WO2011153683A1 - Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof - Google Patents

Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof Download PDF

Info

Publication number
WO2011153683A1
WO2011153683A1 PCT/CN2010/073643 CN2010073643W WO2011153683A1 WO 2011153683 A1 WO2011153683 A1 WO 2011153683A1 CN 2010073643 W CN2010073643 W CN 2010073643W WO 2011153683 A1 WO2011153683 A1 WO 2011153683A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
liquid
vacuum
ferrosilicon
vessel
Prior art date
Application number
PCT/CN2010/073643
Other languages
French (fr)
Chinese (zh)
Inventor
牛强
储少军
Original Assignee
Niu Qiang
Chu Shaojun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niu Qiang, Chu Shaojun filed Critical Niu Qiang
Priority to US13/501,463 priority Critical patent/US20120198968A1/en
Priority to PCT/CN2010/073643 priority patent/WO2011153683A1/en
Priority to CN2010800009769A priority patent/CN101999005B/en
Publication of WO2011153683A1 publication Critical patent/WO2011153683A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/16Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced

Abstract

A method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof. The method comprises the following steps: passing molten ferrosilicon (109) of 1350~1600℃ and magnesium ore powder containing magnesia blended therein through a vacuum container (104) with a vacuum of 350~10000Pa periodically in a manner of circulating flow, and collecting liquid magnesium (201), i.e. the magnesium vapor released upon condensing. The apparatus comprises a heating container (101) and a vacuum container (104) connected with an elevating dip pipe (102) and a falling dip pipe (103) whose lower ends immersed into the molten ferrosilicon (109) in the heating container (101). An inert gas blowing device is inserted into the elevating dip pipe (102) wall. The method and apparatus thereof can improve productivity.

