WO2011151913A1 - 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ - Google Patents

光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ Download PDF

Info

Publication number
WO2011151913A1
WO2011151913A1 PCT/JP2010/059463 JP2010059463W WO2011151913A1 WO 2011151913 A1 WO2011151913 A1 WO 2011151913A1 JP 2010059463 W JP2010059463 W JP 2010059463W WO 2011151913 A1 WO2011151913 A1 WO 2011151913A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
signals
wavelength
subcarrier
Prior art date
Application number
PCT/JP2010/059463
Other languages
English (en)
French (fr)
Inventor
慎也 佐々木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/059463 priority Critical patent/WO2011151913A1/ja
Priority to US13/701,198 priority patent/US8831441B2/en
Priority to JP2012518188A priority patent/JP5404925B2/ja
Publication of WO2011151913A1 publication Critical patent/WO2011151913A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Definitions

  • the present invention relates to an optical OFDM communication system, an optical receiver, an optical transponder, a wavelength division multiplexing optical communication system, a wavelength division multiplexing receiver, and a wavelength division multiplexing optical transponder, and more particularly to an optical communication system using a multicarrier and the like.
  • the present invention relates to an optical communication system that reduces PAPR (Peak-to-Average Power Ratio, peak power to average power ratio) in an optical OFDM (Orthogonal Frequency Division Multiplexing) communication system.
  • PAPR Peak-to-Average Power Ratio, peak power to average power ratio
  • An optical communication system that has been put into practical use so far employs a binary modulation / demodulation technique using light intensity. Specifically, digital information “0” and “1” are converted to on / off of light intensity on the transmitting side and transmitted to the optical fiber, and the light propagated through the optical fiber is photoelectrically converted on the receiving side. The original information is restored.
  • the communication capacity required for optical communication systems has increased dramatically.
  • the demand for higher communication capacity has been met by increasing the speed at which light is turned on and off, that is, the modulation speed.
  • the technique of increasing the modulation speed to realize a large capacity generally has the following problems.
  • the transmittable distance limited by the chromatic dispersion of the optical fiber is shortened.
  • the transmission distance limited by chromatic dispersion is shortened by the square of the bit rate. That is, when the bit rate is doubled, the transmission distance limited by chromatic dispersion becomes 1/4.
  • the modulation speed is increased, there is a problem that the transmission distance limited by the polarization dispersion of the optical fiber is shortened.
  • the transmission distance limited by the polarization dispersion is halved. Specifically, the influence of chromatic dispersion is shown.
  • a normal dispersion fiber When a normal dispersion fiber is used with a bit rate of 10 Gbps, the transmission distance limited by chromatic dispersion is 60 km, but when the system has a bit rate of 40 Gbps, the distance is approximately It becomes as short as 4km. Further, in the case of the next-generation 100 Gbps system, the transmission distance limited by chromatic dispersion is 0.6 km, and a trunk optical communication system with a transmission distance of about 500 km cannot be realized as it is.
  • a special optical fiber called a dispersion compensating fiber having negative chromatic dispersion is installed in a repeater or transmitter / receiver to cancel the chromatic dispersion of the transmission line. Yes.
  • This special fiber is expensive and requires an advanced design that determines the amount of dispersion compensating fiber installed inside the transceiver and the optical repeater, both of which increase the price of the optical communication system.
  • the amplitude and phase of a large number of sine waves (called subcarriers) that are orthogonal to each other within one symbol time, that is, have a frequency that is an integer multiple of the reciprocal of one symbol time, are set to predetermined values.
  • information is set (modulated) by setting, and the carrier is modulated and transmitted by a signal obtained by bundling these subcarriers.
  • VDSL Very high bit rate Digital Subscriber Line
  • An optical OFDM communication system is a communication system that applies OFDM technology using light as a carrier.
  • OFDM technology as described above, a large number of subcarriers are used, and for each subcarrier, a modulation scheme such as 4-QAM, 8-PSK, or 16-QAM can be applied. Therefore, one symbol time is much longer than the reciprocal of the bit rate.
  • the transmission distance limited by the above-mentioned chromatic dispersion and polarization dispersion is sufficiently longer than the transmission distance assumed in an optical communication system (for example, 500 km in a domestic trunk line system), and the above-mentioned dispersion compensation fiber is not required. It becomes. As a result, there is a possibility that a low-cost optical communication system can be realized.
  • FIG. 17 shows a configuration diagram of a conventional optical OFDM communication system using the direct detection method.
  • the optical transmitter 500 and the direct detection optical receiver 600 are connected by the optical fiber 3.
  • data to be originally communicated is input to the optical transmitter 500 from the input terminal 4, it is converted into a baseband OFDM signal by the transmission signal processing unit 100 inside the optical transmitter 500, and this signal is amplified by the driver amplifier 10.
  • Light is generated by subjecting the light from the laser 12 to electric field modulation or intensity modulation by the optical modulator 501 with this signal.
  • This optical OFDM signal reaches the detection optical receiver 600 directly through the optical fiber 3 as a transmission path.
  • the optical OFDM signal is directly detected and received by the photodiode 201 and converted into an electrical signal.
  • This electric signal is ideally the above-mentioned baseband OFDM signal, this signal is amplified by the preamplifier 202, converted into a digital signal by the A / D converter 206, and its output is received by the received signal preprocessor 220. The signal is converted into a carrier, and then demodulated into data to be originally communicated by the received signal post-processing unit 240 and output from the output terminal 5.
  • FIG. 2 shows a functional configuration diagram of the transmission signal processing unit 100.
  • FIG. 3 shows a functional configuration diagram of the received signal preprocessing unit 220.
  • FIG. 4 shows a functional configuration diagram of the received signal post-processing unit 240.
  • Data to be communicated is first converted into 2N parallel data by a serial-parallel (S / P) converter 110.
  • N is the number of subcarriers that carry data.
  • the subcarrier modulation is 4-QAM
  • the subcarrier modulation is 16-QAM
  • the number is 4N. That is, the serial data is converted into parallel data of “the number of bits of one symbol ⁇ the number of subcarriers”.
  • the subcarrier modulation unit 120 modulates N subcarriers using the parallel data.
  • the modulated subcarrier is converted into time-axis data by an inverse FFT (Inverse Fast Fourier Transform) unit 130 and converted into serial data by a parallel-serial (P / S) conversion unit 140.
  • the serial data passes through the digital-analog (D / A) converter 150 and is sent to the driver amplifier as an analog signal.
  • the digitized received electrical signal is converted into N parallel data by the serial-parallel (S / P) conversion unit 212. These parallel data are separated into N subcarrier signals in an FFT (Fast Fourier Transform) unit 213.
  • FFT Fast Fourier Transform
  • received signal post-processing section 240 data on each subcarrier is demodulated by subcarrier demodulation section 241 and converted into serial data by parallel-serial (P / S) conversion section 242 and output as information data. Is done.
  • the problem is that the OFDM signal has a large PAPR (peak power to average power ratio).
  • PAPR peak power to average power ratio
  • the linearity of the power amplifier that drives the transmission antenna is poor, the signal is distorted at peak power, reception sensitivity is deteriorated, or interference with adjacent wireless channels due to the spread of the signal spectrum is caused.
  • ⁇ (t) is the instantaneous phase of light
  • ⁇ 0 is the linear phase
  • ⁇ NL (t) is the nonlinear phase
  • is the nonlinear constant of the optical fiber
  • is the loss factor of the optical fiber
  • P (t) is the light Power
  • P ave represents average optical power
  • PAPR (t) represents peak-to-average power ratio (PAPR) at each time.
  • the symbol shown with an italic character in a numerical formula is shown with a normal format in this specification for convenience. As can be seen from this equation, the nonlinear phase of light rotates in proportion to PAPR.
  • phase rotation occurs due to the peak power of the signal itself (self-phase modulation effect), which causes waveform distortion due to wavelength dispersion and increases the error rate.
  • phase rotation is induced by the peak power of signals of adjacent wavelengths (cross phase modulation effect), and the error rate is increased in the same manner as the self phase modulation effect.
  • cross phase modulation effect causes phase rotation of subcarriers in the OFDM signal.
  • a random phase rotation according to PAPR is induced around a fixed phase rotation determined by the average power. If this random phase rotation exceeds the threshold for symbol determination, the symbol is determined to be an error.
  • subcarrier modulation is QPSK
  • symbol determination is erroneous when ⁇ ⁇ / 4 phase rotation occurs from an ideal symbol point. Therefore, it is important from the viewpoint of reducing the error rate that optical transmission is performed using a signal in which the PAPR is minimized.
  • Non-Patent Document 1 collectively describes the principles, advantages, and disadvantages of these methods.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-188510
  • Patent Document 2-5 discloses IQ modulation, direct detection, coherent detection, delay detection, and the like.
  • the PAPR is 6 dB or more, which is larger than the conventional optical communication system using OOK, and the effect is limited.
  • the reception method is limited to the coherent reception method, and the optical receiver configuration is four times that of the direct detection reception method, and the reception signal processing unit is also complicated.
  • the communication system is more expensive than the detection reception method.
  • phase information is generally lost. For this reason, it is difficult to apply the PAPR reduction technique in the wireless transmission system as it is.
  • the present invention has been made in view of the above points.
  • the PAPR is smaller than the PAPR of a conventional optical communication system at a location where the optical power in the transmission line is large, and direct detection reception is performed.
  • An object of the present invention is to provide a communication system or the like having a PAPR of less than 3 dB.
  • the phase of light is modulated with a baseband OFDM signal, this light is transmitted through an optical fiber, then converted into two intensity-modulated lights by a delay interferometer, and the two lights are converted into light and electricity, respectively.
  • An optical transmitter that maps and modulates digital data into a plurality of subcarriers orthogonal to each other over a symbol time, and transmits the optical data via an optical fiber;
  • An optical receiver that photoelectrically converts an optical signal propagated through the optical fiber, demodulates each subcarrier signal, and reproduces the original digital data;
  • the optical transmitter is A transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates an actual baseband OFDM signal by performing inverse fast Fourier transform on the modulated subcarrier signal;
  • a phase modulator for phase-modulating and transmitting light from the light source with the real baseband OFDM signal;
  • the optical receiver is: A delay interference unit that converts the optical signal applied with the phase modulation input from the optical transmitter via the optical fiber into two optical signals applied with intensity modulation; Two optical-electrical converters for converting the two optical signals applied with the intensity modulation into electrical signals; Two A / D converters for analog-digit
  • the digital data is mapped to a plurality of subcarriers orthogonal to each other over a symbol time, modulated, and the modulated subcarrier signal is subjected to inverse fast Fourier transform to generate a real baseband OFDM signal.
  • the optical receiver in an optical communication system comprising: The optical receiver A delay interference unit that converts the optical signal applied with the phase modulation input from the optical transmitter via an optical fiber into two optical signals applied with intensity modulation; Two optical-electrical converters for converting the two optical signals applied with the intensity modulation into electrical signals; Two A / D converters for analog-digital conversion of the outputs of the two photoelectric conversion units, Two phase extraction units that respectively extract phases from the outputs of the two A / D conversion units; Two received signal pre-processing units for obtaining respective subcarrier signals by fast Fourier transforming the outputs of the two phase extracting units, respectively; A subtraction unit that subtracts subcarrier signals having the same frequency among subcarrier signals that are outputs of the two received signal preprocessing units; There is provided the optical receiver including a received signal post
  • a transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates an actual baseband OFDM signal by performing inverse fast Fourier transform on the modulated subcarrier signal; and
