇ ⁇ 1 ⁇ ⁇ precursor solution is placed in an oven at 60 ⁇ 90 ° C for 40 ⁇ 60h to obtain ⁇ ⁇ ⁇ 1 ⁇ ⁇ colloid;
  • the zinc salt is one or more selected from the group consisting of Zn(CH 3 COO) 2 '2H 2 0, Zn(N0 3 ) 2 '6H 2 0, ZnCl 2 '2H 2 0 and ZnS0 4 '7H 2 0 ;
  • the salt is one or more selected from the group consisting of ⁇ 1( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0, A1C1 3 '6H 2 0 and A1 2 (S0 4 ) 3 ;
  • the solvent is selected from the group consisting of C 3 H 8 0 2 and an aqueous ethanol solution One or two of them, the volume ratio of ethanol to deionized water in the aqueous ethanol solution ranges from 3:1 to 7:1;
  • the stabilizer is selected from the group consisting of C 2 H 7 NO, C 4 H u N0 2 and C 6 H 15 One or more of 0 3 N.
  • the step S2 comprises the following steps: S21, doping the concentration of Re in Y 2 0 3 to be 0.1 to 10%, weigh the raw material of cerium and the raw material of Re, and prepare the total molar concentration to be 0.1 mol/L to 2.00.
  • a Y/Re solution of mol/L wherein, the Y, Re solution is an aqueous solution of Y, Re or ethanol;
  • S22 the above Y, Re solution is taken, and the raw materials, complexing agent and surface active of ethanol and M are sequentially added.
  • the agent is configured as an aqueous solution of alcohol of Y and Re; wherein, in the aqueous solution of ⁇ , Re, the volume ratio of water to alcohol is 1:1 to 9:1, and the total molar concentration of Y and Re is 0.1 to 1.0 mol/L.
  • the ratio of the number of moles of the complexing agent to the sum of the molar numbers of Re and Y is 1:1 to 5:1, and the surfactant concentration is 0.05 to 0.20 mol/L; in a preferred embodiment, the hydrazine and Re are formulated.
  • deionized water may be added to maintain the ratio of alcohol to water in the aqueous solution of Y and Re; S23, the aqueous solution of the above Y and Re in a water bath at 40 to 60 ° C and stirred for 4 to 6 hours, and finally placed at 60 to 90
  • the oven is aged for 56 to 90 hours in a °C oven to obtain metal-containing nanoparticles M or ion state ⁇ !
  • the raw materials of Y and the raw materials of Re are metal oxides, hydrochlorides, nitrates or oxalates respectively; metal oxides are Y 2 0 3 , Eu 2 0 3 , Tb 4 0 7 ; hydrochlorides are YC1 3 .7H 2 0, EuCl 3 , TbCl 3 -6H 2 0; nitrates are: ⁇ ( ⁇ 0 3 ) 3 ⁇ 6 ⁇ 2 0, Eu(N0 3 ) 3 '6H 2 0 , Tb(N0 3 ) 3 -6H 2 0;
  • the raw material of M is silver, gold, platinum, palladium nanoparticles; the raw material of M is AgN0 3 , HAuCl 4 , 3 ⁇ 4PtCl 6 , H 2 PdCl 4 aqueous solution or alcohol solution;
  • the agent is citric acid; the surfactant is one or more selected from the group consisting of polyethylene glycol
  • the raw material when preparing the Y, Re aqueous solution, if the nitrate or the hydrochloride is used as the raw material, the raw material is directly dissolved in the container; if the metal oxide or the oxalate is used as the raw material, the temperature is 15 ° C to 100 ° Under heating and stirring, the metal oxide or oxalate is dissolved in a container with hydrochloric acid or nitric acid.
  • step S3 the sum of the moles of Zn and A1 and the number of moles of Re and Y in the mixed colloid And the ratio range is 0.01: 1 ⁇ 2: 1; the water bath temperature is 15 ⁇ 80 °C, the stirring time is 1 ⁇ 4 hours; the aging is placed in the oven at 100 ⁇ 200 °C for 48 ⁇ 96 hours; the heat treatment is in the sputum , air atmosphere or reducing atmosphere under 800 ⁇ 1300 ° C treatment for 0.5 ⁇ 6 hours; reducing atmosphere for carbon powder reduction or nitrogen to hydrogen volume ratio of 95: 5 nitrogen hydrogen gas reduction.
  • the heat treatment adopts a reducing atmosphere; in the cerium oxide phosphor, when Re is only cerium, the heat treatment adopts an air atmosphere.
  • Metal nanoparticles are added to the cerium oxide phosphor doped with rare earth elements. Since the specific surface area of the metal nanoparticles is large, the internal quantum efficiency of the phosphor is improved by the surface plasmon coupling effect, thereby improving the luminous efficiency of the phosphor.
  • the material is an oxide phosphor with a long service life; the phosphor can emit light of different wavelengths by changing the type and proportion of rare earth elements; the added ⁇ ⁇ ⁇ 1 ⁇ ⁇ further improves the conductivity of the phosphor Sex, thereby increasing the brightness of the phosphor.
  • _ ⁇ ⁇ 1 ⁇ ⁇ zinc, the aluminum content is varied by changing the ⁇ ⁇ , further optimize the conductivity of the phosphor.
  • the method has the advantages of simple preparation process, low equipment requirement and short preparation period, and the method has the feasibility of being practiced many times.
  • Figure 1 is a flow chart of the preparation of yttrium oxide phosphor
  • Fig. 2 is a spectrum diagram of a cerium oxide phosphor prepared by the present invention and a commercial rainbow phosphor excited by a cathode ray.
  • SPP Surface Plasmon
  • the electromagnetic field induced by SPPs not only limits the propagation of light waves in the sub-wavelength size structure, but also generates and manipulates electromagnetic radiation from the optical frequency to the microwave band, achieving active control of light propagation, increasing the optical density of the luminescent material and Enhance its spontaneous emission rate.
  • the internal quantum efficiency of the luminescent material can be greatly improved, thereby improving the luminescence intensity of the material.
  • cerium oxide phosphor having electrical conductivity and integrating the SP effect, and a method for preparing the cerium oxide phosphor.
  • the phosphor colloid is prepared by the sol-gel method, and the conductive material and the metal nanoparticles are added into the phosphor colloid to improve the luminescence brightness of the prepared phosphor.
  • a cerium oxide phosphor comprising Y 2 O 3 , a rare earth element Re, a metal nanoparticle M and ⁇ ⁇ ⁇ 1 ⁇ ⁇ , the chemical formula is:
  • Re is one or two selected from the group consisting of ruthenium and osmium
  • M is one or more selected from the group consisting of silver, gold, platinum and palladium nanoparticles, 0 ⁇ x 0.05.
  • Re is doped in Y 2 O 3 with a doping concentration of 0.1% to 10%; the ratio of the molar ratio of ruthenium to the sum of Re and Y moles is 0.00002: 1-0.01 : 1 ; ⁇ 1- ⁇ ⁇ 1 ⁇ The ratio of the molar number of moles to the sum of the molar numbers of Re and Y is 0.01: 1 ⁇ 2: 1. Adding metal nanoparticles to the yttrium oxide phosphor doped with Re improves the luminous efficiency of the phosphor.
  • the material is an oxide phosphor and has a long service life; by changing the type and ratio of doping Re, The phosphor can emit light of different wavelengths; the added conductive material ⁇ ⁇ ⁇ 1 ⁇ ⁇ further improves the conductivity of the phosphor, thereby improving the luminance of the phosphor.
  • _ ⁇ ⁇ 1 ⁇ ⁇ zinc the aluminum content is varied by changing the ⁇ ⁇ , further optimize the conductivity of the phosphor.
  • Aluminum salt selection Analytical pure aluminum nitrate ( ⁇ 1( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0 ), aluminum chloride ( A1C1 3 '6H 2 0 ), sulfuric acid Aluminum (A1 2 (S0 4 ) 3 ), etc.;
  • Stabilizer selection analysis of pure monoethanolamine (C 2 H 7 NO ), diethanolamine (C 4 H u N0 2 ), triethanolamine (C 6 H 15 0 3 N );
  • Solvent selection Analytically pure ethylene glycol oxime ether (C 3 H 8 0 2 ), ethanol solution (the ratio of ethanol to deionized water is (3 ⁇ 7): 1).
  • the metal oxide raw materials are: Y 2 0 3 , Eu 2 0 3 , Tb 4 0 7 ;
  • the hydrochloride raw materials are: YC1 3 '7H 2 0, EuCl 3 , TbCl 3 -6H 2 0;
  • the nitrate raw materials are: ⁇ ( ⁇ 0 3 ) 3 ⁇ 6 ⁇ 2 0, Eu(N0 3 ) 3 '6H 2 0, Tb(N0 3 ) 3 -6H 2 0;
  • the oxalate-based material is an oxalate capable of providing Y 3+ , Eu 3 + or Tb 3+ ;
  • the solvent is a mixed solution of deionized water (3 ⁇ 40) or absolute ethanol (CH 3 CH 2 OH) and deionized water.
