WO2011148935A1 - 流体用制振ブレード - Google Patents
流体用制振ブレード Download PDFInfo
- Publication number
- WO2011148935A1 WO2011148935A1 PCT/JP2011/061858 JP2011061858W WO2011148935A1 WO 2011148935 A1 WO2011148935 A1 WO 2011148935A1 JP 2011061858 W JP2011061858 W JP 2011061858W WO 2011148935 A1 WO2011148935 A1 WO 2011148935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- fluid
- damping
- wedge
- wedge damper
- Prior art date
Links
- 238000013016 damping Methods 0.000 title claims abstract description 91
- 239000012530 fluid Substances 0.000 title claims abstract description 61
- 238000000576 coating method Methods 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 29
- 239000000919 ceramic Substances 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 12
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000003870 refractory metal Substances 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/16—Form or construction for counteracting blade vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/388—Blades characterised by construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/668—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H1/00—Propulsive elements directly acting on water
- B63H1/02—Propulsive elements directly acting on water of rotary type
- B63H1/12—Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
- B63H1/14—Propellers
- B63H1/15—Propellers having vibration damping means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/04—Antivibration arrangements
- F01D25/06—Antivibration arrangements for preventing blade vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
- F05D2230/312—Layer deposition by plasma spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to a fluid damping blade that damps vibrations of a fluid blade.
- Priority is claimed on Japanese Patent Application No. 2010-118350, filed May 24, 2010, and Japanese Patent Application No. 2010-118949, filed May 25, 2010, both of which are incorporated herein by reference. The contents are incorporated herein.
- blades for fluid means jet engines, turbomachines (gas turbines, turbochargers), moving blades and vanes used in other rotating machines, and other machines (wind tunnels, ships, etc.)
- turbomachines gas turbines, turbochargers
- moving blades and vanes used in other rotating machines, and other machines (wind tunnels, ships, etc.
- the blade includes a wing portion attached to a rotor portion that constitutes a wheel of a turbine or a compressor.
- a damper device is widely known as a means for damping vibration of a vibrating mechanical device.
- the damper device can be roughly classified into a viscoelastic damper, a viscous damper, a friction damper, a mass damper, an inertial force damper, and the like.
- the mass damper is a device that cancels the vibration of the mechanical device by reversely using the vibration of the mass body, and has an advantage that the structure is simple as compared with other damper devices.
- Non-Patent Document 1 discloses, for example, an elastic wedge damper using an Effect).
- Elastic Wedge means a wedge-shaped elastic body.
- the elastic wedge acts as a "black hole in sound", so that the vibrational energy is concentrated at the zero thickness end so that it is likely to attenuate that energy.
- fabrication of elastic wedges with zero thickness ends is difficult and reflections do not go to zero (0). Therefore, in Non-Patent Document 1, in order to reduce the reflection, a damping material is attached to the end of the elastic wedge.
- the elastic wedge damper described above has a simple structure as the mass damper, and has the advantage of being thinner and lighter than the mass damper.
- the means for reducing vibration or sound using a wedge-shaped elastic body is also disclosed, for example, in Patent Documents 1 and 2.
- coating means related to the present invention are disclosed, for example, in Patent Documents 3 and 4.
- JP 2000-43252 A Japanese Patent Application Publication No. 2008-532917 WO 2004/029329 pamphlet WO 2004/033755 pamphlet
- FIG. 1 is a schematic view of an elastic wedge damper used in Non-Patent Document 1.
- This elastic wedge damper is a non-symmetrical quadratic wedge-like damper.
- reference numeral 51 is an elastic wedge
- 52 is an absorbing film
- 53 is a thick plate integral with the elastic wedge 51.
- the dimensions of the elastic wedge 51 used in the experiment in Non-Patent Document 1 are 280 mm in length, 200 mm in width, 4.5 mm in the thick plate portion 53, and 0.02 mm in minimum thickness.
- ⁇ is a positive constant.
- the vibration absorbing film 52 is a polymer film, and its dimensions are the same as the dimensions of the elastic wedge 51 (280 mm in length, 200 mm in width), and 0.2 mm in thickness.
- the thickness of the elastic wedge damper (test plate) used in Non-Patent Document 1 is from 4.5 mm to 0.02 mm based on the theoretical formula (A1).