  • a transmitter having a phase modulator for phase-modulating and transmitting light from a light source with a baseband OFDM signal;
  • a delay interference unit that converts an optical signal applied with phase modulation input from an optical fiber into two optical signals applied with intensity modulation;
  • Two optical-electrical converters for converting the two optical signals applied with the intensity modulation into electrical signals;
  • Two A / D converters for analog-to-digital conversion of the outputs of the two photoelectric conversion units;
  • Two phase extraction units for respectively extracting phases from the outputs of the two A / D conversion units;
  • Two received signal pre-processing units for obtaining respective subcarrier signals by fast Fourier transforming the outputs of the two phase extracting units, respectively;
  • a subtracting unit that subtracts sub
  • a wavelength division multiplexing transmitter for transmitting a wavelength division multiplexed optical signal obtained by wavelength multiplexing a plurality of optical signals having different wavelengths
  • a wavelength division multiplexing optical communication system comprising a wavelength division multiplexing receiver for demultiplexing the wavelength division multiplexed optical signal received via an optical fiber into each wavelength and receiving the demultiplexed optical signals,
  • the wavelength division multiplexing transmitter is Multiple optical transmitters;
  • An optical multiplexer that combines the output light of the plurality of optical transmitters and outputs a wavelength multiplexed optical signal;
  • Each of the plurality of optical transmitters is Light sources with different wavelengths,
  • a transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates an actual baseband OFDM signal by performing inverse fast Fourier transform on the modulated subcarrier signal;
  • a phase modulator for phase-modulating and outputting light from the light source with the real baseband OFDM signal,
  • the digital data is mapped to a plurality of subcarriers orthogonal to each other over a symbol time, modulated, and the modulated subcarrier signal is subjected to inverse fast Fourier transform to generate a real baseband OFDM signal.
  • a wavelength division multiplexing transmitter that multiplexes output light from a plurality of optical transmitters that phase modulate light from a light source and transmits a wavelength division multiplexed optical signal, and the wavelength division multiplexed optical signal received via an optical fiber for each wavelength.
  • the wavelength division multiplexing receiver in a wavelength division multiplexing optical communication system comprising a wavelength division multiplexing receiver that demultiplexes and receives each of the demultiplexed optical signals,
  • the wavelength division multiplexing receiver A delay interference unit that converts the wavelength-multiplexed optical signal received from the wavelength-multiplexed transmission device via the optical fiber into two wavelength-multiplexed optical signals to which intensity modulation is applied;
  • a plurality of optical receivers that respectively input two optical signals having the same wavelength among the demultiplexed optical signals;
  • Each of the plurality of optical receivers is Two optical-electrical converters for converting two optical signals to which the intensity modulation of each wavelength is applied into electrical signals;
  • Two A / D converters for analog-digital conversion of the outputs of the two photoelectric conversion units, Two phase extraction units that respectively extract phases from the outputs of the
  • a wavelength division multiplexing optical transponder including a wavelength division multiplexing transmission unit and a wavelength division multiplexing reception unit, The wavelength multiplexing transmitter Multiple optical transmitters; An optical multiplexer that combines the output light of the plurality of optical transmitters and outputs a wavelength multiplexed optical signal to an optical fiber;
  • Each of the plurality of optical transmitters is Light sources with different wavelengths,
  • a transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates an actual baseband OFDM signal by performing inverse fast Fourier transform on the modulated subcarrier signal;
  • a phase modulator for phase-modulating and outputting light from the light source with the real baseband OFDM signal,
  • the wavelength multiplexing receiver A delay interference unit that converts a wavelength multiplexed optical signal received via an optical fiber into two wavelength multiplexed optical signals to which intensity modulation is applied;
  • Two optical demultiplexers for demultiplexing the two wavelength-multiplexe
  • An optical transmitter that maps and modulates digital data into a plurality of subcarriers orthogonal to each other over a symbol time, and transmits the optical data via an optical fiber;
  • An optical receiver that photoelectrically converts an optical signal propagated through the optical fiber, demodulates each subcarrier signal, and reproduces the original digital data;
  • the optical transmitter is A transmission signal processing unit that maps and modulates digital data onto a plurality of subcarriers orthogonal to each other over a symbol time, and generates an actual baseband OFDM signal by performing inverse fast Fourier transform on the modulated subcarrier signal;
  • a phase modulator for phase-modulating and transmitting light from the light source with the real baseband OFDM signal;
  • the optical receiver is: A delay interference unit that converts the optical signal applied with the phase modulation input from the optical transmitter via the optical fiber into two optical signals applied with intensity modulation;
  • An optical-electrical converter that converts optical signals into electrical signals;
  • An A / D converter for analog-digital conversion of the converted electrical signal
  • the PAPR value is set to approximately 0 dB at a location where the optical power in the optical fiber transmission line is high, that is, immediately after the optical transmitter or immediately after the optical fiber amplifier.
  • the PAPR can be reduced, it is possible to provide an optical OFDM communication system and an optical transmitter / receiver capable of long-distance transmission.
  • the configuration is simpler than that of the coherent reception system, and therefore, an optical receiver that can be used in a communication system can be provided at a low cost.
  • the functional block diagram of the optical communication system of this invention The functional block diagram of the transmission signal processing part of this invention.
  • the functional block diagram of the received signal pre-processing part of this invention The functional block diagram of the received signal post-processing part of this invention.
  • the block diagram of a delay interference part The functional block diagram of the optical communication system which shows 2nd embodiment.
  • the functional block diagram of the optical communication system which shows 3rd embodiment The functional block diagram of the optical communication system which shows 4th embodiment.
  • the functional block diagram of the optical communication system which shows 5th Embodiment The schematic diagram of the spectrum of an optical phase modulation OFDM signal.
  • the transmission signal processing unit 100 in the optical transmitter 1 converts data to be communicated input from the input terminal 4 into a baseband real OFDM signal.
  • the configuration of the transmission signal processing unit 100 can be as shown in FIG.
  • the real part or imaginary part of the complex OFDM signal is used, or mapping to the subcarrier is made so that the negative frequency component becomes a complex conjugate of the positive frequency component. There is a need to.
  • the baseband OFDM signal can be expressed by the following equation.
  • C k represents data (signal space coordinates.
  • N is the number of subcarriers
  • ⁇ f is the subcarrier frequency interval
  • t is the time
  • ⁇ k is the phase of the signal point
  • Ts represents one symbol time.
  • This real OFDM signal is amplified by a driver amplifier 10 inside the optical transmitter to drive the optical phase modulator 11.
  • the light of frequency f C from the laser (light source) 12 is phase-modulated by the optical phase modulator 11 by the OFDM signal and transmitted from the optical transmitter 1 to the optical fiber 3.
  • the electric field of this transmission signal light can be expressed by the following equation.
  • h is the degree of phase modulation
  • P 0 is the average power of light.
  • the power P (t) of this light is obtained by averaging the square of equation (2) over the carrier period over time. It is obtained. That is, the PAPR of this light is 0 dB.
  • the optical receiver 2 includes a delay interference unit 20 and a balanced optical receiver 200.
  • the phase-modulated light is converted into two light whose intensity is modulated by passing through the delay interference unit 20.
  • the two intensity-modulated lights are converted into electric signals by the two photodiodes 201 and 203, respectively.
  • represents the delay time of the delay interference unit 20.
  • f c of the delay time ⁇ and light So that relationship is established to set the ⁇ and f c.
  • FIG. 13 shows the relationship between the transmission characteristics of the delay interference unit 20 and the light frequency when this relationship is established.
  • Each of the two electrical signals can be expressed by the following equations. In equations (7) and (8), the sign above ⁇ is when m is an even number, and the sign below is when m is an odd number.
  • the phases of the electric signals (7) and (8) are signals obtained by rotating each subcarrier component of the baseband OFDM signal (1) by the phase ⁇ / 4. Therefore, the AC components of both electrical signals are A / D converted by A / D converters 205 and 206, respectively, and passed through phase extractors 207 and 208, respectively, to detect the phase of the sin function. Then, the same signal as the actual baseband OFDM signal (strictly, the phase is rotated by ⁇ / 4) is obtained.
  • the actual OFDM signal pre-reception processing units 210 and 220 are respectively decomposed into subcarrier components, and the subtraction unit 230 performs subtraction between subcarriers of the same frequency.
  • the data is output from the terminal 5 as serial data, which is information that has been restored after passing through the normal post-receiver signal processing unit 240.
  • an OFDM signal can be communicated with an optical fiber using a signal with a PAPR of 0 dB.
  • the OFDM signal can be extracted from either one of the electrical signals.
  • the optical signal is half discarded, and the subtraction circuit The effect of doubling the signal amplitude due to is not obtained.
  • equation (9) does not hold strictly for all subcarriers, but for example, if the spectrum arrangement as shown in FIG. 12 can be realized, all the subcarriers have the relationship of equation (9). It can be satisfied approximately. In other words, if the bandwidth of the OFDM signal is B and the center frequency of the optical OFDM signal is f c + f S , Meet and further If the condition is satisfied, the relationship of Expression (9) can be realized by almost all subcarriers. For example, since the carrier frequency f c of the light is determined by such standard, to be preset in the delay interferometer 20 seeking a delay time ⁇ using equation (6) from the frequency f c of the carrier a predetermined Can do. Further, the center frequency f s and bandwidth B of the optical OFDM signal can be obtained from the obtained delay time ⁇ using equations (11) and (12).
  • subcarrier modulation is assumed to be 4-QAM, but this embodiment is not limited to this, and can be applied to any subcarrier modulation scheme.
  • the number of subcarriers is N (N is an integer of 1 or more).
  • FIG. 1 shows a configuration diagram of an optical OFDM communication system.
  • the optical OFDM communication system includes, for example, an optical transmitter 1, an optical fiber 3, and an optical receiver 2.
  • the optical transmitter 1 includes, for example, a transmission signal processing unit 100, a driver amplifier 10, an optical phase modulator 11, and a laser light source 12.
  • the optical transmitter 1 may include an input terminal 4.
  • the optical receiver 2 includes a delay interference unit 20 and a balanced optical reception unit 200.
  • the optical receiver 2 may include an output terminal 5.
  • the optical transmitter 1 and the optical receiver 2 are connected via an optical fiber 3.
  • FIG. 2 shows a configuration diagram of the transmission signal processing unit 100 in the first embodiment.
  • the transmission signal processing unit 100 includes, for example, a serial-parallel (S / P) conversion unit 110, a subcarrier modulation unit 120, an inverse FFT unit (inverse fast Fourier transform unit) 130, and a parallel-serial (P / S).
  • a conversion unit 140 and a digital-analog (D / A) conversion unit 150 are provided.
  • a cyclic prefix insertion (CPI) unit may be provided between the P / S conversion unit 140 and the D / A conversion unit 150.
  • CPI cyclic prefix insertion
  • Data to be originally communicated is converted into 2N parallel data by the S / P converter 110.
  • the subcarrier modulation unit 120 modulates N subcarriers using the parallel data.
  • the input signal is converted to time-axis data by the inverse FFT unit 130 and converted to serial data by the P / S conversion unit 140.
  • the serial data passes through the D / A converter 150 and is output as an analog signal. This signal is called a baseband OFDM signal.
  • this baseband OFDM signal since this optical phase modulation is performed using this baseband OFDM signal, this baseband OFDM signal must be a real number.
  • a real OFDM signal hereinafter, real OFDM signal
  • the real part or the imaginary part of the complex OFDM signal is used, or the sub-carrier is set so that the negative frequency component becomes a complex conjugate of the positive frequency component. Need to be mapped.
  • a method using a real part is described here. In this case, for example, a process of extracting the real part between the P / S conversion unit 140 and the D / A conversion unit 150 in FIG. 2 is performed.