  • the ratio of ethanol to deionized water in the mixed solution ranges from (1 to 9): 1 ;
  • the complexing agent is analytically pure citric acid (C 6 H 8 CVH 2 0 );
  • the surfactant is analytically pure polyethylene glycol 6000, polyethylene glycol 8000, polyethylene glycol 10000, polyethylene glycol 20000;
  • the M raw material is a nanoparticle of Ag, Au, Pt, Pd, or a salt soluble in water or ethanol such as AgN0 3 , HAuCl 4 , 3 ⁇ 4PtCl 6 , H 2 PdCl 4 or the like.
  • ⁇ ⁇ ⁇ 1 ⁇ ⁇ , 0 ⁇ ⁇ 0.05 weigh a certain amount of zinc salt and aluminum salt, dissolve the solvent and add stabilizer to prepare a mixed solution of zinc and aluminum with a total molar concentration of 0.05 ⁇ 0.70mol/L.
  • a mixed solution of a water bath at 40 ⁇ 70 ° C while stirring 4 ⁇ 8h stirring to give a precursor solution the precursor solution was placed in an oven at 60-90 ° C to give aging 40 ⁇ 60h ⁇ 1- ⁇ ⁇ 1 ⁇ ⁇ colloid.
  • the metal element in the Y and Re colloids is in a nanoparticle state
  • the metal element in the Y and Re colloid is in an ionic state
  • a holding Re Zn A1 and the number of moles of the number of moles of Y ratio ranges from 0.01: 1 to 2: 1 ⁇ ⁇ ⁇ 1 ⁇ ⁇ ⁇ colloid and the addition of Y, Re colloid mixed, 15 ⁇ 80 ° C water bath and After stirring for 1 to 4 hours, a mixed colloid is obtained, and the obtained mixed colloid is aged in an oven at 100 to 200 ° C for 48 to 96 hours, and dried at 800 to 1300 ° C in an air atmosphere or carbon powder reduction or nitrogen hydrogen. The gas is treated in a reducing atmosphere for 0.5 to 6 hours to obtain a cerium oxide phosphor having a nitrogen to hydrogen ratio of 95:5.
  • the heat treatment employs a reducing atmosphere; and in the yttria phosphor, Re is only ruthenium, and the heat treatment uses an air atmosphere.
  • the ionic state M is reduced to a nanoparticle state element during the heat treatment operation.
  • Re is only ⁇ in the yttrium oxide phosphor
  • the heat treatment uses an air atmosphere, but we have found that the ionic state of M is still reduced, and the nanoparticle state is obtained.
  • 2 is a cerium oxide phosphor prepared by the present invention and a commercial rainbow phosphor excited by a cathode ray Spectrum.
  • the photogram, b is the photogram of the commercial rainbow phosphor.
  • the integral area of a is 1.49 times of the b integral area measured by Shimadzu RF5301PC optical language software.
  • Example 1 prepared in Example 1 was added and the Ag nanoparticle ⁇ 1- ⁇ ⁇ 1 ⁇ ⁇ of Y 2 0 3: Eu phosphor emission efficiency than the phosphor with commercial rainbow significantly improved.
  • the preparation method of the cerium oxide phosphor is specifically described below in conjunction with the examples:
  • Tb doped 2% lmol/L Y And Tb aqueous solution 100mL. 12 mL of a 1.00 mol/I ⁇ Y, Tb aqueous solution was added, 28 mL of absolute ethanol was added as a solvent, 0.6 mL of a 0.001 mol/L Au nanoparticle solution was added, and 9.2227 g of citric acid and 5 g of polyethylene glycol were further added.
  • Polyethylene glycol 10000 after stirring at 60 ° C water bath for 4 h, a clear Y, Eu precursor solution was obtained, and the obtained Y, Eu precursor solution was aged in a 90 ° C oven for 40 h to form a uniform Y, Eu colloid.
  • Tb doped 2% lmol/L Y And Tb aqueous solution 100mL. 12 mL of a 1.00 mol/L aqueous solution of Y and Tb was weighed, 28 mL of absolute ethanol was added as a solvent, 0.24 mL of Pt nanoparticles with a concentration of 0.001 mol/L, and 9.2227 g of citric acid and 5 g of polyethylene glycol were added. After stirring at 60 ° C for 4 h, a clear Y, Tb precursor solution was obtained, and the obtained Y, Tb precursor solution was aged in an oven at 90 ° C for 56 h to form a uniform Y, Tb colloid.
  • Polyethylene glycol 6000 after stirring at 60 ° C water bath for 4 h, a clear Y, Tb precursor solution was obtained, and the obtained Y and Tb precursor solution was aged in an oven at 80 ° C for 50 h to form a uniform ⁇ , Tb colloid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

氧化钇荧光粉及其制备方法
【技术领域】
本发明涉及光电子和照明技术领域, 尤其涉及一种氧化钇荧光粉及其制备 方法。
【背景技术】
随着高品质显示与照明器件在工作和生活中越来越广泛的发展和应用, 高 效率荧光粉成为越来越重要的应用材料。 传统的氧化物荧光粉稳定性好, 但其 在低压电子束轰击下发光效率不够高。
【发明内容】
基于此, 有必要设计一种发光效率高的氧化物荧光粉。
此外, 还有必要提供一种发光效率高的氧化物荧光粉的制备方法。
一种氧化钇荧光粉, 化学通式为: Y203: Re, Μ, Ζη1-χΑ1χΟ;
其中, Re为选自铕和铽中的一种或两种, M为选自银、 金、 铂和钯纳米颗 粒中的一种或几种, 0<x 0.05。
优选的, Re在掺杂在 Y203中, 掺杂浓度为 0.1%〜10%; Μ摩尔数与 Re和 Y摩尔数之和的比值范围为 0.00002: 1-0.01 : 1 ; Ζη1-χΑ1χΟ摩尔数与 Re和 Y摩 尔数之和的比值范围为 0.01 : 1〜2: 1。
一种氧化钇荧光粉的制备方法, 包括如下步骤:
S 1、 制备 Ζη1-χΑ1χΟ胶体, 其中 0<x 0.05;