Description

一种真空环流硅热法制金属镁的方法及其设备 技术领域  Method and device for preparing metal magnesium by vacuum circulating silicon thermal method
本发明涉及一种炼镁的方法及其设备,尤其涉及一种真空环流熔态 硅热法炼镁的方法及其说设备。 背景技术  The invention relates to a method and a device for smelting magnesium, in particular to a method and a device for vacuum smelting silicon thermal magnesium smelting. Background technique
镁及镁合金具有质量轻, 比强度高, 导热性能好, 易于回收, 对环 境污染小等优点, 在汽车等交通工具制造、 机械电子、 航空航天、 国防 军工等领域具有重要的应用价值, 被誉为 "21世纪的绿色环保材料"。  Magnesium and magnesium alloys have the advantages of light weight, high specific strength, good thermal conductivity, easy recovery, and low environmental pollution. They have important application value in the fields of automobile manufacturing, machinery and electronics, aerospace, defense and military industries. Known as "green materials in the 21st century."
金属镁的工业化生产一般有两种工艺: 一类书是电解法; 另一类是真 空热还原法, 该方法一般采用硅铁为还原剂, 普遍采用的是横罐外加热 周期还原工艺, 又称皮江法。  There are generally two processes for the industrial production of magnesium metal: one type of book is electrolytic method; the other type is vacuum heat reduction method, which generally uses ferrosilicon as a reducing agent, which is generally used for the heating cycle reduction process outside the horizontal tank. Pi Jiangfa.
电解法炼镁由于产生氯气, 伴随有无法克服的环保问题, 故近年来 已经逐渐让位于皮江法。  Electrolytic magnesium smelting has gradually given way to the Pijiang Law in recent years due to the inevitable environmental problems caused by the generation of chlorine.
我国原镁产量已经占到全球约 80%的份额,几乎全部采用皮江法生 、、 所谓皮江法, 是由加拿大著名冶金学家 L. M. Pidgeon在 1942年完 善的炼镁方法, 并以他的名字命名的工艺, 沿用至今且没有根本性的改 进。该工艺如图 1所示, 是将含硅 75%的硅铁和含氧化镁煅白粉混合成 固相接触方式, 置于耐热钢制成的横罐内, 罐外采用火焰加热, 促进横 罐内物料进行化学反应,物料反应温度约为 1150〜1250°C,真空度一般 小于 20Pa。 现有的皮江法炼镁具有如下缺点:  China's primary magnesium production has accounted for about 80% of the world's share, almost all using Pijiang Fasheng, the so-called Pijiang method, is a refined magnesium method developed by the famous Canadian metallurgist LM Pidgeon in 1942, and named after him The process is still in use and there is no fundamental improvement. The process is shown in Figure 1. The silicon-containing silicon containing 75% silicon ferrite and the magnesia-containing calcined white powder are mixed into a solid phase contact method, placed in a horizontal tank made of heat-resistant steel, and the outside of the tank is heated by flame to promote horizontal The material in the tank is subjected to a chemical reaction, and the reaction temperature of the material is about 1150 to 1250 ° C, and the degree of vacuum is generally less than 20 Pa. The existing Pijiang method magnesium smelting has the following disadvantages:
1. 反应物硅铁和煅白以固相接触方式进行化学反应, 反应速率慢, 典型的工艺过程中还原反应周期长达 10~12小时, 效率低下;  1. The reactant ferrosilicon and calcined white are chemically reacted in solid phase contact mode, and the reaction rate is slow. The typical reaction process has a reduction reaction period of 10 to 12 hours, and the efficiency is low;
2. 采用火焰外部加热,热量由反应器外部逐逐渐传导到内部,周期 长, 热能损失大, 热能利用率低, 专业分析认为典型工艺的热能利用率 只有 20%左右; 2. External heating by flame, heat is gradually transferred from the outside of the reactor to the inside, the cycle is long, the heat energy loss is large, the heat energy utilization rate is low, and the professional analysis considers the heat utilization rate of the typical process. Only about 20%;
3. 由于外部加热的方式限制了反应器容积,典型的横罐内径在 400 毫米以内, 一次装料量小, 单罐一次产出原镁只有 20〜30公斤, 占地 面积大, 现场管理难度大, 不易实现大规模生产和机械化作业;  3. Due to the external heating method, the reactor volume is limited. The typical inner diameter of the horizontal tank is less than 400 mm. The amount of primary charge is small. The single magnesium can only produce 20~30 kg of raw magnesium at a time. It has a large area and is difficult to manage on site. Large, difficult to achieve large-scale production and mechanized operations;
4. 采用含硅元素 75%硅铁为还原剂, 一般吨镁硅铁消耗为 1.05〜 1.20吨, 即硅浪费 45〜100%, 同时所有铁元素都浪费了;  4. Using silicon-containing element 75% ferrosilicon as reducing agent, the general consumption of magnesium ferrosilicon is 1.05~120 tons, that is, silicon waste is 45~100%, and all iron elements are wasted;
5. 还原出来的镁蒸气在高真空度下直接冷凝成固态结晶镁,没有流 动的便利, 收集释放困难。  5. The reduced magnesium vapor is directly condensed into solid crystalline magnesium under high vacuum without the convenience of flow, and it is difficult to collect and release.
6. 横罐一般采用含有镍、 铬的昂贵的耐热钢, 消耗很快, 成本高; 6. The horizontal tank is generally made of expensive heat-resistant steel containing nickel and chromium, which is fast in consumption and high in cost;
7. 烟尘污染严重, 劳动环境恶劣, 对周围生态环境负面影响大;7. The smoke and dust are seriously polluted, the working environment is bad, and the negative impact on the surrounding ecological environment is large;
8. 需要人工装料、 扒渣、 清理结晶镁, 劳动强度大。 8. It requires manual loading, slag removal, and cleaning of crystalline magnesium, which is labor intensive.
已授权和公开的一批发明和实用新型专利技术,针对皮江法炼镁工 艺的上述不足提出了改进的方法,主要是变火焰加热为清洁能源的电能 加热, 具体热源有电阻片加热、 炉料电阻加热、 感应加热等, 再一个改 进就是变外部加热为内部加热。  A batch of invention and utility model patented technologies that have been authorized and disclosed have proposed an improved method for the above-mentioned shortcomings of the Pijiang process of smelting magnesium, mainly by heating the electric energy of the flame energy to clean energy. The specific heat source has the resistance sheet heating and the charge resistance. Heating, induction heating, etc., another improvement is the external heating to internal heating.
由于上述发明和实用新型专利并不涉及反应物硅铁的固体形态,所 以没有使得镁的还原反应效率有本质上的提升。  Since the above invention and utility model patents do not relate to the solid form of the ferrosilicon of the reactant, the efficiency of the reduction reaction of magnesium is not substantially improved.
为此,有人提出了内热炼镁的工艺,如中国专利 95100495.6公开了 一种内热炼镁的技术, 其中通过将煅烧过的白云石、 铝钒土以及含硅 75%以上的硅铁装入电炉, 在 O.OlPa的真空条件下, 由熔渣电阻发热, 硅热还原氧化镁炼制镁。  For this reason, a process for internal heat magnesium smelting has been proposed. For example, Chinese Patent No. 95100495.6 discloses an internal heat magnesium smelting technique in which calcined dolomite, aluminum bauxite, and silicon iron containing more than 75% of silicon are charged into an electric furnace. Under the vacuum condition of O.OlPa, the slag resistance heats up, and the silicon thermal reduction magnesium oxide refines magnesium.
然而, 这种唯一可能涉及到液态反应的 95100495.6 "电炉热装料硅 热还原真空炼镁新工艺"也只是在装入固态炉料后, 随着温度的升高, 炉料会呈熔融态, 反应初始阶段仍然是固相接触方式。但该专利描述的 反应系统由于高真空度, 无法以液态镁形式回收镁蒸气, 会导致镁蒸气 直接冷凝成固态结晶镁, 堵塞真空系统。 另外, 该工艺无法实现连续生  However, the only 95100495.6 "electric furnace hot charge silicon thermal reduction vacuum magnesium smelting new process" which may involve liquid reaction is only after the solid charge is charged, and the charge will be molten as the temperature rises. The stage is still the solid phase contact method. However, the reaction system described in this patent cannot recover magnesium vapor in the form of liquid magnesium due to high vacuum, which causes the magnesium vapor to directly condense into solid crystalline magnesium, which blocks the vacuum system. In addition, the process cannot achieve continuous production.
发明内容 本发明针对现有技术的弊端, 公开了一种全新的真空环流熔态硅热 法炼镁的方法及其设备。 Summary of the invention The invention aims at a disadvantage of the prior art, and discloses a novel vacuum circulation molten silicon thermal method for smelting magnesium and a device thereof.
本发明的一个目的在于提供一种能够实现连续或半连续生产金属 镁的方法和设备, 从而可以提高镁生产效率;  It is an object of the present invention to provide a method and apparatus for achieving continuous or semi-continuous production of magnesium metal, thereby improving magnesium production efficiency;
本发明的另一个目的在于缩短金属镁还原周期, 提高金属镁的产 能;  Another object of the present invention is to shorten the metal magnesium reduction cycle and increase the productivity of magnesium metal;
本发明的又一个目的在于提高热能利用率;  Yet another object of the present invention is to improve thermal energy utilization;
本发明的又一个目的在于不再采用耐热钢制成的还原罐; 本发明的又一个目的在于摆脱还原罐内径的限制,实现反应器的大 型化;  Still another object of the present invention is to eliminate the use of a reduction tank made of heat resistant steel; yet another object of the present invention is to achieve a reduction in the inner diameter of the reduction tank and to achieve a reactor size reduction;
本发明的又一个目的在于充分利用硅铁中的硅和铁两种元素,通过 连续生产以及生产含硅和铁两种元素的合金为副产品, 实现硅和铁元素 的综合利用;  Still another object of the present invention is to make full use of both silicon and iron elements in ferrosilicon, and to realize the comprehensive utilization of silicon and iron by continuously producing and producing an alloy containing silicon and iron as a by-product;
本发明的又一个目的在于以液态方式冷凝并收集所获得的镁蒸气, 易于控制镁产品的流动方向, 便于收集和释放镁产品;  Still another object of the present invention is to condense and collect the obtained magnesium vapor in a liquid state, which is easy to control the flow direction of the magnesium product, and is convenient for collecting and releasing the magnesium product;
本发明的又一个目的在于减少烟尘污染, 有利于环保。  Still another object of the present invention is to reduce smoke pollution and contribute to environmental protection.
本发明所述的真空环流熔态硅热法炼镁的方法, 歩骤包括: 歩骤一,在加热容器中将硅铁加热至熔融状态,保持温度在 1350〜 1600。C ;  The method of vacuum circulating molten silicon thermal magnesium smelting according to the present invention comprises the following steps: First, the ferrosilicon is heated to a molten state in a heating vessel, and the temperature is maintained at 1350 to 1600. C ;
歩骤二,使熔融液态硅铁与混合在其中的含有氧化镁的镁矿粉以环 形流动的方式周期性地通过与上述加热容器分离的真空容器,真空度为 350〜10000Pa,所述镁矿粉中氧化镁被上述熔融液态硅铁中的硅还原生 成镁蒸气;  In the second step, the molten liquid ferrosilicon and the magnesium oxide powder containing magnesium oxide mixed therein are periodically flowed through a vacuum container separated from the heating container by a circular flow, and the degree of vacuum is 350 to 10000 Pa. Magnesium oxide in the powder is reduced by silicon in the above molten liquid ferrosilicon to form magnesium vapor;
歩骤三, 将歩骤二中得到的镁蒸气冷凝成液态并收集。  In the third step, the magnesium vapor obtained in the second step is condensed into a liquid state and collected.
本发明所述炼镁的方法的歩骤二中,熔融液态硅铁在真空抽吸作用 和充入惰性气体受热膨胀的驱动力的作用下, 形成环形流动, 周期性地 通过真空容器。  In the second step of the method for smelting magnesium according to the present invention, the molten liquid ferrosilicon forms a circular flow under the action of vacuum suction and a driving force for charging the inert gas to be thermally expanded, and periodically passes through the vacuum vessel.
本发明所述炼镁的方法的歩骤二中,镁矿粉喷入环形流动的熔融液 态硅铁内, 并随着熔融液态硅铁环形流动, 在处于真空容器中时, 与硅 铁液发生化学反应, 生成镁蒸气, 升入真空容器上方。 In the second step of the method for smelting magnesium according to the present invention, the magnesium ore powder is sprayed into the annular flow of molten liquid ferrosilicon, and flows along with the molten liquid ferrosilicon, when in a vacuum vessel, with silicon. The molten iron reacts chemically to form magnesium vapor and rises above the vacuum vessel.
本发明所述炼镁的方法的歩骤三中, 所述镁蒸气被冷却至 650 °C〜 700 °C的温度且被液态镁滴所捕集, 由此冷凝为液态镁而被收集。  In the third step of the method for smelting magnesium according to the present invention, the magnesium vapor is cooled to a temperature of 650 ° C to 700 ° C and trapped by liquid magnesium droplets, thereby being condensed into liquid magnesium and collected.
本发明所述炼镁的方法中,所述加热容器中的熔融液态硅铁中硅的 质量百分含量大于 30 %而小于 65%。 炼镁过程中, 定期向所述加热容 器中添加含硅质量百分数高于加热容器中熔融液态硅铁的固态或熔融 硅铁合金或工业硅, 以补充被消耗的硅元素, 提高加热容器中硅铁含硅 量, 使得炼镁过程连续进行。  In the method of smelting magnesium according to the present invention, the mass percentage of silicon in the molten liquid ferrosilicon in the heating vessel is more than 30% and less than 65%. During the magnesium smelting process, a solid or molten ferrosilicon alloy or industrial silicon having a silicon content higher than that of the molten liquid ferrosilicon in the heating vessel is periodically added to the heating vessel to supplement the consumed silicon element and increase the ferrosilicon in the heating vessel. The amount of silicon is such that the magnesium smelting process continues.