  • the obtained real OFDM signal can be expressed by equation (1).
  • the output light of the laser 12 in FIG. 1 is phase-modulated by the above-described real OFDM signal in the phase modulator 11 and emitted to the optical fiber 3.
  • the phase modulator 11 for example, a device using an electro-optic effect in an optical waveguide formed on a LiNbO 3 (lithium niobate) substrate is well known.
  • a so-called MZ (Mach Zehnder) modulator, an optical IQ modulator, or the like can also be used.
  • the output light of the optical transmitter 1, that is, the electric field of the transmitted light can be expressed by Expression (2).
  • the PAPR of this transmitted light is theoretically 0 dB.
  • the electric field of the transmission light in Expression (2) can be approximated by the following expression. From this equation (13), the transmitted light is composed of an upper sideband (right side second term) and a lower sideband (right side third term) composed of carrier light (right side first term) and a subcarrier signal. I can see that The spectrum of this transmitted light is shown in FIG. In this figure, the relationship between the frequency of each subcarrier and k is shown. From Figure 11, under small signal approximation, the transmission light can be understood to have a spectrum obtained by frequency converting the baseband OFDM signal to the carrier frequency f c of the light. The frequency band B occupied by the sidebands is It can appear in.
  • the phase-modulated transmission light enters the optical receiver 2 through the optical fiber 3 serving as a transmission path.
  • the optical transmission line is the optical fiber 3 in FIG. 1
  • an optical fiber amplifier is used at an appropriate distance, for example, every 60 km to 80 km.
  • a chromatic dispersion compensating fiber may be used together with an optical fiber amplifier to compensate for the chromatic dispersion of the optical fiber 3.
  • the optical receiver 2 includes a delay interference unit 20 and a balanced optical receiver 200.
  • FIG. 5 shows a basic configuration of the delay interference unit 20.
  • the light incident from the input port is branched into two by the optical coupler unit 21, and one optical signal is delayed by a predetermined delay time ⁇ compared to the other optical signal. Thereafter, the two optical signals are combined by the optical coupler unit 22 and output from the two output ports 1 and 2.
  • the delay interference unit 20 can be composed of an optical fiber and two optical couplers. Further, it is realized as a so-called PLC (Planar Lightwave Circuit) device using a glass waveguide or a semiconductor waveguide. Furthermore, it is also realized as a device using a spatial optical system.
  • PLC Planar Lightwave Circuit
  • the optical power at the two output ports of the delay interference unit 20 can be expressed as sinusoidal shapes having opposite phases as shown in FIG.
  • the frequency interval between the peaks of the output power is the reciprocal of the delay time of the delay interference unit 20, that is, 1 / ⁇ . More precisely, the optical power from the two output ports is This shows the frequency dependence.
  • the center frequency of the transmission light i.e. to adjust the delay time of the delay interferometer 20 so that the relationship of Equation (6) between the optical frequency f c and the delay time ⁇ of the carrier beam is established.
  • a heater is installed in one optical waveguide of light branched in two by the optical coupler unit 21 of the delay interference unit in FIG.
  • the interference phase is adjusted by changing the equivalent refractive index. Relationship of the transmission property of the delay interferometer carrier frequency f c at this time is shown Fig. That is, when the relationship of Expression (6) holds, carrier light is output from the output ports 1 and 2 by P 0/2 .
  • FIG. 13 shows the relationship between the transmission characteristic of the delay interference unit 20 and the frequency f S.
  • a reference numeral f s f m.
  • the output port 1 outputs the lower sideband and half power carrier light
  • the output port 2 outputs the upper sideband and half power carrier light.
  • transmission light that has been phase-modulated is generally composed of carrier light and sidebands of frequency-converted OFDM signals.
  • the zero-padding operation is performed, in which the subcarriers from the 0th to the (q-1) th are not modulated, and the data to be transmitted is communicated by modulating the remaining qth to the (N-1) th subcarrier.
  • the spectrum of the transmitted light is as shown in FIG.
  • the frequency region occupied by the 0th to (q-1) th subcarriers is a guard band.
  • the center frequency f c ⁇ f S of the sideband is It can be expressed as The bandwidth B of the sideband is It becomes.
  • the carrier light and the upper side band wave, and the carrier light and the lower side band wave are output from the two output ports of the delay interference unit 20, respectively. These lights are light that has undergone intensity modulation. That is, when Expressions (11) and (12) are substantially satisfied, the transmission light of Expression (13) passes through the delay interference unit 20 and is output as the next light from the output port.
  • the sign of ⁇ in the equation takes the top when m is an even number and the bottom when m is an odd number.
  • K 1 is a beat signal between subcarriers.
  • the frequency component of the carrier beat signal is concentrated in the vicinity of DC. This is shown in FIG. FIG. 14 is a spectrum of photocurrents I 1 and I 2 .
  • the beat signal between subcarriers overlaps with the OFDM signal to cause interference, thereby degrading the code error rate.
  • OFDM signals to be originally received and beat signal K 1 between subcarriers can be completely separated in the frequency domain.
  • the separation method for example, or using a high-pass filter to cut off the beat signal between the sub-carrier, or anyway the signal processing performed is decomposed into sub-carrier in FFT, among subcarriers beat signal K 1 is present
  • a method in which the low-frequency subcarrier is not used in the subsequent signal processing can be used.
  • K1 can be eliminated by any of the above means and will be ignored in the following discussion. Then, it can be seen from equations (16) and (17) that the photocurrent is an electrical signal including the baseband OFDM signal (1).
  • Equations (16) and (17) are cases of small signal approximation. As already described, these equations can be expressed by the following equations for a large signal.
  • the baseband OFDM signal (1) is included in the phase of the sin function of the alternating current components of the photocurrents I 1 and I 2 .
  • the AC component of the electric signal is amplified by the preamplifier units 202 and 204, converted into a digital signal by the A / D conversion units 205 and 206, and then passed to the phase extraction units 207 and 208 that extract the phase of the sine function.
  • the signal processing for extracting the phase of the sin function is performed, but as the implementation, Arcsin calculation may actually be performed, or a lookup table may be used.
  • This output is the phase part of the sin function of equations (19) and (20), that is, the baseband OFDM signal (1) itself.
  • This signal is delivered to received signal preprocessing sections 210 and 220 at the subsequent stage.
  • Received signal pre-processing sections 210 and 220 perform S / P conversion on each electrical signal and perform FTT processing to extract each subcarrier signal.
  • the configuration of the reception signal preprocessing units 210 and 220 can be as shown in FIG. A signal processing configuration for a normal OFDM signal can be used.
  • the cyclic prefix is used on the transmission side, it goes without saying that processing for removing the cyclic prefix is performed immediately before the S / P conversion 212.
  • the subcarrier signals that are the outputs of the received signal preprocessing sections 210 and 220 are subtracted by the subtracting section 230 from the subcarrier signals having the same frequency.
  • the upper sideband component and the lower sideband component of light are added, and signal energy is effectively used, so that sensitivity deterioration can be prevented.
  • the output of the subtracting unit 230 is input to the received signal post-processing unit 240, demodulated, and output from the output terminal 5 as serial data.
  • the configuration of reception signal post-processing section 240 can be the one shown in FIG. 4, and a normal OFDM signal processing configuration can be used.
  • the baseband OFDM signal used in the present embodiment is a real OFDM signal as described above.
  • the signal processing used in the receiver of the actual OFDM signal, when sampling by the A / D converter 205, the sampling interval, it may the normal may be set to half of the T s / (2 ⁇ N) known It has been. In this case, the obtained signal becomes an oversampled signal, and the rewinding of the phase exceeding ⁇ ⁇ can be performed.
  • FIG. 6 shows an embodiment in which subtraction is performed at the output stage of the phase extraction units 207 and 208 that extract the phase of the sin function.
  • FIG. 7 shows an embodiment in which subtraction is performed using the outputs of the A / D conversion units 205 and 206.
  • FIG. 8 shows an embodiment in which subtraction is performed inside the optical front end unit 209.
  • An example of the structure of the optical front end portion 209 is shown in FIG. 9 (a), (b), or (c).
  • FIG. 9A the outputs of the preamplifier units 202 and 204 are subtracted.
  • FIG. 9B photocurrent subtraction is performed using a differential preamplifier 204-1 as a preamplifier.
  • FIG. 9C subtraction is performed using a balanced photodiode 201-1.
  • the electric field of the transmission light is composed of upper / lower sidebands composed of carrier light and OFDM signal subcarriers, as can be seen from equation (13).
  • the phase of each subcarrier is subjected to phase rotation by chromatic dispersion. This phase rotation amount is proportional to the square of the frequency difference ⁇ Delta] f ⁇ k of the carrier frequency f c of the optical frequency f c ⁇ ⁇ f ⁇ k for each subcarrier.
  • phase rotation amount takes a different value for each subcarrier (that is, every k), and the same k subcarriers of the upper sideband and the lower sideband have the same amount of phase rotation. Is to receive.
  • the electric field of the light that has been transmitted through the optical fiber 3 through the phase-modulated transmission light (13) and reached the optical receiver 2 can be expressed by the following equation.
  • the photocurrent I 1 and I 2 in the case of receiving the light from the output port 1 and 2 if the conditions (11) (12) substantially satisfied, following It can be expressed by an expression.
  • the sign of ⁇ in the equation takes the top when m is an even number and the bottom when m is an odd number.
  • proportional to h 2 is omitted.
  • Phase rotating portions 250 and 260 in this figure is a signal processing section that cancels the phase rotation theta k due to the wavelength dispersion of each subcarrier, phase rotation applied in each phase rotation unit 250 and 260 are opposite sign to each other.
  • FIG. 15 shows the configuration of the optical transmitter and the optical receiver of FIG. 1, but the optical receiver 2 of FIGS. 6, 7, 8, and 10 may be used as the optical receiver.
  • FIG. 16 is a configuration diagram of the entire wavelength division multiplexing communication system according to the third embodiment.
  • a plurality of digital information signals are converted into wavelength multiplexed signals by the wavelength multiplexing transmitter 800 and transmitted, and the wavelength multiplexed signals are transmitted to the wavelength multiplexing receiver 900 via the optical fiber 3 serving as a transmission path.
  • This is an optical communication system in which a plurality of digital information signals are restored.
  • the output light from each optical transmitter 1 is wavelength-multiplexed by the optical multiplexer 300 and transmitted from the wavelength multiplexing transmitter 800 to the optical fiber 3 as a transmission path as a wavelength multiplexed optical signal.
  • the wavelength-multiplexed optical signal that has propagated through the optical fiber 3 that is a transmission path enters the wavelength-multiplexed receiver 900.
  • the delay interference unit 20 has the configuration of FIG.
  • the transmission characteristics of the delay interference unit are as shown in FIG. 13, and the optical power from the two output ports is This shows the frequency dependence. That is, it shows periodic frequency dependence.
  • C is the speed of light.
  • the optical frequency interval of the normal wavelength multiplexed signal is 50 GHz interval or 100 GHz interval.
  • the delay time ⁇ of the delay interference unit 20 is 20 ps and 10 ps, respectively.
  • the delay time ⁇ is 10 ps and 5 ps, respectively.
  • the carrier light and the upper side band wave or the carrier light of each wavelength of the wavelength multiplexed signal are transmitted from the two output ports of the delay interference unit 20.
  • the lower sideband wave that is, the optical signal of each wavelength converted to intensity modulation is output in a wavelength-multiplexed form.
  • the intensity-modulated two wavelength multiplexed signals are demultiplexed into intensity-modulated optical signals of respective wavelengths by optical demultiplexers 400-1 and 400-2, respectively.
  • the output optical signals of the same wavelength ⁇ i (i 1, 2,...
  • the above is the wavelength multiplexing communication system of the third embodiment.
  • the present invention can be used, for example, in an optical communication system.
  • Optical coupler unit 100 Transmission signal processing unit 110, 212: Serial-parallel (S / P) conversion unit 120: Subcarrier modulation unit 130: Inverse fast Fourier transform (FFT) unit 140, 242: Parallel-serial (P / S) Conversion unit 150: Digital-to-analog (D / A) conversion units 200, 200-1, 200-2, 200-n: balanced optical receivers 201, 203: photodiode 201-1: balanced photodiode 202 204: Preamplifier section 2 4-1: differential preamplifier units 205, 206: analog-digital (A / D) converters 207, 208: phase