52、 制备加入金属纳米颗粒 M或离子状态 M的 Re、 Y胶体; 其中, Re为 选自稀土元素铕和铽中的一种或两种, M 为选自银、 金、 铂和钯纳米颗粒中的 一种或几种;
53、 将 ΖημχΑ1χΟ胶体与加入 M的 Y、 Re胶体混合, 水浴并搅拌, 得到混 合胶体, 得到的混合胶体经过陈化、 热处理后, 得到所述氧化钇荧光粉。
优选的, 步骤 S1包括如下步骤: 分别称取锌盐和铝盐原料, 溶剂溶解后加 入稳定剂配制成锌离子和铝离子总摩尔浓度为 0.05〜0.70mol/L 的混合溶液, 混 合溶液 40〜70°C水浴同时搅拌 4〜8h得到 ΖημχΑ1χΟ前驱体溶液, 将 ΖημχΑ1χΟ前 驱体溶液置于烘箱中 60〜90°C陈化 40〜60h得到 ΖημχΑ1χΟ胶体;
锌盐为选自 Zn(CH3COO)2'2H20、Zn(N03)2'6H20、ZnCl2'2H20和 ZnS04'7H20 中的一种或几种;铝盐为选自 Α1(Ν03)3·9Η20、 A1C13'6H20和 A12(S04)3中的一种 或几种; 溶剂为选自 C3H802和乙醇水溶液中的一种或两种, 乙醇水溶液中乙醇 与去离子水体积比范围为 3 : 1〜7: 1 ; 稳定剂为选自 C2H7NO、 C4HuN02和 C6H1503N中的一种或几种。
优选的,步骤 S2包括如下步骤: S21、按 Re在 Y203中掺杂浓度为 0.1〜10%, 称取 Υ的原料和 Re的原料, 配制成总摩尔浓度为 0.1mol/L〜2.00mol/L的 Y、 Re 溶液; 其中, 所述 Y、 Re溶液为 Y、 Re水溶液或乙醇水溶液; S22、 量取上述 Y、 Re溶液, 依次加入乙醇、 M的原料、 络合剂和表面活性剂, 配置成 Y、 Re 的醇水溶液; 其中, γ、 Re的醇水溶液中, 水与醇的体积比为 1 : 1〜9: 1 , Y、 Re总摩尔浓度为 0.1〜1.0mol/L,络合剂摩尔数与 Re和 Y摩尔数之和的比值为 1 : 1〜5: 1 , 表面活性剂浓度为 0.05〜0.20mol/L; 在优选的实施例中, 配制所述丫、 Re的醇水溶液时可以加入去离子水, 以维持 Y、 Re醇水溶液中醇水比例; S23、 上述 Y、 Re的醇水溶液于 40〜60°C水浴并搅拌 4〜6小时, 最后置于 60〜90°C的 烘箱内陈化 56〜90小时, 得到含金属纳米颗粒 M或离子状态 ^!的 Y、 Re胶体; 优选的, Y的原料和 Re的原料分别为金属氧化物、 盐酸盐类、 硝酸盐类或 草酸盐类; 金属氧化物为 Y203、 Eu203、 Tb407; 盐酸盐类为 YC13.7H20、 EuCl3、 TbCl3-6H20; 硝酸盐类为: Υ(Ν03)3·6Η20、 Eu(N03)3'6H20、 Tb(N03)3-6H20; M 的原料为银、 金、 铂、 钯纳米颗粒; M 的原料为 AgN03、 HAuCl4、 ¾PtCl6、 H2PdCl4水溶液或醇溶液; 络合剂为柠檬酸; 表面活性剂为选自聚乙二醇 6000、 聚乙二醇 8000、 聚乙二醇 10000和聚乙二醇 20000中的一种或几种。
优选的, 配制 Y、 Re水溶液时, 若选用硝酸盐类或盐酸盐类作为原料, 将 原料直接溶解于容器中; 若选用金属氧化物或草酸盐类作为原料, 则在 15 °C 〜100°C加热搅拌条件下, 将金属氧化物或草酸盐类用盐酸或硝酸溶解于容器中。
优选的, 步骤 S3中, 混合胶体中 Zn和 A1摩尔数之和与 Re和 Y摩尔数之 和比值范围为 0.01 : 1〜2: 1 ; 水浴温度为 15〜80°C , 搅拌时间为 1〜4小时; 陈化 为烘箱中 100〜200°C放置 48〜96小时; 热处理为在坩埚中, 空气气氛或还原气氛 下 800〜1300°C处理 0.5〜6小时; 还原气氛为碳粉还原或氮氢体积比为 95: 5氮 氢气体还原。
优选的, 氧化钇荧光粉中 Re包含铽时, 热处理采用还原气氛; 氧化钇荧光 粉中 Re仅为铕时, 热处理采用空气气氛。
掺杂了稀土元素的氧化钇荧光粉中加入金属纳米颗粒, 由于金属纳米颗粒 比表面积很大, 利用表面等离子体耦合效应, 提高了荧光粉的内量子效率, 从 而提高了荧光粉的发光效率。
同时, 该材料为氧化物荧光粉, 使用寿命长; 通过掺杂稀土元素种类和比 例的改变, 使得荧光粉可以发出不同波长的光; 加入的 ΖημχΑ1χΟ, 进一步提高 了荧光粉的导电性, 从而提高了荧光粉的发光亮度。 通过改变 Ζηι_χΑ1χΟ中锌、 铝含量改变, 进一步优化荧光粉的导电性。
该方法制备工艺简单、 设备要求低、 制备周期短, 该方法经过多次实践, 具有可行性。
【附图说明】
图 1为氧化钇荧光粉制备的流程图;
图 2 为本发明制得的氧化钇荧光粉与商用彩虹荧光粉在阴极射线激发下的 光谱图。
【具体实施方式】
表面等离子体( Surface Plasmon, SP )是一种沿金属和介质界面传播的波, 其振幅随离开界面的距离而指数衰减。 当改变金属表面结构时, 表面等离子体 激元( Surface plasmon polaritons, SPPs ) 的性质、 色散关系、 激发模式、 耦合 效应等都将产生重大的变化。 SPPs引发的电磁场, 不仅仅能够限制光波在亚波 长尺寸结构中传播, 而且能够产生和操控从光频到微波波段的电磁辐射, 实现 对光传播的主动操控, 增大发光材料的光学态密度和增强其自发辐射速率。 而 且, 利用表面等离子体的耦合效应, 可大大提高发光材料的内量子效率, 从而 提高材料的发光强度。
因此, 在制备荧光粉时, 可在荧光粉中加入金属纳米颗粒及导电材料, 通 过表面等离子体的耦合效应 (SP效应)和优良的导电性能有效增强荧光粉的发 光亮度, 而如何将表面等离子效应和优良的导电性能有效整合到荧光粉中一直 是材料学、 光电子学及照明技术领域中研究的重要内容。
这里提供一种具有导电性能及整合了 SP效应的氧化钇荧光粉, 同时提供一 种该氧化钇荧光粉的制备方法。 采用溶胶 -凝胶法制备荧光粉胶体, 并在荧光 粉胶体中加入导电材料及金属纳米颗粒, 提高所制备荧光粉的发光亮度。
一种氧化钇荧光粉,包括 Y203、稀土元素 Re、金属纳米颗粒 M和 ΖημχΑ1χΟ, 化学通式为:
Y203: Re, Μ, Ζη1-χΑ1χΟ;
其中, Re为选自铕和铽中的一种或两种, M为选自银、 金、 铂和钯纳米颗 粒中的一种或几种, 0<x 0.05。
在优选的实施例中, Re在掺杂在 Y203中, 掺杂浓度为 0.1%〜10%; Μ摩尔 数与 Re和 Y摩尔数之和的比值范围为 0.00002: 1-0.01 : 1; Ζη1-χΑ1χΟ摩尔数与 Re和 Y摩尔数之和的比值范围为 0.01 : 1〜2: 1。 将金属纳米颗粒加入到掺杂了 Re的氧化钇荧光粉中, 提高了荧光粉的发光效率, 同时, 该材料为氧化物荧光 粉, 使用寿命长; 通过掺杂 Re种类和比例的改变, 使得荧光粉可以发出不同波 长的光; 加入的导电材料 ΖημχΑ1χΟ, 进一步提高了荧光粉的导电性, 从而提高 了荧光粉的发光亮度。 通过改变 Ζηι_χΑ1χΟ中锌、 铝含量改变, 进一步优化荧光 粉的导电性。
一种氧化钇荧光粉的制备方法, 所采用的技术方案如下:
一、 实验药品及原料的选用:
1、 制备 ΖημχΑ1χΟ胶体原料的选用:
锌盐选用: 分析纯醋酸锌 ( Zn(CH3COO)2-2H20 )、硝酸锌 ( Ζη(Ν03)2·6Η20 )、 氯化锌( ZnCl2'2H20 )、 硫酸锌 ( ZnS04-7H20 );
铝盐选用: 分析纯硝酸铝 ( Α1(Ν03)3·9Η20 )、 氯化铝 ( A1C13'6H20 )、 硫酸 铝 ( A12(S04)3 )等;
稳定剂选用: 分析纯单乙醇胺(C2H7NO )、 二乙醇胺(C4HuN02 )、 三乙醇 胺( C6H1503N );
溶剂选用: 分析纯乙二醇曱醚(C3H802 )、 乙醇溶液(乙醇与去离子水的比 例范围为 (3〜7): 1 )。
2、 制备加入金属纳米颗粒 M或含离子状态 ^!的丫、 Re胶体药品及原料的 选用:
金属氧化物原料为: Y203、 Eu203、 Tb407;
盐酸盐类原料为: YC13'7H20、 EuCl3、 TbCl3-6H20;
硝酸盐类原料为: Υ(Ν03)3·6Η20、 Eu(N03)3'6H20、 Tb(N03)3-6H20;
草酸盐类原料为能够提供 Y3+、 Eu3 +或 Tb3+的草酸盐;
分析纯的盐酸或分析纯硝酸( HN03: 65%〜68%,浓度范围为 14.4〜15.2mol/L; HC1: 36-37%, 浓度为 11.7mol/L), 用于溶解氧化物和草酸盐;
溶剂为去离子水( ¾0 )或无水乙醇( CH3CH2OH )与去离子水的混合溶液, 混合溶液中乙醇与去离子水的比例范围为(1〜9): 1 ;
络合剂为分析纯的柠檬酸 ( C6H8CVH20 );
表面活性剂为分析纯的聚乙二醇 6000、 聚乙二醇 8000、 聚乙二醇 10000、 聚乙二醇 20000;
M原料为 Ag、 Au、 Pt、 Pd的纳米颗粒, 或者 AgN03、 HAuCl4、 ¾PtCl6、 H2PdCl4等可溶于水或乙醇的盐。
二、 荧光粉制备过程
如图 1所示的荧光粉制备过程, 具体如下:
S10、 Zn^A )胶体的制备
按化学式 ΖημχΑ1χΟ, 0<χ < 0.05 , 称取一定质量比的锌盐和铝盐, 溶剂溶解 后加入稳定剂配制成锌、 铝总摩尔浓度为 0.05〜0.70mol/L 的混合溶液, 混合溶 液 40〜70°C水浴同时搅拌搅拌 4〜8h得到前驱体溶液, 将前驱体溶液置于烘箱中 60-90 °C陈化 40〜60h得到 Ζη1-χΑ1χΟ胶体。
S20: 加入金属元素的丫、 Re胶体的制备 按稀土元素 Re在 Y中掺杂浓度范围为 0.1〜10%, 称取 Y、 Re的原料, 配 制成摩尔浓度范围为 0.1mol/L〜2.00mol/L的 Y、 Re溶液; 其中, 所述 Y、 Re溶 液为 Y、 Re水溶液或乙醇水溶液; 量取上述丫、 Re溶液, 依次加入乙醇、 M的 原料、 络合剂和表面活性剂, 配置成 Y、 Re的醇水溶液; 其中, Y、 Re的醇水 溶液中, 水与醇的体积比为 1 : 1〜9: 1 , Y、 Re总摩尔浓度为 0.1〜1.0mol/L, 络 合剂摩尔数与 Re 和 Y摩尔数之和的比值为 1 : 1〜5: 1 , 表面活性剂浓度为 0.05〜0.20mol/L; 在优选的实施例中, 配制所述丫、 Re的醇水溶液时可以加入去 离子水,以维持 γ、 Re醇水溶液中醇水比例;上述 Y、 Re的醇水溶液于 40〜60°C 水浴并搅拌 4〜6小时,最后置于 60〜90°C的烘箱内陈化 56〜90小时,得到含金属 元素的 Y、 Re胶体。