- processing the thickness to near 0 mm (0.02 mm in this example) based on the theoretical formula (A1) is extremely difficult, and in order to achieve this, a special processing machine or a special method Is essential. Therefore, the production of the elastic wedge disclosed in Non-Patent Document 1 is substantially impossible or possible, but very expensive.
- a blade for fluid such as a jet engine vibrates at a high frequency
- the vibration may break a part of the blade. Therefore, researches for damping the vibration of the blade are widely performed worldwide.
- blades for fluid can not use damping means to disturb the flow of fluid.
- damping means for disturbing the flow of the fluid or a damping material with low heat resistance for example, polymer or rubber
- no optimal damping means conventionally exist for this type of blade.
- a general damping means is effective only at the target frequency, it is difficult to apply to a blade that has a wide speed range and may vibrate in a wide range of frequencies.
- an object of the present invention is to provide a vibration control blade for fluid which can be easily manufactured, for example, can obtain damping effect in a wide frequency range without disturbing the fluid flow even in a high temperature environment. It is.
- the outer edge of the wedge damper portion is, for example, the front edge, the rear edge or the edge of the fluid damping blade.
- the fluid damping blade may have a damping member that covers the wedge damper portion and has an outer surface that is continuous with no unevenness on the outer surface of the blade body.
- the damping member forms a preset blade shape with the blade body.
- the fluid damping blade may have a coating portion covering the wedge damper portion and having heat resistance to the working fluid of the blade.
- the coating portion is made of a ceramic or metal bolus, covers the wedge damper portion, has a continuous outer surface without unevenness on the outer surface of the blade body, and forms a preset blade shape with the blade body.
- the coating portion generates a pulse-like discharge between an electrode made of, for example, ceramic or metal powder and the surface of the blade body, and the discharge energy forms a ceramic or metal film on the surface of the blade body. It is a coating.
- the wedge damper portion can be easily manufactured without using a special device or method.
- the vibration energy is concentrated on the thin portion of the wedge damper
- the vibration on the thin portion of the wedge damper can be effectively damped by the damping member.
- the vibration in the thin portion of the wedge damper portion can be effectively damped by the coating portion .
- the damping member or the coating portion has a continuous outer surface without unevenness on the outer surface of the blade body, so that the damping effect can be obtained without disturbing the flow of fluid.
- the damping blade for fluid according to the present invention can obtain effective damping in a wide frequency range from 10 kHz to 30 kHz which is a target frequency range.
- FIG. It is a schematic diagram of the elastic wedge damper used by the nonpatent literature 1.
- FIG. It is a whole schematic diagram of the damping blade for fluid of this invention. It is a whole schematic diagram of the damping blade for fluid of this invention. It is a schematic diagram which shows the formation means of the coating part of this invention. It is a figure which shows the thickness of the wedge damper part of this invention. It is a figure which shows the propagation speed of the vibration in the wedge damper part of this invention. It is a figure which shows the amplitude of the vibration in the wedge damper part of this invention. It is a perspective view which shows the Example of the damping blade for fluid by this invention. It is the elements on larger scale of FIG. 5A. It is a figure which shows the experimental result of the damping characteristic by the damping blade for fluids of this invention. It is a figure which shows the experimental result of the damping characteristic by the damping blade for fluids of this invention.
- FIG. 2A is a whole schematic view of a fluid damping blade according to the present invention.
- the fluid damping blade 10 of the present invention has a wedge damper portion 12 formed integrally with the blade body 11.
- the blade main body 11 occupies the front edge side including the front edge 11a, and the wedge damper portion 12 is formed on the rear edge 11b side.
- the wedge damper portion 12 may be located on the front edge side or the edge side of the blade 10.
- the blade body 11 and the wedge damper portion 12 are preferably made of the same vibratory elastic material (for example, metal) and are integrally formed.
- the blade body 11 and the wedge damper 12 may be separately manufactured and integrated by means such as welding.
- the distance x is a positive number
- the thickness h (x 1) of the outer edge (the trailing edge 11 b in this example) of the wedge damper 12 does not use the wedge damper 12 without using a special device or method. It is set to be easily manufactured.
- the fluid damping blade 10 of the present invention further includes a damping member 14 covering the wedge damper portion 12.
- the damping member 14 has a function of damping the vibration generated in the thin portion of the wedge damper portion 12.
- the damping member 14 is formed of a material (eg, polymer, elastic rubber, etc.) that has damping performance in a desired frequency range (eg, 10 kHz to 30 kHz).