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 光OFDM通信システムにおいて、PAPRを低減する。光送信器内部に設けた送信信号処理部100の出力であるベースバンドOFDM信号によって光を位相変調し、この光を信号光として光通信を実現すると、光ファイバ内部の光電力が大きい箇所ではPAPRはほぼ0dBという低い値が実現でき、上記課題を解決できる。この信号光を伝送路である光ファイバを伝播させ、その光を遅延干渉計に通して2台の光受信器で電気信号に変換する。この2つの電気信号をそれぞれ、光受信器内部に設置されたA/D変換部とFFT信号処理によって各サブキャリアに変換し、同じ周波数のサブキャリア同士を引き算して復号し、データを再生する。

Description

光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ
 本発明は、光OFDM通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダに係り、特に、マルチキャリアを用いた光通信システム等に関し、より具体的には、光OFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重)通信システムにおいてPAPR(Peak-to-Average Power Ratio、ピーク電力対平均電力比)を低減する光通信システム等に関する。
 今まで実用化されてきた光通信システムは、光の強度を用いた2値の変復調技術を適用している。具体的には、送信側でディジタル情報の「0」と「1」を光の強度のオン-オフに変換して光ファイバに送信し、光ファイバを伝播した光は受信側で光電変換されてもとの情報を復元している。近年、インターネットの爆発的普及に伴い、光通信システムに要求される通信容量は飛躍的に伸びている。通信容量の大容量化の要請に対して今までは、光のオン-オフする速度、つまり変調速度を上昇させることで対応してきた。しかしながら、この変調速度を上昇させて大容量化を実現するという手法では一般に、次に述べる課題がある。
 変調速度を上昇させると、光ファイバの波長分散によって制限される伝送可能な距離は短くなる、という課題がある。一般に波長分散によって制限される伝送距離はビットレートの二乗で短くなる。つまり、ビットレートが2倍になると、波長分散により制限される伝送距離は1/4になる。同様に変調速度を上昇させると、光ファイバの偏波分散により制限される伝送可能な距離が短くなる、という課題もある。一般にビットレートが2倍になると、偏波分散によって制限される伝送距離は1/2になる。波長分散の影響を具体的に示すと、ビットレートが10Gbpsで通常分散ファイバを用いると波長分散で制限される伝送距離は60kmであるが、ビットレートが40Gbpsのシステムになると、其の距離はおよそ4kmと短くなる。さらに次世代の100Gbpsシステムの場合は波長分散によって制限される伝送距離は0.6kmとなり、このままでは、伝送距離が500km程度の幹線光通信システムを実現することはできない。超高速な幹線光通信システムを構築するために現在は、伝送路の波長分散を打ち消すために負の波長分散を持ったいわゆる分散補償ファイバという特殊な光ファイバを中継器や送受信機に設置している。この特殊ファイバは高価であり、また送受信機や光中継器内部に設置する分散補償ファイバの量を決定する高度な設計が必要になり、これら両者が光通信システムの価格を押し上げている。
 そこで最近、通信容量を増加させる光変復調方式として、OFDM技術を用いた光通信システムの研究が脚光を浴びている。OFDM技術は、1シンボル時間内で互いに直交する、つまり1シンボル時間の逆数の整数倍の周波数を持つ、多数の正弦波(これをサブキャリアと呼ぶ)のそれぞれの振幅と位相を所定の値に設定することによって情報を乗せ(変調し)、これらのサブキャリアを束ねた信号でキャリアを変調し送信する技術である。このOFDM技術は、電話局と家庭の間で通信するVDSL(Very high bit rate Digital Subscriber Line)システムや、家庭内での電力線通信システム、さらには地上波ディジタルTVシステムで用いられ、実用化されている。さらには次世代の携帯電話システムでも用いられる予定である。
 光OFDM通信システムは、光をキャリアとしてOFDM技術を適用した通信システムである。OFDM技術では、前述のように多数のサブキャリアを用いており、さらにおのおののサブキャリアの変調方式は、例えば、4-QAM、8-PSK、あるいは16-QAMなど多値変調方式が適用可能なため、1シンボル時間がビットレートの逆数より非常に長くなる。その結果として前述の波長分散や偏波分散によって制限される伝送距離が、光通信システムで想定される伝送距離(例えば、国内の幹線システムでは500km)より十分長くなり、前述の分散補償ファイバが不要となる。その結果、低コスト光通信システムが実現できる可能性がある。
 図17に、直接検波方式を用いた従来の光OFDM通信システムの構成図を示す。
 光送信器500と直接検波光受信器600は光ファイバ3で接続されている。本来通信すべきデータが入力端子4より光送信器500に入力すると、光送信器500の内部の送信信号処理部100でベースバンドOFDM信号に変換され、この信号はドライバアンプ10で増幅される。レーザ12からの光をこの信号で光変調器501により電界変調あるいは強度変調することによって光が生成される。この光OFDM信号は伝送路である光ファイバ3を通って直接検波光受信器600に到達する。光OFDM信号はフォトダイオード201で直接検波受信されて電気信号に変換される。この電気信号は理想的には前述のベースバンドOFDM信号であり、この信号はプリアンプ202で増幅され、A/D変換部206でディジタル信号に変換され、その出力は受信信号前処理部220でサブキャリアに変換され、その後受信信号後処理部240で本来通信すべきデータに復調されて出力端子5より出力される。
 図2に、送信信号処理部100の機能構成図を示す。図3に、受信信号前処理部220の機能構成図を示す。図4に、受信信号後処理部240の機能構成図を示す。
 通信すべきデータは、まずシリアル-パラレル(S/P)変換部110で2N個のパラレルデータに変換される。ここでNはデータを乗せるサブキャリアの本数である。サブキャリアの変調が4-QAMの場合は2N個のパラレルデータであるが、これが例えば16-QAMの場合は4N個となる。つまりシリアルデータは、「1シンボルのビット数×サブキャリアの本数」個のパラレルデータに変換する。サブキャリア変調部120は、このパラレルデータを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリアは逆FFT(逆高速フーリエ変換)部130で時間軸のデータに変換され、パラレル-シリアル(P/S)変換部140でシリアルデータに変換される。このシリアルデータはディジタルーアナログ(D/A)変換部150を通過してアナログ信号としてドライバアンプへ信号を送出する。
 受信信号前処理部220では、ディジタル化された受信電気信号はシリアルーパラレル(S/P)変換部212でN本のパラレルデータに変換される。これらのパラレルデータはFFT(高速フーリエ変換)部213においてN本のサブキャリア信号に分離される。受信信号後処理部240では、サブキャリア復調部241にて各サブキャリアに乗っているデータが復調され、パラレル-シリアル(P/S)変換部242にてシリアルデータに変換され、情報データとして出力される。
 光通信システムにおいても無線通信システムにおいても、OFDM信号のPAPR(ピーク電力対平均電力比)が大きい点が課題となる。無線通信の場合は、送信アンテナを駆動するパワアンプの線形性が悪い場合、ピーク電力時に信号が歪み、受信感度劣化、あるいは信号スペクトルの広がりによる隣接無線チャネルへの干渉を引き起こす。
 光通信システムでは、無線通信システムとは異なる光ファイバ通信固有の、PAPRが大きい事に起因する課題がある。それはピーク電力が大きい時刻で光の位相が他の時刻の位相より余計に回転する非線形位相回転という現象である。これは、伝送路である光ファイバが弱い非線形性を示す事に起因する現象である。光ファイバの持つ非線形光学効果、所謂Kerr効果は次式で記述できる。
Figure JPOXMLDOC01-appb-M000001
ここで、φ(t)は光の瞬時位相、φは線形位相、φNL(t)は非線形位相、γは光ファイバの非線形定数、αは光ファイバの損失係数、P(t)は光パワ、Paveは平均光パワ、PAPR(t)は各時刻でのピーク対平均電力比(PAPR)をそれぞれ表す。なお、数式中斜字で示す記号は、便宜上本明細書中においては通常の書式で示す。この式からわかるように、光の非線形位相はPAPRに比例して回転する。
 単一波長の光を用いた光通信システムでは、信号自身のピークパワによって位相回転が起こり(自己位相変調効果)、これが波長分散によって波形ひずみを引き起こし、誤り率を増加させる。また、波長多重光通信システムでは、隣接波長の信号のピークパワによって位相回転が誘起され(相互位相変調効果)、自己位相変調効果と同様に誤り率を増加させる。これらの位相回転は、OFDM信号のサブキャリアの位相回転を引き起こす。より正確に述べると、平均パワによって決まる固定の位相回転の周りにPAPRに応じたランダムな位相回転が誘起される。このランダムな位相回転が、シンボル判定の閾値を越えるとそのシンボルは誤りと判定される。例えばサブキャリアの変調をQPSKとすると、理想シンボル点から±π/4位相回転が起こるとシンボル判定を誤る。したがって、PAPRを極力小さく抑えた信号を用いて光伝送を行うことが誤り率を低減する観点で重要である。
 無線伝送システムではPAPR低減化技術は数々提案されており、主なものとしては、例えば、(1)ハードリミッタで強制的にPAPRをある一定値以下に保ちながらフィルタで隣接無線チャネルへのスペクトルの干渉を抑制する、(2)サブキャリアへのデータのマッピング(つまり変調)を複数回試しPAPRが少ない変調を選択する、(3)プリコーディング(トレリス符号化など)を用いて冗長性を持たせ、これによってPAPRが小さな信号を生成する、などがある。非特許文献1にはこれらの方式の原理、長所と欠点がまとめて記載されている。また、非特許文献2に記載されているように、最近位相変調を用い無線信号の包絡線を一定に保つ(PAPR=0dB)方式の検討も行われている。
 これらのPAPR低減策を光OFDM通信システムに適用した研究も、すでに発表されている(非特許文献3、4)。さらに特開2009-188510号公報(特許文献1)では、上述の位相変調を用いて包絡線を一定に保つ光OFDM通信システムも考案されている。
 なお、IQ変調、直接検波、コヒーレント検波、遅延検波等について開示された文献がある(例えば、特許文献2-5等参照)。
特開2009-188510号公報 特開2008-211713号公報 特開2009-188509号公報 特開2008-135992号公報 特開平11-331089号公報
S.H.Han、 and J.H.Lee、「An Over view of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission」、IEEE Wireless Communications、April 2005、 pp.56-65 S.C.Thompson、A.U.Ahmed、and J.G.Proakis、et al、「Constant Envelop OFDM」、IEEE Transactionson Communications、Vol.56、No.8、August 2008、pp.1300-1312 B.Goebel、S.Hellerbrand、N.Haufe、et al、「PAPR Reduction Techniques for Coherent Optical OFDM Transmission」、ICTON2009、Mo.B2.4、2009 B.Goebel、S.Hellerbrand、N.Haufe、et al、「Nonlinear Limits for High Bit-RateO-OFDM Systems」、IEEE Summer Topical Meeting2009、MC4.2、2009
 非特許文献3、4に記述されている対策を用いた場合、PAPRは6dB以上であり従来のOOKを用いた光通信システムよりPAPRは大きく、効果は限定的である。また特開2009-188510号公報の技術では、受信方式がコヒーレント受信方式に限定されており、直接検波受信方式と比較して光受信器構成が4倍で受信信号処理部も複雑となり、したがって直接検波受信方式より高コストな通信システムとなる。
 また、光伝送において、直接検波をする場合、光の電界の絶対値の2乗の電流を受信器で取り出すことになるので、一般に位相情報が失われる。このため、無線伝送システムにおけるPAPR低減化技術をそのまま適用することが困難である。
 本発明は、以上の点に鑑みてなされたものであり、光OFDM通信システムにおいて、伝送路内部での光電力が大きい箇所でそのPAPRが従来の光通信システムのPAPRより小さく、かつ直接検波受信方式にも適用できる光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダを提供することを目的とする。本発明は、PAPRが3dBより小さい通信システム等を提供することを目的とする。
 本発明では、光の位相をベースバンドOFDM信号で変調し、この光を光ファイバで伝送した後、遅延干渉計で2つの強度変調光に変換し、その2つの光をそれぞれ光-電気変換し、得られた2つの電気信号をそれぞれA/D変換した後FFTで各サブキャリアに戻し、同じ周波数のサブキャリア同士で引き算を行い、引き算の結果得られたサブキャリアを復調してデータを復元する。
 本発明の第1の解決手段によると、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
 該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
を備え、
 前記光送信器は、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
 該実ベースバンドOFDM信号で光源からの光を位相変調して送信する位相変調器と
を有し、
 前記光受信器は、
 該光ファイバを介して前記光送信器から入力される前記位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部と、
 該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
 前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
 前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
 前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
 前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
 前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
を有する前記光通信システムが提供される。
 本発明の第2の解決手段によると、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成し、該実ベースバンドOFDM信号で光源からの光を位相変調して送信する光送信器と、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器とを備えた光通信システムにおける前記光受信器であって、
 該光受信器は、
 光ファイバを介して前記光送信器から入力される前記位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部と、
 該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
 前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
 前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
 前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
 前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
 前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
を備えた前記光受信器が提供される。
 本発明の第3の解決手段によると、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部、及び
 該実ベースバンドOFDM信号で光源からの光を位相変調して送信する位相変調器
を有する送信部と、
 光ファイバから入力される位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部、
 該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
 前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部、
 前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部、
 前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部、
 前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部、及び、
 前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部
を有する受信部と
を備えた光トランスポンダが提供される。
 本発明の第4の解決手段によると、
 波長の異なる複数の光信号を波長多重した波長多重光信号を送信する波長多重送信装置と、
 光ファイバを介して受信した該波長多重光信号を各波長に分波し、該分波された各光信号を受信する波長多重受信装置と
を備えた波長多重光通信システムであって、