当加入的 M的原料为金属纳米颗粒时, Y、 Re胶体中金属元素为纳米颗粒 状态, 当加入的 M的原料为金属盐溶液时, Y、 Re胶体中金属元素为离子状态。
配制 Y、 Re水溶液时,若选用硝酸盐类或盐酸盐类可溶性盐 Υ(Ν03)3·6Η20、 Eu(N03)3'6H20、 Tb(N03)、 YC13'7H20、 EuCl3、 TbCl3-6H20作为原料, 称取适 量的药品, 直接用去离子水溶解于容器中; 若选用金属氧化物或者草酸盐作为 原料, 则在 15°C〜100°C加热搅拌条件下, 将金属氧化物或草酸盐用分析纯的盐 酸或分析纯硝酸溶解于容器中。
S30: Ζη1-χΑ1χΟ胶体与 Y、 Re胶体混合、 陈化、 热处理
保持 Zn和 A1摩尔数之和与 Re和 Y摩尔数之和比值范围为 0.01: 1〜2: 1 将 ΖημχΑ1χΟ胶体与加入 Μ的 Y、 Re胶体混合, 15〜80°C水浴并搅拌 1〜4小时, 得到混合胶体,得到的混合胶体在烘箱中 100〜200°C陈化 48〜96小时, 烘干后在 坩埚中 800〜1300°C于空气气氛或碳粉还原或氮氢气体还原气氛中处理 0.5〜6小 时, 得到氧化钇荧光粉, 氮氢气体中氮氢比例为 95: 5。
在优选的实施例中, 氧化钇荧光粉中 Re包含铽时, 热处理采用还原气氛; 氧化钇荧光粉中 Re仅为铕时, 热处理采用空气气氛。 离子状态 M在热处理操 作中被还原为纳米颗粒状态单质。 当氧化钇荧光粉中 Re仅为铕时, 热处理采用 空气气氛, 但是我们发现离子状态的 M依然被还原, 得到纳米颗粒状态单质。
图 2 为本发明制得的氧化钇荧光粉与商用彩虹荧光粉在阴极射线激发下的 光谱图。
该光谱图采用岛津 RF5301PC光谱仪在 5kv电压测试条件下分析得到, 其 中, a为本发明实施例 1中制备的加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光 粉光语图, b为商用彩虹荧光粉的光语图, 由岛津 RF5301PC光语仪软件测算得 出 a的积分面积为 b积分面积的 1.49倍。
也就是说, 实施例 1制备的加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光 粉发光效率较商用彩虹荧光粉有着显著提升。 下面结合实施例具体说明该氧化钇荧光粉的制备方法:
实施例 1
室温下, 准确称取 2.1292g Zn(CH3COO)2'2H20, 0.1125g Α1(Ν03)3·9Η20和 0.6mL C2H7NO置于容器中, 加入乙二醇曱醚至 50mL, 于 60 °C水浴条件下搅拌 4h后, 得到澄清的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前驱体溶液于 60 °C烘箱中陈化 70h, 形成均匀的 Zn1-XA1X0 ( AZO )胶体。
室温下,准确称取 37.9180g Υ(Ν03)3·6Η20和 0.4441g Eu(N03)3-6H20溶于去 离子水中, 配制 Eu在 Y中掺杂为 1%的 lmol/L的 Y、 Eu水溶液 100mL。 量取 4mL浓度为 lmol/L的 Y、 Eu水溶液, 加入 lmL去离子水及 35mL无水乙醇作 为溶剂, 加入 0.4mL浓度为 0.01mol/L的 AgN03溶液, 再加入 3.0742g柠檬酸 和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Eu前驱 体溶液, 将所得到的 Y、 Eu前驱体溶液置于 90°C烘箱中陈化 40h, 形成均匀的 Y、 Eu胶体。
在丫、 Eu胶体中加入 lmL的所制备的 ΖημχΑ1χΟ胶体, 于 15 °C条件下搅拌 2h后, 置于 100°C烘箱中干燥 48h, 然后在 800°C马弗炉中保温 2h, 得到加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 2
室温下, 准确称取 0.5460g Zn(CH3COO)2'2H20, 0.0047g Α1(Ν03)3·9Η20和 0.4mL C6H1503N置于容器中,加入体积比为 4: 1的乙醇和水的混合溶液至 50mL, 于 40 °C水浴条件下搅拌 5h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 50°C烘箱中陈化 90h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 18.7675g Υ(Ν03)3·6Η20和 0.4461g Eu(N03)3-6H20溶于去 离子水中, 配制 Eu掺杂为 2%的 0.5mol/L的 Y、 Eu水溶液 100mL。 量取 8mL 浓度为 0.50mol/L的 Y、 Eu水溶液, 加入 32mL无水乙醇作为溶剂, 加入 2.5mL 浓度为 0.001mol/L的 Ag纳米颗粒溶液, 再加入 7.6856g柠檬酸和 2g聚乙二醇 8000, 于 40°C水浴条件下搅拌 6h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得 到的 Y、 Eu前驱体溶液于 90°C烘箱中陈化 60h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 0.4mL的所制备的 ΖημχΑ1χΟ胶体, 于 50 °C水浴条件 下搅拌 2h后, 置于 150°C烘箱中干燥 96h, 然后在 1300°C马弗炉中保温 0.5h, 得到加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 3
室温下, 准确称取 3.1937g Zn(CH3COO)2'2H20, 0.1688g Α1(Ν03)3·9Η20和 0.9mL C2H7NO置于容器中, 加入溶剂乙二醇曱醚至 50mL, 于 60 °C水浴条件下 搅拌 8h后,得到澄清的 Zn^A )前驱体溶液, 将 Zn^A )前驱体溶液于 60°C 烘箱中陈化 65h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 10.7260g Y203和 0.8798g Eu203在 60°C搅拌条件下溶于 27 mL盐酸中, 再加去离子水至 lOOmL, 配制 Eu掺杂为 5%的 lmol/L的 Y、 Eu 水溶液 100mL。 量取 8mL浓度为 1.00mol/L的 Y、 Eu水溶液, 加入 32mL无水 乙醇作为溶剂, 加入 1.6mL浓度为 0.001mol/L的 Pt纳米颗粒, 再加入 6.1485g 柠檬酸和 5g聚乙二醇 6000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Eu 前驱体溶液, 将所得到的 Y、 Eu前驱体溶液于 70°C烘箱中陈化 60h, 形成均匀 的丫、 Eu胶体。
在 Y、 Eu胶体中加入 26mL的所制备的 ΖημχΑ1χΟ胶体, 于 80°C水浴条件 下搅拌 2h后, 置于 100°C烘箱中干燥 48h, 然后在 800°C马弗炉中保温 2h, 得 到加入 Pt纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 4
室温下, 准确称取 1.0865g Zn(CH3COO)2.2H20, 0.0188g Α1(Ν03)3·9Η20和 0.4mL C2H7NO置于容器中,加入体积比为 5: 1的乙醇和水的混合溶液至 50mL, 于 50°C水浴条件下搅拌 6h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 60°C烘箱中陈化 80h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 37.9180g Υ(Ν03)3·6Η20和 0.4441g Eu(N03)3-6H20溶于去 离子水中, 配制 Eu掺杂为 1%的 lmol/L的 Y、 Eu水溶液 100mL。 量取 20mL 浓度为 1.00mol/I^ Y、 Eu水溶液, 加入 20mL无水乙醇作为溶剂, 加入 0.4mL 浓度为 0.01mol/L的 Pd纳米颗粒溶液, 再加入 15.3712g柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得 到的 Y、 Eu前驱体溶液于 80°C烘箱中陈化 56h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 lmL的所制备的 ΖημχΑ1χΟ胶体, 于 60 °C水浴条件下 搅拌 2h后, 置于 100°C烘箱中干燥 48h, 然后在 800 °C马弗炉中保温 2h, 得到 加入 Pd纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 5
室温下, 准确称取 2.4810g ZnCl2-2H20 , 0.1448g A1C13-6H20 和 1.5mL C4HuN02置于容器中, 而后加入体积比为 3: 1的乙醇和水的混合溶液至 50mL, 于 70°C水浴条件下搅拌 8h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 60°C烘箱中陈化 70h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 76.5254g Υ(Ν03)3·6Η20和 0.0892 Eu(N03)3-6H20溶于去 离子水中, 配制 Eu掺杂为 0.1%的 2mol/L的 Y、 Eu水溶液 100mL。 量取 20mL 浓度为 2.00mol/L的 Y、 Eu水溶液, 加入 20mL无水乙醇作为溶剂, 加入 0.8mL 浓度为 0.001mol/L的 Ag纳米颗粒溶液, 再加入 7.6856g柠檬酸和 8g聚乙二醇 10000, 于 50°C水浴条件下搅拌 6h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得 到的 Y、 Eu前驱体溶液于 60°C烘箱中陈化 60h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 6.7mL的所制备的 Ζη1-χΑ1χΟ胶体, 于 80 °C水浴条件 下搅拌 4h后, 置于 200°C烘箱中干燥 50h, 然后在 1000°C马弗炉中保温 3h, 得 到加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 6