- the damping member 14 is preferably made of a material whose Young's modulus (E) is as large as possible compared to the Young's modulus of the wedge damper portion 12. Further, it is desirable that the damping member 14 be made of a material whose damping ratio (() is as large as possible.
- the range in which the damping member 14 covers the wedge damper portion 12 is the entire surface in this example, only the thin portion (near the outer edge) of the wedge damper portion 12 may be covered. Further, in the present invention, the damping member 14 is not essential, and when the thin-walled portion of the wedge damper portion 12 can be manufactured sufficiently thin, the damping member 14 may be omitted.
- the damping member 14 also has an outer surface 14 a along the flow of fluid flowing around the fluid damping blade 10.
- the outer surface 14a is continuous with the outer surface of the blade main body 11 of the fluid damping blade 10, and is provided so that there is no unevenness between the two.
- the damping member 14 forms a preset blade shape with the blade body 11.
- the thickness of the damping member 14 is arbitrary.
- the thickness of the damping member 14 is changed according to the distance x so that the outer surface shape of the fluid damping blade 10 is the same as that of a conventional blade, but this thickness is constant You may
- the damping member 14 may be a coating having heat resistance to the working fluid of the fluid damping blade 10.
- the coating 14 is a damping material (eg, a bolus ceramic or metal) that is heat resistant to the working fluid at the desired frequency range (eg, 10 kHz to 30 kHz).
- FIG. 3 is a schematic view showing means for forming the coating portion 14 of the present invention.
- This figure shows the coating method disclosed in Patent Documents 3 and 4.
- a pulse-like discharge is generated between an electrode made of ceramic or refractory metal powder and the surface of a target material, and the discharge energy forms a ceramic or refractory metal film on the surface of the target material.
- microdischarge coating registered trademark as "MS coating”
- MSC microdischarge coating
- MS coatings have superior properties in cost, pre-treatment / post-treatment needs, quality, deformation, coating materials, and environment as compared to plating, plasma spraying, and welding, as shown in Table 1. ing.
- the range in which the coating portion 14 covers the wedge damper portion 12 is the entire surface in the example shown in FIG. 2A, only the thin portion (near the outer edge) of the wedge damper portion 12 may be covered with the coating portion 14.
- the coating portion 14 also has an outer surface 14 a along the flow of fluid flowing around the fluid damping blade 10.
- the outer surface 14a is continuous with the outer surface of the blade main body 11 of the fluid damping blade 10, and is provided so that there is no unevenness between the two.
- the coating portion 14 forms a preset blade shape with the blade body 11.
- the thickness of the coating part 14 is arbitrary.
- the thickness of the coating portion 14 is changed according to the distance x so that the outer surface shape of the fluid damping blade 10 is the same as that of the conventional blade, but this thickness is constant You may
- FIGS. 4A to 4C are diagrams showing the thickness of the wedge damper 12 of the present invention, the propagation speed of vibration in the wedge damper 12, and the amplitude of vibration in the wedge damper 12.
- h (x) ⁇ x n ( ⁇ is a positive constant and n is a real number of 1 or more).
- n is a real number of 1 or more
- a 0 is an input amplitude (amplitude of vibration propagated from the vibration propagation unit)
- ⁇ is a frequency
- k is a wave number
- ⁇ is a density
- E is a Young's modulus .
- vibrational energy is concentrated in the thin portion (in the vicinity of the trailing edge 11b) of the wedge damper portion 12. Therefore, by covering the thin-walled portion of the wedge damper portion 12 with the damping member 14, the vibration of the thin-walled portion can be effectively damped.
- FIGS. 5A and 5B are perspective views showing an embodiment of a fluid damping blade according to the present invention.
- the fluid damping blade 10 is a turbine blade for a jet engine.
- the present invention is not limited to this, and may be a moving blade or a stationary blade used in a rotary machine, or a fixed blade or a rotating blade used in another machine.
- FIG. 5A is a perspective view of a fluid damping blade 10 (a turbine blade for a jet engine), and FIG. 5B is a partially enlarged view thereof.
- the blade main body 11 has a front edge 11 a on the front edge side, and the wedge damper 12 is on the rear edge 11 b side. Further, the blade main body 11 and the wedge damper portion 12 are made of the same vibrationable elastic material (for example, metal) and are integrally formed.