本发明所述炼镁的方法中, 炼镁过程停止后, 向所述加热容器中的 熔融液态硅铁中添加工业硅、 工业纯铁、 铁合金中的一种或几种, 以调 节熔融液态硅铁的化学成分, 生产至少含有硅和铁两种元素的合金, 作 为炼镁副产品。  In the method for smelting magnesium according to the present invention, after the magnesium smelting process is stopped, one or more of industrial silicon, industrial pure iron, and iron alloy are added to the molten liquid ferrosilicon in the heating vessel to adjust the molten liquid silicon. The chemical composition of iron produces an alloy containing at least two elements, silicon and iron, as a by-product of magnesium smelting.
本发明所述炼镁的方法中, 炼镁过程中, 定期从加热容器中排出液 态废渣。  In the method of smelting magnesium according to the present invention, the liquid waste is periodically discharged from the heating vessel during the magnesium smelting process.
本发明还提供一种真空环流熔态硅热法炼镁的设备, 包括 加热容器, 其中容纳有熔融液态硅铁;  The present invention also provides an apparatus for vacuum circulating molten silicon thermal magnesium smelting, comprising a heating vessel in which molten liquid ferrosilicon is contained;
真空容器,其下端所连通的浸渍管道下端口插入到所述加热容器盛 放的液态硅铁液面以下;  a vacuum vessel, the lower port of the impregnating pipe connected to the lower end thereof is inserted below the liquid silicon iron surface of the heating vessel;
吹气装置, 其与所述浸渍管路连通, 并能够向浸渍管道中吹入惰性 气体。  An air blowing device is in communication with the impregnation line and is capable of blowing an inert gas into the impregnation pipe.
本发明所述炼镁的设备中, 所述真空容器设置在加热容器的上方, 所述浸渍管道位于真空容器的下侧, 并与所述真空容器连通, 所述浸渍 管道插入到所述加热容器中, 当所述浸渍管道下端口浸没入所述加热容 器中的液态物质液面以下时,所述真空容器及其浸渍管道的内部空间即 与大气隔绝, 形成封闭的空间, 在真空抽气作用下成为真空容器, 并抽 吸所述加热容器中液态物质上升到所述浸渍管道和所述真空容器内。  In the magnesium smelting apparatus of the present invention, the vacuum vessel is disposed above the heating vessel, the impregnation pipe is located at a lower side of the vacuum vessel, and is in communication with the vacuum vessel, and the impregnation pipe is inserted into the heating vessel Wherein, when the lower port of the impregnating pipe is submerged below the liquid level in the heating vessel, the internal space of the vacuum vessel and its impregnated pipe is isolated from the atmosphere to form a closed space, and vacuum evacuation is performed. The lower portion becomes a vacuum container, and the liquid substance in the heating container is sucked up into the impregnation pipe and the vacuum container.
本发明所述炼镁的设备中, 所述浸渍管道具有至少两个歧管, 所述 吹气装置的吹口在第一歧管的下方或侧方, 能够向第一歧管内吹入惰性 气体, 使硅铁液在第一歧管内上升至所述真空容器, 而从第二歧管内下 降, 回流至所述加热容器。 In the apparatus for smelting magnesium according to the present invention, the impregnation pipe has at least two manifolds, and the mouthpiece of the air blowing device is below or lateral to the first manifold, and an inert gas can be blown into the first manifold. Lifting the ferrosilicon in the first manifold to the vacuum vessel and from the second manifold Drop and return to the heating vessel.
本发明所述炼镁的设备中, 所述真空容器上设置有冷凝器, 所述冷 凝器与真空容器连通, 抽真空设备通过冷凝器对所述真空容器抽真空, 使镁蒸气冷却为液态并落入冷凝器下方的液态镁储存装置中。  In the magnesium smelting apparatus of the present invention, the vacuum vessel is provided with a condenser, the condenser is connected to the vacuum vessel, and the vacuuming device vacuums the vacuum vessel through the condenser to cool the magnesium vapor into a liquid state and It falls into the liquid magnesium storage device below the condenser.
本发明所述炼镁的设备中, 所述浸渍管道具有三个歧管, 其中一个 歧管中通入氩气, 使硅铁液在该歧管中上升至所述真空容器, 而从另外 两个歧管下降, 回流至所述加热容器中。  In the magnesium smelting apparatus of the present invention, the impregnating pipe has three manifolds, wherein one of the manifolds is filled with argon gas, so that the ferrosilicon liquid rises in the manifold to the vacuum vessel, and from the other two The manifolds are lowered and returned to the heating vessel.
本发明所述炼镁的设备中,所述镁蒸气收集装置中设有冷却构件和 镁液喷淋构件, 用于冷却所收集到的镁蒸气, 并通过喷淋镁液而使所收 集到的镁蒸气凝聚, 形成液态镁。  In the magnesium smelting apparatus of the present invention, the magnesium vapor collecting device is provided with a cooling member and a magnesium liquid spraying member for cooling the collected magnesium vapor and collecting the collected magnesium liquid by spraying the magnesium liquid. The magnesium vapor condenses to form liquid magnesium.
本发明所述炼镁的设备中,所述真空容器侧壁设置有至少一个等离 子加热器, 所述等离子加热器可对真空容器内部的物质加热。  In the magnesium smelting apparatus of the present invention, the vacuum vessel side wall is provided with at least one plasma heater, and the plasma heater can heat the substance inside the vacuum vessel.
本发明所述真空环流熔态硅热法炼镁的方法及其设备中,创造性地 将反应室 (真空容器) 与反应物储存室 (加热容器) 区分开来, 只在反 应室内形成真空环境, 在真空环境中发生硅还原氧化镁的化学反应, 同 时使得反应物储存室成为补充原料和排除废渣的容器——向反应物储 存室兌入液态或固态硅铁或工业硅, 补充由于还原过程消耗的硅元素, 同时排除还原过程形成的含有二氧化硅的熔渣,使得在不破坏真空环境 的前提下, 炼镁过程可以连续进行。  In the method and apparatus for vacuum circulating molten silicon thermal magnesium smelting according to the present invention, the reaction chamber (vacuum container) is creatively distinguished from the reactant storage chamber (heating container), and only a vacuum environment is formed in the reaction chamber. The chemical reaction of silicon-reduced magnesium oxide occurs in a vacuum environment, and at the same time, the reactant storage chamber becomes a container for replenishing the raw material and removing the waste residue - the liquid or solid ferrosilicon or industrial silicon is exchanged into the reactant storage chamber, and the supplement is consumed by the reduction process. The silicon element, while eliminating the silica-containing slag formed by the reduction process, allows the magnesium smelting process to proceed continuously without damaging the vacuum environment.
形成真空后, 通过向浸渍管中吹入氩气等惰性气体, 使得这些惰性 气体在高温下急剧膨胀, 加上真空对液态物质的抽吸作用, 使得液态反 应物在该浸渍管内上升进入真空反应室,然后在重力作用下从另一浸渍 管中下降, 因而在真空反应室和反应物存储室之间形成环形流动, 不断 将未发生还原反应的熔融液态硅铁和镁矿粉抽吸进入真空反应室进行 化学反应。  After the vacuum is formed, the inert gas is rapidly expanded at a high temperature by blowing an inert gas such as argon into the immersion tube, and the suction of the liquid material by the vacuum is applied to cause the liquid reactant to rise into the vacuum reaction in the immersion tube. The chamber then descends from the other dip tube under the action of gravity, thereby forming a circular flow between the vacuum reaction chamber and the reactant storage chamber, continuously drawing the molten liquid ferrosilicon and magnesium ore powder which has not undergone the reduction reaction into the vacuum The reaction chamber undergoes a chemical reaction.
众所周知, 高温冶金化学反应的规律是, 固体和固体的化学反应速 率要慢得多, 而有液体参与的反应要快得多。 因此本发明使用液态硅铁 为还原剂, 化学反应有液相直接参加。 如果存在液态反应物的快速激烈 流动混合, 则化学反应的界面积将大大增加, 导致反应速率比平静的液 态再加快很多。 因而熔融液态硅铁的环流极大地增加了反应速率, 提升 了炼镁过程的生产效率。 由此, 使得本发明可以采用较低硅含量的硅铁 为还原剂, 例如通过 75硅铁和 45硅铁或者纯铁配制成含硅 30%〜65% 的硅铁, 扩大了适用还原剂的范围。 It is well known that the rule of pyrometallurgical chemical reaction is that the chemical reaction rate of solids and solids is much slower, and the reaction involving liquids is much faster. Therefore, the present invention uses liquid ferrosilicon as a reducing agent, and the chemical reaction directly participates in the liquid phase. If there is a rapid and intense flow mixing of the liquid reactants, the boundary area of the chemical reaction will be greatly increased, resulting in a reaction rate that is quieter than the liquid. The state has accelerated a lot. Thus, the circulation of the molten liquid ferrosilicon greatly increases the reaction rate and improves the production efficiency of the magnesium smelting process. Therefore, the present invention can use a lower silicon content of ferrosilicon as a reducing agent, for example, by using 75 ferrosilicon and 45 ferrosilicon or pure iron to prepare silicon ferrite containing 30% to 65% of silicon, which expands the application of the reducing agent. range.
硅铁合金还原氧化镁的过程中, 随着硅元素的消耗, 硅铁中硅的含 量逐渐降低, 使得还原的速率也降低下来, 本发明通过不断添加高硅含 量的含硅物质 (如高标号硅铁、 工业硅等), 使得化学反应速率始终维 持在较高的水平, 并且实现了连续生产。  In the process of reducing magnesium oxide by ferrosilicon alloy, with the consumption of silicon element, the content of silicon in ferrosilicon is gradually reduced, so that the rate of reduction is also lowered. The present invention continuously adds a high silicon content silicon-containing substance (such as high-grade silicon). Iron, industrial silicon, etc., so that the chemical reaction rate is always maintained at a high level, and continuous production is achieved.
在炼镁过程结束时, 残余了一定的硅铁, 添加硅铁、 工业纯铁、 硅 铝铁、 工业硅等合金, 调整残余硅铁的成分, 作为炼镁副产品。 此环节 充分利用了剩余的硅和铁元素。  At the end of the magnesium smelting process, a certain amount of ferrosilicon remains, and an alloy such as ferrosilicon, industrial pure iron, silicon-aluminum-iron, industrial silicon is added to adjust the composition of the residual ferrosilicon as a by-product of magnesium smelting. This link takes full advantage of the remaining silicon and iron.
炼镁的还原过程中, 提高真空度有利于镁蒸气的还原, 但过高的真 空度容易使镁蒸气直接冷凝成粉状固态原镁, 堵塞真空管道, 损害有关 设备, 破坏生产的连续性。 本发明的还原过程采用的较高温度和较低真 空度的配合, 既有利于镁蒸气的快速还原, 又有利于以液态方式收集镁 蒸气。 同时采用液态镁的喷淋来捕集镁蒸气, 提高了镁的回收率。  In the reduction process of magnesium smelting, increasing the vacuum is conducive to the reduction of magnesium vapor, but too high vacuum easily condenses the magnesium vapor into powdery solid raw magnesium, clogging the vacuum pipeline, damaging the equipment and destroying the continuity of production. The combination of higher temperature and lower vacuum used in the reduction process of the present invention is advantageous for both the rapid reduction of magnesium vapor and the collection of magnesium vapor in a liquid state. At the same time, the spray of liquid magnesium is used to capture the magnesium vapor, which improves the recovery rate of magnesium.
本发明的炼镁方法和设备,通过感应线圈和等离子加热枪对硅铁液 进行内部加热, 减少了热能消耗, 提高了能源使用效率。 附图说明  The magnesium smelting method and apparatus of the present invention internally heats the ferrosilicon liquid through an induction coil and a plasma heating gun, thereby reducing heat energy consumption and improving energy use efficiency. DRAWINGS
图 1为皮江法炼镁工艺流程图。  Figure 1 is a flow chart of the Pijiang process magnesium smelting process.
图 2为本发明所述真空环流熔态硅热法炼镁的方法流程示意图。 图 3为本发明所述真空环流熔态硅热法炼镁的设备结构示意图。 图 4为本发明所述真空环流状态示意图。  2 is a schematic flow chart of a method for vacuum-smelting silicon thermal magnesium smelting according to the present invention. 3 is a schematic view showing the structure of a vacuum circulating molten silicon thermal magnesium smelting according to the present invention. Figure 4 is a schematic view of the vacuum circulation state of the present invention.
附图 2、 3、 4中:  Figures 2, 3, 4:
101—— 感应加热炉  101—— induction heating furnace
102— 上升浸渍管  102—rise dip tube
103— 下降浸渍管  103—Down dip tube
104— 真空反应室 感应线圈 104—vacuum reaction chamber Induction coil
耐火层 Refractory layer
感应加热炉倾动机构 感应加热炉升降机构 熔态硅铁液 Induction heating furnace tilting mechanism Induction heating furnace lifting mechanism Melting ferrosilicon
氩气吹管 Argon blow tube
上进料室 Upper feed room
下进料室 Lower feed room
上进料室阔门 下进料室阔门 粉料输送管 等离子加热器 流渣槽 Upper feed chamber wide door lower feed chamber wide door powder delivery pipe plasma heater slag tank
浸渍管法兰 真空室上部密封法兰 液态金属镁 液镁储罐 Dipping pipe flange Vacuum chamber upper sealing flange Liquid metal magnesium Liquid magnesium storage tank
镁液提升管阔门 镁液提升管 液镁储罐阀门 冷凝器 Magnesium liquid riser wide door Magnesium liquid riser Liquid magnesium storage tank valve Condenser
镁液定量提升泵 除尘真空系统连接管 真空连接管阀门 镁液喷淋口 镁液滴 Magnesium liquid quantitative lifting pump Dust removal vacuum system connecting pipe Vacuum connecting pipe valve Magnesium liquid spray port Magnesium droplet
冷凝器阀门 液镁储罐排液口 302—— 加热容器中硅铁水液面 Condenser valve liquid magnesium storage tank drain 302——heating the surface of ferrosilicon in the heating vessel
303—— 硅铁水流动方向 具体实施方式  303—— Flow direction of ferrosilicon water
下面结合附图对本发明做进一歩的详细说明, 以令本领域技术人员 参照说明书文字能够据以实施。  The detailed description of the present invention will be further described in conjunction with the accompanying drawings, in which FIG.
本发明所述的真空环流熔态硅热法炼镁的方法及其设备,是以熔融 状态的硅铁为还原剂,使之环形流动过程中周期性地通过高温真空容器 并在其内还原含氧化镁的矿粉, 从而提取金属镁蒸气。  The method and equipment for vacuum-circulating molten silicon thermal magnesium smelting according to the present invention are a ferrosilicon ferrite as a reducing agent, which is periodically passed through a high-temperature vacuum vessel and reduced therein. Magnesium oxide powder, thereby extracting magnesium metal vapor.
如图 2所示, 本发明所述的真空环流熔态硅热法炼镁的方法, 包括 如下歩骤:  As shown in FIG. 2, the method for vacuum-circulating molten silicon thermal magnesium smelting according to the present invention comprises the following steps:
歩骤 501, 在加热容器中将硅铁加热至熔融状态。  Step 501, heating the ferrosilicon to a molten state in a heating vessel.
本歩骤中, 所述加热容器可为感应炉, 感应炉外围有感应线圈, 通 电后可维持加热炉内硅铁水温度为 1350〜1600°C。  In the step, the heating container may be an induction furnace, and an induction coil is arranged around the induction furnace, and the temperature of the silicon iron in the heating furnace is maintained at 1350 to 1600 ° C after being powered.
歩骤 502, 使熔融液态硅铁与含有氧化镁的镁矿粉以环形流动的方 式周期性地通过与上述加热容器分离的真空容器,所述镁矿粉中氧化镁 被上述熔融液态硅铁中的硅还原生成镁蒸气。  Step 502, the molten liquid ferrosilicon and the magnesium ore containing magnesium oxide are periodically flowed through a vacuum vessel separated from the heating vessel, and the magnesium oxide in the magnesium ore powder is in the molten liquid ferrosilicon. The silicon is reduced to form magnesium vapor.
在真空容器下部连通了上升与下降两条浸渍管, 并令该两条浸渍管 的管口浸入加热炉内硅铁水液面下。 当对真空容器抽真空至 350Pa至 lOOOOPa时, 硅铁液在真空抽吸作用下上升进入两条浸渍管, 并从两条 浸渍管继续上升进入真空容器。对上升浸渍管连续充入惰性气体(如氩 气), 则可使上升浸渍管内的硅铁水获得额外上升力而上升, 喷涌流动 进入真空容器中, 然后在重力作用下从下降浸渍管下降, 流回到加热容 器中, 因而形成自上升浸渍管到真空容器, 从真空容器再到下降浸渍管 返回到加热容器, 然后再从加热容器上升至上升浸渍管的环形流动。  The two dip tubes are raised and lowered in the lower part of the vacuum vessel, and the nozzles of the two dip tubes are immersed in the surface of the ferrosilicon water in the heating furnace. When the vacuum vessel is evacuated to 350 Pa to 100000 Pa, the ferrosilicon liquid is pumped under vacuum suction into the two dip tubes and continues to rise from the two dip tubes into the vacuum vessel. Continuously charging the rising impregnation pipe with an inert gas (such as argon gas) can increase the rise of the ferrosilicon water in the rising dip tube, and the gushing flow enters the vacuum vessel, and then descends from the descending dip tube under the action of gravity. Returning to the heating vessel, a self-rising dip tube is formed into the vacuum vessel, returning from the vacuum vessel to the descending dip tube to the heating vessel, and then rising from the heating vessel to the annular flow of the rising dip tube.
硅铁液环流过程中, 镁矿粉通过惰性气体作为载气喷吹到硅铁液 中, 与硅铁液混合后, 被硅铁液裹挟一起进行环流。 喷吹镁矿粉的位置 可以是真空容器内的硅铁液中, 也可以是加热容器的硅铁液中, 还可以 是上升浸渍管或下降浸渍管中。硅铁液与镁矿粉处于真空容器中时, 发 生还原反应, 生成镁蒸气, 镁蒸气逸出到真空容器上方的空间, 并被真 空抽吸远离真空容器。 During the circulation of the ferrosilicon liquid, the magnesium ore powder is sprayed into the ferrosilicon solution by using an inert gas as a carrier gas, mixed with the ferrosilicon solution, and then entangled by the ferrosilicon solution. The position at which the magnesium ore fines are sprayed may be in the ferrosilicon liquid in the vacuum vessel, in the ferrosilicon liquid in the heating vessel, or in the rising dip tube or the descending dip tube. When the ferrosilicon and magnesium ore powder are in a vacuum container, The reduction reaction produces a magnesium vapor which escapes to the space above the vacuum vessel and is vacuumed away from the vacuum vessel.
硅还原氧化镁后, 被氧化成二氧化硅, 并与镁矿粉中的氧化钙、 三 氧化二铝、 氧化镁等物质结合成液态熔渣, 与硅铁液混合在一起继续环 流。 当环流速度较低时, 液态熔渣会浮到加热容器中硅铁液上方, 可以 通过人工、 机械或者气流的作用, 定期将熔渣排出到加热容器以外。  After the silicon is reduced to magnesium oxide, it is oxidized to silica, and combined with calcium oxide, aluminum oxide, magnesium oxide and the like in the magnesium ore powder to form a liquid slag, which is mixed with the ferrosilicon liquid to continue the circulation. When the circulation speed is low, the liquid slag floats above the ferrosilicon liquid in the heating vessel, and the slag can be periodically discharged outside the heating vessel by the action of labor, machinery or air flow.
所述加热容器中的熔融液态硅铁中硅含量需大于 30 % ;向加热容器 中添加含硅量 75%的固态或熔融硅铁以及工业硅等, 补充消耗的硅元 素, 提高加热容器中硅铁含硅量, 使得炼镁过程连续进行。  The content of silicon in the molten liquid ferrosilicon in the heating vessel needs to be greater than 30%; adding solid or molten ferrosilicon containing 75% of silicon and industrial silicon to the heating vessel, supplementing the consumed silicon element, and increasing the silicon in the heating vessel The iron content of iron makes the magnesium smelting process continuous.
炼镁过程终止、 停歇或者暂停时, 根据需要, 可以调节残余硅铁的 成分, 使之成为符合需要的硅铁产品, 然后流出冷凝铸锭, 例如 45号 硅铁, 硅铝铁等, 作为炼镁副产品。 然后重新向加热容器内加入熔融的 含硅 30〜65%的硅铁, 进行连续炼镁。  When the magnesium smelting process is terminated, stopped or suspended, the composition of the residual ferrosilicon can be adjusted to make it suitable for the ferrosilicon product, and then the condensed ingot, such as 45 ferrosilicon, silico-alumina, etc. Magnesium by-product. Then, molten silicon containing 30 to 65% of ferrosilicon is added to the heating vessel to carry out continuous magnesium smelting.
歩骤 503, 冷凝歩骤 502得到的镁蒸气为液态并收集。  Step 503, the magnesium vapor obtained in the condensation step 502 is in a liquid state and collected.
本歩骤中, 上述歩骤 502中生成的镁蒸气被冷却至 650 700 °C的温 度且被液态镁滴所捕集, 冷凝成为液态镁而被收集。  In this step, the magnesium vapor generated in the above step 502 is cooled to a temperature of 650 700 ° C and trapped by liquid magnesium droplets, and condensed into liquid magnesium to be collected.
本发明所述真空环流熔态硅热法炼镁的方法中,采用液态硅铁为还 原剂, 使化学反应中有液相直接参与, 并且液态反应相进行激烈的环形 流动, 大大提高了反应效率。 通过不断补充高硅还原剂, 可以使炼镁过 程连续或半连续进行。 另外, 最终残余硅铁通过加入含硅量较高的合金 制品调整其成分, 成为符合需要的副产品, 如 45硅铁或硅铝铁合金。  In the method of vacuum circulating molten silicon thermal magnesium smelting according to the present invention, liquid ferrosilicon is used as a reducing agent, so that a liquid phase directly participates in the chemical reaction, and the liquid reaction phase undergoes a vigorous annular flow, thereby greatly improving the reaction efficiency. . The continuous smelting process can be carried out continuously or semi-continuously by continuously replenishing the high silicon reducing agent. In addition, the final residual ferrosilicon is adjusted to its constituents by the addition of an alloy containing a higher silicon content, such as 45 ferrosilicon or aluminosilicate.
本发明还提供一种真空环流熔态硅热法炼镁的设备, 如图 3所示, 包括:  The invention also provides a vacuum circulation molten silicon thermal magnesium smelting device, as shown in FIG. 3, comprising:
加热容器 101, 其中容纳有熔融液态硅铁;  Heating the vessel 101, wherein the molten liquid ferrosilicon is contained therein;
真空容器 104,其下端伸出的浸渍管下端口浸没于所述加热容器 101 所盛放的液态硅铁液面以下;  The lower container port of the vacuum container 104, the lower end of which is submerged below the liquid silicon iron surface of the heating container 101;
吹气装置 110, 其与所述浸渍管路连通, 并能够向浸渍管道中吹入 惰性气体。  An air blowing device 110 is in communication with the impregnation line and is capable of blowing an inert gas into the impregnation pipe.
其中, 所述真空容器 104设置在加热容器 101的上方, 所述浸渍管 道位于真空容器 104的下侧, 并与真空容器 104连通, 所述浸渍管插入 到所述加热容器 101中,且与所述真空容器 104在加热容器 101中的硅 铁水 109密闭作用下与大气隔绝, 形成封闭空间。 该真空容器 104的外 壳依次为钢壳、 内衬隔热层、 耐火层; 所述隔热层为石棉板、 石蜡石或 三氧化二铝空心球; 所述耐火层包括高铝质、 刚玉、 碳质、 碳化硅质耐 火材料。 在真空容器 104 的侧壁上, 还设置了至少一个等离子加热器 116, 用以对真空容器 104 内物料加热以维持反应温度。 本发明中, 在 真空容器 104的侧壁对称设置了两个等离子加热器 116。 Wherein the vacuum vessel 104 is disposed above the heating vessel 101, the dip tube The tract is located on the lower side of the vacuum vessel 104 and is in communication with the vacuum vessel 104. The immersion tube is inserted into the heating vessel 101, and is sealed with the ferronickel 109 in the heating vessel 101 by the vacuum vessel 104. Isolated, forming a closed space. The outer casing of the vacuum vessel 104 is a steel shell, a lining heat insulation layer and a refractory layer; the heat insulation layer is a asbestos board, a paraffin stone or a cupric oxide hollow sphere; the refractory layer comprises a high alumina, corundum, Carbonaceous, silicon carbide refractory. On the side wall of the vacuum vessel 104, at least one plasma heater 116 is also provided for heating the contents of the vacuum vessel 104 to maintain the reaction temperature. In the present invention, two plasma heaters 116 are symmetrically disposed on the side wall of the vacuum vessel 104.
所述加热容器 101 包括具有耐火层 106 的容器及设置于该耐火层 106外围的感应线圈 105。 该感应线圈 105通电后可对加热容器 101内 含硅量为 30%〜65%的硅铁 109进行加热至 1350〜1600°C,使硅铁呈熔 融状态, 并在炼镁过程中输入能量维持该温度。在所述加热容器 101的 上部, 位于下降浸渍管 103—侧, 设置有流渣槽 117, 用以定期排出反 应后的液态熔渣。 为方便加热容器 101的升降及倾倒, 本发明还进一歩 设置了倾动装置 107与升降装置 108, 其中, 所述倾动装置 107与加热 容器 101连接, 用以调节加热容器的倾斜角度, 用于最终残余硅铁液的 倾倒流出; 所述升降装置 108与加热容器 101连接, 用以调节加热容器 101的高度。  The heating vessel 101 includes a vessel having a refractory layer 106 and an induction coil 105 disposed on a periphery of the refractory layer 106. After the induction coil 105 is energized, the ferrosilicon 109 having a silicon content of 30% to 65% in the heating container 101 can be heated to 1350 to 1600 ° C to make the ferrosilicon molten, and the input energy is maintained during the magnesium smelting process. The temperature. In the upper portion of the heating vessel 101, on the side of the descending dip tube 103, a slag bath 117 is provided for periodically discharging the liquid slag after the reaction. In order to facilitate the lifting and pouring of the heating container 101, the present invention further provides a tilting device 107 and a lifting device 108, wherein the tilting device 107 is connected to the heating container 101 for adjusting the tilting angle of the heating container for the final The pouring of the residual ferrosilicon liquid is carried out; the lifting device 108 is connected to the heating vessel 101 for adjusting the height of the heating vessel 101.
所述加热容器 101内的熔融液态硅铁来自于外部, 如图 3所示, 在 初始时启动升降机构 108将加热容器 101降低, 将硅铁液注入, 或者将 固体硅铁置入, 并在感应线圈 105中通电以熔化固体硅铁。在连续炼镁 过程中, 从加热容器 101侧壁附近加入液态或固态硅铁, 以补充消耗的 娃元素。  The molten liquid ferrosilicon in the heating vessel 101 is from the outside. As shown in FIG. 3, the lifting mechanism 108 is initially activated to lower the heating vessel 101, inject the ferrosilicon solution, or place the solid ferrosilicon therein. The induction coil 105 is energized to melt the solid ferrosilicon. In the continuous magnesium smelting process, liquid or solid ferrosilicon is added from the vicinity of the side wall of the heating vessel 101 to replenish the consumed silicon element.
镁矿粉供应为粉料输送管 115, 可以连通加热容器 101, 也可以连 通真空容器 104, 还可以连通上升浸渍管 102或下降浸渍管 103。 该粉 料输送管 115以惰性气体为载气输送含氧化镁粉料。 具体而言, 所述粉 料输送管 115连通一氩气供应装置及粉料供应装置, 并令该粉料供应装 置设置于氩气供应装置的前端, 则当通入氩气时, 粉料供应装置供应的 镁矿粉被喷吹带入到加热装置 101内。 仍如图 3所示, 所述粉料供应装 置包括至少一个进料室, 该进料室与粉料输送管 115之间设置有阀门。 本发明中, 采用上下两个进料室, 如图 3所示, 分别为上进料室 111、 下进料室 112, 在上进料室 111与下进料室 112之间设置有上进料阀门 113,在下进料室与粉料输送管 115之间设置有下进料阀门 114。该种固 体料进料装置可以防止空气进入真空系统。 The magnesium ore fines are supplied as a powder delivery pipe 115, which can communicate with the heating vessel 101, or can communicate with the vacuum vessel 104, and can also communicate with the rising dip pipe 102 or the descending dip pipe 103. The powder conveying pipe 115 conveys the magnesium oxide powder containing the inert gas as a carrier gas. Specifically, the powder conveying pipe 115 is connected to an argon gas supply device and a powder supply device, and the powder supply device is disposed at the front end of the argon gas supply device, and when the argon gas is introduced, the powder supply is supplied. The magnesium ore powder supplied from the apparatus is blown into the heating device 101. Still as shown in FIG. 3, the powder supply device The arrangement includes at least one feed chamber, and a valve is disposed between the feed chamber and the powder delivery tube 115. In the present invention, two upper and lower feed chambers are used, as shown in Fig. 3, respectively, an upper feed chamber 111 and a lower feed chamber 112, and an upper feed is provided between the upper feed chamber 111 and the lower feed chamber 112. The material valve 113 is provided with a lower feed valve 114 between the lower feed chamber and the powder delivery pipe 115. This solid feed device prevents air from entering the vacuum system.