室温下, 准确称取 1.0865g Zn(CH3COO)2-2H20, 0.0188g Α1(Ν03)3·9Η20和 0.4mL C2H7NO置于容器中,加入体积比为 5: 1的乙醇和水的混合溶液至 50mL, 于 50°C水浴条件下搅拌 6h后, 得到均匀的 Ζηι_χΑ1χ前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 70°C烘箱中陈化 80h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 37.9180g Υ(Ν03)3·6Η20和 0.4441g Eu(N03)3-6H20溶于去 离子水中, 配制 Eu掺杂为 1%的 lmol/L的 Y、 Eu水溶液 100mL。 量取 20mL 浓度为 1.00mol/L的 Y、 Eu水溶液, 加入 20mL无水乙醇作为溶剂, 加入 2mL 浓度为 0.1mol/L的 H2PdCl4溶液,再加入 15.3712g柠檬酸和 5g聚乙二醇 20000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得到的 Y、 Eu前驱体溶液于 80°C烘箱中陈化 56h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 lmL的所制备的 ΖημχΑ1χΟ胶体, 于 60 °C水浴条件下 搅拌 2h后, 置于 100°C烘箱中干燥 96h, 然后在 800 °C马弗炉中保温 6h, 得到 加入 Pd纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 7
室温下, 准确称取 4.2583g Zn(CH3COO)2'2H20, 0.2251g Α1(Ν03)3·9Η20和 2mL C4HuN02置于容器中, 加入溶剂乙二醇曱醚至 50mL, 于 60 °C水浴条件下 搅拌 4h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前驱体溶 液于 60 °C烘箱中陈化 78h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 37.5350g Υ(Ν03)3·6Η20和 0.9061g Tb(N03)3-6H20溶于去 离子水中, 配制 Tb掺杂为 2%的 lmol/L的 Y、 Tb水溶液 100mL。 量取 12mL 浓度为 1.00mol/I^ Y、 Tb水溶液, 加入 28mL无水乙醇作为溶剂, 加入 0.6mL 浓度为 0.001mol/L的 Au纳米颗粒溶液, 再加入 9.2227g柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Tb前驱体溶液, 将所得 到的 Y、 Tb前驱体溶液于 90°C烘箱中陈化 56h, 形成均匀的 Y、 Tb胶体。 在 Y、 Tb胶体中加入 15mL的所制备的 ΖημχΑ1χΟ胶体, 于 60°C水浴条件 下搅拌 2h后, 置于 100°C烘箱中干燥 96h, 然后在 1000 °C马弗炉中碳粉还原保 温 2h, 得到加入 Au纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。 实施例 8
室温下, 准确称取 7.2984g Zn(CH3COO)2'2H20, 0.6565g Α1(Ν03)3·9Η20和 6mL C2H7NO置于容器中, 加入体积比为 6: 1的乙醇和水的混合溶液至 50mL, 于 70°C水浴条件下搅拌 5h后,得到均匀的 0.70mol/L 的 ΖημχΑ1χΟ前驱体溶液, 将所得到的 Ζη^ΑΙχΟ前驱体溶液于 60°C烘箱中陈化 85h,形成均匀的
Figure imgf000013_0001
胶体。
室温下, 准确称取31.1728丫(¾和1.1198§ 1¾(¾.6¾0溶于去离子水中, 配 制 Tb掺杂为 3%的 lmol/L的 Y、 Tb水溶液 100mL。量取 4mL浓度为 1.00mol/L 的 Y、 Tb水溶液, 加入 36mL无水乙醇作为溶剂, 加入 0.4mL浓度为 0.1mol/L 的 H2PtCl6溶液,再加入 6.2125g柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件 下搅拌 5h后, 得到澄清的 Y、 Tb前驱体溶液, 将所得到的 Y、 Tb前驱体溶液 于 60°C烘箱中陈化 60h, 形成均匀的 Y、 Tb胶体。
在丫、 Tb胶体中加入 4mL的所制备的 ΖημχΑ1χΟ胶体, 于 70 °C水浴条件下 搅拌 4h后, 置于 180°C烘箱中干燥 60h, 然后在 1000°C马弗炉中 H2/N2还原下 保温 3h, 得到加入 Pt纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。 实施例 9
室温下, 准确称取 2.9452g Ζη(Ν03)2·6Η20, 0.0241g A1C13-6H20和 0.6mL C2H7NO置于容器中,加入溶剂乙二醇曱醚至 50mL, 于 60°C水浴条件下搅拌 7h 后,得到均勾的 Ζηι_χΑ1χΟ前驱体溶液,将所得到的 Ζηι_χΑ1χΟ前驱体溶液于 60 °C 烘箱中陈化 56h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 28.6899g草酸 4乙和 1.7201g草酸铕在 15°C搅拌条件下溶 于 20mL硝酸中, 在加去离子水至 lOOmL, 配制 Eu掺杂为 5%的 lmol/L的 Y、 Eu水溶液 100mL。 量取 20mL浓度为 1.00mol/L的 Y、 Eu水溶液, 加入 20mL 无水乙醇作为溶剂,加入 0.2mL浓度为 0.1mol/L的 HAuCl4溶液,再加入 7.6858g 柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得到的 Y、 Eu前驱体溶液于 60°C烘箱中陈化 60h, 形成均 匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 5mL的所制备的 ΖημχΑ1χΟ胶体, 于 80°C水浴条件下 搅拌 2h后, 置于 100°C烘箱中干燥 56h, 然后在 800 °C马弗炉中保温 2h, 得到 加入 Au纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 10
室温下,准确称取 9.6620g ZnS04'7H20, 0.2395g A12(S04)3和 4.7mL C6H1503N 置于容器中, 加入溶剂乙二醇曱醚至 50mL, 于 60°C水浴条件下搅拌 5h后, 得 到均勾的 Ζη^ΑΙχΟ前驱体溶液, 将所得到的 Ζη^ΑΙχΟ前驱体溶液于 60°C烘箱 中陈化 60h , 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 11.0647g Y2O3和 0.3739g Tb4O7在 100°C搅拌条件下溶于 27 mL盐酸中, 再加水至 lOOmL, 配制 Tb掺杂为 2%的 lmol/L的 Y、 Tb水溶 液 100mL。 量取 15mL浓度为 1.00mol/L的 Y、 Tb水溶液, 加入 25mL无水乙 醇作为溶剂,加入 0.75mL浓度为 0.01mol/L的 HAuCl4溶液,再加入 5.7642g柠 檬酸和 5g聚乙二醇 10000, 于 50°C水浴条件下搅拌 5h后, 得到澄清的前驱体 溶液, 将所得到的 Y、 Tb前驱体溶液于 90°C烘箱中陈化 60h, 形成均勾的 Y、 Tb胶体。
在 Y、 Tb胶体中加入 lOmL所制备的 Ζη1-χΑ1χΟ胶体, 于 60 °C水浴条件下 搅拌 2h后, 置于 130°C烘箱中干燥 59h, 然后在 1100°C马弗炉中 H2/N2还原下 保温 2h, 得到加入 Au纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。 实施例 11
室温下, 准确称取 2.1292g Zn(CH3COO)2'2H20, 0.1125g Α1(Ν03)3·9Η20和 0.6mL C2H7NO置于容器中, 加入乙二醇曱醚至 50mL, 于 60 °C水浴条件下搅拌 4h后, 得到澄清的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前驱体溶液于 60°C烘箱中陈化 70h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 37.9180g Υ(Ν03)3·6Η20和 0.4441g Eu(N03)3-6H20溶于去 离子水中, 配制 Eu掺杂为 1%的 lmol/L的 Y、 Eu水溶液 100mL。 量取 4mL浓 度为 lmol/L的 Y、 Eu水溶液, 加入 lmL去离子水及 35mL无水乙醇作为溶剂, 加入 2.0mL浓度为 0.01mol/L的 Pd纳米颗粒溶液, 再加入 3.0742g柠檬酸和 5g 聚乙二醇 10000,于 60°C水浴条件下搅拌 4h后,得到澄清的 Y、 Eu前驱体溶液, 将所得到的 Y、 Eu前驱体溶液置于 90°C烘箱中陈化 40h, 形成均匀的 Y、 Eu胶 体。
在 Y、 Eu胶体中加入 lmL的所制备的 ΖημχΑ1χΟ胶体, 于 60 °C水浴条件下 搅拌 2h后, 置于 130°C烘箱中干燥 59h, 然后在 1100°C马弗炉中保温 2h, 得到 加入 Pd纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 12
室温下,准确称取 6.9733g ZnS04'7H20, 0.1283g A12(S04)3和 1.5mL C2H7NO 置于容器中, 加入体积比为 7: 1的乙醇和水的混合溶液至 50mL, 于 60°C水浴 条件下搅拌 5h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前 驱体溶液于 60°C烘箱中陈化 90h, 形成均匀的 Zn^A )胶体。