 前記波長多重送信装置は、
 複数の光送信器と、
 該複数の光送信器の出力光を合波し波長多重光信号を出力する光合波器と
を有し、
 該複数の光送信器はそれぞれ、
 互いに波長の異なる光源と、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
 該実ベースバンドOFDM信号で前記光源からの光を位相変調して出力する位相変調器と
を有し、
 前記波長多重受信装置は、
 前記光ファイバを介して前記波長多重送信装置から受信した該波長多重光信号を、強度変調が印加された2つの波長多重光信号に変換する遅延干渉部と、
 該強度変調が印加された2つの波長多重光信号をそれぞれ波長毎の光信号に分波する2つの光分波器と、
 分波された光信号のうち同一の波長の2つの光信号をそれぞれ入力する複数の光受信器と
を有し、
 該複数の光受信機はそれぞれ、
 各波長の該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
 前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
 前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
 前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
 前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
 前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
を有する前記波長多重光通信システムが提供される。
 本発明の第5の解決手段によると、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成し、該実ベースバンドOFDM信号で光源からの光を位相変調する複数の光送信器からの出力光を合波し波長多重光信号を送信する波長多重送信装置と、光ファイバを介して受信した該波長多重光信号を各波長に分波し、該分波された各光信号を受信する波長多重受信装置とを備えた波長多重光通信システムにおける前記波長多重受信装置であって、
 該波長多重受信装置は、
 前記光ファイバを介して前記波長多重送信装置から受信した該波長多重光信号を、強度変調が印加された2つの波長多重光信号に変換する遅延干渉部と、
 該強度変調が印加された2つの波長多重光信号をそれぞれ波長毎の光信号に分波する2つの光分波器と、
 分波された光信号のうち同一の波長の2つの光信号をそれぞれ入力する複数の光受信器と
を有し、
 該複数の光受信機はそれぞれ、
 各波長の該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
 前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
 前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
 前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
 前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
 前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
を備えた前記波長多重受信装置が提供される。
 本発明の第6の解決手段によると、
 波長多重送信部と、波長多重受信部とを備えた波長多重光トランスポンダであって、
 前記波長多重送信部は、
 複数の光送信器と、
 該複数の光送信器の出力光を合波し波長多重光信号を光ファイバに出力する光合波器と
を有し、
 該複数の光送信器はそれぞれ、
 互いに波長の異なる光源と、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
 該実ベースバンドOFDM信号で前記光源からの光を位相変調して出力する位相変調器と
を有し、
 前記波長多重受信部は、
 光ファイバを介して受信した波長多重光信号を、強度変調が印加された2つの波長多重光信号に変換する遅延干渉部と、
 該強度変調が印加された2つの波長多重光信号をそれぞれ波長毎の光信号に分波する2つの光分波器と、
 分波された光信号のうち同一の波長の2つの光信号をそれぞれ入力する複数の光受信器と
を有し、
 該複数の光受信機はそれぞれ、
 各波長の該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
 前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
 前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
 前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
 前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
 前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
を有する前記波長多重光トランスポンダが提供される。
 本発明の第7の解決手段によると、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
 該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
を備え、
 前記光送信器は、
 ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
 該実ベースバンドOFDM信号で光源からの光を位相変調して送信する位相変調器と
を有し、
 前記光受信器は、
 該光ファイバを介して前記光送信器から入力される前記位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部と、
 光信号を電気信号に変換する光-電気変換部と、
 変換された電気信号をアナログ-ディジタル変換するA/D変換部と、
 前記A/D変換部で変換された信号の位相成分を抽出する位相抽出部と、
 抽出された位相成分を高速フーリエ変換し各サブキャリア信号を得る受信信号前処理部と、
 サブキャリア毎のデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と、
 前記受信信号後処理部の処理より前において、前記遅延干渉部からの2つの光信号に対応する2つの信号同士を引き算する引き算部と
を有する前記光通信システムが提供される。
 本発明によると、光OFDM通信システムにおいて、光ファイバ伝送路内部の光電力が高い箇所で、つまり光送信器直後や光ファイバ増幅器直後の光ファイバ伝送路で、PAPRの値をほぼ0dBにすることができ、光ファイバの非線形性に起因した受信感度劣化を低減できる光OFDM通信システム及び光送光受信器を提供することができる。また、PAPRを小さくできることにより、長距離伝送が可能な光OFDM通信システム及び光送光受信器を提供することができる。さらに本発明では、直接検波受信方式を用いているため、コヒーレント受信方式と比較して構成が簡単で、したがって低コストは通信システム及ぶ光そう受信器を提供することができる。
本発明の光通信システムの機能ブロック図。 本発明の送信信号処理部の機能ブロック図。 本発明の受信信号前処理部の機能ブロック図。 本発明の受信信号後処理部の機能ブロック図。 遅延干渉部の構成図。 第二の実施形態を示す光通信システムの機能ブロック図。 第三の実施形態を示す光通信システムの機能ブロック図。 第四の実施形態を示す光通信システムの機能ブロック図。 光フロントエンド部の機能ブロック図。 第五の実施の形態を示す光通信システムの機能ブロック図。 光位相変調OFDM信号のスペクトルの模式図。 本発明の光位相変調OFDM信号のスペクトルの模式図。 遅延干渉部の2つの出力ポートのパワーと光周波数の関係を表す模式図。 本発明の場合の光電流のスペクトルを表す模式図。 第六の実施の形態を示す光トランスポンダの機能ブロック図。 第七の実施の形態を示す波長多重通信システムの機能ブロック図。 従来の光OFDM通信システムの機能ブロック図。 波長多重通信システムの機能ブロック図。
1.原理及び概要
 図1を用いて本実施の形態の原理を説明する。
 本発明の光通信システムは、光送信器1と光受信器2は光ファイバ3で接続されている。光送信器1内部の送信信号処理部100では、入力端4から入力された通信するデータを、ベースバンド実OFDM信号に変換する。ここで送信信号処理部100の構成は図2に示すものを用いることができる。
 実数のベースバンドOFDM信号を生成するためには、複素OFDM信号の実部、あるいは虚部を用いるか、サブキャリアへのマッピングを負の周波数成分が正の周波数成分の複素共役になるように工夫する必要がある。例えば、複素OFDM信号の実部を用いる場合を例に挙げると、ベースバンドOFDM信号は次式で表せる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Cはデータ(信号空間座標。例えばサブキャリア変調が4-QPSKの場合なら±1±iの4点)を表す。またNはサブキャリア数、Δfはサブキャリア周波数間隔、tは時間、φは信号点の位相、つまり
Figure JPOXMLDOC01-appb-M000003
であり、Tsは1シンボル時間を表す。
 この実OFDM信号は、光送信器内部のドライバアンプ10で増幅され、光位相変調器11を駆動する。その結果、レーザ(光源)12からの周波数fの光は上記OFDM信号によって光位相変調器11で位相変調され、光送信器1から光ファイバ3に送信される。この送信信号光の電界は次式で表現できる。
Figure JPOXMLDOC01-appb-M000004
ここで、hは位相変調の変調度、Pは光の平均パワである。
 この光のパワP(t)は、式(2)の2乗をキャリア周期に渡って時間平均することによって、
Figure JPOXMLDOC01-appb-M000005
と求まる。つまり、この光のPAPRは0dBである。
 この光信号は、伝送路である光ファイバ3を伝播し、光受信器2に入射する。光受信器2は遅延干渉部20とバランス型光受信部200を備える。光受信器2では、遅延干渉部20を通過する事によって、位相変調された光は強度変調された2つの光に変換される。この2つの強度変調された光は、2つのフォトダイオード201と203で電気信号にそれぞれ変換される。この2つの電気信号は次式で表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
ここでτは、遅延干渉部20の遅延時間を表す。この遅延時間τと光のキャリア周波数fの間に
Figure JPOXMLDOC01-appb-M000008
なる関係が成り立つようにτとfを設定する。図13にこの関係が成立した場合の遅延干渉部20の透過特性と光の周波数の関係を示す。
 上記2つの電気信号はそれぞれ次式で表現できる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
なお、式(7)と(8)において、±の上の符号はmが偶数の場合、下の符号はmが奇数の場合である。
 ここで、サブキャリア周波数と遅延干渉部20の遅延時間τの間に次の関係が成立する場合を考える。
Figure JPOXMLDOC01-appb-M000011
この場合、次の近似が成り立つ。
Figure JPOXMLDOC01-appb-M000012
つまり電気信号(7)と(8)の位相は、ベースバンドOFDM信号(1)の各サブキャリア成分を位相π/4だけ回転させた信号であることがわかる。
 そこで、両方の電気信号の交流成分をそれぞれA/D変換部205と206でA/D変換し、それぞれを位相抽出部207と208に通してsin関数の位相を検出する。すると実ベースバンドOFDM信号と同じ(厳密には位相がπ/4だけ回転した)信号が得られる。後は、実OFDM信号の受信前処理部210と220でそれぞれサブキャリア成分に分解し、同じ周波数のサブキャリア同士の引き算を引き算部230で行う。式(7)と(8)を見てわかるように、サブキャリアは互いに逆符号なので、この引き算によって振幅は2倍になる。その後は、通常のOFDM信号受信後処理部240を通過し復元した情報であるシリアルデータとして端子5から出力する。
 以上がこの発明の基本動作原理である。本発明では、PAPRが0dBの信号を用いてOFDM信号を光ファイバ通信できる。
 なお、式(7)と(8)を見てわかるように、どちらか一方の電気信号からもOFDM信号を取り出すことができるが、その場合、光信号を半分捨てていることになり、引き算回路による信号振幅の2倍化の効果は得られない。
 また、式(9)の関係はすべてのサブキャリアに対して厳密に成立することは無いが、例えば図12のようなスペクトル配置を実現できると、すべてのサブキャリアが式(9)の関係を近似的に満たすことができる。つまり、OFDM信号の帯域幅をB、光OFDM信号の中心周波数をf+fとすると、
Figure JPOXMLDOC01-appb-M000013
を満たし、さらに
Figure JPOXMLDOC01-appb-M000014
を満足すると式(9)の関係はほぼすべてのサブキャリアで実現できる。
 例えば、光のキャリア周波数fは標準などにより決められているため、予め定められたキャリアの周波数fから式(6)を用いて遅延時間τを求めて遅延干渉部20に予め設定することができる。また、求められた遅延時間τから式(11)、(12)を用いて光OFDM信号の中心周波数fや帯域幅Bを求めることができる。
 図12のスペクトル配置では、すなわち式(11)と(12)が満足される場合は、光電変換で発生するサブキャリア間のビート信号とキャリアとサブキャリア間のビート信号(これが本来必要とする信号)との干渉を避けることができ、高感度受信が実現できる。
2.第1の実施の形態
 図1等を参照して第1の実施の形態を説明する。ここでは説明のためサブキャリアの変調は4-QAMと仮定するが、本実施の形態はこれに制限されるものではなく、任意のサブキャリア変調方式に対して適用可能である。またサブキャリアの本数はN本(Nは1以上の整数)とする。
 図1に、光OFDM通信システムの構成図を示す。
 光OFDM通信システムは、例えば、光送信器1と、光ファイバ3と、光受信器2を備える。光送信器1は、例えば、送信信号処理部100と、ドライバアンプ10と光の位相変調器11と、レーザ光源12とを有する。光送信器1は、入力端子4を備えてもよい。光受信器2は、遅延干渉部20と、バランス型光受信部200とを有する。光受信器2は、出力端子5を備えてもよい。光送信器1と光受信器2は、光ファイバ3を介して接続される。
 図2は、第1の実施の形態における送信信号処理部100の構成図を示す。
 送信信号処理部100は、例えば、シリアルーパラレル(S/P)変換部110と、サブキャリア変調部120と、逆FFT部(逆高速フーリエ変換部)130と、パラレルーシリアル(P/S)変換部140と、ディジタルーアナログ(D/A)変換部150を備える。なお、P/S変換部140とD/A変換部150の間にサイクリックプリフィックス挿入(CPI)部を設けても良いのはいうまでもない。
 本来通信すべきデータは、S/P変換部110で2N個のパラレルデータに変換される。サブキャリア変調部120は、このパラレルデータを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリア(C、k=0、1、・・・N-1)は逆FFT部130に入力される。入力された信号は、逆FFT部130で時間軸のデータに変換され、P/S変換部140でシリアルデータに変換される。このシリアルデータはD/A変換部150を通過してアナログ信号として出力される。この信号をベースバンドOFDM信号と呼ぶ。
 本実施の形態では、このベースバンドOFDM信号を用いて光の位相変調を行うため、このベースバンドOFDM信号は実数でなければならない。実数のOFDM信号(以下実OFDM信号)を生成するためには、複素OFDM信号の実部、あるいは虚部を用いるか、負の周波数成分が正の周波数成分の複素共役になるようにサブキャリアへのマッピングする必要がある。例としてここでは実部を用いる方式を述べる。この場合は、例えば、図2のP/S変換部140とD/A変換部150の間で実部を取り出す処理を行う。得られた実OFDM信号は式(1)で表現できる。
 図1のレーザ12の出力光は、位相変調器11において、上述の実OFDM信号で位相変調され、光ファイバ3に出射される。位相変調器11は例えばLiNbO(ニオブ酸リチウム)基板上に作成した光導波路での電気光学効果を利用したデバイスが良く知られている。また、いわゆるMZ(Mach Zehnder)変調器や光IQ変調器なども利用できる。
 光送信器1の出力光、すなわち送信光の電界は、式(2)で表現できる。すでに式(3)で示したように、この送信光のPAPRは理論上0dBである。
 以下の説明では見通しを良くするため、小信号近似を用いる。この場合、式(2)の送信光の電界は、次式で近似できる。
Figure JPOXMLDOC01-appb-M000015
 この式(13)から、送信光は、キャリア光(右辺第一項)とサブキャリア信号で構成される上側帯波(右辺第二項)と下側帯波(右辺第三項)から構成されているのがわかる。この送信光のスペクトルを図11に示す。この図では各サブキャリアの周波数とkの関係がわかるように図示している。図11から、小信号近似の下では、送信光は、ベースバンドOFDM信号を光のキャリア周波数fへ周波数変換したスペクトルを持つことが理解できる。また、側帯波の占める周波数帯域Bは
Figure JPOXMLDOC01-appb-M000016
で現せる。
 この位相変調された送信光は、伝送路である光ファイバ3を通って光受信器2に入射する。光伝送路は、図1では光ファイバ3となっているが、長距離通信の場合、光ファイバが持つ損失を補償するため、適切な距離、たとえば60kmから80kmごとに光ファイバ増幅器を用いる。また、長距離通信では、光ファイバ3の持つ波長分散を補償するため、光ファイバ増幅器とともに波長分散補償ファイバを用いることもある。以下では、通信距離が短いシステム、あるいは、波長分散補償が行われている長距離通信システムの場合について説明を続け、光ファイバの波長分散の影響については、その後で記述する。