所述真空容器 104设置于加热容器 101的上方, 该真空容器 104的 真空度为 350Pa至 lOOOOPa, 所述浸渍管道位于真空容器 104的下方, 并插入到所述加热容器 101中,且该浸渍管道与真空容器 104被加热容 器中液态物质密闭, 形成与大气隔绝的封闭空间。所述浸渍管道具有至 少两个岐管, 即上升浸渍管 102和下降浸渍管 103 ; 或者, 所述浸渍管 道具有三个岐管, 其中一个岐管中通入惰性气体, 而另外两个岐管回流 真空容器 104中的熔融液态硅铁 109。 如图 3中所示, 所述上升浸渍管 102和下降浸渍管 103的管口均处于加热容器 101中所盛放的液态硅铁 液面以下, 且所述上升浸渍管 102的下方或侧方连通吹气装置 110的吹 口, 该吹气装置 110可向上升浸渍管 102内吹入惰性气体(例如氩气), 而所述下降浸渍管 103则回流真空容器 104中的熔融液态硅铁 109。 生 产过程时,上升浸渍管 102和下降浸渍管 103的下管口处于加热容器 101 内的熔融液态硅铁水的液面下, 同时, 向上升浸渍管 102通入氩气, 在 氩气受热膨胀的上升力和系统的真空抽吸下,熔融的硅铁水 109通过上 升浸渍管 102而进入到真空容器 104中,再自下降浸渍管 103回流到加 热容器 101中。 图 4为所述真空环流状态的示意图, 303为液态硅铁的 流动方向, 如图 4所示, 真空反应室 104中熔融硅铁液面 301与感应加 热炉中熔融硅铁液面 302存在一个高度差,加热容器 101中熔融硅铁液 面 302又称自由液面, 301与 302的高度差可以达到 2米以上。  The vacuum vessel 104 is disposed above the heating vessel 101. The vacuum vessel 104 has a vacuum of 350 Pa to 1000 Pa, and the impregnation pipe is located below the vacuum vessel 104 and inserted into the heating vessel 101, and the impregnation pipe is The vacuum vessel 104 is sealed by the liquid material in the heating vessel to form a closed space that is isolated from the atmosphere. The impregnation pipe has at least two manifolds, that is, a rising dip pipe 102 and a descending dip pipe 103; or, the impregnation pipe has three manifolds, one of which is provided with an inert gas, and the other two are connected The molten liquid ferrosilicon 109 in the vacuum vessel 104 is returned. As shown in FIG. 3, the nozzles of the rising dip tube 102 and the descending dip tube 103 are both below the liquid silicon iron level contained in the heating vessel 101, and the lower or side of the rising dip tube 102 The blow port of the air blowing device 110 is connected, and the air blowing device 110 can blow an inert gas (for example, argon gas) into the rising immersion pipe 102, and the descending immersing pipe 103 returns the molten liquid silicon iron 109 in the vacuum container 104. During the production process, the lower dip tube 102 and the lower nozzle of the descending dip tube 103 are under the surface of the molten liquid ferrosilicon water in the heating vessel 101, and at the same time, argon gas is introduced into the rising dip tube 102, and the argon gas is thermally expanded. Under the vacuum and the vacuum suction of the system, the molten ferrosilicon water 109 enters the vacuum vessel 104 through the rising dip tube 102, and is returned from the descending dip tube 103 to the heating vessel 101. 4 is a schematic view of the vacuum circulation state, and 303 is a flow direction of liquid ferrosilicon. As shown in FIG. 4, there is a molten silicon iron surface 301 in the vacuum reaction chamber 104 and a molten silicon iron surface 302 in the induction heating furnace. The height difference is that the molten silicon iron surface 302 in the heating vessel 101 is also called a free liquid surface, and the height difference between 301 and 302 can reach 2 meters or more.
上升浸渍管 102和下降浸渍管 103分别由两部分上下连接组成,上 部分与真空反应器 104连成一体, 下部分通过法兰 118与上部分连接, 便于更换两支浸渍管下部分。 真空容器 104顶部有一个敞口, 敞口连接 于带有密封法兰 119的管路, 便于打开密封法兰 119对真空容器内部进 行预热或者维修。 硅铁水 109在真空容器 104停留过程中, 在高温真空条件下, 还原 镁矿粉中氧化镁, 生成镁蒸气。 The rising dip tube 102 and the descending dip tube 103 are respectively composed of two parts connected up and down, the upper part is integrally connected with the vacuum reactor 104, and the lower part is connected to the upper part through the flange 118, so that the lower parts of the two dip tubes can be easily replaced. The top of the vacuum vessel 104 has an opening that is openly connected to the line with the sealing flange 119 to facilitate opening the sealing flange 119 to preheat or repair the interior of the vacuum vessel. During the residence of the vacuum vessel 104, the ferrosilicon water 109 reduces magnesium oxide in the magnesium ore powder to form magnesium vapor under high temperature vacuum conditions.
在真空容器 104上设置有镁蒸气收集装置,该镁蒸气收集装置可设 置为至少两个, 具体说, 该镁蒸气收集装置包括液镁储罐 202及连通液 镁储罐 202的镁液提升管 204、 设置于镁液提升管 204管路上的镁液定 量提升泵 207、 镁液提升管 204出口处的镁液喷淋口 210, 以及冷凝器 206, 冷凝器 206与真空容器 104连通, 一抽真空设备通过冷凝器 206 对所述真空容器 104抽真空, 使镁蒸气通过该冷凝器 206。 具体可如图 3所示, 所述真空容器 104顶部设置有与其连通的冷凝器 206, 而所述 液镁储罐 202被设置于冷凝器 206的正下方。所述冷凝器 206用于冷却 真空容器 104内产生的镁蒸气,该冷凝器 206及液镁储罐 202通常设置 于真空容器 104的旁侧并与真空容器 104连通。将液镁储罐 202设置于 冷凝器 206的正下方可保证镁蒸气冷凝后成为液滴,恰好落入液镁储罐 202中。  A magnesium vapor collection device is disposed on the vacuum vessel 104. The magnesium vapor collection device may be disposed in at least two. Specifically, the magnesium vapor collection device includes a magnesium magnesium storage tank 202 and a magnesium liquid riser that communicates with the liquid magnesium storage tank 202. 204. A magnesium liquid quantitative lift pump 207 disposed on the pipeline of the magnesium liquid riser 204, a magnesium liquid spray port 210 at the outlet of the magnesium liquid riser 204, and a condenser 206. The condenser 206 is connected to the vacuum container 104. The vacuum apparatus evacuates the vacuum vessel 104 through a condenser 206 to pass magnesium vapor through the condenser 206. Specifically, as shown in FIG. 3, the top of the vacuum vessel 104 is provided with a condenser 206 communicating therewith, and the liquid magnesium storage tank 202 is disposed directly below the condenser 206. The condenser 206 is used to cool the magnesium vapor generated in the vacuum vessel 104. The condenser 206 and the liquid magnesium storage tank 202 are generally disposed beside the vacuum vessel 104 and communicate with the vacuum vessel 104. The liquid magnesium storage tank 202 is disposed directly below the condenser 206 to ensure that the magnesium vapor condenses into droplets that fall into the liquid magnesium storage tank 202.
所述冷凝器 206连接一抽真空装置,从而实现通过冷凝器 206对真 空容器 104抽真空。 如图 3所示, 在冷凝器 206上方连接有除尘真空系 统连接管 208, 该除尘真空系统连接管 208与冷凝器 206连通处则设置 有真空连接管阀门 209。 通过启闭真空连接管阀门 209实现对真空容器 104抽真空。  The condenser 206 is connected to a vacuuming device to effect vacuuming of the vacuum vessel 104 through the condenser 206. As shown in Fig. 3, a dust removal vacuum system connection pipe 208 is connected above the condenser 206, and a vacuum connection pipe valve 209 is provided at the communication of the dust removal vacuum system connection pipe 208 and the condenser 206. Vacuuming of the vacuum vessel 104 is accomplished by opening and closing the vacuum connection tube valve 209.
如图 3所示,所述冷凝器 206可采用水冷系统,且处于液镁储罐 202 的正上方。在镁液提升管 204与液镁储罐 202的连通处设置有镁液提升 管阀门 203。 采用上述结构设计, 在开启镁液提升管阀门 203并开启镁 液定量提升泵 207后,液镁储罐 202内的液态镁 201可被引导自镁液喷 淋口 210处喷出, 由于冷凝器 206与真空容器 104连通, 冷凝器 206内 充满镁蒸气, 镁蒸气的温度被水冷装置吸热而温度降低至 650〜700°C, 当镁液喷淋口 210喷出的镁液滴 211落入冷凝器 206时,会使其中的镁 蒸气被捕集而成为液滴形式落入到液镁储罐 202中。液镁储罐 202设置 有液镁储罐排液口 213, 用于释放生产出的液态镁。  As shown in FIG. 3, the condenser 206 can employ a water cooling system and is directly above the liquid magnesium storage tank 202. A magnesium liquid riser valve 203 is provided at a communication point between the magnesium liquid riser 204 and the liquid magnesium storage tank 202. With the above structural design, after the magnesium liquid riser valve 203 is opened and the magnesium liquid quantitative lift pump 207 is turned on, the liquid magnesium 201 in the liquid magnesium storage tank 202 can be guided to be ejected from the magnesium liquid spray port 210, due to the condenser. 206 is connected to the vacuum vessel 104. The condenser 206 is filled with magnesium vapor. The temperature of the magnesium vapor is absorbed by the water cooling device and the temperature is lowered to 650 to 700 ° C. When the magnesium liquid droplet 211 ejected from the magnesium liquid shower port 210 falls into the In the case of the condenser 206, the magnesium vapor therein is trapped and falls into the liquid magnesium storage tank 202 in the form of droplets. The liquid magnesium storage tank 202 is provided with a liquid magnesium storage tank drain port 213 for releasing the produced liquid magnesium.
所述冷凝器 206与真空容器 104的连通处可设置冷凝器阀门 212。 所述液镁储罐 202的顶端可设置阀门 205。 A condenser valve 212 may be provided at the communication of the condenser 206 with the vacuum vessel 104. A valve 205 may be disposed at a top end of the liquid magnesium storage tank 202.
采用本发明所述的真空环流熔态硅热法炼镁的设备炼镁过程如下: 将温度为 1350°C到 1600 °C、 含硅量 30%至 65%的熔融液态硅铁置 于一个加热容器 101内, 加热容器 101外围有感应线圈 105, 通电后加 热炉内硅铁 109,维持加热炉内硅铁水温度为 1350°C至 1600°C。通过提 升机构 108升高加热容器 101的高度, 当加热容器 101内熔融硅铁 109 的液面浸没了两条浸渍管 102和 103下端口一定深度后, 真空容器 104 被隔绝大气而密封, 对真空容器 104抽真空至 350Pa至 lOOOOPa, 同时 向上升浸渍管 102内鼓入氩气。液态硅铁水 109在真空抽力和氩气膨胀 上升力的双重作用下,从上升浸渍管 102上升进入真空容器 104然后从 下降浸渍管 103流下, 返回加热容器 101内, 如此往复循环, 形成环形 流动。硅铁水 109在真空容器 104停留过程中, 与同处真空容器 104的 镁矿粉在高温真空条件下反应,生成镁蒸气,镁蒸气逸出到真空容器 104 上方空间, 并被真空抽力抽吸至冷凝器 206内, 被周围冷凝装置吸收热 量而降温, 在温度为 650〜700°C的条件下, 镁蒸气被镁液喷淋口 210 喷出的液态镁滴 211所捕集,成为液态镁降落到下方的液镁储罐 202中。 当液态硅铁 109的含硅浓度降低时, 补充部分 75硅铁, 使得炼镁过程 连续进行。 当炼镁过程完成时, 停止抽真空, 放出液镁储罐 202中的液 态镁 201即为原镁产品,加热容器 101内的残余液态硅铁 109通过加入 硅铁等合金调整成分到符合要求, 然后启动升降机构 108 和倾动机构 107, 使加热容器 101下降并倾斜, 流出残余硅铁水并冷凝为硅铁产品, 作为炼镁副产品。 在整个过程中, 定时将液态熔渣从流渣槽 117流出。  The smelting process of the apparatus for vacuum smelting silicon thermal magnesium smelting according to the present invention is as follows: a molten liquid ferrosilicon having a temperature of 1350 ° C to 1600 ° C and a silicon content of 30% to 65% is placed in a heating In the container 101, an induction coil 105 is arranged on the periphery of the heating container 101, and the ferrosilicon 109 in the furnace is heated after being energized to maintain the temperature of the silicon iron in the heating furnace at 1350 ° C to 1600 ° C. The height of the heating vessel 101 is raised by the lifting mechanism 108. When the liquid surface of the molten ferrosilicon 109 in the heating vessel 101 is immersed in the lower ports of the two dip tubes 102 and 103, the vacuum vessel 104 is sealed from the atmosphere and sealed to the vacuum. The vessel 104 is evacuated to 350 Pa to 1000 Pa while argon gas is blown into the rising dip tube 102. The liquid ferrosilicon water 109 rises from the rising dip tube 102 into the vacuum vessel 104 under the double action of vacuum pumping force and argon gas expansion rising force, then flows down from the descending dip tube 103, returns to the heating vessel 101, and thus reciprocates to form a circular flow. . During the residence of the vacuum vessel 104, the ferrosilicon water 109 reacts with the magnesium ore powder of the same vacuum vessel 104 under high temperature vacuum conditions to generate magnesium vapor, which escapes to the space above the vacuum vessel 104 and is vacuum pumped. In the condenser 206, the ambient condensing device absorbs heat and cools down. At a temperature of 650 to 700 ° C, the magnesium vapor is trapped by the liquid magnesium droplets 211 ejected from the magnesium liquid shower port 210 to become liquid magnesium. It is lowered into the liquid magnesium storage tank 202 below. When the silicon concentration of the liquid ferrosilicon 109 is lowered, a portion of the ferrosilicon 75 is replenished, so that the magnesium sintering process is continuously performed. When the magnesium smelting process is completed, the vacuum is stopped, and the liquid magnesium 201 in the liquid magnesium storage tank 202 is the original magnesium product, and the residual liquid ferrosilicon 109 in the heating vessel 101 is adjusted to meet the requirements by adding an alloy such as ferrosilicon. Then, the elevating mechanism 108 and the tilting mechanism 107 are activated to lower and tilt the heating vessel 101, and the residual ferrosilicon water flows out and condenses into a ferrosilicon product as a magnesium sinter by-product. The liquid slag is periodically discharged from the slag bath 117 throughout the process.
下面再以一具体示例说明本发明, 为方便表示顺序, 特以 601、 602 等进行编号:  The present invention will be described below with a specific example. To facilitate the order of presentation, the numbers are specifically 601, 602, etc.:
601—— 准备一台功率 8000kw的中频感应炉作为加热容器 101。 加 热容器内腔呈上大下小的圆台状, 内底直径 100厘米, 锥 度 0.4 (沿垂直高度升高 1厘米, 炉膛内径增加 0.4厘米)。 在加热容器 101内加入并熔化 2t含硅 75%和 4t含硅 45%的 硅铁, 配制成 6t含硅 55%的硅铁液, 维持 1550°C的温度。 602—— 在真空容器 104和上下浸渍管 102和 103内部用天然气火 焰加热至 1000°C。真空容器 104直径 70厘米, 高度 450厘 米。 上下浸渍管 102和 103内径 15厘米, 长度 130厘米。 采用碳化硅质耐火材料。 601 - Prepare a medium frequency induction furnace with a power of 8000 kW as the heating vessel 101. The inner chamber of the heating vessel is in the shape of a large round table with a diameter of 100 cm, a taper of 0.4 (a height of 1 cm along the vertical height, and an increase of 0.4 cm in the inner diameter of the furnace). 2t silicon-containing silicon 75% and 4t silicon-containing 45% ferrosilicon were added and melted in the heating vessel 101 to prepare 6t silicon-containing 55% silicon iron liquid, and the temperature was maintained at 1550 °C. 602 - Heated to 1000 ° C with a natural gas flame inside the vacuum vessel 104 and the upper and lower dip tubes 102 and 103. The vacuum vessel 104 has a diameter of 70 cm and a height of 450 cm. The upper and lower dip tubes 102 and 103 have an inner diameter of 15 cm and a length of 130 cm. A silicon carbide refractory material is used.