室温下,准确称取 27.1780g草酸 4乙和 3.5099g草酸铽在 15°C搅拌条件下溶 于 20mL硝酸中, 再加去离子水至 lOOmL, 配制 Tb掺杂为 10%的 lmol/L的 Y、 Tb水溶液 100mL。 量取 10mL浓度为 1.00mol/L的 Y、 Tb水溶液, 加入 30mL 无水乙醇作为溶剂,加入 0.8mL浓度为 0. lmol/L的 AgN03溶液,再加入 7.6858g 柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Tb前驱体溶液, 将所得到的 Y、 Tb前驱体溶液于 80°C烘箱中陈化 50h, 形成均 匀的 Y、 Tb胶体。
在 Y、 Tb胶体中加入 lOmL的所制备的 ΖημχΑ1χΟ胶体, 于 60°C水浴条件 下搅拌 2h后, 置于 100°C烘箱中干燥 53h, 然后在 1300°C马弗炉中 H2/N2还原 下保温 2h, 得到加入 Ag纳米颗粒及 ΖημχΑ1χΟ的 Y203:Tb荧光粉。 实施例 13
室温下, 准确称取 2.4810g ZnCl2-2H20 , 0.1448g A1C13-6H20 和 1.5mL C4HuN02置于容器中, 加入体积比为 3: 1的乙醇和水的混合溶液至 50mL, 于 70°C水浴条件下搅拌 8h后, 得到均匀的 Ζηι_χΑ1χΟ 前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 60°C烘箱中陈化 70h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 76.5254g Υ(Ν03)3·6Η20和 0.0892 Eu(N03)3-6H20溶于去 离子水中,配配制 Eu掺杂为 0.1%的 2mol/L的 Y、 Eu水溶液 100mL。量取 20mL 浓度为 2.00mol/L的 Y、 Eu水溶液, 加入 20mL无水乙醇作为溶剂, 加入 2.0mL 浓度为 0.01mol/L的 Pd纳米颗粒溶液, 再加入 7.6856g柠檬酸和 8g聚乙二醇 10000, 于 50°C水浴条件下搅拌 6h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得 到的 Y、 Eu前驱体溶液于 60°C烘箱中陈化 60h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 6.7mL的所制备的 ΖημχΑ1χΟ胶体, 于 60 °C水浴条件 下搅拌 2h后, 置于 130°C烘箱中干燥 59h, 然后在 1200 °C马弗炉中保温 2h, 得 到加入 Pd纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 14
室温下, 准确称取 0.5460g Zn(CH3COO)2'2H20, 0.0047g Α1(Ν03)3·9Η20和 0.4mL C6H1503N置于容器中,加入体积比为 4: 1的乙醇和水的混合溶液至 50mL, 于 40 °C水浴条件下搅拌 5h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 60°C烘箱中陈化 90h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 18.7675g Υ(Ν03)3·6Η20和 0.4461g Eu(N03)3-6H20溶于去 离子水中, 配制 Eu掺杂为 2%的 0.5 mol/L的 Y、 Eu水溶液 100mL。 量取 8mL 浓度为 0.50mol/L的 Y、 Eu水溶液, 加入 32mL无水乙醇作为溶剂, 加入 0.8mL 浓度为 0.01mol/L的 HAuCl4溶液,再加入 7.6856g柠檬酸和 2g聚乙二醇 10000, 于 40°C水浴条件下搅拌 6h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得到的 Y、 Eu前驱体溶液于 90 °C烘箱中陈化 60h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 0.4mL的所制备的 Ζη1-χΑ1χΟ胶体, 于 60 °C水浴条件 下搅拌 2h后, 置于 130°C烘箱中干燥 59h, 然后在 1200 °C马弗炉中保温 2h, 得 到加入 Au纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 15
室温下, 准确称取 3.1937g Zn(CH3COO)2'2H20, 0.1688g Α1(Ν03)3·9Η20和 0.9mL C2H7NO置于容器中, 加入溶剂乙二醇曱醚至 50mL, 于 60 °C水浴条件下 搅拌 8h后, 得到澄清的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前驱体溶 液于 60 °C烘箱中陈化 65h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 10.7260g Y203和 0.8798g Eu203在 60°C搅拌条件下溶于 27 mL盐酸中,再加去离子水至 lOOmL,配制 Eu掺杂为 5%的 lmol/L的 Y203: Eu 水溶液 100mL。 量取 8mL浓度为 1.00mol/L的 Y、 Eu水溶液, 加入 32mL无水 乙醇作为溶剂, 加入 1.6mL 浓度为 0.001mol/L 的 Au纳米颗粒溶液, 再加入 6.1485g柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清 的丫、 Eu前驱体溶液, 将所得到的 Y、 Eu前驱体溶液于 70°C烘箱中陈化 60h, 形成均匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 26mL的所制备的 ΖημχΑ1χΟ胶体, 于 75°C水浴条件 下搅拌 2h后, 置于 100°C烘箱中干燥 48h, 然后在 800°C马弗炉中保温 2h, 得 到加入 Au纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 16
室温下, 准确称取 2.9452g Ζη(Ν03)2·6Η20, 0.0241g A1C13-6H20和 0.6mL C2H7NO置于容器中,加入溶剂乙二醇曱醚至 50mL, 于 60°C水浴条件下搅拌 7h 后,得到均勾的 Ζηι_χΑ1χΟ前驱体溶液,将所得到的 Ζηι_χΑ1χΟ前驱体溶液于 60 °C 烘箱中陈化 56h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 28.6899g草酸 4乙和 1.7201g草酸铕在 15°C搅拌条件下溶 于 20mL硝酸中, 在加去离子水至 lOOmL, 配制 Eu掺杂为 5%的 lmol/L的 Y、 Eu水溶液 100mL。 量取 20mL浓度为 1.00mol/L的 Y、 Eu水溶液, 加入 20mL 无水乙醇作为溶剂,加入 0.4mL浓度为 0. lmol/L的 AgN03溶液,再加入 7.6858g 柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Eu前驱体溶液, 将所得到的 Y、 Eu前驱体溶液于 60°C烘箱中陈化 60h, 形成均 匀的 Y、 Eu胶体。
在 Y、 Eu胶体中加入 5mL的所制备的 ΖημχΑ1χΟ胶体, 于 65 °C水浴条件下 搅拌 2h后, 置于 100°C烘箱中干燥 48h, 然后在 900 °C马弗炉中保温 2h, 得到 加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Eu荧光粉。 实施例 17
室温下, 准确称取 4.2583g Zn(CH3COO)2'2H20, 0.2251g Α1(Ν03)3·9Η20和 2mL C HuNC^置于容器中, 加入溶剂乙二醇曱醚至 50mL, 于 60 °C水浴条件下 搅拌 4h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前驱体溶 液于 60 °C烘箱中陈化 78h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下,准确称取 37.5350g Υ(Ν03)3·6Η20和 0.9061g Tb(N03)3-6H20溶于去 离子水中, 配制 Tb掺杂为 2%的 lmol/L的 Y、 Tb水溶液 100mL。 量取 12mL 浓度为 1.00mol/L的 Y、 Tb水溶液,加入 28mL无水乙醇作为溶剂,加入 0.24mL 浓度为 0.001mol/L的 Pt纳米颗粒,再加入 9.2227g柠檬酸和 5g聚乙二醇 10000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Tb前驱体溶液, 将所得到的 Y、 Tb前驱体溶液于 90°C烘箱中陈化 56h, 形成均匀的 Y、 Tb胶体。
在 Y、 Tb胶体中加入 15mL的所制备的 ΖημχΑ1χΟ胶体, 于 55°C水浴条件 下搅拌 2.5h后, 置于 150°C烘箱中干燥 90h, 然后在 1300 °C马弗炉中碳粉还原 保温 0.5h, 得到加入 Pt纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。 实施例 18
室温下,准确称取 6.9733g ZnS04'7H20, 0.1283g A12(S04)3和 1.5mL C2H7NO 置于容器中, 加入体积比为 7: 1的乙醇和水的混合溶液至 50mL, 于 60°C水浴 条件下搅拌 5h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前 驱体溶液于 60°C烘箱中陈化 90h, 形成均匀的 Zn^A )胶体。
室温下, 准确称取 27.1780g草酸 4乙和 3.5099g草酸铽在 15°C搅拌条件下溶 于 20mL硝酸中, 再加去离子水至 lOOmL, 配制 Tb掺杂为 10%的 lmol/L的 Y、 Tb水溶液 100mL。 量取 lOmL浓度为 l.OOmol/L的 Y、 Tb水溶液, 加入 30mL 无水乙醇作为溶剂,加入 O.lmL浓度为 O.lmol/L的 H2PdCl4溶液,再加入 7.6858g 柠檬酸和 5g聚乙二醇 6000, 于 60°C水浴条件下搅拌 4h后, 得到澄清的 Y、 Tb 前驱体溶液, 将所得到的 Y、 Tb前驱体溶液于 80°C烘箱中陈化 50h, 形成均匀 的丫、 Tb胶体。