- a conventional blade having the same shape as the fluid damping blade 10 of the present invention shown in FIGS. 5A and 5B was subjected to vibration analysis using a computer under the same conditions, and its vibration damping characteristics were compared. Note that n in the target wedge damper 12 is 2. Further, the damping member 14 is adhered along the entire surface of the wedge damper portion 12, and the shape of the outer surface 14a is the same as that of the conventional blade. As the damping member 14, one commercially available as Hama Damper C-1 was used.
- FIG. 6A and 6B show experimental results of damping characteristics of the fluid damping blade of the present invention.
- FIG. 6A is an experimental result of frequencies from 10 kHz to 20 kHz
- FIG. 6B is an experimental result from 20 kHz to 30 kHz.
- the horizontal axis represents vibration frequency (Hz)
- the vertical axis represents vibration level (dB)
- broken lines in the figure represent conventional examples
- solid lines represent examples of the present invention.
- the vibration control blade 10 of the present invention has a lower vibration level than that of the conventional example, and effective damping is achieved in a wide frequency range. It has been confirmed by experiment that it can be obtained.
- the wedge damper portion 12 can be easily manufactured without using a special device or method.
- the damping member 14 can effectively damp the thin-walled portion of the wedge damper portion 12. .
- the thin-walled portion of the wedge damper portion 12 can be effectively damped in a high temperature environment.
- the damping member 14 has the outer surface 14a which is continuous on the outer surface of the blade body without unevenness, the damping effect can be obtained without disturbing the flow of fluid.
- the coating portion 14 having heat resistance to the working fluid has the outer surface 14a continuous on the outer surface of the blade body without unevenness, the damping effect can be obtained without disturbing the flow of the high temperature fluid.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
本願は、2010年5月24日に日本に出願された特願2010-118350号及び2010年5月25日に日本に出願された特願2010-118949号に基づき優先権を主張し、それらの内容をここに援用する。
また、このブレードには、タービンやコンプレッサにおける翼車を構成するロータ部に取り付けられた翼部を含む。
このうちマスダンパは、質量体の振動を逆利用して、機械装置の振動を消去する装置で、他のダンパ装置と比較して構造が簡単である利点がある。
Effect)を利用した弾性くさびダンパ(Elastic Wedgedamper)が例えば非特許文献1に開示されている。
しかし、実際には、厚さがゼロの端部を有する弾性くさびの製造は困難であり、反射はゼロ(0)にならない。そこで、非特許文献1ではその反射を低減するため、弾性くさびの端部に減衰材料を貼り付けている。
なお、くさび形の弾性体を用いた振動又は音響の低減手段は、例えば特許文献1,2にも開示されている。
非特許文献1で実験に使用した弾性くさび51の寸法は、長さ280mm、幅200mm、厚さは厚板部53で4.5mm、最小厚さは0.02mmである。厚さh(x)は、先端からの距離xに対し、h(x)=εx2・・・(A1)の関係である。ここで、εは正の定数である。
また、振動吸収膜52はポリマー膜であり、その寸法は弾性くさび51の寸法と同じ(長さ280mm、幅200mm)であり、厚さは0.2mmである。
しかし、流体用のブレードは、流体の流れを乱す減衰手段を用いることができない。また、高温環境下(例えば1000℃以上)で使用される流体用のブレードには、流体の流れを乱す減衰手段や耐熱性の低い減衰材料(例えばポリマーやゴム)を用いることができない。そのため、この種のブレードに対しては、最適な減衰手段が従来では存在しない。
また、一般的な減衰手段は目標周波数にしか効果がないため、速度範囲が広く、広範囲の周波数で振動する可能性のあるブレードヘの適用は困難である。