603—— 准备好 13吨含有氧化镁的镁矿粉。 其中 MgO含量 80%,  603 - Prepare 13 tons of magnesium ore fines containing magnesium oxide. Where the MgO content is 80%,
CaO含量 10%, A1203含量 10%, 粒度 0.01~2mm。 储存在 上进料室 111中, 温度保持在 800 °C。 The CaO content is 10%, the A1 2 0 3 content is 10%, and the particle size is 0.01~2 mm. It was stored in the upper feed chamber 111 and the temperature was maintained at 800 °C.
604—— 另外在一台感应炉内熔化含硅 75%的硅铁 4000公斤。  604 - Another 4000 kg of silicon-iron containing 75% of silicon is melted in an induction furnace.
605—— 打开真空连接管阀门 209和液镁储罐阀门 205,关闭镁液提 升管阀门 203和冷凝器阀门 212, 在液镁储罐 202中倒入 500公斤熔化的金属镁, 温度 700°C。 然后关闭液镁储罐阀 门 205, 打开冷凝器阀门 212  605 - Open the vacuum connection pipe valve 209 and the liquid magnesium storage tank valve 205, close the magnesium liquid riser valve 203 and the condenser valve 212, and pour 500 kg of molten magnesium metal into the liquid magnesium storage tank 202 at a temperature of 700 ° C. . The liquid magnesium tank valve 205 is then closed and the condenser valve is opened 212
606—— 真空反应室 104内温度达到 1000°C,撤掉天然气加热火焰。  606—— The temperature in the vacuum reaction chamber 104 reaches 1000 °C, and the natural gas is heated to remove the flame.
在两个浸渍管 102和 103下端用铁皮密封, 用真空泵系统 通过除尘真空系统连接管 208对真空反应室 104和上下浸 渍管 102、 103抽真空。  The lower ends of the two dip tubes 102 and 103 are sealed with a metal sheath, and the vacuum reaction chamber 104 and the upper and lower dip tubes 102, 103 are evacuated by a vacuum pump system via a dedusting vacuum system connection pipe 208.
607—— 当真空反应室 104内压力达到 lOOOOpa时, 用感应加热炉 升降机构 108将感应加热炉 101缓缓升起, 使上下浸渍管 102和 103下端浸没入硅铁液面 302下方 65厘米。 607 - When the pressure in the vacuum reaction chamber 104 reaches 1000OOpa, the induction heating furnace 101 is slowly raised by the induction heating furnace lifting mechanism 108, so that the lower ends of the upper and lower dip tubes 102 and 103 are immersed 65 cm below the silicon iron liquid level 302.
608—— 随着上下浸渍管 102和 103端口密封铁皮的熔化, 硅铁液 608—— With the melting of the upper and lower dip tubes 102 and 103 port seal iron, ferrosilicon
109在真空吸力下, 上升进入到上下浸渍管 102、 103和真 空反应室 104内。 继续抽真空到真空反应室 104压力达到 800Pa, 维持该压力。  109 is vacuumed into the upper and lower dip tubes 102, 103 and the vacuum reaction chamber 104. The vacuum is continued until the pressure in the vacuum reaction chamber 104 reaches 800 Pa, and the pressure is maintained.
609—— 在氩气吹管 110中以 120NL/min的流量通入氩气, 氩气进 入上升浸渍管 102后被硅铁液加热至高温发生膨胀, 驱动 硅铁液在上升浸渍管 102中上升, 进入真空反应室 104, 然 后沿下降浸渍管 103下降, 流回到感应加热炉 101 内, 形 成环流。  609 - argon gas is introduced into the argon blowing pipe 110 at a flow rate of 120 NL / min, and the argon gas enters the rising immersion pipe 102 and is heated by the ferrosilicon liquid to a high temperature to expand, and the driving silicon iron liquid rises in the rising immersion pipe 102. It enters the vacuum reaction chamber 104, then descends along the descending dip tube 103, and flows back into the induction heating furnace 101 to form a circulation.
610—— 在冷凝器 206 中通入冷却水, 冷却水流量 50kg/s。 维持冷 凝器温度为 650 °C 610 - Cooling water is introduced into the condenser 206, and the flow rate of the cooling water is 50 kg/s. Keep cold The condenser temperature is 650 °C
611—— 打开液镁储罐阀门 205和镁液提升管阀门 203,启动镁液定 量提升泵 207, 以每分钟 30公斤镁液的速率形成喷淋。 611 - Open the magnesium storage tank valve 205 and the magnesium liquid riser valve 203, start the magnesium liquid lift pump 207, and form a spray at a rate of 30 kg of magnesium per minute.
612—— 关闭下进料室阀门 114, 打开上进料室阀门 113, 使得上进 料室 111中镁矿粉进入下进料室 112,然后关闭上进料室阀 门 113, 打开下进料室阀门 114 612 - closing the lower feed chamber valve 114, opening the upper feed chamber valve 113, so that the magnesium ore powder in the upper feed chamber 111 enters the lower feed chamber 112, then closes the upper feed chamber valve 113, and opens the lower feed chamber Valve 114
613—— 通过以氩气为载气的粉料输送管 115 喷吹镁矿粉进入感应 加热炉 101的硅铁液 109内部, 喷吹速率为 30kg/min, 载 气流量为 120NL/min。 连续喷吹 60分钟。  613——Injecting the magnesium ore powder into the ferrosilicon 109 of the induction heating furnace 101 through the powder delivery pipe 115 with argon as the carrier gas, the injection rate is 30 kg/min, and the carrier gas flow rate is 120 NL/min. Continuous blowing for 60 minutes.
614—— 停止喷吹镁矿粉, 同时停止载气输入。  614 - Stop spraying magnesium powder while stopping the carrier gas input.
615—— 增加氩气吹管 110中氩气速率至 170NL/min,维持 10分钟。 615 - Increase the argon rate in the argon blow tube 110 to 170 NL/min for 10 minutes.
616—— 减小氩气吹管 110中氩气速率至 50NL/min, 维持 10分钟。616 - Reduce the argon rate in the argon blow tube 110 to 50 NL/min for 10 minutes.
617—— 从流渣槽 117处将感应加热炉 104中硅铁液 109上方渣层 排除干净。 617 - The slag layer above the ferrosilicon 109 in the induction furnace 104 is removed from the slag bath 117.
618—— 关闭镁液定量提升泵 207,关闭液镁储罐阀门 205和镁液提 升管阀门 203  618——Close the magnesium liquid quantitative lift pump 207, close the liquid magnesium storage tank valve 205 and the magnesium liquid lift pipe valve 203
619—— 打开液镁储罐排液口 213释放部分液态金属镁 201,流出的 镁液用于精炼、 合金化或者铸锭。  619——Open the liquid magnesium storage tank drain port 213 to release part of the liquid metal magnesium 201, and the flowing magnesium liquid is used for refining, alloying or ingot casting.
620—— 关闭液镁储罐排液口 213。  620——Close the liquid magnesium tank drain 213.
621—— 从另外一台感应炉中将熔化的含硅 75%的硅铁液注入感应 加热炉 101中, 兌入量 600公斤。  621——Injecting 75% of the silicon-containing silicon containing molten silicon into the induction heating furnace 101 from another induction furnace, and adding 600 kg.
622—— 重复 612 620的操作。  622 - Repeat the operation of 612 620.
623—— 再次往真空加热炉 101中兌入熔化的含硅 75%的硅铁液 600 公斤。  623 - The molten silicon furnace 101 was again charged with 600 kg of molten silicon-containing 75% silicon iron.
624—— 重复 612 620的操作。  624 - Repeat the operation of 612 620.
625—— 再次往真空加热炉 101中兌入熔化的含硅 75%的硅铁液 600 公斤。  625 - Again into the vacuum furnace 101, melted silicon-containing 75% silicon iron solution 600 kg.
626—— 重复 612 620的操作。  626 - Repeat the operation of 612 620.
627—— 再次往真空加热炉 101中兌入熔化的含硅 75%的硅铁液 600 公斤。 627 - again into the vacuum furnace 101 into the molten silicon-containing 75% silicon iron solution 600 kg.
628—— 重复 612 620的操作。  628 - Repeat the operation of 612 620.
629—— 再次往真空加热炉 101中兌入熔化的含硅 75%的硅铁液 600 公斤。  629 - Once again into the vacuum furnace 101, melted silicon-containing 75% silicon iron solution 600 kg.
630—— 重复 612 620的操作。  630 - Repeat the operation of 612 620.
631—— 再次往真空加热炉 101中兌入熔化的含硅 75%的硅铁液 600 公斤。  631 - The molten silicon furnace 101 was again charged with 600 kg of molten silicon-containing 75% silicon iron.
632—— 重复 612 620的操作。  632 - Repeat the operation of 612 620.
633—— 停止抽真空, 关闭冷凝器阀门 212和真空连接管阀门 209。 633 - Stop vacuuming, close condenser valve 212 and vacuum connection valve 209.
634—— 从氩气吹管 110 中继续吹入氩气 10 分钟, 流量增大为 634 - argon gas is continuously blown from the argon blow pipe 110 for 10 minutes, and the flow rate is increased to
150NL/min。  150 NL/min.
635—— 操作感应加热炉升降机构 108,使感应加热炉 101缓慢下降, 直至上下浸渍管 102和 103的端口完全脱离硅铁液 109。  635 - The induction heating furnace lifting mechanism 108 is operated to slowly lower the induction heating furnace 101 until the ports of the upper and lower dip tubes 102 and 103 are completely separated from the ferrosilicon liquid 109.
636—— 打开液镁储罐排液口 213,释放所有的镁液 201,用于精炼、 合金化或者铸锭。  636 - Open the liquid magnesium storage tank drain 213 and release all the magnesium liquid 201 for refining, alloying or ingot casting.
637—— 取样分析感应加热炉 101 中硅铁水中 109的硅含量, 兌入  637——Sampling and analysis of the silicon content of 109 in the ferrosilicon water in the induction heating furnace 101,
320公斤含硅 75%硅铁, 使感应加热炉 101 中硅铁液 109 的含硅量为 45%。  320 kg of silicon-containing 75% ferrosilicon makes the silicon-containing liquid 109 in the induction heating furnace 101 have a silicon content of 45%.
638—— 移开以氩气为载气的粉料输送管 115,操作感应加热炉倾动 机构 107, 使感应加热炉 101翻转, 倒出残余硅铁水 109, 铸锭, 冷凝。 在实际生产中, 定期排出的高温熔渣通过换热来加热即将加入硅铁 液中的镁矿粉, 实现能量回收利用。 为方便下一次操作, 在液镁储罐中 保留一部分镁液。  638—— Remove the powder conveying pipe 115 with argon as the carrier gas, operate the induction heating furnace tilting mechanism 107, invert the induction heating furnace 101, pour out the residual ferrosilicon water 109, ingot, and condense. In actual production, the high-temperature slag that is periodically discharged is heated to heat the magnesium ore powder to be added to the ferrosilicon liquid to realize energy recovery and utilization. To facilitate the next operation, a portion of the magnesium solution is retained in the magnesium storage tank.
本实施例中, 共获得镁 5170公斤。共消耗含硅 75%的硅铁 5920公 斤, 消耗含硅 45%的硅铁 4000公斤, 副产品获得 6245公斤含硅 45%的 硅铁。 那么吨镁的硅元素消耗为 663公斤, 铁元素消耗为 47公斤。 相 比较, 皮江法炼镁, 吨镁消耗硅铁 1.2吨, 即吨镁消耗硅元素 900公斤, 铁元素 300公斤。 本发明的上述实施例中, 吨镁硅元素消耗减少 26%, 铁元素消耗减少 84%。 In this example, a total of 5170 kg of magnesium was obtained. A total of 5,920 kilograms of silicon iron containing 75% silicon is consumed, 4000 kilograms of silicon iron containing 45% silicon is consumed, and 6245 kilograms of silicon iron containing 45% silicon is obtained as a by-product. Then the consumption of silicon in tons of magnesium is 663 kg, and the consumption of iron is 47 kg. In comparison, the Pijiang method smelting magnesium, tons of magnesium consumes 1.2 tons of ferrosilicon, that is, tons of magnesium consumes 900 kilograms of silicon, 300 kilograms of iron. In the above embodiment of the invention, the consumption per ton of magnesium and silicon is reduced by 26% and the consumption of iron is reduced by 84%.
经过计量, 本实施例中, 吨镁能耗为 9200kwh, 而皮江法炼镁还原 环节吨镁耗能为 14400〜18000kwh, 所以吨镁能耗降低 36%〜49%。  After measurement, in this example, the energy consumption per ton of magnesium is 9200kwh, while the energy consumption per ton of magnesium in the reduction of the Pijiang process magnesium smelting is 14400~18000kwh, so the energy consumption per ton of magnesium is reduced by 36%~49%.
本发明的还原炼镁过程, 不使用昂贵的耐热钢制成的还原罐, 省去 了耐热钢材料消耗。  The reduction smelting process of the present invention does not use a reduction tank made of expensive heat-resistant steel, and the consumption of heat-resistant steel material is eliminated.
本发明的还原炼镁过程, 通过不断喷入含氧化镁矿粉, 周期性排渣 和兌入高硅的硅铁液, 可以实现连续化生产。  The reduced magnesium smelting process of the present invention can achieve continuous production by continuously injecting magnesium oxide ore powder, periodically discharging slag and blending high silicon ferrosilicon.
本发明的工艺和装备适合大型化, 容易实现机械化、 自动化, 降低 劳动强度, 实现精确定量操作。 本发明由于采用真空环流, 液态硅铁水 与氧化镁粉剂充分混合搅拌,反应界面积大大增加,生产效率大为提高, 是现代冶金产业技术的发展方向。  The process and equipment of the present invention are suitable for large-scale, easy to realize mechanization, automation, reduce labor intensity, and achieve accurate quantitative operation. The invention adopts vacuum circulation, the liquid silicon iron water and the magnesium oxide powder are thoroughly mixed and stirred, the reaction boundary area is greatly increased, and the production efficiency is greatly improved, which is the development direction of the modern metallurgical industry technology.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实 施方式中所列运用, 它完全可以被适用于各种适合本发明的领域, 对于 熟悉本领域的人员而言, 可容易地实现另外的修改, 因此在不背离权利 要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这 里示出与描述的图例。  Although the embodiments of the present invention have been disclosed as above, they are not limited to the applications listed in the specification and the embodiments, and are fully applicable to various fields suitable for the present invention, and are easily accessible to those skilled in the art. The present invention is not limited to the specific details and the illustrated and described embodiments herein, without departing from the scope of the appended claims.