在 Y、 Tb胶体中加入 lOmL的所制备的 ΖημχΑ1χΟ胶体, 于 80°C水浴条件 下搅拌 lh后, 置于 170°C烘箱中干燥 96h, 然后在 800 °C马弗炉中碳粉还原保温 0.5h, 得到加入 Pd纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。 实施例 19
室温下,准确称取 9.6620g ZnS04'7H20, 0.2395g A12(S04)3和 4.7mL C6H1503N 置于容器中, 加入溶剂乙二醇曱醚至 50mL, 于 60°C水浴条件下搅拌 5h后, 得 到均勾的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζηι_χΑ1χΟ前驱体溶液于 60°C烘箱 中陈化 60h , 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取 11.0647g Y2O3和 0.3739g Tb4O7在 100°C搅拌条件下溶于 27 mL盐酸中, 再加水至 lOOmL, 配制 Tb掺杂为 2%的 lmol/L的 Y、 Tb水溶 液 100mL。 量取 15mL浓度为 1.00mol/L的 Y、 Tb水溶液, 加入 25mL无水乙 醇作为溶剂,加入 3.0mL浓度为 0.001mol/L的 Ag纳米颗粒溶液,再加入 5.7642g 柠檬酸和 5g聚乙二醇 10000, 于 50°C水浴条件下搅拌 5h后, 得到澄清的 Y、 Tb前驱体溶液, 将所得到的 Y、 Tb前驱体溶液于 90°C烘箱中陈化 60h, 形成均 匀的 Y、 Tb胶体。
在 Y、 Tb胶体中加入 lOmL的所制备的 ΖημχΑ1χΟ胶体, 于 50°C水浴条件 下搅拌 2h后, 置于 180°C烘箱中干燥 85h, 然后在 1300 °C马弗炉中碳粉还原保 温 0.5h, 得到加入 Ag纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。 实施例 20
室温下, 准确称取 7.2984g Zn(CH3COO)2'2H20, 0.6565g Α1(Ν03)3·9Η20和 6mL C2H7NO置于容器中, 加入体积比为 6: 1的乙醇和水的混合溶液至 50mL, 于 70°C水浴条件下搅拌 5h后, 得到均匀的 Ζηι_χΑ1χΟ前驱体溶液, 将所得到的 Ζη1-χΑ1χΟ前驱体溶液于 60°C烘箱中陈化 85h, 形成均匀的 ΖημχΑ1χΟ胶体。
室温下, 准确称取31.1728丫(¾和1.1198§ 1¾(¾.6¾0溶于去离子水中, 配 制 Tb掺杂为 3%的 lmol/L的 Y、 Tb水溶液 100mL。量取 4mL浓度为 1.00mol/L 的 Y、 Tb水溶液,加入 36mL无水乙醇作为溶剂,加入 2.0mL浓度为 0.001mol/L 的 Pt纳米颗粒, 再加入 6.2125g柠檬酸和 5g聚乙二醇 10000, 于 60 °C水浴条件 下搅拌 5h后, 得到澄清的 Y、 Tb前驱体溶液, 将所得到的 Y、 Tb前驱体溶液 于 60°C烘箱中陈化 60h, 形成均匀的 Y、 Tb胶体。
在丫、 Tb胶体中加入 4mL的所制备的 ΖημχΑ1χΟ胶体, 于 75 °C水浴条件下 搅拌 3.5h后, 置于 160°C烘箱中干燥 96h, 然后在 1300 °C马弗炉中碳粉还原保 温 6h, 得到加入 Pt纳米颗粒及 Ζη1-χΑ1χΟ的 Y203:Tb荧光粉。
但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域 的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和 改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附 权利要求为准。

Claims

权利要求书
1、 一种氧化钇荧光粉, 其特征在于, 所述氧化钇荧光粉化学通式为: Y203: Re, Μ, Ζη1-χΑ1χΟ;
其中, Re为选自稀土元素铕和铽中的一种或两种, M为选自银、 金、 铂和 钯纳米颗粒中的一种或几种, 0<x 0.05。
2、 如权利要求 1所述的氧化钇荧光粉, 其特征在于, 所述 Re在 Y203中的 掺杂浓度为 0.1%〜10%;
所述 Μ摩尔数与 Re和 Υ摩尔数之和的比值范围为 0.00002: 1-0.01 : 1 ; 所述 ΖημχΑ1χΟ摩尔数与 Re和 Y摩尔数之和的比值范围为 0.01: 1〜2: 1。
3、 一种氧化钇荧光粉的制备方法, 其特征在于, 包括如下步骤:
S 1、 制备 Ζη1-χΑ1χΟ胶体, 其中 0<x 0.05;
52、 制备含金属纳米颗粒 M或离子状态 ^!的 Y、 Re胶体; 其中, Re为选 自稀土元素铕和铽中的一种或两种, M为选自银、 金、 铂和钯中的一种或几种;
53、 将 ΖημχΑ1χΟ胶体与含 ^!的 Y、 Re胶体混合, 水浴并搅拌, 得到混合 胶体, 得到的混合胶体经过陈化、 热处理后, 制得所述氧化钇荧光粉。
4、 如权利要求 3 所述的氧化钇荧光粉的制备方法, 其特征在于, 步骤 S1 包括如下步骤: 分别称取锌盐和铝盐原料, 溶剂溶解后加入稳定剂配制成锌离 子和铝离子总摩尔浓度为 0.05〜0.70mol/L的混合溶液,将混合溶液于 40〜70°C水 浴同时搅拌 4〜8h, 得到 ΖημχΑ1χΟ前驱体溶液, 将 ΖημχΑ1χΟ前驱体溶液置于烘 箱中 50〜70°C陈化 56〜90h, 得到 Ζη1-χΑ1χΟ胶体。
5、 如权利要求 4所述的氧化钇荧光粉的制备方法, 其特征在于, 所述锌盐 为选自 Zn(CH3COO)2'2H20、 Ζη(Ν03)2·6Η20、 ZnCl2'2H20和 ZnS04'7H20中的 一种或几种;
所述铝盐为选自 Α1(Ν03)3·9Η20、 A1C13-6H20和 A12(S04)3中的一种或几种; 所述溶剂为选自 C3H802和乙醇水溶液中的一种或两种; 所述乙醇水溶液中 乙醇与去离子水体积比范围为 3: 1〜7: 1 ;
所述稳定剂为选自 C2H7NO、 C4HnN02和 C6H1503N中的一种或几种。
6、 如权利要求 3 所述的氧化钇荧光粉的制备方法, 其特征在于, 步骤 S2 包括如下步骤:
S21、 按 Re在 Y203中掺杂浓度为 0.1-10%, 分别称取 Υ的原料和 Re的原 料, 配置成总摩尔浓度为 0.1mol/L〜2.00mol/L的 Y、 Re溶液; 其中, 所述 Y、 Re溶液为 Y、 Re水溶液或乙醇水溶液;
522、 量取上述 Y、 Re溶液, 依次加入乙醇、 M的原料、 络合剂和表面活 性剂, 配置成 Y、 Re的醇水溶液; 其中, 所述 Y、 Re的醇水溶液中, 水与醇的 体积比为 1 : 1〜9: 1 , Y、 Re总摩尔浓度为 0.1〜1.0mol/L, 所述络合剂摩尔数与 Re和 Y摩尔数之和的比值为 1 : 1〜5: 1 ,所述表面活性剂浓度为 0.05〜0.20mol/L; 其中, 配置 Y、 Re的醇水溶液时可以加入去离子水;
523、 上述 Y、 Re的醇水溶液于 40〜60°C水浴并搅拌 4〜6小时, 最后置于 60〜90°C的烘箱内陈化 40〜60小时,得到含金属纳米颗粒 M或离子状态 M的 Y、 Re胶体。
7、 如权利要求 6所述的氧化钇荧光粉的制备方法, 其特征在于, 所述 Y的 原料、 Re的原料分别为金属氧化物、 盐酸盐类、 硝酸盐类或草酸盐类;
所述 M的原料为银、 金、 铂、 钯纳米颗粒;
所述 M的原料为 AgN03、 HAuCl4、 ¾PtCl6、 H2PdCl4水溶液或醇溶液; 所述络合剂为柠檬酸;
所述表面活性剂为选自聚乙二醇 6000、 聚乙二醇 8000、 聚乙二醇 10000和 聚乙二醇 20000中的一种或几种。
8、 如权利要求 7所述的氧化钇荧光粉的制备方法, 其特征在于, 所述金属 氧化物为 Y203、 Eu203、 Tb407;
所述盐酸盐类为 YC13'7H20、 EuCl3、 TbCl3-6H20;
所述硝酸盐类为 Υ(Ν03)3·6Η20、 Eu(N03)3'6H20、 Tb(N03)3'6H20。
9、 如权利要求 7所述的氧化钇荧光粉的制备方法, 其特征在于, 配制 Y、 Re水溶液时, 若选用硝酸盐类或盐酸盐类作为 Y的原料或 /和 Re的原料, 则将 Y的原料或 /和 Re原料直接溶解于容器中;
若选用金属氧化物或草酸盐类作为 Y 的原料和 /或 Re 的原料, 则在 15 °C 〜100°C加热搅拌条件下, 将丫、 Re各自对应的金属氧化物或草酸盐类用盐酸或 硝酸溶解于容器中。
10、 如权利要求 3所述的氧化钇荧光粉的制备方法, 其特征在于, 步骤 S3 中,所述混合胶体中 Zn和 A1摩尔数之和与 Re和 Y摩尔数之和比值范围为 0.01: 1〜2: 1 ;
所述水浴温度为 15〜80°C , 搅拌时间为 1〜4小时;
所述陈化为烘箱中 100〜200°C放置 48〜96小时;
所述热处理为在坩埚中, 空气气氛或还原气氛下 800〜1300°C处理 0.5〜6小 时。
PCT/CN2010/073891 2010-06-12 2010-06-12 氧化钇荧光粉及其制备方法 WO2011153715A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/702,345 US8894883B2 (en) 2010-06-12 2010-06-12 Yttrium oxide phosphor mixture and preparation method thereof
PCT/CN2010/073891 WO2011153715A1 (zh) 2010-06-12 2010-06-12 氧化钇荧光粉及其制备方法
EP10852708.6A EP2581433B1 (en) 2010-06-12 2010-06-12 Yttrium oxide fluorescent powder and preparation method thereof
CN201080066876.6A CN102906217B (zh) 2010-06-12 2010-06-12 氧化钇荧光粉及其制备方法