また、前記流体用制振ブレードが、前記くさびダンパ部を覆い、ブレード本体の外面に凹凸なく連続する外面を有する減衰部材を有してもよい。この場合、減衰部材はブレード本体と共に予め設定したブレード形状を形成する。
同様に、作動流体に対して耐熱性を有するコーティング部でくさびダンパ部を覆うことにより、高温環境下においても、くさびダンパ部の薄肉部分における振動を、コーティング部によって効果的に減衰することができる。
図2Aにおいて、本発明の流体用制振ブレード10は、ブレード本体11と一体的に形成されたくさびダンパ部12を有する。
ブレード本体11とくさびダンパ部12は、好ましくは同一の振動可能な弾性材料(例えば、金属)からなり、一体成形されている。なお、ブレード本体11とくさびダンパ部12を別々に製作し、溶接等の手段で一体化してもよい。
ここで距離xは正数であり、くさびダンパ部12の外縁(この例では後縁1 1 b)の厚さh(x1)は、くさびダンパ部12を特別な装置又は方法を用いることなく、容易に製造できるように設定されている。
また、本発明において、減衰部材14は必須ではなく、くさびダンパ部12の薄肉部分を十分に薄く製造できる場合には、減衰部材14を省略してもよい。
なお、減衰部材14の厚さは任意である。例えば、この実施形態では、流体用制振ブレード10の外面形状が従来のブレードと同一になるように、減衰部材14の厚さを距離xに応じて変化させているが、この厚さを一定にしてもよい。
コーティング部14は、所望の周波数範囲(例えば10kHzから30kHzまで)において作動流体に対して耐熱性を有する減衰材料(例えば、ボーラスなセラミック又は金属)である。
この図は、特許文献3,4に開示されたコーティング方法を示している。
この方法では、セラミック又は耐熱金属の粉末からなる電極と対象材料の表面との間にパルス状の放電を発生させ、その放電エネルギによりセラミック又は耐熱金属の皮膜を対象材料の表面に形成する。
なお、コーティング部14の厚さは任意である。例えば、この実施形態では、流体用制振ブレード10の外面形状が従来のブレードと同一になるように、コーティング部14の厚さを距離xに応じて変化させているが、この厚さを一定にしてもよい。
なお、本発明はこの関係に限定されず、h(x)=εxn(εは正の定数、nは1以上の実数)の関係であればよい。
これらの図において、流体用制振ブレード10は、ジェットエンジン用のタービン動翼である。しかし本発明はこれに限定されず、回転機械で用いられる動翼又は静翼、或いはその他の機械で用いられる固定翼や回転翼であってもよい。
また、ブレード本体11とくさびダンパ部12は、同一の振動可能な弾性材料(例えば、金属)からなり、一体成形されている。
また、減衰部材14は、くさびダンパ部12の全面に沿って接着し、その外面14aの形状は、従来のブレードと同一とした。なお減衰部材14には、商品名ハマダンパーC-1として市販されているものを用いた。
これらの図において、図6Aは周波数10kHzから20kHzまで、図6Bは20kHzから30kHzまでの実験結果である。また各図において、横軸は振動周波数(Hz)、縦軸は振動レベル(dB)、図中の破線は従来例、実線は本発明の例である。
Claims (7)
- 一体的に形成されたくさびダンパ部を有し、その外縁より外側の仮想線からの距離xにおける厚さh(x)がh(x)=εxn(εは正の定数、nは1以上の実数)である流体用制振ブレード。
- 前記くさびダンパ部の外縁は、前縁、後縁又は端縁である請求項1に記載の流体用制振ブレード。
- 前記くさびダンパ部を覆い、ブレード本体の外面に凹凸なく連続する外面を有する減衰部材を有し、減衰部材はブレード本体と共に予め設定したブレード形状を形成する請求項1に記載の流体用制振ブレード。
- 前記くさびダンパ部を覆い作動流体に対して耐熱性を有するコーティング部を有する請求項1に記載の流体用制振ブレード。
- 前記コーティング部は、ボーラスなセラミック又は金属からなり、かつ前記くさびダンパ部を覆い、ブレード本体の外面に凹凸なく連続する外面を有し、ブレード本体と共に予め設定したブレード形状を形成する請求項4に記載の流体用制服ブレード。
- 前記コーティング部は、セラミック又は金属の粉末からなる電極とブレード本体の表面との間にパルス状の放電を発生させ、その放電エネルギによりセラミック又は金属の皮膜をブレード本体の表面に形成したコーティングである請求項4に記載の流体用制振ブレード。
- 前記くさびダンパ部の外縁は、前線、後縁又は端縁である請求項4に記載の流体用制服ブレード。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012517275A JP5403157B2 (ja) | 2010-05-24 | 2011-05-24 | 流体用制振ブレード |
EP11786634.3A EP2578802A4 (en) | 2010-05-24 | 2011-05-24 | VIBRATION DAMPING PANEL FOR FLUIDE |
US13/698,793 US20130071251A1 (en) | 2010-05-24 | 2011-05-24 | Vibration damping blade for fluid |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118350 | 2010-05-24 | ||
JP2010-118350 | 2010-05-24 | ||
JP2010118949 | 2010-05-25 | ||
JP2010-118949 | 2010-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148935A1 true WO2011148935A1 (ja) | 2011-12-01 |
Family
ID=45003925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/061858 WO2011148935A1 (ja) | 2010-05-24 | 2011-05-24 | 流体用制振ブレード |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130071251A1 (ja) |
EP (1) | EP2578802A4 (ja) |
JP (1) | JP5403157B2 (ja) |
WO (1) | WO2011148935A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010144868A (ja) * | 2008-12-19 | 2010-07-01 | Ihi Corp | 弾性くさびダンパ |