Claims

PCT10101 权 禾 Li 要 求 书 PCT10101 Quanhe Li Request
1. 一种真空环流熔态硅热法炼镁的方法, 其特征在于, 歩骤包括: 歩骤一, 在加热容器中将硅铁加热至熔融状态, 维持 1350〜1600 °〇的温度; 歩骤二,使熔融液态硅铁与混合在其中含有氧化镁的镁矿粉以环形 流动的方式周期性地通过与上述加热容器分离的真空容器,真空度维持 在 350Pa至 lOOOOPa之间,所述镁矿粉被上述熔融液态硅铁还原生成镁 蒸气; 歩骤三, 将歩骤二中得到的镁蒸气冷凝成液态并收集。 A method of vacuum circulating molten silicon thermal magnesium smelting, characterized in that: the first step comprises: heating the ferrosilicon to a molten state in a heating vessel to maintain a temperature of 1350 to 1600 ° ;; In the second step, the molten liquid ferrosilicon and the magnesium ore powder mixed with the magnesium oxide are periodically flowed through the vacuum vessel separated from the heating vessel in a circular flow manner, and the degree of vacuum is maintained between 350 Pa and 1000 Pa, The mineral powder is reduced by the above molten liquid ferrosilicon to form magnesium vapor; in the third step, the magnesium vapor obtained in the second step is condensed into a liquid state and collected.
2. 如权利要求 1所述的炼镁的方法, 其特征在于, 所述歩骤二中, 熔融液态硅铁在真空抽吸作用和充入惰性气体受热膨胀的驱动力的作 用下, 形成环形流动, 周期性地通过真空容器。 2. The method of smelting magnesium according to claim 1, wherein in the second step, the molten liquid ferrosilicon forms a ring under the action of a vacuum pumping action and a driving force for charging the inert gas to be thermally expanded. Flow, periodically through the vacuum vessel.
3. 如权利要求 1所述的炼镁的方法, 其特征在于, 所述歩骤二中, 镁矿粉喷入环形流动的熔融液态硅铁内, 并随着熔融液态硅铁环形流 动, 在处于真空容器中时, 与硅铁液发生化学反应, 生成镁蒸气, 升入 真空容器上方。 3. The method of smelting magnesium according to claim 1, wherein in the second step, the magnesium ore powder is sprayed into the annular flow of molten liquid ferrosilicon, and flows along with the molten liquid ferrosilicon. When in a vacuum vessel, it chemically reacts with the ferrosilicon to form magnesium vapor and rises above the vacuum vessel.
4. 如权利要求 1所述的炼镁的方法, 其特征在于, 所述歩骤三中, 所述镁蒸气被冷却至 650°C〜700°C且被喷淋出的液态镁滴所捕集,冷凝 成为液态镁而被收集。 The method for smelting magnesium according to claim 1, wherein in the third step, the magnesium vapor is cooled to 650 ° C to 700 ° C and is captured by liquid magnesium droplets sprayed. The collection is condensed into liquid magnesium and collected.
5. 如权利要求 1所述的炼镁的方法,其特征在于,所述加热容器中 的熔融态硅铁中硅的质量百分含量大于 30 %而小于 65%, 炼镁过程中, 定期向所述加热容器中添加含硅质量百分数高于加热容器中熔融态硅 铁的固态或熔融态硅铁合金或直接添加工业硅。 5. The method of smelting magnesium according to claim 1, wherein the mass percentage of silicon in the molten ferrosilicon in the heating vessel is greater than 30% and less than 65%, and during the magnesium smelting process, periodically The heating vessel is filled with a solid or molten ferrosilicon alloy having a silicon-containing mass percentage higher than that of the molten ferrosilicon in the heating vessel or directly adding industrial silicon.
6. 如权利要求 1所述的炼镁的方法,其特征在于,终止炼镁过程后, 向所述加热容器中的熔融液态硅铁中添加工业硅、 工业纯铁、 铁合金中 的一种或几种, 以调节熔融液态硅铁的化学成分, 生产至少含有硅和铁 两种元素的合金作为炼镁副产品。 6. The method of smelting magnesium according to claim 1, wherein one of industrial silicon, industrial pure iron, and iron alloy is added to the molten liquid ferrosilicon in the heating vessel after the magnesium smelting process is terminated. Several, to adjust the chemical composition of molten liquid ferrosilicon, to produce an alloy containing at least two elements of silicon and iron as a by-product of magnesium.
7. 如权利要求 1所述的炼镁的方法, 其特征在于, 炼镁过程中, 定 期从加热容器中排出液态废渣。  The method of smelting magnesium according to claim 1, wherein the liquid waste is periodically discharged from the heating vessel during the magnesium smelting process.
8. 一种真空环流熔态硅热法炼镁的设备, 其特征在于, 包括: 加热容器, 其中容纳有熔融液态硅铁;  8. A vacuum circulating molten silicon thermal magnesium smelting apparatus, comprising: a heating vessel in which molten liquid ferrosilicon is contained;
真空容器,其下端所连通的浸渍管道下端口插入到所述加热容器盛 放的液态硅铁液面以下; 吹气装置, 其与所述浸渍管路连通, 并能够向浸渍管道中吹入惰性 气体。  a vacuum vessel, the lower port of the impregnating pipe communicated at the lower end thereof is inserted below the liquid silicon iron surface of the heating vessel; the air blowing device is in communication with the impregnation pipe and is capable of blowing inertness into the impregnation pipe gas.
9. 如权利要求 8所述炼镁的设备,其特征在于,所述真空容器设置 在加热容器的上方, 所述浸渍管道位于真空容器的下侧, 并与所述真空 容器连通, 所述浸渍管道插入到所述加热容器中, 当所述浸渍管道下端 口浸没入所述加热容器中的液态物质液面以下时,所述真空容器及其浸 渍管道的内部空间即与大气隔绝, 形成封闭的空间, 在真空抽气作用下 成为真空容器, 并抽吸所述加热容器中液态物质上升到所述浸渍管道和 所述真空容器内。  9. The magnesium smelting apparatus according to claim 8, wherein the vacuum vessel is disposed above the heating vessel, the impregnation conduit is located on a lower side of the vacuum vessel, and is in communication with the vacuum vessel, the impregnation a pipe is inserted into the heating vessel, and when the lower port of the impregnating pipe is submerged below the liquid level in the heating vessel, the internal space of the vacuum vessel and the impregnated pipe is isolated from the atmosphere to form a closed The space becomes a vacuum vessel under vacuum pumping, and the liquid substance in the heating vessel is sucked up into the impregnation pipe and the vacuum vessel.
10. 如权利要求 8所述炼镁的设备, 其特征在于, 所述浸渍管道具 有至少两个歧管, 所述吹气装置的吹口在第一歧管的下方或侧方, 能够 向第一歧管内吹入惰性气体,使硅铁液在第一歧管内上升至所述真空容 器, 而从第二歧管内下降, 回流至所述加热容器。  10. The magnesium smelting apparatus according to claim 8, wherein the impregnating duct has at least two manifolds, and the blowing port of the air blowing device is below or lateral to the first manifold, and is capable of being first An inert gas is blown into the manifold to cause the ferrosilicon to rise into the vacuum vessel in the first manifold, and descend from the second manifold to be returned to the heating vessel.
11. 如权利要求 8所述炼镁的设备, 其特征在于, 所述真空容器上 设置有冷凝器, 所述冷凝器与真空容器连通, 抽真空设备通过冷凝器对 所述真空容器抽真空,使镁蒸气冷却为液态并落入冷凝器下方的液态镁 储存装置中。 11. The magnesium smelting apparatus according to claim 8, wherein: said vacuum container A condenser is provided, the condenser being in communication with the vacuum vessel, the vacuuming apparatus vacuuming the vacuum vessel through a condenser, cooling the magnesium vapor to a liquid state and falling into a liquid magnesium storage device below the condenser.
12. 如权利要求 8所述炼镁的设备, 其特征在于, 所述浸渍管道具 有三个歧管, 其中一个歧管中通入氩气, 使硅铁液在该歧管中上升至所 述真空容器, 而从另外两个歧管下降, 回流至所述加热容器中。  12. The apparatus for smelting magnesium according to claim 8, wherein the impregnation pipe has three manifolds, wherein one of the manifolds is filled with argon gas, so that the ferrosilicon liquid rises in the manifold to the The vacuum vessel is lowered from the other two manifolds and returned to the heating vessel.
13. 如权利要求 11所述炼镁的设备,其特征在于,所述冷凝器中设 有冷却构件和镁液喷淋构件, 用于冷却经过该冷凝器的镁蒸气, 并通过 喷淋镁液而使经过的镁蒸气冷凝, 形成液态镁而收集。  13. The apparatus for smelting magnesium according to claim 11, wherein said condenser is provided with a cooling member and a magnesium liquid spray member for cooling magnesium vapor passing through the condenser and spraying the molten magnesium The passed magnesium vapor is condensed to form liquid magnesium and collected.
14. 如权利要求 8所述炼镁的设备, 其特征在于, 所述真空容器侧 壁设置有至少一个等离子加热器,所述等离子加热器可对真空容器内部 物质进行加热。  14. The magnesium smelting apparatus according to claim 8, wherein the vacuum vessel side wall is provided with at least one plasma heater, and the plasma heater heats the interior of the vacuum vessel.
PCT/CN2010/073643 2010-06-07 2010-06-07 Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof WO2011153683A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/501,463 US20120198968A1 (en) 2010-06-07 2010-06-07 Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof
PCT/CN2010/073643 WO2011153683A1 (en) 2010-06-07 2010-06-07 Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof
CN2010800009769A CN101999005B (en) 2010-06-07 2010-06-07 Vacuum circulation molten state silicothermic method for producing magnesium and equipment thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/073643 WO2011153683A1 (en) 2010-06-07 2010-06-07 Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2011153683A1 true WO2011153683A1 (en) 2011-12-15