 さて、光受信器2は遅延干渉部20とバランス型光受信部200を備える。図5に遅延干渉部20の基本構成を示す。入力ポートから入射した光は、光カプラ部21で2分岐され、一方の光信号は他方の光信号と比較して予め定められた遅延時間τだけ遅延がかけられる。その後、2つの光信号は光カプラ部22で合波され、2つの出力ポート1と2から出力される。この遅延干渉部20は、光ファイバと光カプラ2台で構成することができる。また、ガラス導波路や半導体導波路を用いたいわゆるPLC(Planar Lightwave Circuit)デバイスとして実現されている。さらには、空間光学系を用いたデバイスとしても実現されている。
 この遅延干渉部20の2つの出力ポートの光パワは図13のように互いに逆相の正弦波形状として表せる。出力パワのピークとピークの周波数間隔は遅延干渉部20の遅延時間の逆数、すなわち1/τである。より正確には2つの出力ポートからの光パワは
Figure JPOXMLDOC01-appb-M000017
なる周波数依存性を示す。
 さて、送信光の中心周波数、すなわちキャリア光の光周波数fと遅延時間τの間に式(6)の関係が成立するようの遅延干渉部20の遅延時間を調整する。遅延時間を調整する具体的手段としては例えば、図5の遅延干渉部の光カプラ部21で2分岐された光の一方の光導波路にヒータを設置し、このヒータに電流を流して光導波路の等価屈折率を変化させて干渉位相を調整する、などがある。この時のキャリア周波数fと遅延干渉部の透過特性の関係が図13示されている。すなわち、式(6)の関係が成り立つと、出力ポート1と2からキャリア光はP/2ずつ出力される。
 次に、送信光の側帯波の中心周波数f±f(+は上側帯波、-は下側帯波)、帯域幅をBとすると、式(11)と(12)がほぼ成立するとする。この状態の光のスペクトルを図12に示す。また、遅延干渉部20の透過特性と周波数fの関係を図13に示す。なお、図中f=fである。図12と図13から、式(11)と(12)がほぼ成立する場合、上側帯波は出力ポート2からほぼ完全に出力され、一方、下側帯波は出力ポート1からほぼ完全に出力される。つまり、出力ポート1からは下側帯波と半分のパワのキャリア光が出力され、出力ポート2からは上側帯波と半分のパワのキャリア光が出力される。なお、上記の説明は、式(6)でmが偶数の場合であり、mが奇数の場合は、出力ポート1と2の記述が逆になる。
 図12のスペクトルを実現する方法としては、例えば次の手段がある。すでに式(13)と図11で示したように、一般に位相変調された送信光はキャリア光と周波数変換されたOFDM信号の側帯波から構成されている。ここで光送信器1の送信側信号処理部100で、c=0(k=0、1、・・・、q-1)となるようにサブキャリアへのデータマッピングを行う。つまり0番目からq-1番目までのサブキャリアの変調を行なわず、送信するデータは、残りのq番目からN-1番目までのサブキャリアを変調して通信する、というゼロパディングという操作を行う。すると、送信光のスペクトルは図12となる。この場合、0からq-1番目のサブキャリアが占める周波数領域はガードバンドとなる。また、側帯波の中心周波数f±fは、
Figure JPOXMLDOC01-appb-M000018
で表せる。また側帯波の帯域幅Bは、
Figure JPOXMLDOC01-appb-M000019
となる。
 さて、図12と図13の関係がほぼ成立した場合、遅延干渉部20の2つの出力ポートからは、それぞれキャリア光と上側帯波、キャリア光と下側帯波が出力される。これらの光は強度変調がかかった光となっている。つまり、式(11)と(12)がほぼ成立する場合、式(13)の送信光は遅延干渉部20を通過して出力ポートから次の光となって出力される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 ここで、式の中の±の符号は、mが偶数の場合は上を、奇数の場合は下を取る。
 これらの光は、フォトダイオード201と203でそれぞれ光電流に変換される。この光電流は、次式で表現できる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 なお、式(16)と(17)において、±の上の符号はmが偶数の場合、下の符号はmが奇数の場合に用いる。また、Rは光電変換効率である。Kは次式で与えられる。
Figure JPOXMLDOC01-appb-M000024
 Kはサブキャリア間のビート信号である。条件(12)が成り立つと、このキャリアビート信号の周波数成分はDC近傍に集中する。その様子を図14に示す。図14は光電流IとIのスペクトルである。この図からわかるように、もし、条件(12)が成り立たない場合は、サブキャリア間ビート信号がOFDM信号に重なり干渉を起こして、符号誤り率を劣化させることになる。条件(12)が成立すると、サブキャリア間ビート信号Kと本来受信すべきOFDM信号は完全に周波数軸上で分離できる。分離方法としては、例えば、サブキャリア間ビート信号を遮断する高域通過フィルタを用いるか、あるいは、このまま信号処理を行って、FFTでサブキャリアに分解し、サブキャリア間ビート信号Kが存在する低域のサブキャリアを以後の信号処理で使用しない、という方法等を用いることができる。K1の項は上記のいずれかの手段で排除できるので以後の議論では無視する。すると式(16)と(17)から光電流はベースバンドOFDM信号(1)を含んだ電気信号であることがわかる。
 式(16)と(17)は、小信号近似の場合であり、すでに述べたように大信号ではこれらの式は、それぞれ次式で表現できる。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 これらの式からわかるように、ベースバンドOFDM信号(1)は光電流IとIの交流成分のsin関数の位相に含まれている。
 この電気信号の交流成分はプリアンプ部202、204で増幅され、A/D変換部205、206でディジタル信号に変換され、その後、sin関数の位相を取り出す位相抽出部207、208に渡される。ここでは、sin関数の位相を取り出す信号処理を行うが、その実装としては実際にArcsinの演算を行っても良いし、あるいはルックアップテーブルを用いても良い。この出力は式(19)と(20)のsin関数の位相部であり、つまりベースバンドOFDM信号(1)そのものになっている。この信号は、後段の受信信号前処理部210、220部にそれぞれ引き渡される。受信信号前処理部210、220では、それぞれの電気信号をS/P変換を行い、FTT処理を施して各サブキャリア信号を抽出する。受信信号前処理部210、220の構成は図3に示すものを用いることができる。通常のOFDM信号用の信号処理構成を用いることができる。もちろん、送信側でサイクリックプリフィックスを使用した場合は、S/P変換212の直前でサイクリックプリフィックスを取り除く処理を行うのは言うまでもない。
 さて、受信信号前処理部210、220の出力であるサブキャリア信号は、引き算部230で同じ周波数のサブキャリア信号同士の差分を取る。これによって、光の上側帯波成分と下側帯波成分が加算されて、信号エネルギーが有効に利用され、感度劣化を防ぐことができる。これは、式(19)と(20)を見ると、光電流IとIの交流成分の符号が反転していることからも理解できる。この引き算部230の出力は、受信信号後処理部240に入力され、復調されてシリアルデータとして出力端子5から出力される。受信信号後処理部240の構成は図4に示すものを用いることができ、通常のOFDM信号の信号処理構成を用いることができる。
 なお、本実施の形態で用いるベースバンドOFDM信号は、すでに述べたように実OFDM信号である。この実OFDM信号の受信側で用いる信号処理では、A/D変換部205、206でサンプリングする場合、サンプリング間隔は、通常の半分のT/(2・N)に設定すると良いことは良く知られている。この場合、得られる信号はオーバーサンプリングされた信号となり、±πを超えた位相の巻き戻しも行うことができる。
 さて、以上の本実施の形態の説明は、光ファイバの波長分散が無視できる大きさの場合について行ったものである。これは、通信距離が短いシステムの場合か、あるいは伝送路の光ファイバとして分散シフトファイバを用いたシステムの場合か、あるいは、分散補償デバイスを用いて伝送路の光ファイバの波長分散をほぼキャンセルしたシステムの場合について当てはまる。
(変形例)
 この波長分散の影響が無視できるシステムの場合、光電流は式(19)と(20)で与えられるが、これらの式を見ると、上記の実施形態のように各サブキャリアに分解してから同一の周波数のサブキャリア同士で引き算をしなくとも、それ以前の段階で光電流成分同士の引き算を行う実施形態がある。
 例えば、図6は、sin関数の位相を取り出す位相抽出部207、208の出力の段階で引き算を行った場合の実施形態である。図7は、A/D変換部205、206の出力で引き算を行った実施形態である。さらに、図8は、光フロントエンド部209の内部で引き算を行った実施形態である。この光フロントエンド部209の構造の例を図9の(a)、あるいは(b)、あるいは(c)に示す。図9の(a)では、プリアンプ部202と204の出力を引き算している。また図9の(b)ではプリアンプとして差動形のプリアンプ204-1を用いて光電流の引き算を実施している。また図9の(c)ではバランス型フォトダイオード201-1を用いて引き算を実施している。
 次に、光ファイバの波長分散が無視できないシステムの場合について以下の簡単に述べる。説明の見通しを良くするため、再度、小信号近似を用いて説明する。この場合送信光の電界は、式(13)でわかるように、キャリア光とOFDM信号のサブキャリアからなる上/下側帯波から構成される。光ファイバの波長分散が大きい場合は、各サブキャリアの位相が波長分散によって位相回転を受ける。この位相回転量は、光のキャリア周波数fと各サブキャリアの周波数f±Δf・kとの周波数差±Δf・kの二乗に比例する。つまり、波長分散による位相回転量は、次式となる。
Figure JPOXMLDOC01-appb-M000027
ここでβは伝播定数の角周波数に関する2階微分で、光ファイバの波長分散を表し、Lは光ファイバの長さである。注意すべき点は、この位相回転量は各サブキャリア毎に(つまりk毎に)異なった値をとることと、上側帯波と下側帯波の同一のkのサブキャリアは同じ量の位相回転を受けることである。
 この波長分散による位相回転を考慮すると、位相変調された送信光(13)が光ファイバ3を伝播して光受信器2に到達した光の電界は次式で表せる。
Figure JPOXMLDOC01-appb-M000028
この光を遅延干渉部20に入射させると、出力ポート1と2からの光を受信した場合の光電流IとIは、条件(11)と(12)がほぼ成立する場合は、次式で表せる。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
ここで、式の中の±の符号は、mが偶数の場合は上を、奇数の場合は下を取る。またhに比例する項は省略した。
 以上の議論は小信号近似の下での議論であるが、大信号の場合は光電流IとIは次のように近似できる。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
 この光電流を波長分散が無い場合と同様にサブキャリアごとに減算すると、分散による位相回転の符号が逆のため、ある周波数のサブキャリアでは互いに打ち消しあう場合が起こりえる。したがって波長分散が無視できないシステムでは、波長分散による位相回転をサブキャリア毎にキャンセルしてから、減算を行う構成が有効である。その構成を図10に示す。この図で位相回転部250、260がサブキャリア毎の波長分散による位相回転θをキャンセルする信号処理部であり、各位相回転部250と260で印加する位相回転は互いに符号が逆である。
2.第2の実施の形態
 第2の実施の形態である光トランスポンダを図15を参照して説明する。この光トランスポンダはひとつの筐体あるいはボードに光送信器1と光受信器2を搭載したものである。したがって、光トランスポンダは2つの光ファイバ3-1と3-2を持つ。光ファイバ3-1は光信号を送信するために用い、光ファイバ3-2は光信号を受信するために使用する。光トランスポンダ700の光送信器1と光受信器2は、上述の各実施の形態の適宜のものを用いることができる。つまり、図15では、図1の光送信器と光受信器の構成を示しているが、光受信器としては、図6、7、8、10の光受信器2を用いても良い。
3.第3の実施の形態
 第3の実施の形態を図16を参照して説明する。図16は、第3の実施の形態の波長多重通信システム全体の構成図である。このシステムは複数のディジタル情報信号を波長多重送信装置800で波長多重信号に変換して送信し、この波長多重信号は伝送路である光ファイバ3を介して波長多重受信装置900に伝送され、元の複数のディジタル情報信号が復元される光通信システムである。波長多重送信装置は、複数のディジタル情報信号を入力端子4-i(i=1、2、...n)から入力する。入力されたディジタル情報信号はそれぞれ、光送信器1-i(i=1、2、...n)で位相変調された光信号に変換される。ここで光送信器1-i(i=1、2、...n)から出力される光信号の波長は互いに異なる波長λ1、λ2、...λnであり、光送信器1-i(i=1、2、…n)の構成は、第1の実施形態で述べた光送信器である。つまり、光送信器1-iはそれぞれ、図1の光送信器1である。各光送信器1からの出力光は、光合波器300で波長多重され、波長多重光信号として波長多重送信装置800から伝送路である光ファイバ3に送信される。
 伝送路である光ファイバ3を伝播した前記波長多重光信号は、波長多重受信装置900に入射する。
 波長多重受信装置900は、遅延干渉部20と2台の光分波器400-1と400-2と、バランス型光受信部200-i(i=1、2、...n)を有する。ここで遅延干渉部20は、図5の構成である。遅延干渉部の透過特性は図13に示すとおりであり、2つの出力ポートからの光パワは
Figure JPOXMLDOC01-appb-M000033
なる周波数依存性を示す。つまり周期的な周波数依存性を示す。ここでこの周期性を活かすと、各光送信器の光周波数f(=c/λ1)、f(=c/λ2)、...f(=c/λn)が式(6)のfと同じ関係を満たすことができる。なお、cは光速度である。たとえば、通常波長多重信号の光周波数間隔は、50GHz間隔あるいは100GHz間隔である。式(6)のmを偶数のみ、あるいは奇数のみ使う場合は、遅延干渉部20の遅延時間τはそれぞれ20ps、10psである。式(6)のmを偶数と奇数の両方を使うと、遅延時間τはそれぞれ10ps、5psである。
 ここで、さらに式(11)と式(12)の関係がほぼ満たされると、遅延干渉部20の2つの出力ポートからは、波長多重信号の各波長のキャリア光と上側帯波、あるいはキャリア光と下側帯波、つまり、強度変調に変換された各波長の光信号が波長多重された形で出力される。
 この強度変調された2つの波長多重信号はそれぞれ光分波器400-1と400-2で各波長の強度変調された光信号に分波される。2台の光分波器400-1と4002の出力光信号で同じ波長の光は、キャリア光と上側帯波、キャリア光と下側帯波から構成されている。この光は、小信号近似では、式(14)と(15)においてキャリア周波数fが各光送信器の光周波数f(=c/λ1)、f(=c/λ2)、...f(=c/λn)のいずれかの場合である。2台の光分波器400-1と4002の同じ波長λi(i=1、2、...n)の出力光信号をバランス型光受信部200-i(i=1、2、...n)に入射させる。ここでバランス型光受信部200-i(i=1、2、...n)はそれぞれ、第1の実施形態の適宜のものを用いることができる。具体的には、図1、6、7、8及び10のいずれかのバランス型光受信部200を用いることができる。バランス型光受信部200-i(i=1、2、...n)では、受信した光信号を復調し、それぞれの出力端子5-i(i=1、2、...n)から復調した情報データを出力する。
 以上が、第3の実施形態の波長多重通信システムである。もちろん,波長の異なる実施例1の送信器,受信機を複数用意し,合波器,分波器でそれらの信号を合波,分波して波長多重システムを構成することもできる(この場合の構成は図18となる)のは言うまでもない。
 なお、第3の実施形態の波長多重通信システムの上記説明では、波長多重送信装置800と波長多重受信装置900が別の装置として記述しているが、同一の波長多重装置の中に前記の波長多重送信装置800と波長多重受信装置900の機能を実現した場合も別の実施形態としてありうるのは言うまでも無い。さらにこの場合、光送信器1-i(i=1、2、...n)とバランス型光受信部200-i(i=1、2、...n)が同一の筺体あるいはボードに搭載されたいわゆるトランスポンダを用いて構成する実施形態があるのは、言うまでも無い。
 本発明は、例えば、光通信システムに利用可能である。
1、1-1、1-2、1-n、500:光送信器
2:光受信器
3、3-1、3-2:光ファイバ
4、4-1、4-2、4-n:入力端子
5、5-1、5-2、5-n:出力端子
10:ドライバアンプ
11:位相変調器
12:レーザ
20、20―1、20―2、20―n:遅延干渉部
21、22:光カプラ部
100:送信信号処理部
110、212:シリアルーパラレル(S/P)変換部
120:サブキャリア変調部
130:逆高速フーリエ変換(FFT)部
140、242:パラレルーシリアル(P/S)変換部
150:ディジタルーアナログ(D/A)変換部
200、200-1、200-2、200-n:バランス型光受信部
201、203:フォトダイオード
201-1:バランス型フォトダイオード
202、204:プリアンプ部
204-1:差動型プリアンプ部
205、206:アナログーディジタル(A/D)変換部
207、208:位相抽出部
209:光フロントエンド部
210、220:受信信号前処理部
213:高速フーリエ変換(FFT)部
214:位相回転部
230:引き算部
240:受信信号後処理部
241:サブキャリア復調部
250、260:位相回転部
300:光合波器
400-1、400-2:光分波器
501:光変調器
600:直接検波光受信器
700:光トランスポンダ
800:波長多重送信装置
900:波長多重受信装置