JP2013513515A JP5599942B2 (ja) 2010-06-12 2010-06-12 酸化イットリウム蛍光体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/073891 WO2011153715A1 (zh) 2010-06-12 2010-06-12 氧化钇荧光粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2011153715A1 true WO2011153715A1 (zh) 2011-12-15

Family

ID=45097473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073891 WO2011153715A1 (zh) 2010-06-12 2010-06-12 氧化钇荧光粉及其制备方法

Country Status (5)

Country Link
US (1) US8894883B2 (zh)
EP (1) EP2581433B1 (zh)
JP (1) JP5599942B2 (zh)
CN (1) CN102906217B (zh)
WO (1) WO2011153715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896674A4 (en) * 2012-09-11 2016-05-18 Ocean S King Lighting Science&Technology Co Ltd ZINCALUMINATE LIGHTING MATERIAL AND MANUFACTURING METHOD THEREFOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361052A (zh) * 2013-08-05 2013-10-23 黑龙江大学 Au/Y2O3:Eu3+复合纳米管的制备方法
CN108383531B (zh) * 2018-05-15 2021-02-19 西北工业大学 拓扑发光体异质相掺杂的MgB2基超导体及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586877A (en) * 1978-12-22 1980-07-01 Nec Corp Light-emitting material
JPH0747732B2 (ja) * 1987-12-05 1995-05-24 日亜化学工業株式会社 低速電子線励起螢光体
WO2000012649A1 (en) * 1998-08-27 2000-03-09 Superior Micropowders Llc Phosphor powders, methods for making phosphor powders and devices incorporating same
JP2001288467A (ja) * 2000-04-06 2001-10-16 Toshiba Corp 酸化物複合体粒子とその製造方法、蛍光体とその製造方法、カラーフィルターとその製造方法、ならびにカラー表示装置
CN1239674C (zh) * 2003-07-02 2006-02-01 中国科学院上海硅酸盐研究所 一种稀土掺杂的纳米级氧化钇基发光粉体的制备方法
KR100730122B1 (ko) * 2004-12-24 2007-06-19 삼성에스디아이 주식회사 전도성 물질을 포함하는 이트륨계 형광체, 그의 제조방법및 이를 채용한 표시소자
KR20090004179A (ko) * 2007-07-06 2009-01-12 삼성에스디아이 주식회사 금속 화합물로 안정화된 혼성화된 나노 형광체 막, 그 용도및 그 제조 방법.
CN101298337B (zh) * 2008-07-01 2011-07-20 上海大学 Y2O3:Eu3+纳米球粉体的制备方法
CN101560389B (zh) * 2009-05-14 2012-05-30 浙江理工大学 一种掺铽氧化钇绿光发光粉末的制备方法
CN101775278B (zh) 2010-01-28 2013-10-16 海洋王照明科技股份有限公司 胶体包覆荧光粉及其制备方法
CN102812105B (zh) * 2010-05-25 2014-11-05 海洋王照明科技股份有限公司 场发射用的荧光材料及其制备方法
CN102812106B (zh) * 2010-05-31 2014-11-05 海洋王照明科技股份有限公司 含有导电氧化物的掺杂稀土元素的氧化钇发光薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLIERI B. ET AL.: "Growth and Microstructural Analysis of Nanosized Y2O3 Doped with Rare-Earths", MATERIALS CHEMISTRY AND PHYSICS, vol. 66, no. 2-3, 2000, pages 164 - 171, XP055069094 *
TAKAHASHI R. ET AL.: "Development of a New Combinatorial Mask for Addressable Ternary Phase Diagramming: Application to Rare Earth Doped Phosphors", APPLIED SURFACE SCIENCE, vol. 223, no. 1-3, 2004, pages 249 - 252, XP055069096 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896674A4 (en) * 2012-09-11 2016-05-18 Ocean S King Lighting Science&Technology Co Ltd ZINCALUMINATE LIGHTING MATERIAL AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
US20130075662A1 (en) 2013-03-28
CN102906217A (zh) 2013-01-30
EP2581433A1 (en) 2013-04-17
JP5599942B2 (ja) 2014-10-01
JP2013531710A (ja) 2013-08-08
EP2581433B1 (en) 2017-01-18
CN102906217B (zh) 2014-07-23
US8894883B2 (en) 2014-11-25
EP2581433A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
CN102477293B (zh) 一种场致发光材料及其制备方法
US8834745B2 (en) Oxyhalide luminescent material doped with rare earth containing metal particle and production method thereof
EP2584020A1 (en) Halosilicate luminescent materials and preparation methods and uses thereof
EP2584021B1 (en) Strontium cerate luminous materials, preparation methods and use thereof
EP2848674A1 (en) Metal nanoparticle-coating titanate fluorescent material and preparation method therefor
JP5688473B2 (ja) インジウム・ガリウム酸化物発光材料、及びその製造方法
WO2011153715A1 (zh) 氧化钇荧光粉及其制备方法
WO2014067113A1 (zh) 硅酸盐发光材料及其制备方法
JP5913730B2 (ja) 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
WO2014040229A1 (zh) 铝酸锌发光材料及其制备方法
US8936733B2 (en) Borate luminescent materials, preparation methods and uses thereof
WO2014019153A1 (zh) 铝酸锌荧光材料及其制备方法
JP6009091B2 (ja) アルミン酸塩発光材料及びその製造方法
CN104169394B (zh) 钛酸盐发光材料及其制备方法
JP5677568B2 (ja) 酸化物発光材料及びその調製方法
WO2014040222A1 (zh) 氧化镥发光材料及其制备方法
EP2832818A1 (en) Luminescent materials doped with metal nano particles and preparation methods therefor
CN104736665A (zh) 硅酸盐发光材料及其制备方法
WO2014040220A1 (zh) 硅酸盐发光材料及其制备方法
CN103773370A (zh) 稀土-铝酸盐发光材料及其制备方法
EP2896675A1 (en) Stannate luminescent material and preparation method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066876.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13702345

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013513515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010852708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010852708

Country of ref document: EP