Family

ID=43788036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073643 WO2011153683A1 (en) 2010-06-07 2010-06-07 Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof

Country Status (3)

Country Link
US (1) US20120198968A1 (en)
CN (1) CN101999005B (en)
WO (1) WO2011153683A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100812A1 (en) * 2013-12-31 2015-07-09 深圳市华星光电技术有限公司 Device and method for pre-treating metal magnesium
CN112853121A (en) * 2020-12-30 2021-05-28 北京中冶设备研究设计总院有限公司 Method for producing metal magnesium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014000355A2 (en) * 2011-07-08 2017-02-14 Infinium Inc apparatus and method for condensing metal vapor
CN104120282B (en) 2014-07-21 2015-12-30 东北大学 A kind of method of refining magnesium fast continuously
CN104561601A (en) * 2015-01-01 2015-04-29 江西省中镁装备有限公司 Magnesium smelting device in vacuum high-temperature liquid state, and magnesium smelting method
CN104561602B (en) * 2015-01-28 2017-09-19 牛强 The method that ferrosilicon bath step reduces magnesium-smelting silicothermic process coproduction liquid containing ferrochrome
CN104651636B (en) * 2015-02-06 2016-08-24 牛强 Vacuum electric heat refining magnesium equipment with protection device
CN107513621B (en) * 2017-09-13 2019-03-01 中南大学 A method of it being enriched with magnesium from ferronickel slag
CN111270088B (en) * 2020-02-10 2023-10-13 中国恩菲工程技术有限公司 System and method for continuously smelting magnesium by liquid stirring through induction heating
CN113430396A (en) * 2021-07-16 2021-09-24 黄国斌 Metal magnesium smelting device and reduction method
CN113737019B (en) * 2021-08-25 2022-06-21 西安交通大学 Method and device for continuously extracting crystallized magnesium in Pidgeon magnesium smelting process at high temperature
CN114293014B (en) * 2021-12-16 2022-09-27 西安交通大学 Silicon carbide-free thermal reduction magnesium metallurgy device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB556663A (en) * 1942-02-13 1943-10-15 Magnesium Elektron Ltd Improvements in or relating to high temperature reactions and furnaces therefor
GB793629A (en) * 1953-12-19 1958-04-23 Knapsack Ag Process and apparatus for the electro-thermal production of magnesium
US4888052A (en) * 1987-06-08 1989-12-19 Ralph Harris Producing volatile metals
CN1131201A (en) * 1995-03-15 1996-09-18 孙克本 Electric furnace hot charge siliconthermic reduction vacuum magnesium-smelting new process
CN1345982A (en) * 2000-09-29 2002-04-24 于洪喜 Internal heating method magnesium-smelting productive technology and equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520718A (en) * 1994-09-02 1996-05-28 Inland Steel Company Steelmaking degassing method
FR2772653B1 (en) * 1997-12-22 2000-01-21 Lorraine Laminage METALLURGICAL REACTOR FOR REDUCED PRESSURE TREATMENT OF A LIQUID METAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB556663A (en) * 1942-02-13 1943-10-15 Magnesium Elektron Ltd Improvements in or relating to high temperature reactions and furnaces therefor
GB793629A (en) * 1953-12-19 1958-04-23 Knapsack Ag Process and apparatus for the electro-thermal production of magnesium
US4888052A (en) * 1987-06-08 1989-12-19 Ralph Harris Producing volatile metals
CN1131201A (en) * 1995-03-15 1996-09-18 孙克本 Electric furnace hot charge siliconthermic reduction vacuum magnesium-smelting new process
CN1345982A (en) * 2000-09-29 2002-04-24 于洪喜 Internal heating method magnesium-smelting productive technology and equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100812A1 (en) * 2013-12-31 2015-07-09 深圳市华星光电技术有限公司 Device and method for pre-treating metal magnesium
US9340851B2 (en) 2013-12-31 2016-05-17 Shenzhen China Star Optoelectronics Technology Co., Ltd Device and method for preprocessing metallic magnesium
GB2535065A (en) * 2013-12-31 2016-08-10 Shenzhen China Star Optoelect Device and method for pre-treating metal magnesium
GB2535065B (en) * 2013-12-31 2021-02-10 Shenzhen China Star Optoelect Method for preprocessing metallic magnesium
CN112853121A (en) * 2020-12-30 2021-05-28 北京中冶设备研究设计总院有限公司 Method for producing metal magnesium
CN112853121B (en) * 2020-12-30 2022-07-12 北京中冶设备研究设计总院有限公司 Method for producing metal magnesium

Also Published As

Publication number Publication date
CN101999005A (en) 2011-03-30
CN101999005B (en) 2013-01-02
US20120198968A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2011153683A1 (en) Method for producing metallic magnesium by vacuum circulating silicothermic process and apparatus thereof
CN101906544B (en) Double-dip pipe ferrosilicon bath vacuum circular flow magnesium-smelting device and method thereof
CN103882246B (en) Vacuum magnesium manufacturing device and vacuum magnesium manufacturing method
CN104087752B (en) Vacuum tank type smelting equipment and method for magnesium, zinc, lead and lithium metals
CN104674016B (en) Method and device for condensing magnesium vapor generated by evaporation and heat absorption of magnesium liquid and coproducing refined magnesium
CN101650120B (en) Reduction oxidation furnace for refining phosphorus by hot method
CN1280199A (en) Start method for directly smelting technology
CN111321310B (en) Method and system for preparing magnesium metal
CN101914692B (en) Single-dip pipe silicon iron bath vacuum circulated magnesium-smelting device and method
CN105543633A (en) Method for smelting ferrosilicon by utilizing crystalline silicon scraps
CN100439539C (en) Process of producing iron alloy with low carbon and chromium
CN104651636B (en) Vacuum electric heat refining magnesium equipment with protection device
CN203683634U (en) Vacuum magnesium smelting device
CN204301488U (en) For the cleaning plant of smelting furnace
CN114293014B (en) Silicon carbide-free thermal reduction magnesium metallurgy device and method
CN211921666U (en) System for continuous magnesium smelting by induction heating liquid state stirring
CN202522062U (en) Copper and copper alloy intermediate-frequency induction melting furnace
CN107699712B (en) Magnesium metallurgical furnace and magnesium smelting method
CN111270088B (en) System and method for continuously smelting magnesium by liquid stirring through induction heating
CN208995525U (en) A kind of single mouth vacuum refining furnace with induction heating
CN204301491U (en) For the feeding device of smelting furnace
CN205897841U (en) Metallurgical smelting furnace of copper scrap
CN205798396U (en) Inert gas shielding immersion heats difunctional low pressure casting stove
CN204898037U (en) Laterite -nickel ore ore deposit open hearth smelting device
CN204301525U (en) For the cooling device of smelting furnace

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080000976.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13501463

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852676

Country of ref document: EP

Kind code of ref document: A1