Claims (15)

  1.  ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
     該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
    を備え、
     前記光送信器は、
     ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
     該実ベースバンドOFDM信号で光源からの光を位相変調して送信する位相変調器と
    を有し、
     前記光受信器は、
     該光ファイバを介して前記光送信器から入力される前記位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部と、
     該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
     前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
     前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
     前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
     前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
     前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
    を有する前記光通信システム。
  2.  前記遅延干渉部の遅延時間τと送信される光の中心周波数fとが、略2πfτ=2nπ±π/2(nは整数)なる関係を満たすことを特徴とする請求項1に記載の光通信システム。
  3.  前記遅延干渉部の遅延時間τとOFDM信号の中心周波数fが、略2πfτ=nπ/2(nは正の奇数)なる関係を満たすことを特徴とする請求項2に記載の光通信システム。
  4.  OFDM信号の中心周波数fとOFDM信号の帯域幅Bが、略f>1.5Bなる関係を満たすことを特徴とする請求項1乃至3のいずれかに記載の光通信システム。
  5.  前記光受信器は、
     前記2つの受信信号前処理部からの各サブキャリア信号に対して、光ファイバの波長分散による位相回転をキャンセルして前記引き算部に出力する2つの位相回転部をさらに備える請求項1乃至4のいずれかに記載の光通信システム。
  6.  前記2つの位相回転部は、印加する位相回転の符号が互いに逆である請求項5に記載の光通信システム。
  7.  ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成し、該実ベースバンドOFDM信号で光源からの光を位相変調して送信する光送信器と、該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器とを備えた光通信システムにおける前記光受信器であって、
     該光受信器は、
     光ファイバを介して前記光送信器から入力される前記位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部と、
     該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
     前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
     前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
     前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
     前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
     前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
    を備えた前記光受信器。
  8.  ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部、及び
     該実ベースバンドOFDM信号で光源からの光を位相変調して送信する位相変調器
    を有する送信部と、
     光ファイバから入力される位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部、
     該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
     前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部、
     前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部、
     前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部、
     前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部、及び、
     前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部
    を有する受信部と
    を備えた光トランスポンダ。
  9.  波長の異なる複数の光信号を波長多重した波長多重光信号を送信する波長多重送信装置と、
     光ファイバを介して受信した該波長多重光信号を各波長に分波し、該分波された各光信号を受信する波長多重受信装置と
    を備えた波長多重光通信システムであって、
     前記波長多重送信装置は、
     複数の光送信器と、
     該複数の光送信器の出力光を合波し波長多重光信号を出力する光合波器と
    を有し、
     該複数の光送信器はそれぞれ、
     互いに波長の異なる光源と、
     ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
     該実ベースバンドOFDM信号で前記光源からの光を位相変調して出力する位相変調器と
    を有し、
     前記波長多重受信装置は、
     前記光ファイバを介して前記波長多重送信装置から受信した該波長多重光信号を、強度変調が印加された2つの波長多重光信号に変換する遅延干渉部と、
     該強度変調が印加された2つの波長多重光信号をそれぞれ波長毎の光信号に分波する2つの光分波器と、
     分波された光信号のうち同一の波長の2つの光信号をそれぞれ入力する複数の光受信器と
    を有し、
     該複数の光受信機はそれぞれ、
     各波長の該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
     前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
     前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
     前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
     前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
     前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
    を有する前記波長多重光通信システム。
  10.  ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成し、該実ベースバンドOFDM信号で光源からの光を位相変調する複数の光送信器からの出力光を合波し波長多重光信号を送信する波長多重送信装置と、光ファイバを介して受信した該波長多重光信号を各波長に分波し、該分波された各光信号を受信する波長多重受信装置とを備えた波長多重光通信システムにおける前記波長多重受信装置であって、
     該波長多重受信装置は、
     前記光ファイバを介して前記波長多重送信装置から受信した該波長多重光信号を、強度変調が印加された2つの波長多重光信号に変換する遅延干渉部と、
     該強度変調が印加された2つの波長多重光信号をそれぞれ波長毎の光信号に分波する2つの光分波器と、
     分波された光信号のうち同一の波長の2つの光信号をそれぞれ入力する複数の光受信器と
    を有し、
     該複数の光受信機はそれぞれ、
     各波長の該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
     前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
     前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
     前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
     前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
     前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
    を備えた前記波長多重受信装置。
  11.  波長多重送信部と、波長多重受信部とを備えた波長多重光トランスポンダであって、
     前記波長多重送信部は、
     複数の光送信器と、
     該複数の光送信器の出力光を合波し波長多重光信号を光ファイバに出力する光合波器と
    を有し、
     該複数の光送信器はそれぞれ、
     互いに波長の異なる光源と、
     ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
     該実ベースバンドOFDM信号で前記光源からの光を位相変調して出力する位相変調器と
    を有し、
     前記波長多重受信部は、
     光ファイバを介して受信した波長多重光信号を、強度変調が印加された2つの波長多重光信号に変換する遅延干渉部と、
     該強度変調が印加された2つの波長多重光信号をそれぞれ波長毎の光信号に分波する2つの光分波器と、
     分波された光信号のうち同一の波長の2つの光信号をそれぞれ入力する複数の光受信器と
    を有し、
     該複数の光受信機はそれぞれ、
     各波長の該強度変調が印加された2つの光信号を電気信号に変換する2つの光-電気変換部と、
     前記2つの光-電気変換部の出力をそれぞれアナログ-ディジタル変換する2つのA/D変換部と、
     前記2つのA/D変換部の出力から位相をそれぞれ抽出する2つの位相抽出部と、
     前記2つの位相抽出部の出力をそれぞれ高速フーリエ変換し各サブキャリア信号を得る2つの受信信号前処理部と、
     前記2つの受信信号前処理部の出力であるサブキャリア信号のうち同じ周波数のサブキャリア信号同士をそれぞれ引き算する引き算部と、
     前記引き算部のサブキャリア毎の出力からデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と
    を有する前記波長多重光トランスポンダ。
  12.  ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
     該光ファイバを伝播した光信号を光電変換し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
    を備え、
     前記光送信器は、
     ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調された該サブキャリア信号を逆高速フーリエ変換して実ベースバンドOFDM信号を生成する送信信号処理部と、
     該実ベースバンドOFDM信号で光源からの光を位相変調して送信する位相変調器と
    を有し、
     前記光受信器は、
     該光ファイバを介して前記光送信器から入力される前記位相変調が印加された光信号を、強度変調が印加された2つの光信号に変換する遅延干渉部と、
     光信号を電気信号に変換する光-電気変換部と、
     変換された電気信号をアナログ-ディジタル変換するA/D変換部と、
     前記A/D変換部で変換された信号の位相成分を抽出する位相抽出部と、
     抽出された位相成分を高速フーリエ変換し各サブキャリア信号を得る受信信号前処理部と、
     サブキャリア毎のデータを復調し、復調したデータから元のディジタルデータを再生するする受信信号後処理部と、
     前記受信信号後処理部の処理より前において、前記遅延干渉部からの2つの光信号に対応する2つの信号同士を引き算する引き算部と
    を有する前記光通信システム。
  13.  前記光受信器は、
     前記光-電気変換部と、前記A/D変換部と、前記位相抽出部をそれぞれ2つ備え、
     2つの前記光-電気変換部は、前記遅延干渉部からの2つの光信号をそれぞれ電気信号に変換し、
     2つの前記A/D変換部はそれぞれ、2つの前記光-電気変換部の出力をそれぞれアナログ-ディジタル変換し、
     2つの前記位相抽出部は、2つの前記A/D変換部の出力からそれぞれ位相成分を抽出し、
     前記引き算部が、2つの前記位相抽出部の出力同士を引き算して前記受信信号前処理部に出力する請求項12に記載の光通信システム。
  14.  前記光受信器は、
     前記光-電気変換部と、前記A/D変換部をそれぞれ2つ備え、
     2つの前記光-電気変換部は、前記遅延干渉部からの2つの光信号をそれぞれ電気信号に変換し、
     2つの前記A/D変換部はそれぞれ、2つの前記光-電気変換部の出力をそれぞれアナログ-ディジタル変換し、
     前記引き算部が、2つの前記A/D変換部の出力同士を引き算して前記位相抽出部に出力する請求項12に記載の光通信システム。
  15.  前記光受信器は、
     前記光-電気変換部と前記引き算部とを含む光フロントエンド部の内部で、前記遅延干渉部からの2つの出力信号に対応する信号同士を引き算する請求項12に記載の光通信システム。
PCT/JP2010/059463 2010-06-03 2010-06-03 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ WO2011151913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/059463 WO2011151913A1 (ja) 2010-06-03 2010-06-03 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ
US13/701,198 US8831441B2 (en) 2010-06-03 2010-06-03 Optical communication system, optical receiver, optical transponder, wavelength multiplexing optical communication system, wavelength multiplexing receiving device, and wavelength multiplexing optical transponder
JP2012518188A JP5404925B2 (ja) 2010-06-03 2010-06-03 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059463 WO2011151913A1 (ja) 2010-06-03 2010-06-03 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ

Publications (1)

Publication Number Publication Date
WO2011151913A1 true WO2011151913A1 (ja) 2011-12-08

Family

ID=45066308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059463 WO2011151913A1 (ja) 2010-06-03 2010-06-03 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ

Country Status (3)

Country Link
US (1) US8831441B2 (ja)
JP (1) JP5404925B2 (ja)
WO (1) WO2011151913A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775637A1 (en) * 2013-03-05 2014-09-10 Alcatel Lucent Frequency Offset QAM Transmission System
CN103297148B (zh) * 2012-02-29 2017-09-26 深圳光启创新技术有限公司 基于光通信的舰船通信系统
JP2018064273A (ja) * 2016-10-10 2018-04-19 富士通株式会社 光受信機の周波数レスポンス特性不均衡の測定装置及び方法
JP2021064861A (ja) * 2019-10-11 2021-04-22 Kddi株式会社 光送信装置及び無線装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813010B1 (en) * 2012-02-07 2016-01-13 Telefonaktiebolaget L M Ericsson (publ) Photonic rf generator
US10009106B2 (en) * 2012-05-14 2018-06-26 Acacia Communications, Inc. Silicon photonics multicarrier optical transceiver
US8976878B2 (en) * 2013-01-15 2015-03-10 Raytheon Company Polynomial phases for multi-carrier modulation schemes with time domain windowing
JP6281303B2 (ja) * 2014-02-03 2018-02-21 富士通株式会社 多値強度変復調システムおよび方法
US9203676B1 (en) * 2014-06-11 2015-12-01 Wipro Limited Apparatus and method for estimating symbol timing offset
EP3200361B1 (en) * 2014-09-25 2021-10-27 Nec Corporation Signal detection device and signal detection method
JP6601240B2 (ja) * 2016-01-28 2019-11-06 富士通株式会社 伝送装置、伝送システム、及び伝送制御方法
US10439734B2 (en) * 2016-07-01 2019-10-08 Luxtera, Inc. Method and system for waveguide delay based equalization with summing at single-ended to differential converters in optical communication
EP3664375B1 (en) * 2017-08-23 2024-10-09 Huawei Technologies Co., Ltd. Packet processing method and network device
US10749600B2 (en) * 2018-04-12 2020-08-18 The Boeing Company Systems and methods for single optical fiber data transmission
DE102018222415A1 (de) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Multikanal-Analog-Digital-Wandlervorrichtung für einen optoelektronischen Sensor, Verfahren zur Signalmodulation in einem optoelektronischen Sensor und laserbasierter Entfernungs- und/oder Geschwindigkeitssensor
CN114826403B (zh) * 2021-01-19 2023-06-30 中国科学院半导体研究所 一种基于多芯光纤的多路光延时系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512285A (ja) * 2005-10-12 2009-03-19 モナシュ、ユニバーシティ デジタル信号の光送信のための方法および装置
JP2010041706A (ja) * 2008-07-31 2010-02-18 Nec Lab America Inc 光直交周波数分割多重信号の位相変調方法及び装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4184474B2 (ja) 1997-08-22 2008-11-19 松下電器産業株式会社 光伝送システムならびにそれに用いられる光送信装置および光受信装置
US7200344B1 (en) * 2001-05-10 2007-04-03 Fujitsu Limited Receiver and method for a multichannel optical communication system
US6828200B2 (en) * 2003-01-03 2004-12-07 Texas Instruments Incorporated Multistage deposition that incorporates nitrogen via an intermediate step
US7450863B2 (en) * 2003-06-18 2008-11-11 Lucent Technologies Inc. Optical receiver for wavelength-division-multiplexed signals
US8064767B2 (en) * 2003-09-22 2011-11-22 Celight, Inc. Optical orthogonal frequency division multiplexed communications with coherent detection
US7477852B2 (en) * 2005-01-31 2009-01-13 Alcatel-Lucent Usa Inc. Optical receiver apparatus and method
JP4170298B2 (ja) * 2005-01-31 2008-10-22 富士通株式会社 差分4位相偏移変調方式に対応した光受信器および光受信方法
CN1893324A (zh) * 2005-07-08 2007-01-10 富士通株式会社 光dqpsk接收机的相位监测装置、相位控制装置及其方法
KR100715914B1 (ko) * 2005-08-10 2007-05-08 삼성전자주식회사 직교주파수 분할다중화 통신시스템에서 피크전력 대평균전력 비를 감소시키기 위한 장치 및 방법
CA2621251A1 (en) * 2005-09-02 2007-03-08 Monash University Methods and apparatus for optical transmission of digital signals
US8320779B2 (en) * 2005-10-05 2012-11-27 Nec Corporation Light receiver, optical communication system and method
JP5040203B2 (ja) * 2006-07-19 2012-10-03 富士通株式会社 光信号受信装置および光信号受信制御方法
JP4419995B2 (ja) * 2006-08-16 2010-02-24 日本電気株式会社 光受信器の評価および調整方法ならびに光通信システム
JP4726078B2 (ja) 2006-11-28 2011-07-20 日本電信電話株式会社 光ofdm受信回路、光ofdm受信装置、及び光ofdm伝送システム
NZ578217A (en) * 2006-12-20 2011-06-30 Ofidium Pty Ltd Non-linearity compensation in an optical transmission
JP4730560B2 (ja) 2007-02-28 2011-07-20 Kddi株式会社 光伝送システム、光伝送方法及び光送信装置
US8233799B2 (en) * 2007-10-15 2012-07-31 Ofidium Pty, Ltd. Method and apparatus for improving reception of optical signals
JP5012457B2 (ja) * 2007-11-30 2012-08-29 富士通株式会社 Dqpsk光受信装置
JP4864910B2 (ja) 2008-02-04 2012-02-01 Kddi株式会社 光通信装置、システム及び光通信方法
JP4941340B2 (ja) 2008-02-04 2012-05-30 Kddi株式会社 光通信方法及び装置
US20090324226A1 (en) * 2008-06-30 2009-12-31 Fred Buchali System, method and apparatus for channel estimation based on intra-symbol frequency domain averaging for coherent optical OFDM
US8121494B2 (en) * 2008-08-19 2012-02-21 Alcatel Lucent System and method for receiving high spectral efficiency optical DPSK signals
US8135279B2 (en) * 2008-09-29 2012-03-13 Infinera Corporation OFDM direct detection using a balanced receiver
US8204377B2 (en) * 2008-10-23 2012-06-19 Alcatel Lucent System, method and apparatus for joint self phase modulation compensation for coherent optical polarization-division-multiplexed orthogonal-frequency division-multiplexing systems
JP5272686B2 (ja) * 2008-11-28 2013-08-28 富士通株式会社 光受信器、光受信回路および光受信方法
KR101198405B1 (ko) * 2008-12-16 2012-11-07 한국전자통신연구원 광간섭계의 전달특성을 최적화한 광송수신 장치 및 광송수신 장치의 광간섭계 전달특성 최적화 방법
US8184993B2 (en) * 2009-02-25 2012-05-22 Nec Laboratories America, Inc. Polarization mode dispersion (PMD) compensation in polarization multiplexed coded orthogonal frequency division multiplexing (OFDM) systems
US8611751B2 (en) * 2009-02-26 2013-12-17 Alcatel Lucent System, apparatus and method for communicating data via polarization multiplexing
TWI360984B (en) * 2009-03-25 2012-03-21 Ind Tech Res Inst Method for receiving an optical ofdm signal and re
US7693429B1 (en) * 2009-04-13 2010-04-06 Ofidium Pty., Ltd. Optical OFDM transmission with improved efficiency
US8218979B2 (en) * 2009-06-30 2012-07-10 Alcatel Lucent System, method and apparatus for coherent optical OFDM
KR101226956B1 (ko) * 2009-10-23 2013-01-28 한국전자통신연구원 편광 다중 광 ofdm 송신기 및 수신기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512285A (ja) * 2005-10-12 2009-03-19 モナシュ、ユニバーシティ デジタル信号の光送信のための方法および装置
JP2010041706A (ja) * 2008-07-31 2010-02-18 Nec Lab America Inc 光直交周波数分割多重信号の位相変調方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMIDT, B.J.C. ET AL.: "Experimental Demonstrations of Electronic Dispersion Compensation for Long-Haul Transmission Using Direct-Detection Optical OFDM", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 26, no. ISS.1, 2008, pages 196 - 203 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297148B (zh) * 2012-02-29 2017-09-26 深圳光启创新技术有限公司 基于光通信的舰船通信系统
EP2775637A1 (en) * 2013-03-05 2014-09-10 Alcatel Lucent Frequency Offset QAM Transmission System
JP2018064273A (ja) * 2016-10-10 2018-04-19 富士通株式会社 光受信機の周波数レスポンス特性不均衡の測定装置及び方法
JP7056064B2 (ja) 2016-10-10 2022-04-19 富士通株式会社 光受信機の周波数レスポンス特性不均衡の測定装置及び方法
JP2021064861A (ja) * 2019-10-11 2021-04-22 Kddi株式会社 光送信装置及び無線装置
JP7252873B2 (ja) 2019-10-11 2023-04-05 Kddi株式会社 光送信装置及び無線装置

Also Published As

Publication number Publication date
JPWO2011151913A1 (ja) 2013-07-25
JP5404925B2 (ja) 2014-02-05
US8831441B2 (en) 2014-09-09
US20130071122A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5404925B2 (ja) 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ
JP5296226B2 (ja) 光通信システム、光送信器、光受信器及び光トランスポンダ
Liu et al. Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-Grid ROADMs
US8467687B2 (en) Optical transmitter and optical OFDM communication system
US8498542B2 (en) Multi-channel optical transceiver with offset quadrature amplitude modulation
US8718160B2 (en) Multi-carrrier optical communication method and system based on DAPSK
Krause et al. Design considerations for a digital subcarrier coherent optical modem
JP5583788B2 (ja) 光通信システム、光送信器及びトランスポンダ
CN103414680A (zh) 能够消除信号间拍频干扰的平衡光电探测方法和系统
Takahashi et al. DWDM transmission with 7.0-bit/s/Hz spectral efficiency using 8× 65.1-Gbit/s coherent PDM-OFDM signals
JP2010041706A (ja) 光直交周波数分割多重信号の位相変調方法及び装置
Peng et al. Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion
CN103873424A (zh) 一种适用于正交频分多址无源光网络的系统、设备及调制解调方法
Lin et al. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection
Le et al. Optical single-sideband direct detection transmissions: Recent progress and commercial aspects
EP2591581A1 (en) Method and device for data processing in an optical communication network
Zhang et al. Performance improvement of optical OFDMA-PON using data clipping and additional phases
Yang et al. A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
Yang et al. Transmission of 64-Gb/s pilot-assisted PAM-4 signal over 1440-km SSMF with phase noise mitigation
Soeiro et al. Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation
Ahmed et al. Effect of fiber nonlinearity on the performance of WDM dual-polarization coherent optical OFDM systems
Peng et al. 117-Gb/s optical OFDM super-channel transmission over 1200-km SSMF using direct detection and EDFA-only amplification
Yu et al. Carrierless Amplitude and Phase Modulation
Shi et al. 40Gbps double-sided multiband OFDM-PON based on polarization interleaving and direct detection
Venkatrao et al. Dispersion compensated coherent optical dual polarization OFDM using QAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518188

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13701198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852518

Country of ref document: EP

Kind code of ref document: A1