CN106023979A (zh) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | 局部共振声学黑洞结构 |
CN106023978A (zh) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | 双层板声学黑洞减振降噪结构 |
CN106023974A (zh) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | 非完美声学黑洞截面构造 |
CN108122551A (zh) * | 2017-12-20 | 2018-06-05 | 南京航空航天大学 | 一种声学黑洞振动吸收器 |
CN108133700A (zh) * | 2017-12-20 | 2018-06-08 | 南京航空航天大学 | 一种声学黑洞减振降噪装置 |
CN108717850A (zh) * | 2018-04-28 | 2018-10-30 | 南京航空航天大学 | 一种双层板腔减振降噪结构 |
CN109555805A (zh) * | 2018-11-21 | 2019-04-02 | 南京航空航天大学 | 一种基于声学黑洞效应的盒式减振结构 |
CN110094452A (zh) * | 2018-01-30 | 2019-08-06 | 香港理工大学 | 利用声学黑洞特征的宽频带振动抑制装置 |
KR20200119985A (ko) * | 2019-04-11 | 2020-10-21 | 한국과학기술원 | 두께와 폭이 함께 감소하는 음향 블랙홀 보 구조 |
JP2023546520A (ja) * | 2020-11-27 | 2023-11-02 | 江蘇科技大学 | 音響ブラックホールによる複合型制振支持フレーム、及びその設計方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3028906B1 (fr) * | 2014-11-25 | 2020-02-07 | Institut De Recherche Technologique Jules Verne | Procede et dispositif d’amortissement vibratoire d’un panneau |
DE102015100442B4 (de) | 2015-01-13 | 2020-11-26 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Aktives akustisches schwarzes Loch zur Schwingungs- und Lärmreduktion und Verfahren zum Dämpfen von Schwingungen einer Struktur |
DE102016116554B3 (de) * | 2016-09-05 | 2017-12-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Schalldämpfende Wand mit einem Fensterkomplex und Flugzeug mit einer solchen Wand |
KR101878370B1 (ko) | 2016-12-30 | 2018-07-13 | 한국과학기술원 | 진동 감쇠 장치 |
US10428660B2 (en) * | 2017-01-31 | 2019-10-01 | United Technologies Corporation | Hybrid airfoil cooling |
US10900934B2 (en) * | 2017-05-16 | 2021-01-26 | University Of South Carolina | Acoustic black hole for sensing applications |
CN107340116B (zh) * | 2017-07-10 | 2019-02-01 | 大连理工大学 | 一种基于时滞补偿的风洞支杆抑振方法 |
CA3134795A1 (en) * | 2019-03-29 | 2020-10-08 | Bae Systems Plc | Structural damper |
DE102019112756B4 (de) | 2019-05-15 | 2022-02-03 | Otto-Von-Guericke-Universität Magdeburg | Vorrichtung zur Kraftaufnahme, Weiterleitung sowie Dämpfung mechanischer Schwingungen |
DE102020124176A1 (de) | 2020-09-16 | 2022-03-17 | Ruag Ammotec Ag | Festkörperstruktur |
US11384937B1 (en) | 2021-05-12 | 2022-07-12 | General Electric Company | Swirler with integrated damper |
KR102703043B1 (ko) * | 2021-07-27 | 2024-09-04 | 동의대학교 산학협력단 | 나선형 음향 블랙홀 모듈과 이를 이용한 소음 및 진동 저감 시스템 |
CN115640649B (zh) * | 2022-11-09 | 2023-10-20 | 中国航发沈阳发动机研究所 | 一种整体叶盘及其主动失谐减振设计方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4956008A (ja) * | 1973-06-19 | 1974-05-30 | ||
JPS5196102U (ja) * | 1975-01-31 | 1976-08-02 | ||
JPH0223300A (ja) * | 1988-07-11 | 1990-01-25 | Mitsubishi Electric Corp | プロペラファン |
JP2000043252A (ja) | 1998-07-29 | 2000-02-15 | Oki Data Corp | インクジェットプリンタ用の印字ヘッド |
WO2004029329A1 (ja) | 2002-09-24 | 2004-04-08 | Ishikawajima-Harima Heavy Industries Co., Ltd. | 高温部材の擦動面のコーティング方法および高温部材と放電表面処理用電極 |
WO2004033755A1 (ja) | 2002-10-09 | 2004-04-22 | Ishikawajima-Harima Heavy Industries Co., Ltd. | 回転体及びそのコーティング方法 |
JP2008532917A (ja) | 2005-03-17 | 2008-08-21 | ソリユテイア・インコーポレイテツド | 音響を低減させる楔形ポリマー中間層 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796513A (en) * | 1972-06-19 | 1974-03-12 | Westinghouse Electric Corp | High damping blades |
US6059533A (en) * | 1997-07-17 | 2000-05-09 | Alliedsignal Inc. | Damped blade having a single coating of vibration-damping material |
GB2346415A (en) * | 1999-02-05 | 2000-08-09 | Rolls Royce Plc | Vibration damping |
EP1895165B1 (en) * | 2006-08-25 | 2010-04-28 | Sanyo Electric Co., Ltd. | Axial fan and blade design method for the same |
-
2011
- 2011-05-24 EP EP11786634.3A patent/EP2578802A4/en not_active Withdrawn
- 2011-05-24 US US13/698,793 patent/US20130071251A1/en not_active Abandoned
- 2011-05-24 JP JP2012517275A patent/JP5403157B2/ja not_active Expired - Fee Related
- 2011-05-24 WO PCT/JP2011/061858 patent/WO2011148935A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4956008A (ja) * | 1973-06-19 | 1974-05-30 | ||
JPS5196102U (ja) * | 1975-01-31 | 1976-08-02 | ||
JPH0223300A (ja) * | 1988-07-11 | 1990-01-25 | Mitsubishi Electric Corp | プロペラファン |
JP2000043252A (ja) | 1998-07-29 | 2000-02-15 | Oki Data Corp | インクジェットプリンタ用の印字ヘッド |
WO2004029329A1 (ja) | 2002-09-24 | 2004-04-08 | Ishikawajima-Harima Heavy Industries Co., Ltd. | 高温部材の擦動面のコーティング方法および高温部材と放電表面処理用電極 |
WO2004033755A1 (ja) | 2002-10-09 | 2004-04-22 | Ishikawajima-Harima Heavy Industries Co., Ltd. | 回転体及びそのコーティング方法 |
JP2008532917A (ja) | 2005-03-17 | 2008-08-21 | ソリユテイア・インコーポレイテツド | 音響を低減させる楔形ポリマー中間層 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2578802A4 |
V. V. KRYLOV; R.E.T.B. WINWARD: "Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates", JOURNAL OF SOUND AND VIBRATION, vol. 300, 2007, pages 43 - 49, XP005724267, DOI: doi:10.1016/j.jsv.2006.07.035 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010144868A (ja) * | 2008-12-19 | 2010-07-01 | Ihi Corp | 弾性くさびダンパ |
CN106023978B (zh) * | 2016-05-23 | 2019-08-02 | 南京航空航天大学 | 双层板声学黑洞减振降噪结构 |
CN106023979A (zh) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | 局部共振声学黑洞结构 |
CN106023978A (zh) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | 双层板声学黑洞减振降噪结构 |
CN106023974A (zh) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | 非完美声学黑洞截面构造 |
CN106023974B (zh) * | 2016-05-23 | 2019-10-22 | 南京航空航天大学 | 非完美声学黑洞截面构造 |
CN106023979B (zh) * | 2016-05-23 | 2019-10-22 | 南京航空航天大学 | 局部共振声学黑洞结构 |
CN108133700A (zh) * | 2017-12-20 | 2018-06-08 | 南京航空航天大学 | 一种声学黑洞减振降噪装置 |
CN108133700B (zh) * | 2017-12-20 | 2020-09-25 | 南京航空航天大学 | 一种声学黑洞减振降噪装置 |
CN108122551B (zh) * | 2017-12-20 | 2021-05-11 | 南京航空航天大学 | 一种声学黑洞振动吸收器 |
CN108122551A (zh) * | 2017-12-20 | 2018-06-05 | 南京航空航天大学 | 一种声学黑洞振动吸收器 |
CN110094452A (zh) * | 2018-01-30 | 2019-08-06 | 香港理工大学 | 利用声学黑洞特征的宽频带振动抑制装置 |
US11946523B2 (en) | 2018-01-30 | 2024-04-02 | The Hong Kong Polytechnic University | Wideband vibration suppression device utilizing properties of sonic black hole |
CN108717850A (zh) * | 2018-04-28 | 2018-10-30 | 南京航空航天大学 | 一种双层板腔减振降噪结构 |
CN108717850B (zh) * | 2018-04-28 | 2020-06-05 | 南京航空航天大学 | 一种双层板腔减振降噪结构 |
CN109555805B (zh) * | 2018-11-21 | 2020-01-24 | 南京航空航天大学 | 一种基于声学黑洞效应的盒式减振结构 |
CN109555805A (zh) * | 2018-11-21 | 2019-04-02 | 南京航空航天大学 | 一种基于声学黑洞效应的盒式减振结构 |
KR20200119985A (ko) * | 2019-04-11 | 2020-10-21 | 한국과학기술원 | 두께와 폭이 함께 감소하는 음향 블랙홀 보 구조 |
KR102192668B1 (ko) | 2019-04-11 | 2020-12-17 | 한국과학기술원 | 두께와 폭이 함께 감소하는 음향 블랙홀 보 구조 |
JP2023546520A (ja) * | 2020-11-27 | 2023-11-02 | 江蘇科技大学 | 音響ブラックホールによる複合型制振支持フレーム、及びその設計方法 |
JP7387219B2 (ja) | 2020-11-27 | 2023-11-28 | 江蘇科技大学 | 音響ブラックホールによる複合型制振支持フレーム、及びその設計方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011148935A1 (ja) | 2013-07-25 |
US20130071251A1 (en) | 2013-03-21 |
EP2578802A1 (en) | 2013-04-10 |
EP2578802A4 (en) | 2016-05-18 |
JP5403157B2 (ja) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011148935A1 (ja) | 流体用制振ブレード | |
JP2010144868A (ja) | 弾性くさびダンパ | |
EP1701028B1 (en) | Acoustic liner with a nonuniform depth backwall | |
US5979593A (en) | Hybrid mode-scattering/sound-absorbing segmented liner system and method | |
JP2006348932A (ja) | 不均一なインピーダンスを有する音響ライナー | |
EP1662137A1 (en) | A wind turbine wing with noise reduction means | |
JP7440617B2 (ja) | 消音器付送風機、及びプロペラ付移動体 | |
EP2251261B1 (en) | An intake duct liner for a turbofan gas turbine engine | |
SE468911B (sv) | Daempningsenhet foer anvaendning i ett stag hos en jetmotor | |
JP2023098879A (ja) | ファン消音システム | |
WO2009152420A2 (en) | Dipole flow driven resonators for fan noise mitigation | |
Murray et al. | Development of a single degree of freedom perforate impedance model under grazing flow and high SPL | |
US9169750B2 (en) | Fluid flow noise mitigation structure and method | |
US20210241751A1 (en) | Spatially global noise cancellation | |
CN113646543B (zh) | 带消音器的送风机 | |
JP5598084B2 (ja) | 回転シャフト用の弾性くさびダンパ | |
Sun et al. | On the flow-acoustic coupling of fan blades with over-the-rotor liner | |
WO2020080112A1 (ja) | 音響システム | |
Xiong et al. | Effects of turbofan engine intake droop and length on fan tone noise | |
JP2010101809A (ja) | 変動風発生装置および風洞装置 | |
Bayod | Application of elastic wedge for vibration damping of turbine blade | |
Neuhaus et al. | Active control of the aerodynamic performance and tonal noise of axial turbomachines | |
Pagliaroli et al. | Aeroacoustic Study of small scale Rotors for mini Drone Propulsion: Serrated Trailing Edge Effect. | |
Liu et al. | Reactive control of subsonic axial fan noise in a duct | |
Gorny et al. | Axial fan blade tone cancellation using optimally tuned quarter wavelength resonators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786634 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012517275 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13698793 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011786634 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011786634 Country of ref document: EP |